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Abstract

This paper proposes the estimation of a smooth graphon model for network data
analysis using principles of the EM algorithm. The approach considers both variabil-
ity with respect to ordering the nodes of a network and smooth estimation of the
graphon by nonparametric regression. To do so, (linear) B-splines are used, which
allow for smooth estimation of the graphon, conditional on the node ordering. This
provides the M-step. The true ordering of the nodes arising from the graphon model
remains unobserved and Bayesian ideas are employed to obtain posterior samples
given the network data. This yields the E-step. Combining both steps gives an EM-
based approach for smooth graphon estimation. Unlike common other methods, this
procedure does not require the restriction of a monotonic marginal function. The pro-
posed graphon estimate allows to explore node-ordering strategies and therefore to
compare the common degree-based node ranking with the ordering conditional on the
network. Variability and uncertainty are taken into account using MCMC techniques.
Examples and simulation studies support the applicability of the approach.
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1 Introduction

The analysis of network data has achieved increasing interest in the last years. Goldenberg

et al. (2010), Hunter et al. (2012), Fienberg (2012) and Salter-Townshend et al. (2012),

respectively, published survey articles demonstrating the state-of-the-art in the field. We

also refer to Kolaczyk (2009), Kolaczyk and Csárdi (2014) and Lusher et al. (2013) for

monographs in the field of statistical network data analysis, see also Kolaczyk (2017).

The statistical workhorse models for network data are Exponential Random Graph Models

(ERGM), Stochastic Block Models (SBM) and Latent Space Models. ERGMs make use of

an exponential family distribution to model the network’s adjacency matrix as a random

matrix. This model class was proposed by Frank and Strauss (1986) and is extensively

discussed in Snijders et al. (2006). SBMs as well as the latent space models are both model

classes which make use of latent quantities relating to the nodes, that are employed to

explore the network structure. They were proposed in their nowadays form by Holland

et al. (1983) and Hoff et al. (2002), respectively.

A different modeling strategy, which is also based on latent quantities, results through

comprehending the network adjacency matrix Y ∈ {0, 1}N×N to be generated by a so

called graphon. The graphon as data generating model comes into play by assuming that

we draw N random variables

U1, . . . , UN
i.i.d.∼ Uniform[0, 1] (1)

and, given Ui and Uj, simulate the network entries Yij conditionally independently through

Yij|Ui = ui, Uj = uj ∼ Binomial(1, w(ui, uj)). (2)

The function w(, ) is thereby called a graphon (= graph function). In case of undirected

networks we additionally require symmetry so that Yij = Yji (and hence in principle we

assume w(u, v) = w(v, u)). We remain with the commonly used convention and exclude so

called self-loops, which means Yii = 0 for i = 1, . . . , N . Apparently, the graphon function

w(, ) is not unique with regard to the data generating process (2). This is because for any
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measure-preserving bijection ϕ : [0, 1] → [0, 1] the permuted graphon w(ϕ(u), ϕ(v)) yields

the same model. More generally, as has been stated by Diaconis and Janson (2008), two

graphons w(, ) and w′(, ) represent the same generating model if and only if there exist two

measure preserving mappings – not necessarily bijections – ϕ̃ and ϕ̃′ : [0, 1] → [0, 1] such

that w(ϕ̃(u), ϕ̃(v)) = w′(ϕ̃′(u), ϕ̃′(v)) for almost all (u, v) ∈ [0, 1]2. Some papers therefore

add a further attribute to achieve uniqueness, e.g. see Bickel and Chen (2009) or Yang

et al. (2014). The common setting to do so is to postulate that

g(u) =

∫
w(u, v) dv (3)

is strictly increasing in u, which leads to the so called canonical representation of the

graphon w(, ). Note that the distribution of g(Ui) with Ui following (1) can be interpreted

as (asymptotic) distribution of the degree proportion. However, the additional condition (3)

incorporated to tackle the identifiability issue can be problematic, especially in combination

with other postulations. For reconstruction reasons commonly some kind of smoothness is

assumed in the sense that w(, ) satisfies (at least piecewise) some Lipschitz or Hölder condi-

tions of continuity, e.g. see Olhede and Wolfe (2014), Chan and Airoldi (2014) or Gao et al.

(2015a). But then, considering an arbitrary continuous graphon, the transformation into

its canonical representation neither usually retains the continuity nor are there necessarily

any guarantees that such a canonical representation exists. Taking only graphon functions

into account which are continuous in their canonical representation would apparently be

a strong restriction of the generality of graphon models. We therefore consider the more

general model class which does not include the canonical constraint. Still, we also discuss

estimation under the restriction (3).

Graphon estimation for modeling network data has recently found attention in the

statistical literature. A general discussion is given in Orbanz and Roy (2014) and You

(2020) recently launched an R package for graphon estimation. Graphons can be related

to ERGMs, at least for simple statistics like two-star or triangles, as shown in Diaconis

and Chatterjee (2013). He and Zheng (2015) make use of this connection and propose to

use asymptotic properties of graphons to derive estimates in high dimensional ERGMs.
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Moreover, graphon models can be seen as a generalized model class which also includes

SBMs and latent space models (e.g. see Bickel et al., 2011). Wolfe and Olhede (2013) and

Yang et al. (2014) discuss non-parametric estimation of graphons including tests on the

validity of prespecified graphon shapes, see also Chan and Airoldi (2014), Airoldi et al.

(2013) or Olhede and Wolfe (2014). One of the most propagated strategies in the graphon

estimation literature is to approximate the graphon through a SBM, see Choi and Wolfe

(2014), Choi (2017) or Klopp et al. (2017). Gao et al. (2015a) discuss optimal graphon

estimation for the SBM approximation. SBMs are, however, by definition discontinuous

models, meaning that the corresponding graphon function is discontinuous and hence not

smooth. In this paper, in contrast, we focus on smooth and hence continuous graphon

functions. For a general discussion on graphons we refer to Borgs et al. (2008), Lovász

(2012), Diaconis and Janson (2008) or Bickel and Chen (2009).

Estimating graphons can generally be reduced to probability matrix estimation, where

the goal is to gain information about the specific pairwise probabilities P(Yij = 1|Ui =

ui, Uj = uj) = w(ui, uj). From this perspective, the Ui are not well-defined components.

This reduction – considering the graphon values only at unspecific positions – allows to

circumvent the identifiability issue from above. Chatterjee (2015) provides convergence

results for general matrix estimation using singular value decomposition, see also Gao

et al. (2015a), Zhang et al. (2015) or Xu (2017). Gao et al. (2016) extends this towards

partially observed matrices/networks, see also Gao et al. (2015b) for a Bayesian approach.

The cited work, however, yields estimates of specific graphon values at unspecific positions

and thus does not lead to a smooth graphon estimate on the domain [0, 1]2 which is focused

in this work.

In this paper we propose to use penalized linear B-splines for graphon estimation. This

borrows ideas suggested in Kauermann et al. (2013) for copula estimation, since B-splines

easily allow to accommodate side constraints such as symmtery in form of w(u, v) = w(v, u)

or, if required, condition (3) for the resulting estimate. This, in contrast, is difficult to

accommodate in histogram or kernel based estimation. Penalized estimation with B-splines

has thereby a long standing tradition in smooth estimation, starting with Eilers and Marx
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(1996) and Ruppert et al. (2003, 2009), see also Wood (2017). We extend the idea here to

graphon estimation. However, before this smoothing approach can be applied, we also need

to fill the lack of information about the Ui. On the other hand, conditional on the observed

network data y = {yij}i,j=1,...,N , a presumption about the positions of the Ui can only be

made in relation to w(, ). Since both the implicitly supposed parameters of the B-spline

approximation of w(, ) and the latent Ui are unknown, this is a typical task for an EM type

algorithm. Moreover, MCMC techniques can be applied in this context to approximate

numerically the complex posterior distribution of the Ui, which together yields a MCEM

algorithm.

The paper is organized as follows. Section 2 displays the main ideas of pursuing an

EM based algorithm for smooth graphon estimation. Section 3 describes the procedure in

detail. Section 4 and Section 5 showcase results for both simulations and real-world data

examples. A discussion concludes the paper.

2 Graphon Representation and EM Motivation

We assume that the graphon w : [0, 1]2 → [0, 1] is a smooth function, meaning that w(, ) is

sufficiently differentiable in both arguments. We call w(, ) to have a canonical representation

if g(u) =
∫
w(u, v) dv is strictly increasing, see, among others, Chan and Airoldi (2014).

We assume further that w(, ) is symmetric and generates a network of size N through the

following process. For N independent uniform variables

Ui
i.i.d.∼ Uniform[0, 1], i = 1, . . . , N

we obtain the symmetric network through

P(Yij = 1|Ui = ui, Uj = uj) = w(ui, uj) (4)

for 1 ≤ i < j ≤ N , where Yji = Yij and Yii = 0. The variables Ui remain unobservable

and as data we only obtain the observed network y. This implies in particular that no
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information on the values of Ui is given and hence estimation of w(, ) occurs to be difficult.

We propose to tackle the estimation problem using an EM algorithm. In that sense, we

calculate (or rather approximate by simulating) E(U |y) from which we derive an appro-

priate ordering, giving the E-step, which in turn allows to estimate w(, ) using smoothing

techniques, providing the M-step. For the E-step we take a Bayesian view by looking at

the posterior density of U = (U1, . . . , UN) given y. Note that since U1, . . . , UN are i.i.d.

uniform we have

f(u|y) ∝
∏
i,j
j>i

w(ui, uj)
yij(1− w(ui, uj))

1−yij .

If we look at the univariate distribution of a single variable Uk given the entire network y,

this results through

fk(uk|y) ∝
∫
. . .

∫ ∏
i,j

j>i

w(ui, uj)
yij(1− w(ui, uj))

1−yij du1 . . . duk−1 duk+1 . . . duN . (5)

Apparently, both the joint and the marginal posterior distribution are too complex to be

calculated analytically, in particular if N is large. We will therefore explore (5) by pursuing

a Bayesian approach using MCMC techniques. Details are given in the next sections.

Letting û
(m)
k denote the rescaled ranks of the posterior means (see equation (9) below) of

the MCMC samples in the mth step of the EM algorithm, we then maximize the likelihood

resulting from (4) with ui replaced by û
(m)
i . To do so, we make use of penalized B-spline

smoothing, meaning that we replace the unknown graphon w(, ) by an approximate spline

base representation B(, )θ, where B(, ) is a bivariate spline and θ is the vector of unknown

spline coefficients to be estimated in the M-step. Both steps the E- and the M-step will

be introduced in detail below. Before doing so, however, we propose a simple first E-step,

which also serves as initial step of the corresponding EM iteration.

Even though the probability model (4) used for the construction of networks is simple, it

can not directly be used for estimation. The reason is that variables Ui are unobservable and

hence can not directly be employed to estimate the graphon w(, ). Instead, in the recent
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literature the graphon w(, ) is usually estimated by smoothing the observed adjacency

matrix y. The preceding rearrangement of the nodes thereby should effect an appropriate

reordering of the rows and columns which in turn should reflect the ordering of the Ui. Let

ψ : {1, . . . , N} → {1, . . . , N} be a permutation such that

Uψ(i) ≤ Uψ(j)

with i < j. This means Uψ(i) = U(i), where U(1) ≤ U(2) ≤ . . . ≤ U(N) define the ordered

variables Ui. Note that since Ui, i = 1, . . . , N are not observable, we can also not observe

ψ() which therefore needs to be estimated. A common approach is to make use of the

degree. Let therefore ψ̂ : {1, . . . , N} → {1, . . . , N} be a permutation such that

degree(ψ̂(i)) ≤ degree(ψ̂(j)) (6)

for i < j. Note that ψ̂() can serve as an initial estimate for ψ(), although it requires the

assumption that g() from (3) is strictly increasing. We therefore use it as initial E-step

and define the corresponding resulting initial prediction for Uj based on this simple sorting

through

û
(0)
j =

rank(degree(j))

N + 1
, (7)

where rank(degree(j)) is the rank from smallest to largest of the jth element of the tuple

(degree(i) : i = 1, . . . , N). This is equivalent to define û
(0)

ψ̂(j)
= j/(N + 1), where i/(N +

1), i = 1, . . . , N represent the expected values of N ordered independently Uniform[0, 1]

distributed variables. Chan and Airoldi (2014) prove – in case of graphons with canonical

representation – asymptotic convergence rates for ψ̂() towards ψ(), meaning that |ψ(j) −

ψ̂(j)|/N → 0 for all j = 1, . . . , N .

We can now replace w(, ) in (4) by its empirical version ŵ(0)(, ) which is defined through

ŵ(0)(u, v) = yψ̂(duNe)ψ̂(dvNe),
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where duNe defines the smallest value which is greater or equal to uN . Note that ŵ(0)(, )

just mimics the ordered adjacency matrix scaled towards the unit square. These calcula-

tions provide the initial steps in the subsequently introduced EM algorithm.

3 EM Algorithm for smooth Graphons

3.1 Bayesian Approach for the E-Step

We pursue the E-step by exploiting the posterior distribution of U . This is done by

constructing an appropriate MCMC Gibbs sampling scheme based on the full posterior

distribution of Uk. Note that by conditioning on y and all Uj except of Uk one gets

fk(uk|u1, . . . , uk−1, uk+1, . . . , uN ,y) ∝
∏
j 6=k

w(uk, uj)
ykj(1− w(uk, uj))

1−ykj . (8)

We pretend in this section that the graphon w(, ) is known, which is the general setting in

the E-step. This allows to easily sample from (8) using Gibbs sampling as MCMC technique.

To do so, we assume u<t> = (u<t>1 , . . . , u<t>N ) to be the current state of the Markov chain.

To update the kth component we then set u<t+1>
j := u<t>j for j 6= k, while component uk

is updated by drawing from (8). To pursue this, we make use of a normal proposal using a

logit link. To be specific, let z<t>k = log(u<t>k /(1−u<t>k )) = logit (u<t>k ). We then propose

to draw z∗k = z<t>k + Normal(0, σ2) and set u∗k = logit−1(z∗k) = exp(z∗k)
/

(1 + exp(z∗k)).

Hence, the proposal density for Uk is proportional to

q(u∗k|u<t>k ) =
∂u∗k
∂z∗k

φ(z∗k|z<t>k )

∝ 1

u∗k(1− u∗k)
exp

(
−1

2

(logit (u∗k)− logit (u<t>k ))2

σ2

)
,

where φ() is the standard normal density. Consequently, the ratio of proposals equals

qk(u
<t>
k |u∗k)

qk(u∗k|u<t>k )
=

u∗k(1− u∗k)
u<t>k (1− u<t>k )

.
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The proposed value u∗k is accepted (and hence we set u<t+1>
k := u∗k) with probability

min

{
1,

∏
j 6=k

[(
w(u∗k, u

<t>
j )

w(u<t>k , u<t>j )

)ykj ( 1− w(u∗k, u
<t>
j )

1− w(u<t>k , u<t>j )

)1−ykj
]

u∗k(1− u∗k)
u<t>k (1− u<t>k )

}
.

If we do not accept u∗k, we set u<t+1>
k := u<t>k . Based on the resulting Markov chain we can

estimate the posterior mean E(Uk|y) by taking the mean of the simulated values, observing

an appropriate burn-in phase of the algorithm. To be specific, we use the MCMC sequence

to estimate the posterior mean in the mth step of the EM algorithm through

ū
(m)
k =

1

n

n∑
s=1

u<s·N ·r>k ,

where r ∈ N describes a thinning factor and n is the number of MCMC states which are

taken into account. We then use the ranks of the posterior means to reorder the network

matrix accordingly. This corresponds to setting the missing values of Uj according to (7)

to

û
(m)
j =

rank(ū
(m)
j )

N + 1
. (9)

The Gibbs sampling approach is straightforward and simple but requires the knowledge of

the graphon w(, ). Apparently, in the EM algorithm we replace w(, ) in the formula above

by the current estimate resulting through the M-step, which is described subsequently. We

define the final estimate resulting through (9) as ûEMj .

3.2 Spline based Graphon Estimation for the M-Step

3.2.1 Linear B-Splines

For smooth estimation of the graphon w(, ) we first formulate a spline based approximation

through

wspline
θ (u, v) = B(u, v)θ = [B(u)⊗B(v)]θ, (10)
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Figure 1: Normalized univariate linear B-spline basis for the approximation of the graphon.
The (equidistant) inner knots are denoted by τj with j = 1, . . . , K.

where B(u) ∈ R1×K is a linear B-spline basis on [0, 1], normalized to have maximum value

1, see Figure 1. Parameter vector θ ∈ RK2×1 is indexed through

θ = (θ11, . . . , θ1K , θ21, . . . , θK1, . . . , , θKK)> .

Using (10) we obtain the likelihood

l(θ) =
∑
i

∑
j 6=i

[yij log (Bijθ) + (1− yij) log (1−Bijθ)] ,

where Bij = B(ui)⊗B(uj). Taking the derivative leads to the score function

s(θ) =
∑
i

∑
j 6=i

B>ij

(
yij

wspline
θ (ui, uj)

− 1− yij
1− wspline

θ (ui, uj)

)
.

Moreover, taking the expected second order derivative leads to the Fisher matrix

F (θ) =
∑
i

∑
j 6=i

B>ijBij

[
wspline
θ (ui, uj) ·

(
1− wspline

θ (ui, uj)
)]−1

.

Our intention is to maximize l(θ), which could be simply done by Fisher scoring. The

resulting maximizer does, however, not by default lead to a proper estimate, meaning
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to fulfill symmetry and boundedness. Furthermore, in case we aim to estimate a graphon

with canonical representation, we need to incorporate the constraint from (3). We therefore

impose additional (linear) side constraints on θ. Considering the identifiability issue we

get the marginal function with (10) through

gsplineθ (u) =

B(u)⊗
1∫

0

B(v) dv

θ. (11)

For normalized B-splines we can easily calculate the integral and for a standardized basis

with equidistant knots we obtain

1∫
0

B(v) dv =

 1∫
0

B1(v) dv,

1∫
0

B2(v) dv, . . . ,

1∫
0

BK(v) dv


=

1

K − 1

(
1

2
, 1, . . . , 1,

1

2

)
︸ ︷︷ ︸

=:A

.

This allows to rewrite (11) to gsplineθ (u) = [B(u)⊗A]θ. Hence, the marginal function

gsplineθ () is also expressed as a linear B-spline and a monotonicity constraint is easily ac-

commodated by postulating monotonicity at the knots τ1, . . . , τK . That is we need

gsplineθ (τl)− gsplineθ (τl−1) ≥ 0 ⇔ [(B (τl)−B (τl−1))⊗A]θ ≥ 0 (12)

for l = 2, . . . , K, which is a simple linear constraint on the coefficient vector.

Imposing symmetry on the graphon can also easily be accommodated as linear con-

straints θpq = θqp for p 6= q. Finally, we need wspline
θ (, ) being bounded to [0, 1], which is

again a simple linear constraint. All in all, we can write the side constraints as Cθ ≥ 0

and Dθ = 0 for matrices C and D chosen accordingly, where the constraint from (12) for

the canonical representation can be added if required. With the above linear constraints

and the maximization task of l(θ) we obtain an (iterated) quadratic programming problem,

which can be solved using standard software (see e.g. Andersen et al., 2004 or Turlach and

Weingessel, 2013).
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3.2.2 Penalized Estimation

Following ideas from the penalized spline estimation (see Eilers and Marx, 1996 or Ruppert

et al., 2009) we may additionally impose a penalty on the coefficients to achieve smoothness.

This is necessary since we intend to choose K large and unpenalized estimation will lead to

wiggled estimates. We refer to Eilers and Marx (1996) for a motivation of penalized spline

estimation. To do so, we penalize the difference between “neighbouring” elements of θ to

achieve smoothness. Let therefore

L =


1 −1 0 . . . 0

0 1 −1 . . . 0
...

. . .
...

0 . . . 0 1 −1

 ∈ R(K−1)×K

be the first order difference matrix. We then penalize [L⊗ I]θ and [I ⊗L]θ, where I is

the identity matrix of appropriate size. This is leading to the penalized likelihood

lP (θ, λ) = l(θ)− 1

2
λθ>Pθ,

where P = (L⊗ I)> (L⊗ I) + (I ⊗L)> (I ⊗L) and λ serves as smoothing parameter.

The corresponding penalization score function is given through

sP (θ, λ) = s(θ)− λPθ

and the penalized Fisher matrix in the form

F P (θ, λ) = F (θ) + λP .

The estimate apparently depends on the penalty parameter λ, which is suppressed in the

notation. Setting λ→ 0 gives an unpenalized fit while setting λ→∞ leads to a constant

graphon, i.e. an Erdős-Rényi model. The smoothing parameter λ therefore needs to be

chosen data driven. We here follow Kauermann et al. (2013) and make use of the Akaike
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Information Criterion (AIC) (Hurvich and Tsai, 1989, see also Burnham and Anderson,

2010). To do so, we define the corrected AIC through

AICc(λ) = −2 l(θ̂P ) + 2 df(λ) +
2 df(λ) (df(λ) + 1)

(N(N − 1))− df(λ)− 1
,

where θ̂P is the penalized parameter estimate and df(λ) is the degree of the model, which

we define in the usual way as trace of the product of the inverse penalized Fisher matrix

and the unpenalized Fisher matrix. To be specific

df(λ) = tr
{
F−1P (θ̂P , λ)F (θ̂P )

}
.

We subsequently denote with ŵ(1)(, ) and ŵEM (, ) the penalized B-spline estimates of

wspline
θ (, ) in the first and the final EM step, meaning that ŵ(1)(, ) and ŵEM (, ) are based on

û(0) and ûEM , respectively.

As it is well known, the EM algorithm can be trapped at a local maximum of the

likelihood (or, in this case, at a local minimum of the corrected AIC). Thus, depending

on the specific data situation, it might be recommendable to repeat the algorithm several

times to achieve a better fit.

3.3 Information on Ranking

Note that Ui is uniform and it is helpful to order Ui such that U(1) ≤ U(2) ≤ . . . ≤

U(N). Considering the degree based ordering ψ̂() from (6) as representative, this allows to

define the (degree related) ranking density fψ̂(k)(uψ̂(k)|y). For the sake of simplicity, we

subsequently collapse ψ̂(k) to (k) so that henceforth f(k)(u(k)|y) and U(k) refer to the node

with the kth lowest degree. For other quantities the notation applies accordingly. This

ranking density, however, again is difficult or even impossible to calculate analytically.

Note that the full posterior density is given through

f(k)(u(k)|u(−k),y) ∝
∏
j 6=k

w(u(k), u(j))
y(k)(j)(1− w(u(k), u(j)))

1−y(k)(j) , (13)
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ID Graphon

1 w1(u, v) = 0.8 (1− u) (1− v) + 0.85(u · v)

2
w2(u, v) = 0.5 · {FN (0,0.25)(Φ

−1(u)) · FN (0,0.25)(Φ
−1(v))

+ [1− FN (0,0.25)(Φ
−1(u))] · [1− FN (0,0.25)(Φ

−1(v))]}

Table 1: Exemplary graphons considered for simulations. For the second graphon specifi-
cation Φ() and FN (0,0.25) denote the cdf’s of the normal distributions with parametrization
(µ, σ2) = (0, 1) and (0, 0.25), respectively.

where y(k)(j) is the network entry which refers to the nodes k and j after the permutation

according to the degree based ordering. In that regard, the MCMC sequence (after ap-

propriate thinning) provides information about the posterior distribution of U given the

network y. Hence, for the marginal posterior distribution of U(k) we can follow a Monte

Carlo integration approach, see e.g. Gelfand and Smith (1990, sec. 2.2 and 2.3), and

calculate

f(k)(u(k)|y) ≈ 1

n

n∑
s=1

f(k)(u(k)|u<s·N ·r>(−k) ,y), (14)

where u<t>(−k) = (u<t>(1) , . . . , u
<t>
(k−1), u

<t>
(k+1), . . . , u

<t>
(N) ) is the tth state of the Gibbs sampling

sequence without the kth component after degree related permutation, r ∈ N describes a

thinning factor and n is the number of MCMC states which are taken into account. For

this purpose, the unspecified normalizing constant in (13) can be approximated through a

Riemann sum, since we assume w(, ) to fulfill certain continuity properties. Considering

w(, ) as unknown again, we employ ŵ(1)(, ) or ŵEM (, ) as estimate in (13) and obtain

f̂
(1)
(k) (u(k)|y) or f̂EM

(k) (u(k)|y) as estimate of (14), respectively.

4 Simulation Studies

For evaluating our method we at first consider networks generated from a known ground

truth. More precisely, for each of the two graphons from Table 1 we simulate networks

with dimension N = 500 using the data generating process (4). The first graphon has a
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canonical representation, while the second is more general and does not fulfill that g() in (3)

is strictly increasing. We start with Graphon 1 and demonstrate the benefits of iteratively

applying the E- and M-step instead of ordering the nodes just with respect to their degree,

i.e. based on ψ̂(), and applying the M-step only once. We call the latter a “one-step”

estimator. This “one-step” estimate ŵ(1)(, ) is shown in the top right panel in Figure 2.

The fit is apparently not convincing, which we want to make more evident by looking at

the ranking information. First, we plot û
(0)
i as defined in (7) against the true values ui.

There is no concordance visible, which exhibits the problem with a simple ranking of the

nodes based on the degree. We run an MCMC sample according to Section 3.1 to obtain

information about the ranking, as discussed in Section 3.3. The MCMC sample allows to

estimate the posterior distribution of U(k) as proposed in (14), which for three exemplary

values of k is plotted in the bottom right plots of Figure 2. The corresponding initial

estimates û
(0)
(k) are included as vertical dashed lines and it can be seen that they are not well

represented by the posterior distributions. We can conclude that this network, which has

been generated from w1(, ), is not suitable to sort by degree for achieving an appropriate

estimate of the true node ordering with respect to the data generating model. Hence,

also the “one-step” estimation approach results in a very poor fit of the underlying true

graphon. We therefore iterate between the E- and the M-step.

The converged EM estimate is shown in the top right plot in Figure 3. Regarding the

final EM based estimates ûEMi , the comparison with the true values ui reveals a convincing

concordance. We also consider again the posterior distribution of U(k) for the same indices

as above (bottom right plots), which indicates a plausible positioning. As a conclusion, the

proposed EM algorithm provides appropriate results even if the initial ordering of the nodes

by their degree is not adequate. Note that the canonical restriction from (12) has not been

included here although w1(, ) has canonical representation, since the shown unrestricted

estimate turned out to be similarly good.

Finally, we explore the convergence behavior of the algorithm, which is illustrated in

Figure 4 for some values of the graphon at exemplary specific positions. We see that after

about 8 to 12 steps a reasonable convergence occurs.
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Figure 2: Graphon estimation based on linear B-splines and û(0) for Graphon 1 (top left)
from Table 1. The graphon estimate ŵ(1)(, ) is depicted in top right. The plot at bottom

left illustrates the estimated û
(0)
i versus the true simulated ui. The three lower right plots

show the approximated posterior distribution of U(k) (based on the MCMC samples and
with respect to the given graphon estimate) for some selected indices. The dashed vertical

lines (see also numbers in the boxes) represent the estimates û
(0)
(k).
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Figure 3: Graphon estimation for Graphon 1 (top left) from Table 1, based on the EM
algorithm using û(0) from (7) as initialization and excluding the canonical restriction from
(12). The graphon estimate ŵEM (, ) is depicted in the top right. The plot at bottom left
illustrates the comparison between the estimated ûEMi and the true simulated ui. The three
lower right plots show for some selected indices the approximated posterior distribution of
U(k) with respect to the graphon estimate in the top right panel. The dashed vertical lines
(see also numbers in the boxes) represent the estimates ûEM(k) .
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Figure 4: Trajectory of ŵ(m)(u, v) for Graphon 1 from Table 1 at exemplary specific posi-
tions for the proceeding EM iterations m = 1, . . . , 30.

For a further evaluation, we now have a look at Graphon 2, which does not provide

a canonical representation and thus is completely intractable for simple degree based es-

timation methods. This simulation seeks to demonstrate that our proposed method can

also handle more general graphons. The marginal function g() as defined in (3) is constant

at 0.25, meaning that the degree is fully uninformative with regard to the node ordering.

Nonetheless, we here remain with the degree based initialization as proposed above to show

that the EM algorithm is capable of appropriately estimating the underlying structure even

under bad initialization. We exclude the side constraint from (12), since we now explicitly

want to enable flexible marginal functions. The resulting graphon estimate for a simulated

network of dimension N = 500 is depicted in the top right plot in Figure 5. The struc-

ture of the true graphon (top left) is fully captured, which is accompanied by a convincing

concordance between the estimated ûEMi and the true ui. In accordance with that, the

estimates ûEM(k) are well covered by the corresponding ranking densities, which is illustrated

for three selected indices at the stacked plots at the bottom right. To further showcase the

performance of our method we repeat the estimation procedure several times based on the

same simulated network but with differing random initialization. More precisely, instead

of making use of the degree based ordering from (7), we set û(0) as a random permutation
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Figure 5: Graphon estimation for the non-canonical Graphon 2 (top left) from Table 1,
based on the EM algorithm using û(0) from (7) as initialization and excluding the canonical
restriction from (12). The graphon estimate ŵEM (, ) is depicted in the top right. The plot
at bottom left illustrates the estimated ûEMi versus the true simulated ui. The three lower
right plots show for some selected indices the approximated posterior distribution of U(k)

with respect to the graphon estimate in the top right panel. The dashed vertical lines (see
also numbers in the boxes) represent the estimates ûEM(k) .
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lP (θ, λ) = −123, 291.08
AICc(λ) = 247, 369.06

lP (θ, λ) = −123, 447.84
AICc(λ) = 247, 582.89

lP (θ, λ) = −124, 530.64
AICc(λ) = 250, 136.38

lP (θ, λ) = −123, 830.82
AICc(λ) = 248, 469.47

lP (θ, λ) = −123, 247.88
AICc(λ) = 247, 344.62

lP (θ, λ) = −123, 431.02
AICc(λ) = 247, 556.45

Figure 6: Graphon estimates ŵEM (, ) for the non-canonical Graphon 2 from Table 1, based
on the EM algorithm using uninformative random initialization. For all repetitions the same
simulated network has been used but with independently differing initialization. Beneath
are the penalized likelihood and the corrected AIC given accordingly.

of (i/(N + 1) : i = 1, . . . , N). This also exemplary characterizes the appearance of the EM

algorithm being trapped at local minima of the AIC. Figure 6 illustrates the estimation

results for six such repetitions. Although we start for each run with a completely unin-

formative random initialization, in most of the final estimates the structure of the original

graphon can be fully recognized instantly. Yet, the estimates in the top right and the

bottom left panel reveal a somehow differing structure. Having a more precise look, they

exhibit the appearance of segment swaps and reversals with respect to the original graphon

representation. For instance, at the graphon estimate in the bottom left panel the upper

and the lower part of the domain [0, 1] have been swapped and, in addition, the lower part

has been reversed. However, as mentioned before, applying permutations to the graphon
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function has no effect on the model specification itself. Looking at the resulting AIC val-

ues beneath the graphon estimates, we nevertheless see that the smallest values result for

smooth graphon estimates, while the occurrence of a “jump” due to only piecewise correct

reordering of the nodes lead to increased AIC values. But still, the structure of the true

graphon model is always well captured, albeit possibly in a different form of representation.

Summarizing over all the estimation results, our algorithm yields very good estimates for

Graphon 2, although an uninformative initial node ordering has been applied.

The example illustrates that a random reordering of the nodes for the initial E step

can be applied in combination with the AIC in order to obtain an optimal smooth graphon

estimate.

5 Real-World Data Examples

We complete the paper by analyzing real-world network data. To do so, we consider

networks from three different domains, namely from sociology, political science, and neuro-

science. For the EM based estimation we use degree ordering as initialization where the

structure seems appropriate. Otherwise we apply random initialization and select the best

outcome over several repetitions.

5.1 Facebook Network

A very common application and one of the roots of network sciences are friendship net-

works. We here consider a Facebook ego network which has been collected by McAuley

and Leskovec (2012) and is available on the Stanford Large Network Dataset Collection

(Leskovec and Krevl, 2014). This ego network with 333 actors is plotted in Figure 7 with

two different colorings. In the left panel the illustrated ordering is based on the degree,

while on the right it refers to the final EM result. Apparently, the ordering given by the

final EM result seems much more appropriate with respect to the network structure. Thus,

the iterative approach improves the initial degree ordering markedly. Moreover, the inher-

ent structure of the network on the right in Figure 7 can to some extent be recognized
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instantly in the corresponding final graphon estimate ŵEM (, ), which is shown on the left

in Figure 8. For example, the bundle of nodes in the center of the lower network part

with roughly ûEMi ∈ [0.65, 1] and the connectivity pattern among themselves is captured

in the graphon estimate in the intense section on the bottom right. In accordance with

this, also the estimates ûEM(k) for some selected indices are adequately represented by the

corresponding posterior distributions of U(k), which underlines the appropriateness of the

graphon estimate ŵEM (, ).

5.2 Military Alliance Network

As second real-world network example, we consider strong military alliances among the

world’s nations. For that purpose, we use data from the Alliance Treaty Obligations and

Provisions project (Leeds et al., 2002), which provide information about all kind of military

alliance agreements over an extensive period. For a suitably reduced network we here define

the presence of a strong military alliance when states have entered into an offensive or

defensive pact, meaning when they have signed a treaty which forces the one country to

intervene by military active support if the other country comes into a conflict with offensive

or defensive actions, respectively. Furthermore, we truncate the data to agreements that

were in force in 2016 as the most recent available year. The best final estimation results of

the EM approach over several repetitions with random initial node ordering are illustrated

in Figure 9. The graphon estimate in the top right panel exhibits a very pronounced

assortative structure, meaning that predominantly pairs of nodes are linked whose latent

quantities are close. The final node ordering, which is visualized by the coloring in the top

left network, appears reasonable with respect to the network structure. Transferring this

coloring to the world map reveals a strong conformity between the geographic closeness and

the closeness of the latent quantities. Together with the assortative structure, this means

that countries which are geographically close form similar military alliances and further are

more likely to be allied with each other.
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Figure 7: Facebook ego network with node coloring referring to û
(0)
i (left) and ûEMi (right).

Figure 8: Graphon estimation for the Facebook ego network. The graphon estimate ŵEM (, )
(in log scale) is depicted on the left. The three right plots show the approximated posterior
distribution of U(k) (with respect to the given graphon estimate) for some selected indices.
The dashed vertical lines (see also numbers in the boxes) represent the estimates ûEM(k) .
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Figure 9: Graphon estimation for the military alliance network (top left, with coloring
referring to ûEMi ∈ [0, 1]). The graphon estimate ŵEM (, ) (in log scale) is depicted in the
top right. The lower plot shows the world map, where the colors also refer to ûEMi . As an
isolated group, China, Cuba, and North Korea (colored in pink) have not been included in
the estimation routine. Countries which have no strong agreement with any other country
and hence do not appear in the data set are colored in gray.
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5.3 Human Brain functional Coactivation Network

To conclude the real-world examples, we consider a human brain functional network which

has been constructed from a meta-analysis by Crossley et al. (2013) and which is available

in the Brain Connectivity Toolbox (Rubinov and Sporns, 2010a, see also Rubinov and

Sporns, 2010b for detailed description). Their weighted network matrix represents the

“estimated [. . . ] similarity (Jaccard index) of the activation patterns across experimental

tasks between each pair of 638 brain regions” (Crossley et al., 2013). To obtain a binary

adjacency matrix out of it, we simply apply a threshold of above zero, meaning that we

include a link between each pair of brain regions which is at least during one task activated

simultaneously. The resulting network with a density of approximately 9.2% is depicted

in the top left panel in Figure 10, where the coloring refers to ûEMi . For the evaluation,

we again consider the best outcome of the EM algorithm over several repetitions with

random initialization. The graphon estimate in the top right plot also reveals an assortative

structure but, in addition, exhibits a conspicuous pattern of functional coactivations of

some segments, which are separated with respect to the latent dimension. Regarding the

spatial positions of the brain regions, the lower three plots show a strong relation between

closeness in anatomical space and closeness of the ûEMi . Nevertheless, there also seem to

be areas which have a similar color pattern (indicating a similar coactivation pattern) but

are spatially separated. Indeed, the interaction and coactivation of distant brain areas is

a familiar phenomena in neuroscience and can also be seen in Crossley et al. (2013), who

pursue a different modeling strategy. Overall, we can demonstrate that the EM approach

for estimating smooth graphons provides additional insight into network structures.

6 Discussion

The paper proposes a novel estimation routine for graphon estimation which explicitly takes

the variability of ordering the nodes into account. The proposed semi-parametric estimation

based on (linear) B-splines allows to incorporate relevant properties in the estimation and

also uniqueness restrictions if required. The Bayesian approach relying on Gibbs sampling

25



Figure 10: Graphon estimation for the human brain functional coactivation network (top
left, with coloring referring to ûEMi ∈ [0, 1]). The graphon estimate ŵEM (, ) (in log scale)
is depicted in the top right. The lower three plots show the local positions of the human
brain regions in anatomical space in side view (left), front view (middle), and top view
(right), where the colors also refer to ûEMi .

illuminates the uncertainty about the degree and its distribution. Both steps combined give

an EM type algorithm which allows for flexible graphon estimation even in large networks.

The approach outperforms available routines in two aspects. First, the B-spline estimate

can guarantee a smooth and continuous outcome and also a unique representation of the

graphon if required. Secondly, based on the Bayesian formulation and the EM algorithm

one can assess the amount of uncertainty for ordering the nodes based on their degree or

based on any other strategy.

The proposed approach can also be used in other related models like stochastic block

models (SBM), where we assume that nodes cluster and form within and between the

clusters simple Erdős-Rényi models. Apparently, SBMs do not have a smooth underlying
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graphon structure so that one needs to adjust and further develop the results in this paper.

Overall, graphon estimation also provides an interesting tool for network visualizations,

as demonstrated in the examples. In this respect, it is more than a modeling exercise but

may also serve as tool for explanatory network data analysis.
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