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Abstract 

Looking at the speaker’s face is useful to hear better a speech signal and extract it from competing 
sources before identification. This might result in elaborating new speech enhancement or 
extraction techniques exploiting the audio-visual coherence of speech stimuli. In this paper, a novel 
algorithm plugging audio-visual coherence estimated by statistical tools on classical blind source 
separation algorithms is presented, and its assessment is described. We show, in the case of additive 
mixtures, that this algorithm performs better than classical blind tools both when there are as many 
sensors as sources, and when there are less sensors than sources. Audiovisual coherence enables a 
focus on the speech source to extract.  It may also be used at the output of a classical source 
separation algorithm, to select the “best” sensor with reference to a target source. 
 
 
 

Keywords: Blind Source Separation, audio-visual coherence, speech enhancement, audio-visual 
joint probability, spectral information 

 
1



 
1. Introduction 
For understanding speech, two senses are better than one: to paraphrase the formula used by Lynne 
Bernstein and Christian Benoît (1996) to introduce the AVSP special session in ICSLP’96, we 
know, since Sumby and Pollack (1954) at least, that lipreading improves speech identification in 
noise, and since Petajan (1984), that Audio-Visual Speech Recognition outperforms Audio Speech 
Recognition in the same conditions. Recently, Grant and Seitz (2000) discovered that vision of the 
speaker’s face also intervenes in the audio detection of speech in noise. This result (confirmed by 
Kim & Davis, 2001, and this volume; Bernstein et al., this volume) lead us show (Schwartz et al. 
2002, 2004) that vision may enhance audio speech in noise and therefore provide what we called a 
“very early” contribution to speech intelligibility, different and complementary to the classical 
lipreading effect. In parallel, we exploited, since the middle of the 90s, a technological counterpart 
of this idea. Girin et al. (1997, 2001) developed a first system for enhancing audio speech 
embedded in white noise, thanks to a filtering approach, with filter parameters estimated from the 
video input (see recent developments by Deligne et al., 2002; and Goecke et al., 2002; and also 
Berthommier, 2003, and this volume). The present paper describes a set of new experiments and 
developments on another approach, exploring the link between two signal processing streams that 
were almost completely separated: sensor fusion in audio-visual (AV) speech processing, and blind 
source separation (BSS) techniques (see e.g. Jutten & Herault, 1991; Taleb & Jutten, 1999). This 
extends preliminary work providing the basis of the method (Sodoyer et al., 2002, 2003) (see also 
an original link of a different kind between source separation and audio-visual localization in 
Okuno et al., 2001; Nakadai et al., this volume).  

In this paper, the theoretical foundations are presented (Section 2). The evaluation corpora are 
described in Section 3, together with an analysis of audio-visual coherence in the corresponding 
material. Comparison methodology and results are provided in Section 4 for the case with as many 
sensors as sources. The more difficult case involving less sensors than sources is addressed in 
Section 5, before a general discussion in Section 6 and a final conclusion. 
 

2. Theory 
Let us consider the case of a stationary additive mixture of sources, to be separated:  
 

x=As 
 

where s contains N unknown signals, A is the unknown PxN mixing matrix, x are the P 
observations. Separation consists in estimating output signals y as close as possible to the sources s. 
Output signals are computed from the observations x by applying an NxP matrix B which is called 
the separation matrix: 

 
y=Bx 

 
If the number of sources N equals the number of sensors P, A is a square matrix. If it is regular, 

perfect separation is possible by taking B=A-1. If P is lower than N, then A is no more invertible 
and there is no exact solution, which makes the problem much more complex. 
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In the Audio-Visual Speech source Separation (AVSS) approach, we suppose that one source, 
say s1, is a speech signal, and we exploit additional observations which consist of a video signal V1 
extracted from speaker 1’s face and synchronous with the acoustic signal s1 that we want to extract. 
Typically, V1 contains the trajectory of basic geometric lip shape parameters, supposing that they 
can be automatically estimated by any kind of lip-tracking system. The goal is hence the extraction 
of one audio-visual source merged in a mixture of two or more acoustic signals. 

Classical BSS algorithms consider statistically independent sources, and basically involve 
higher (than 2) order statistics. The AVSS algorithm considers decorrelated sources, and in 
addition lip motion associated to the source s1 that has to be extracted. The lip pattern provides no 
information on the glottal source, and incomplete information about the vocal tract. Hence it is 
classical to consider that the visual input is partially linked to the transfer function in a source-filter 
model of the speech signal. 

2.1.Exploiting spectral information  

First, let us assume that we know a number of spectral components of s1, defined by a filter bank 
on a given time frame (typically, 20-ms windows separated by 20-ms intervals in our application). 
Let Hi(f) be the frequency response of the i-th bandpass FIR filter, and hi(t) be its temporal impulse 
response. The energy of the source s1 at the output of the filtering process is provided by the 
autocorrelation with zero delay of the filtered signal hi{s1}(t)=hi(t)*s1(t). The normalized energy of 
s1 in the i-th band is: 
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In an NxN mixture, the direction of s1 is defined by N-1 parameters, hence it is easy to show that 
N-1 spectral coefficients are necessary and sufficient to extract s1 (keeping a gain indeterminacy). 
Therefore, we introduce the following “spectral coefficient” criterion Jsc, based on a bank of (N-1) 
band-pass filters: 
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The minimization of this criterion allows the separation of the source s1, provided that the NxN 
matrix of the sn spectral coefficients is regular (Sodoyer et al., 2002) .  

2.2.The AVSS algorithm 

In the real case, we don’t know the exact spectral components of the source s1, but we can estimate 
the spectrum through lip characteristics associated with the sound s1. It is classical to consider that 
the visual parameters of the speaking face and the spectral characteristics of the acoustic transfer 

 
3



function of the vocal tract are related by a complex relationship which can be described in 
statistical terms (see e.g. Yehia et al., 1998). Hence, we assume that we can build a statistical 
model providing the joint probability of a video vector V containing parameters describing the 
speaker’s face (e.g., lip characteristics) and an audio vector S containing spectral characteristics of 
the sound (i.e. γ terms at the output of a filter bank). Let us denote this joint probability p

ih av(S,V). 
This statistical model can be designed from a learning corpus, by modeling the probability pav(S,V) 
as a mixture of Gaussian kernels. The learning corpus is used for estimating the mean, the 
covariance matrix and the weight of each Gaussian kernel, through an Expectation Maximization 
(EM) algorithm (Dempster et al., 1977). 

Then the separation algorithm consists in estimating a separation matrix B for which the first 
output y1 produces a spectral vector Y1 as coherent as possible with the video input V1. This results 
in minimizing the following Audio-Visual (AV) criterion: 

( )),(log)( 11avav VYy pJ −=   (4) 

It is easy to show that, if there is only one Gaussian kernel, this AV criterion provides a linear 
regression estimate of the terms from V

ihγ 1 : hence Jav(y) becomes equivalent to Jsc(y), replacing 

by their visual estimate. However, it may happen that the video input V
ihγ 1, at some instants, is 

associated to a large series of possible spectra, and hence produces very poor separation (the 
“viseme” problem, see Benoît et al., 1992). For solving this problem, we introduce the possibility 
to cumulate the probabilities over time. For this purpose, we assume that the values of audio and 
visual characteristics at several consecutive time frames are independent from each other, and we 
define an integrated audio-visual criterion by:  
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where  is the content of the signal y in the k)(ky th time frame before the current one. 

2.3.Definition of a reference BSS algorithm: from JADE to JADEtrack 

It is necessary to compare the efficiency of our AVSS algorithm with a classical BSS algorithm, in 
order to be able to assess the interest of the audio-visual approach. A number of reference BSS 
algorithms exploiting statistical independence between the sources are available in the literature 
(e.g. Jutten and Herault, 1991; Cardoso and Souloumiac, 1993; Hyvärinen, 1999). They are able to 
perfectly solve the source separation problem in simple cases (such as linear additive models with 
as many sensors as sources). The reference BSS algorithm we will use is JADE (Cardoso and 
Souloumiac, 1993) well known for its simplicity and speed.  

BSS algorithms suffer however from two indeterminacy problems. Firstly, the lack of 
knowledge about the energy of the sources leads to a  “gain indeterminacy”  (that is, the separating 
matrix can be multiplied by a diagonal matrix without modifying the value of the criterion to 
minimize). Secondly, and more seriously, an important drawback of this family of algorithms is 
their indeterminacy with respect to the permutation of sources. The consequence is the 
impossibility to know where (i.e. on which sensor) a given source is extracted. For a non stationary 
signal, like speech, the energy varies in each frame. Experimentally, it leads to permutation which 
can vary from one frame to the next one.  Of course, this leads to severe difficulties in the 
application of the algorithm.  
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A simple way to deal with the permutation problem is to search for the permutation that should 
be applied at each time frame, in order to maximize the continuity of the output of each sensor, in 
reference to the previous frame. For this aim, considering that the BSS algorithm has found a given 
separating matrix B(n-1) for frame (n-1) and another separating matrix B(n) for frame (n), we 
chose to apply to B(n) all possible permutations, and we defined a corrected separating matrix 
B*(n) by the algorithm: 

B*(n) = arg minperm |Bperm(n) – B(n-1)|   (6) 

where |M|=trace(MTM) defines the square of  the Frobenius norm of a given matrix M. 
 

This results in minimizing the distance between the coefficients characterizing each sensor after 
separation, between time n-1 and time n. In this equation, as throughout this work, the gain 
indeterminacy is solved by normalizing each line of B matrices so that the B diagonal values are all 
“1”. The algorithm resulting from the application of this procedure on JADE is called JADEtrack. 
Both JADE and JADEtrack will be used as reference algorithms in the following.  

It is important to mention at this point that the AVSS algorithm does not suffer from the 
permutation indeterminacy problem, since maximizing the coherence of the video component of 
the target source s1 and the spectral characteristics of the sensor output y1 naturally imposes that s1 
is estimated by y1. The gain indeterminacy is solved, as for JADE, by normalizing each line of B 
matrices so that the B diagonal values are all “1”. 

2.4.A combined BSS-AVSS algorithm 

For relaxing the permutation indeterminacy of BSS algorithms, we purpose to combine the 
properties of BSS and AVSS criteria, by first estimating a separating matrix by a BSS technique, 
and then applying an AVSS criterion for selecting the sensor providing the best s1 estimation at the 
output of BSS. By applying this principle to JADE, we take profit of all its qualities of performance 
and speed for estimating quickly and efficiently the separation matrix. Then, the selected sensor is 
the one which maximizes the AVSS criterion in Eq. (5). The resulting algorithm is called hereafter 
the JADEAVSS algorithm. 

3. Audio-visual material 

3.1.Corpora 

We used two types of audio-visual corpora for assessing the separation algorithms. 
The first corpus is a corpus of French logatoms, that is non-sense V1-C-V2-C-V1 utterances, 

where V1 and V2 are same or different vowels within [a, i, y, u] and C is a consonant within the 
plosives set [p, t, k, b, d, g, #] (# means no plosive). The 112 sequences (4xV1, 7xC, 4xV2) were 
pronounced twice by a single male speaker, which resulted in a training set (first repetition) and a 
test set (second repetition). This logatom corpus presents the interest that it groups in a restricted set 
all the basic problems to be addressed by audio-visual studies. Indeed, it contains stimuli with 
similar lips and different sounds (such as [y] vs. [u] or [p] vs. [b]). It also contains pairs of sounds 
difficult to distinguish, particularly in noise, while their lips are quite distinctive (e.g. [i] vs. [y], or 
[b] vs. [d]). It is the corpus on which all preliminary studies have been realized. 

The second corpus consists in 107 meaningful continuous sentences uttered by the same French 
speaker, of which we used the first 54 sentences for the training set and the remainder 53 for the test 
set.  This corpus represents a large jump in difficulty compared with the previous one, for two 
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reasons. Firstly, the complexity of the audio-visual material is much larger, and secondly the test set 
is quite different from the training set, which is not the case in the logatom corpus.  

3.2.Audio and visual parameter extraction 

Both corpora were completely analyzed in order to extract sequences of audio and visual 
parameters aligned in time. These parameters then provided the input to the AVSS separation 
algorithm. The video data consist of two basic geometric parameters describing the speaker’s lip 
shape, namely width (LW) and height (LH) of the labial internal contour. These parameters were 
automatically extracted every 20 ms by using a face processing system (Lallouache, 1990). This 
system exploits a chroma-key process on lips with blue make-up, and with carefully controlled head 
position and light. 

 Sounds were sampled at 16 kHz. On 20-ms windows synchronous with the video frames, we 
computed 32 spectral parameters providing power spectral densities (PSD) at the output of a bank 
of 32 filters equally spaced between 0 and 5 kHz. PSDs were converted into dBs, and a principal 
component analysis (PCA) was applied to reduce the number of spectral components to Na=1, 5 or 
8 dimensions. Hence the total dimension of the audio-visual space is (Na + 2).  

3.3.Modeling and assessing audio-visual coherence 

For each corpus, the Gaussian mixture model of the pav(S1,V1) probability was tuned by an EM 
algorithm applied to the training data set, containing 2495 audio-visual vectors (112 stimuli, about 
24 vectors per stimulus) in the logatom case and 5297 vectors in the sentences case. The simplicity 
of the logatom corpus allows a careful study of the repartition of Gaussian kernels, in relation with 
the visual and auditory properties of the corresponding vowels and plosives in the corpus (see 
Sodoyer et al., 2002). For the sentence corpus, the study is more complex. Therefore, for assessing 
the validity of the audio-visual modeling in this case, we compared the value of the integrated AV 
criterion JavT(y) applied to two different audio stimuli: (i) the true audio source s1 coherent with the 
video input at each time frame, (ii) an audio input s2 coming from another similar sentence corpus, 
uttered by another male speaker. Comparison of JavT(s1) and JavT(s2) was systematically done for 
the 2606 frames of the sentence test corpus, and for each frame, we selected the signal associated to 
the smaller  JavT(si). This was done for various values of Na (i.e. 1, 5 and 8), various numbers of 
Gaussian kernels in the audio-visual probability modeling (NG = 12, 18 and 24) and various 
temporal window integration widths T=10, 20, 40. 

On Fig. 1, we display the recognition rate, that is the percentage of cases where s1 is selected 
rather than s2 (JavT(s1) < JavT(s2)). It appears that the performance increases largely with T and Na, 
and marginally with NG. It reaches a very high level (about 99%) for T =40, for 8 (or possibly 5) 
audio dimensions, and for 18 or 24 Gaussian kernels (see Figure 1). This shows that the audio-
visual probability modeling captures the audio-visual natural coherence quite well. Incidentally, the 
fact that the performance is already very high for T =20 frames (more than 95%) is quite 
interesting. A duration of 20 frames corresponds to 400 ms, that is roughly two syllables. This 
seems enough to clearly distinguish audio-visual coherence from incoherence, and the data on the 
detection of audio-visual asynchronies (see Grant et al., this volume), suggest that human subjects 
would not perform much better. Notice that even very poor spectral information may be quite 
efficient: one spectral parameter suffices to produce 85 % correct recognition with 40 frames in 
Figure 1. This is also coherent with psychophysical data (Grant et al., this volume).  

 
Figure 1. 
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4. Experiments in the NxN case. 

4.1.Methodology 

In this first series of experiments, there are as many sensors as sources. In this case, the mixing 
matrix A is an NxN matrix supposed to be non-singular. Hence if B is a good estimation of A-1, it is 
trivial that y is a good estimation of the original sources s. We tested three values of N, that is N=2, 
3 and 5. 

Tests were performed on both corpora. s1 is the speech source to extract (2606 test frames for 
the logatom and the sentence corpus) and the N-1 other sources are corrupting speech sources 
borrowed from another sentence corpus uttered by other speakers. A property seeked for a BSS 
algorithm is equivariance, which is characterized by the fact that performance (independently of 
permutation and gain indeterminacy problems) does not depend on the mixing matrix, but just on 
properties of input sources. Equivariance can be achieved by implementing a “relative gradient 
technique” (Cardoso & Laheld, 1996) or the closely related “natural gradient technique” (Amari, 
1998). Therefore, throughout this work, the optimisation of the AVSS criterion JavT(y) (Eq. 5) was 
realized by a relative gradient in order to make the AVSS algorithm equivariant. To check that this 
property was ensured, for each value of N we tested two different mixture matrices A1 and A2. We 
compared several temporal integration widths T with T=1, 10, 20 and 40 frames. For each mixture, 
the N observations are defined by: 

p
N

p
npn a sx ∑=

=1
                              

 (7) 

which are characterized by  input SNRs, in reference to s1, provided by: 

)/log(10)(
2

22
1in 1 ∑=

=

N
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snpsn p

EaEanSNR   

 (8) 

with  the energy of source i in the current frame. Input SNR values displayed in Table 1 are 
mean values averaged over the test frames. 

isE

Table 1 

For each test frame, and for a given separating matrix B, the AVSS procedure consists in 
computing y=Bx, in estimating the spectrum Y1 according to the process described in section 3.2 
(spectral analysis followed by projection on the selected principal components), and in computing 
the probability pav(Y1,V1) thanks to the model described in section 3.3. The number of Gaussian 
kernels is NG = 18, and the audio dimension is Na = 8. The optimal B matrix, which minimizes the 
integrated criterion JavT(y), produces an output y1 which is the estimation of the source s1. The 
output SNR is given by: 
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where G is the global matrix defined by : G=BA. We also estimated B separation matrices with 
JADE, JADEtrack and JADEAVSS. Output SNR for the four algorithms were then systematically 
computed and compared for all experimental conditions.  

4.2.Results 

The results are displayed in Table 2, 3 and 4 with, for each case, the mean output SNR averaged 
over the test frames. Since JADE and JADEtrack do not guarantee that the source s1 is estimated by 
the sensor y1, we systematically selected the best sensor in terms of mean output SNR, for further 
algorithmic comparison. Let us recall that there is a perfect solution in the NxN case, hence output 
SNRs can be arbitrarily high in all conditions. From the results displayed in Tables 2-4, three main 
features appear: 

 
Role of integration width: It is clear that increasing T improves the performances, for each 

algorithm. The reason for AVSS is that the integration in Eq. (5) allows the smoothing of the 
variations of JavT(y), which removes spurious local minima. For JADE and JADEtrack, increasing T 
improves the estimation of second-order and fourth-order cumulants necessary for the convergence 
towards A-1. Furthermore, increasing T also decreases in the fluctuations in the values of second or 
fourth-order moments, which decreases the number of permutation switches from one frame to the 
next. Of course, JADEAVSS enjoys the same property as both JADE and AVSS. In the remainder of 
the study, we shall concentrate on the values T=20 and T=40.  
 

Separation performance : In all cases, the JADE algorithm provides poor results because of 
permutation problems. JADEtrack corrects this problem rather well, and provides a good baseline for 
further assessment of AVSS and JADEAVSS. On the logatom corpus, both techniques largely 
outperform JADEtrack. Furthermore, AVSS itself largely outperforms JADEAVSS for both integration 
widths. The result is much less contrasted for sentences. AVSS and JADEAVSS outperform 
JADEtrack only slightly, and depending on configurations, while performances of AVSS and 
JADEAVSS are quite similar in all conditions.  

 
Equivariance : The JADE algorithm is shown to be equivariant (see Cardoso and Souloumiac, 

1993) but the permutation problems don’t allow to verify this property. However, solving this 
problems thanks to the audio-visual selector ensures that JADEAVSS displays a remarkable stability 
of output SNRs from one mixing matrix to the other (compare A1 and A2 in all cases). Though we 
implemented a relative gradient descent in AVSS, equivariance is slightly less well achieved, 
probably because of the sensitivity of the gradient descent to initial conditions. 

 

Tables 2, 3, 4. 

5. Experiments in the P < N case 

In this section, we consider mixtures with less observations than sources, that is P<N. In this case, 
it is known that there is no perfect solution, since s1 does not in general belong to the hyperplane 
defined by the x sensors. In other words, the inverse matrix of A does not exist, and the 
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identification of A is not sufficient for perfectly recovering the sources . The experimental question 
now concerns the compared ability of our different algorithms to find good estimates of s1. 

5.1.Maximizing SNR through audiovisual coherence 

The P<N case is likely to provide a very good test bed for our algorithm. Indeed, in this case, BSS 
algorithms suffer from an intrinsic limitation. They must find a solution minimizing various kinds 
of independence criteria (e.g. higher-order statistical moments) but they can’t focus on one or the 
other source. On the contrary, the AVSS criterion is directed towards the source to extract. 

In the hyperplane defined by the set of sensor observations (x), the best estimate of s1 
maximizing the signal-to-noise ratio SNR should minimize a criterion of least mean square error, 
Jlms: 
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With the Bessel-Parseval formula, we can transform the cumulated distance in time into a 
cumulated distance in frequency: 
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where y1(f) and  s1(f) are the Fourier Transform of  y1(t) and  s1(t). 
 

If we assume that the phases of y1(f) and s1(f) are equal, we can express Jlms as a spectral 
distance between y1 and s1: 
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 If we perform a discrete approximation of the Fourier transform by a filter bank, we have: 
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which is quite close to the criterion defined by Eq. (3). Hence, it appears that the AV criterion 
defined in Eq. (4), which provides an audiovisual approximation of the criterion in Eq. (3), should 
lead to an estimation of s1 with a close to maximal SNR. The temporal integration in Eq. (5) is the 
AV approximation of an integrated spectral criterion cumulating spectral distances between s1 and 
y1 on T consecutive temporal windows. Therefore, minimising JavT should be close to maximising 
the SNR on this integrated window. In fact, the logarithmic transform of PSDs in dBs, induces a 
discrepancy between the theoretical Jlms criterion and the practical JavT one.  
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5.2.Methodology 

We tested a simple P<N configuration, with two sensors and three sources. In this case, the 
equivariance property cannot be satisfied since there is no exact solution. The solution found by 
AVSS depends on both the mixing matrix A and the energy of the sources. We tested four different 
mixing matrices (Table 5). Notice that the non-stationarity of the speech sources results in 
variations of the geometry of the problem from frame to frame. Hence, each mixing matrix 
corresponds in fact to testing many different configurations. The study was done on both corpora, 
with the same methodology as in Section 4. 
 
Table 5. 

5.3.Results 

The results are shown in Table 6 for the logatom and sentence corpora. Mean output SNRs are not 
very large for all algorithms, which is logical since perfect recovery of the sources is impossible in 
undetermined mixtures (P<N, see here above). They are generally larger for AVSS and JADEAVSS 
than for JADEtrack (and of course JADE), both for logatoms and sentences, though the difference is 
not very large, and depends on the mixing matrix. Once more, the performances are the same for 
AVSS and JADEAVSS. Notice that temporal integration here does not result in a significant increase 
in separation. The reason is probably that non-stationarity  in the P<N case leads to fluctuations of 
the separation matrix, which blurs the efficiency of integration.  

 
Table 6. 

6. Discussion 
The series of experiments presented in this paper confirm interest in the AVSS technique. Firstly, 
the theoretical foundations introduced in Sodoyer et al. (2002) for the NxN case, and developed 
here for the P<N case, seem sound. Secondly, the extension to a sentence corpus demonstrates that 
the method can indeed be applied to realistic data, without suffering too much of the increasing 
complexity of the phonetic material. The fact that 400 ms are enough to distinguish a coherent 
audio-visual stimulus from an incoherent one in the probability distribution model (Fig. 1) is quite 
encouraging in this respect.  

However, we must admit that the robustness in increasing phonetic complexity is limited. In the 
summary picture displayed in Fig. 2 and 3 it is clear that for logatoms (Fig. 2) there is a strong 
hierarchy AVSS >> JADEAVSS >> JADEtrack >> JADE, while for sentences (Fig. 3), the pattern is 
severely reduced, with something like: AVSS = JADEAVSS > JADEtrack >> JADE (denoting by >>  
and > the assertions “has a largely/slightly better performance than”). It is nevertheless interesting 
that algorithms incorporating the AVSS criterion remain better than JADEtrack for sentences, 
particularly in the “less sensors than sources” condition.  

The comparison between JADEAVSS and AVSS  is a bit disappointing, considering that the large 
advantage displayed by AVSS for logatoms disappears for sentences. This clearly illustrates the 
need for more powerful models for estimating the pav(S,V) probability, able to deal with large 
continuous speech corpora, particularly when we shall deal with muktispeaker applications. 
However the good performance of the JADEAVSS algorithm is interesting. It shows that AVSS does 
introduce a significant gain at the output of JADE, by its systematic selection of a coherent output, 
as close as possible to the source to extract. The crucial point is that the JADEAVSS algorithm keeps 
the nice properties of JADE (speed and equivariance), which could be important for future 
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applications. We are presently considering other ways to combine BSS and AVSS techniques, e.g. 
for more complex mixtures of sources. 
Figures 2, 3. 

7. Conclusion 
Altogether, the technological counterpart of the “very early” visual enhancement of audio speech 
looks quite promising. The method is very efficient in the case of additive mixtures of sources with 
as many sensors as sources. In this paper, we show that the method seems able to deal with less 
sensors than sources, thanks to its ability to focus on the target source. This might also lead to 
efficient BSS/AVSS combined algorithms exploiting both independence criteria, and AV 
coherence criteria to select a given source in a mixture. Of course, further developments are still 
necessary to completely demonstrate a complete demonstration of the efficiency of the technique. 
They will involve larger multi-speaker corpora, more powerful learning tools for AV association, 
and they should address more complex mixtures (including convolutive ones). It is already possible 
however to assert that the connection of BSS techniques with the field of AV speech processing is 
an exciting new challenge for future research in both communities. 
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Figure 1. : Correct recognition scores (see text) for various numbers of spectral components, Na=1, 
5, and 8 ; various numbers of Gaussian kernels in the audio-visual probability modeling, NG = 12, 
18 and 24) ; and various temporal window integration widths T=10, 20, 40. 
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Figure 2. : Mean output SNR gain in reference to the JADE algorithm for the logatom corpus, with 
a temporal window integration width T=20 (a) and T=40 (b), for various PxN settings and for the 
three algorithms JADEtrack, JADEAVSS and AVSS. 
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Figure 2.b 
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Figure 3. : Mean output SNR gain in reference to the JADE algorithm for the logatom sentence, 
with a temporal window integration width T=20 (a) and T=40 (b), for various PxN settings and for 
the three algorithms JADEtrack, JADEAVSS and AVSS. 
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Figure 3.b  
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Table 1: Mean  Input SNRs (dB) relative to the energy of s1 for the logatom (a) and sentence 
(b) corpus, for various NxN configurations. 

Table 1.a 

 2 sources 3 sources 5 sources 
 A1 A2 A1 A2 A1 A2 

Sens. 1 2.63 -10.8 -3.56 -16.2 -12.7 -17.6
Sens. 2 1.61 -15.9 -3.81 -21.8 -14.6 -11.7
Sens. 3 - - -1.05 -9.40 -22.3 -14.6
Sens. 4 - - - - -9.29 -20.3
Sens. 5 - - - - -13.7 -17.1

 

Table 1.b 

 2 sources 3 sources 5 sources 
 A1 A2 A1 A2 A1 A2 

Sens. 1 -1.14 -13.9 -6.42 -18.9 -15.7 -20.6
Sens. 2 -1.56 -19.1 -6.64 -24.6 -17.5 -14.6
Sens. 3 - - -3.75 -12.1 -26.3 -17.5
Sens. 4 - - - - -12.3 -23.3
Sens. 5 - - - - -16.4 -20.1
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Table 2 : Mean output SNRs (dB) for the 2 x 2 configuration (a : logatoms, b : sentences). 

Table 2.a 

 
2 sensors Logatom corpus 
2 sources JADE JADEtrack JADEAVSS AVSS 

T=1 0,49 0,97 12,3 16,7 
T=10 4,02 18,2 29,9 36,1 
T=20 8,99 29,3 33,9 41,8 

A1 

T=40 15,8 37,6 37,6 45,2 
T=1 8,98 9,39 12,3 17,0 
T=10 27,7 25,7 29,9 36,3 
T=20 34,1 30,4 33,9 41,4 

A2 

T=40 37,6 30,9 37,6 45,2 
 
Table 2.b 
 

2 sensors Sentence corpus 
2 sources JADE JADEtrack JADEAVSS AVSS 

T=1 0,58 1,90 7,15 7,48 
T=10 6,97 16,8 23,4 20,5 
T=20 12,7 21,8 31,2 31,0 

A1 

T=40 16,6 37,1 36,5 36,9 
T=1 10,3 7,88 7,15 6,94 
T=10 27,7 25,3 23,4 20,2 
T=20 32,8 32,0 31,2 30,7 

A2 

T=40 37,1 36,9 36,5 38.0 
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Table 3 : Mean output SNRs (dB) for the 3 x 3 configuration (a : logatoms, b : sentences)  

Table 3.a 

 3 sensors Logatom corpus 
3 sources JADE JADEtrack JADEAVSS AVSS 

T=10 3,68 -5,43 18,3 24,8 
T=20 9,22 7,71 23,1 29,9 A1 
T=40 14,3 27,0 27,0 33,5 
T=10 3,51 13,4 18,3 25,2 
T=20 15,7 15,0 23,1 29,8 A2 
T=40 24,7 18,1 27,0 33,8 

 

 

 
 
 

 

Table 3.b  
3 sensors Sentence corpus 
3 sources JADE JADEtrack JADEAVSS AVSS 

T=10 -6,49 -8,19 11,1 8,86 
T=20 -3,13 -2,97 19,05 18,4 A1 
T=40 7,12 18,5 26,2 25,8 
T=10 5,92 14,4 11,1 9,59 
T=20 15,51 22,2 19,0 18,7 A2 
T=40 22,7 26,3 26,2 25,6 
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Table 4 : Mean output SNRs (dB) for the 5 x 5 configuration (a : logatoms, b : sentences). 

Table 4.a 
5 sensors Logatom corpus 
5 sources JADE JADEtrack JADEAVSS AVSS 

T=20 -22,5 -20,2 15,1 22,5 A1 
T=40 -22 1 0,69 19,1 26,5 
T=20 -17,7 -8,74 15,1 22,3 A2 
T=40 -15,6 11,38 19,1 26,7 

 

Table 4.b 
5 sensors Sentence corpus 
5 sources JADE JADEtrack JADEAVSS AVSS 

T=20 -18,0 -9,20 9,68 10,7 A1 
T=40 -15,3 16,71 16,7 16,9 
T=20 -12,3 -18,1 9,69 11,9 A2 
T=40 -9,98 -7,87 16,7 16,7 
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Table 5: Mean  Input SNRs (dB) in reference to s1 for the logatom (a) and sentence (b) 
corpus, for various PxN configurations. 

Table 5.a 
  2 sensors - 3 sources  
  A1 A2 A3 A4 

Sens. 1 0.89 -4,43 -15,2 -17.9 
Sens. 2 -0.26 -11.3 -5.28 -1,78 

 

Table 5.b 
  2 sensors - 3 sources  
  A1 A2 A3 A4 

Sens. 1 -1.89 -7.07 -17,7 -20.7 
Sens. 2 -2.75 -14.2 -8.05 -4.67 

 

Table 6 : Mean output SNRs (dB for the 2 x 3 configuration (a : logatoms, b : sentences). 

Table 6.a 
2sensors Logatom corpus 
3 sources JADE JADEtrack  JADEAVSS AVSS 

T=20 1,11 2,38 4,20 4,42 
A1 

T=40 1,89 4,28 4,49 5,14 
T=20 -7,77 -5,99 -0,98 -0,53 A2 
T=40 -7,89 -6,67 -0,56 0,13 
T=20 -2,70 -1,18 -1,45 -1,26 A3 
T=40 -0,81 -0,42 -0,63 -0,39 
T=20 2,57 7,77 11,7 12,7 A4 
T=40 5,63 7,21 11,9 12,2 

 

Table 6.b  
2sensors Sentence corpus 

3 sources JADE JADEtrack JADEAVSS AVSS 
T=20 -2,57 0,53 0,07 -0,41 

A1 
T=40 -1,20 1,71 1,44 0,71 

T=20 -9,02 -10,2 -4,39 -5,31 A2 
T=40 -10,9 -11,0 -4,37 -4,76 
T=20 -4,96 -3,54 -5,37 -6,34 A3 
T=40 -3,59 -3,22 -4,71 -4,55 
T=20 0,77 9,48 7,27 6,70 A4 
T=40 2,34 9,23 8,15 7,22 
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