
An elitist approach to automatic articulatory-acoustic
feature classi�cation for phonetic characterization

of spoken language

Shuangyu Chang, Mirjam Wester, Steven Greenberg *

International Computer Science Institute, 1947 Center Street, Suite 600, Berkeley, CA 94704-1198, USA

Abstract

A novel framework for automatic articulatory-acoustic feature extraction has been developed for enhancing the
accuracy of place- and manner-of-articulation classi�cation in spoken language. The ‘‘elitist’’ approach provides a prin-
cipled means of selecting frames for which multi-layer perceptron, neural-network classi�ers are highly con�dent. Using
this method it is possible to achieve a frame-level accuracy of 93% on ‘‘elitist’’ frames for manner classi�cation on a
corpus of American English sentences passed through a telephone network (NTIMIT). Place-of-articulation informa-
tion is extracted for each manner class independently, resulting in an appreciable gain in place-feature classi�cation
relative to performance for a manner-independent system. A comparable enhancement in classi�cation performance
for the elitist approach is evidenced when applied to a Dutch corpus of quasi-spontaneous telephone interactions
(VIOS). The elitist framework provides a potential means of automatically annotating a corpus at the phonetic level
without recourse to a word-level transcriptand could thus be of utility for developing training materials for automatic
speech recognition and speech synthesis applications, as well as aid the empirical study of spoken language.

Keywords: Articulatory features; Automatic phonetic classi�cation; Multi-lingual phonetic classi�cation; Speech analysis

1. Introduction

Relatively few corpora of spoken language have
been phonetically hand-annotated at either the
phonetic-segment or articulatory-feature level;
moreover their numbers are unlikely to increase
in the near future, due to the appreciable amount
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of time and funding such materials require to

develop. This dearth of phonetically annotated

materials poses a significant challenge to the devel-

opment of future-generation speech technology as

well as to the empirical study of spoken language.
Automatic methods of phonetic annotation pro-

vide a potential means of confronting this chal-

lenge provided they are reliable and robust in

performance, as well as simple and inexpensive

to develop.

The current study addresses this issue of auto-

matic phonetic annotation of spoken-language

corpora using highly trained neural-network clas-
sifiers of articulatory-based features. Under many

circumstances the phonetic-segment approach

(based on phone sequences) does not incorporate

sufficient detail with which to fully capture the

subtlety and richness contained in the speech

signal.

One specific means by which to achieve a rela-

tively accurate phonetic characterization of the
speech signal is through the use of articulatory-

acoustic features (AFs), such as place and manner

of articulation and voicing, instead of phonetic

segments. AFs trace their historical origin to dis-

tinctive-feature theory, which dates back to the

middle of the twentieth century. Jakobson et al.

(1952) proposed a set of 14 (binary) distinctive fea-

tures to characterize phonetic properties of any
language. Chomsky and Halle (1968) later ex-

panded this set to 45 features in order to describe

certain phonological phenomena that lay outside

of Jakobson et al.�s original framework. Miller

and Nicely (1955) used distinctive-feature theory

as a means of accounting for phoneme confusion

patterns observed in perceptual experiments.

Additional information concerning distinctive fea-
tures and articulatory phonetics can be found in

Ladefoged (1993) and Stevens (1998). In designing

the feature set for the current study, we used many

of the concepts formulated in these phonetic and

perceptual studies. However, we focused on using

features that have a firm acoustic-auditory (as well

as articulatory) foundation in order to facilitate

their computation using multi-layer perceptron
(MLP) neural networks (hence, we use the term

articulatory-acoustic features for this reason).

When we use the term ‘‘articulatory feature’’ it re-
fers to the acoustic manifestation of articulatory

gestures, not to the articulatory process itself.

An advantage of using AFs is the potential gain

in performance for cross-linguistic transfer of clas-

sifiers trained on a particular language. Because
AFs are similar across languages it should be pos-

sible, in principle, to train the acoustic models of

an ASR system on articulatory-based features,

independent of the language to which they are ulti-

mately applied, thereby saving both time and effort

developing applications for languages lacking a

phonetically annotated set of training material.

The potential advantage of using articulatory-
based features relative to phonetic segments for

cross-linguistic speech recognition has been dem-

onstrated by several researchers. For example,

Deng (1998) developed an integrated, multi-lin-

gual speech recognition system using overlapping

articulatory features within a functional speech

production model; Williams et al. (1998) created

a language-independent recognition system using
classification of broad phonetic features based on

‘‘government’’ phonology. They demonstrated

reasonable transfer rates of classification perfor-

mance from English to other languages.

In our view, conversion of AFs to phonetic seg-

ments should be viewed as an optional process, to

be performed only when circumstances so require

(see Chang et al., 2000; Kirchhoff, 1999 for exam-
ples of this approach), as we believe that annota-

tion in terms of articulatory features is ultimately

of superior value for many applications.

As a preliminary means of developing articula-

tory features for cross-linguistic training in ASR,

we have applied an AF-classification system origi-

nally designed for American English to spontane-

ous Dutch material in order to delineate the
extent to which such cross-linguistic transfer suc-

ceeds (or fails), as well as to explore the potential

for applying an ‘‘elitist’’ approach for AF classifi-

cation to languages other than English.

In a previous publication we described a system

for automatic labeling of phonetic segments

(ALPS) using articulatory-acoustic features as an

intermediate stage of processing (Chang et al.,
2000). The current study builds upon this earlier

work by demonstrating a significant enhancement

in articulatory-feature classification performance
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using a frame-selection procedure, coupled with

feature recognition tuned to specific manner clas-

ses. This ‘‘elitist’’ approach to articulatory-feature

extraction (ARTIFEX) provides the potential for

automatic phonetic annotation of corpora associ-
ated with different languages and speaking styles.

The basic framework of the ARTIFEX system is

described using a corpus of American English sen-

tences read by native speakers that was passed

through a telephone network (NTIMIT—Jankow-

ski et al., 1990). The NTIMIT corpus provides a

convenient point of departure by virtue of its

near-canonical pronunciation and high quality of
(manual) phonetic annotation, but should be

viewed primarily as a way-station en route to a

broader, more ambitious goal; the ultimate objec-

tive is the capability of phonetically annotating

any form of spoken-language material, from read

text to spontaneous dialogues and ensemble dis-

cussions (e.g., meetings) and to do so for virtually

any language in the world. The potential for cross-
linguistic application of the elitist approach is

described later in the paper using a corpus of spon-

taneous Dutch material (VIOS—Strik et al., 1997).

VIOS serves as a point of departure for the

broader objective of transparent multi-lingual

annotation, intended to demonstrate the potential

for cross-linguistic transfer of AF classifiers rather

than as an end unto itself.
In recent years, there has been an increasing

interest in using articulatory features in speech rec-

ognition. Espy-Wilson (1994) first introduced a

distinctive-feature-based semi-vowel recognition

system and has since extended the system to

detecting other speech ‘‘landmarks,’’ as well as seg-

mentation of continuous speech (Juneja and Espy-

Wilson, 2002). In a series of developments over the
past decade, Deng and colleagues (Deng and Sun,

1994; Deng et al., 1997; Sun and Deng, 2002) have

introduced elaborate HMM-based systems of

overlapping articulatory features incorporating

phonological rules in the design process. In their

most recent development (Sun and Deng, 2002),

an overlapping-feature-based phonological model,

that represents long-span contextual dependencies
and high-level linguistic constraints, showed

significant improvements over the conventional

triphone-based models on the TIMIT corpus.
Other conceptual frameworks of feature-based

speech recognition have been proposed by Rose

et al. (1996), Stevens (2000) and Ostendorf

(2000). A number of other authors have developed

systems for detection and classification of various
distinctive features using statistical methods or

knowledge-based approaches. For example, Niy-

ogi et al. (1999) used support vector machines to

detect stops (plosives) segments in speech. Chen

(2000) described a nasal-detection module using

a knowledge-based approach. Howitt (2000) de-

scribed a vowel-landmark detection system, while

Omar and Hasegawa-Johnson (2002) developed a
maximum-mutual-information-based, front-end

feature-selection framework for classification of

distinctive features.

Kirchhoff and colleagues (Kirchhoff, 1999; Kir-

chhoff et al., 2002) developed two separate speech

recognition systems that use MLP-based AF classi-

fication. In the first system, phone probability esti-

mates were obtained from a higher-level MLP that
took AF probability estimates as input to derive

phone probability estimates, which in turn were

used by a Viterbi decoder to produce word recogni-

tion output. In the second system, MLP-based AF

classification outputs (derived prior to ultimate

softmax functions) were used as input features to

an HMM, Gaussian-mixture-based recognition

system. Their experiments demonstrated that
AF systems are capable of achieving superior

performance in high noise levels, and that the com-

bination of acoustic and articulatory features

consistently leads to a significant reduction of

word-error rate across all acoustic conditions. A

separate study, by King and Taylor (2000) used

recurrent neural networks to perform AF classifi-

cation based on a binary-feature system originally
proposed by Chomsky and Halle (1968). Their sys-

tem also utilized a multi-valued framework incor-

porating phonetic categories such as manner and

place of articulation. King and Taylor also devel-

oped a classification system using principles of gov-

ernment binding to derive phonological primes.

Unfortunately, AF classification performance

in these systems is less than stellar, and their po-
tential for cross-linguistic transfer of articulatory

features remains largely untested. Moreover, none

of the studies focused explicitly on techniques
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designed specifically to enhance the performance

of conventional AF classification. It is this latter

topic that forms the focus of the current study

(through principled frame selection and manner-

dependent place-of-articulation classification).
2. Corpus materials

2.1. NTIMIT (American English)

A corpus of phonetically hand-annotated (i.e.,

labeled and segmented) material (NTIMIT) was
used for both training (3300 sentences, comprising

164 min of speech) and testing (393 sentences,

19.5 min) the ARTIFEX system. NTIMIT (Jan-

kowski et al., 1990) is a spectrally circumscribed

variant of the TIMIT corpus (8-kHz bandwidth;

cf. Lamel et al., 1990), that has been passed

through a telephone network (whose bandwidth

is 0.3–3.4 kHz), providing an appropriate set of
materials with which to develop a phonetic-anno-

tation system destined for telephony-based appli-

cations. The corpus contains a quasi-phonetically

balanced set of sentences read by native speakers

(of both genders) of American English, whose pro-

nunciation patterns span a wide range of dialectal

variation. The phonetic inventory of the NTIMIT

corpus is listed in Table 1, along with the articula-
tory-feature equivalents for each segment. The

phonetic transcripts of the NTIMIT corpus do

not contain any diacritic marking.

2.2. VIOS (Dutch)

VIOS is a Dutch corpus composed of human-

machine ‘‘dialogues’’ within the context of railroad
timetable queries conducted over the telephone (cf.

Strik et al., 1997).

A subset of this corpus (3000 utterances, com-

prising �60 min of material) was used to train an

array of multi-layer perceptron networks, with an

additional 6 min of data used for cross-validation

purposes. Labeling and segmentation at the pho-

netic-segment level was performed using a special
form of automatic alignment system that explicitly

models pronunciation variation derived from a set

of phonological rules (Kessens et al., 1999).
An 18-min component of VIOS, previously

hand-labeled at the phonetic-segment level by stu-

dents of Language and Speech Pathology at the

University of Nijmegen, was used as a test set in

order to ascertain the accuracy of AF-classifica-
tion performance. This test material was seg-

mented at the phonetic-segment level using an

automatic-alignment procedure that is part of the

Phicos recognition system (Steinbiss et al., 1993)

trained on a subset of the VIOS corpus. The pho-

netic inventory of the VIOS corpus is listed in

Table 7, along with the articulatory-feature equiv-

alents for each segment.
3. ARTIFEX system overview (for application to

NTIMIT)

The speech signal was processed in several

stages, as illustrated in Fig. 1. First, a power spec-

trum was computed every 10 ms (over a 25-ms
window) and partitioned into quasi-quarter-octave

channels between 0.3 and 3.4 kHz (see Herman-

sky, 1990 for the specific critical-band-like, fre-

quency-warping function used). The power

spectrum magnitude was logarithmically com-

pressed in order to preserve the general shape of

the spectrum distributed across frequency and

time. Delta (first-derivative) features pertaining
to the spectro-temporal contour over time (Dt)
and frequency (Df) were computed as well.

An array of independent, multi-layer per-

ceptron (MLP) neural networks classified each

25-ms frame along seven articulatory-based,

phonetic-feature dimensions: (1) place of articula-

tion, (2) manner of articulation, (3) voicing, (4)

static/dynamic spectrum, (5) lip-rounding (perti-
nent to vocalic segments and glides), (6) vocalic

tongue height, and (7) intrinsic vocalic duration

(i.e., tense/lax). A separate class associated with

‘‘silence’’ was trained for most feature dimensions.

The training targets for the articulatory-acoustic

features were derived from a table of phones-to-

AFs mapping using the phonetic-label and seg-

mentation information of the NTIMIT corpus
(Table 1). The context window for inputs to the

MLP was 9 frames (i.e., 105 ms). The networks

contained 400 hidden units distributed across a



Table 1

Articulatory-acoustic feature specification of the phonetic segments in the NTIMIT corpus used for training and testing of the

ARTIFEX system

Consonants Manner Place Voicing Static

[p] Stop Bilabial � �
[b] Stop Bilabial + �
[t] Stop Alveolar � �
[d] Stop Alveolar + �
[k] Stop Velar � �
[g] Stop Velar + �
[ch] Fricative Alveolar � �
[jh] Fricative Alveolar +

[f] Fricative Lab-dental � +

[v] Fricative Lab-dental + +

[th] Fricative Dental � +

[dh] Fricative Dental + �
[s] Fricative Pre-Alveolar � +

[z] Fricative Pre-Alveolar + +

[sh] Fricative Post-alveolar � +

[zh] Fricative Post-alveolar + +

[hh] Fricative Glottal � +

[m] Nasal Bilabial + +

[n] Nasal Alveolar + +

[ng] Nasal Velar + +

[em] Nasal Bilabial + �
[en] Nasal Alveolar + �
[eng] Nasal Velar + �
[nx] Flap Alveolar + +

[dx] Flap Alveolar + �

Approximants Height Place Voicing Static

[w]* High Back + �
[y] High Front + �
[l] Mid Central + �
[el] Mid Central + �
[r] Mid Rhotic + �
[er] Mid Rhotic + �
[axr] Mid Rhotic + �
[hv] Mid Central + �

Vowels Height Place Tense Static

[ix] High Front � +

[ih] High Front � +

[iy] High Front + �
[eh] Mid Front � +

[ey] Mid Front + �
[ae] Low Front + +

[ay] Low Front + �
[aw]* Low Central + �
[aa] Low Central + +

[ao] Low Back + +

[oy] Mid Back + �
[ow]* Mid Back + �
[uh] High Back � +

[uw]* High Back + �
The phonetic orthography is a variant of Arpabet. Segments marked with an asterisk (*) are [+round]. The consonantal segments are

marked as ‘‘nil’’ for the feature ‘‘tense’’.
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Fig. 1. Overview of the multi-layer-perceptron-based, articulatory-acoustic-feature extraction (ARTIFEX) system (see Section 3 for

details). Each 25-ms acoustic frame is potentially classified with respect to seven separate articulatory feature dimensions: place of

articulation, manner of articulation, voicing, rounding, dynamic/static spectrum, vowel height and vowel length. In this baseline AF-

classification system ten different places of articulation are distinguished. Each AF dimension was trained on a separate MLP classifier.

The frame rate is 100 frames/s (i.e., there is 60% overlap between adjacent frames). The features fed into the MLP classifiers are

logarithmically structured spectral energy profiles distributed over time and frequency.
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single layer. In addition, there was a single output
node (representing the posterior probability of a

feature, given the input data) for each feature class

associated with a specific AF dimension.

Although not the focus of our current work, clas-

sification of phonetic identity for each frame was

performed using a separate MLP network, which

took as input the ARTIFEX outputs of various

AF dimensions. This separate MLP has one output
node for each phone in the phonetic inventory and

the value of each output node represents an estimate

of the posterior probability of the corresponding

phone, given the input data. The results of the

phone classification are discussed in Section 11.

However, no attempt was made in the current study

to decode the frames associated with phonetic-

segment information into sequences of phones.
All MLP networks used in the present study had

sigmoidal transfer functions for the hidden-layer
nodes and a softmax function at the output layer.
The networks were trained with a back-propaga-

tion algorithm using a minimum cross-entropy

error criterion (Bourlard and Morgan, 1993).

The performance of the ARTIFEX system is

described for two basic modes—(1) feature classi-

fication based on the MLP output for all frames

(‘‘manner-independent’’) and (2) manner-specific

classification of place features for a subset of
frames (using the ‘‘elitist’’ approach). All of the

results of the experiments described in this paper

pertain to frame-level classification performance,

unless otherwise noted.
4. Manner-independent feature classification

Table 2 illustrates the efficacy of the ARTIFEX

system for the AF dimension of voicing (associated



Table 2

Articulatory-feature classification performance (in terms of

percent correct, marked in bold) for the AF dimension of

voicing for the NTIMIT corpus

Reference ARTIFEX classification performance

Voiced Unvoiced Silence

Voiced 93 06 01

Unvoiced 16 79 05

Silence 06 06 88

The confusion matrix illustrates the pattern of errors among the

features of this dimension. The overall accuracy for voicing is

89% correct (due to the prevalence of voiced frames in the

corpus).

Articulatory Feature Dimension
PlaceManner
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Fig. 2. Frame-level accuracy of the baseline AF classification

(ARTIFEX) system on the NTIMIT corpus for five separate

AF dimensions. Silence is an implicit feature for each AF

dimension. Confusion matrices associated with this classifica-

tion performance are contained in Table 2 (voicing) and Table 3

(place of articulation). More detailed data on manner-of-

articulation classification is contained in Fig. 4, and additional

data pertaining to place-of-articulation classification is found

in Figs. 8 and 9.
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with the distinction between specific classes of stop

and fricative segments). The level of classification

accuracy is high—92% for voiced segments and

79% for unvoiced consonants (the lower accuracy

associated with this feature reflects the consider-

ably smaller proportion of unvoiced frames in

the training data). Non-speech frames associated

with ‘‘silence’’ are correctly classified 88% of the
time.

The performance of the baseline ARTIFEX

system is illustrated in Fig. 2 for five separate

AF dimensions. Classification accuracy is 80% or

higher for all dimensions other than place of arti-

culation. Table 3 illustrates place-of-articulation

classification in detail. Accuracy ranges between

11% correct for the ‘‘dental’’ feature (associated
Table 3

A confusion matrix illustrating classification performance for place-of

frames (i.e., manner-independent mode) in the corpus test set

Reference ARTIFEX classification performance

Consonantal segments

Lab Alv Vel Den Glo

Labial 60 24 03 01 01

Alveolar 06 79 05 00 00

Velar 08 23 58 00 00

Dental 29 40 01 11 01

Glottal 11 20 05 01 26

Rhotic 02 02 01 00 00

Front 01 04 01 00 00

Central 02 03 01 00 01

Back 03 02 01 00 00

Silence 03 06 01 00 00

The data are partitioned into consonantal and vocalic classes. ‘‘Silen
with the [th] and [dh] segments) to 79% correct

for the feature ‘‘alveolar’’ (associated with the [t],
[d], [ch], [jh], [s], [f], [n], [nx], [dx] segments). Clas-

sification accuracy ranges between 48% and 82%

correct among vocalic segments (‘‘front,’’ ‘‘mid’’

and ‘‘back’’). Variability in performance reflects,

to a certain degree, the proportion of training

material associated with each feature. Overall, per-

formance of the baseline ARTIFEX system is
-articulation features (percent correct, marked in bold) using all

Vocalic segments H-S

Rho Frt Cen Bk Sil

01 02 02 01 05

00 03 02 00 05

00 04 01 01 05

01 05 03 01 08

02 15 10 03 07

69 10 09 06 01

02 82 07 02 01

02 12 69 10 00

04 17 24 48 01

00 00 00 00 90

ce’’ is classified as non-speech (N-S).
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comparable to that reported by other researchers

using comparable approaches (e.g., King and

Taylor, 2000; Kirchhoff, 1999; Kirchhoff et al.,

2002). However, a precise, quantitative compari-

son among the various systems is difficult because
of the significant differences in the materials and

evaluation methods used.
5. An elitist approach to frame selection

There are ten distinct places of articulation

across the manner classes (plus ‘‘silence’’) in the
ARTIFEX system, making it difficult to effectively

train networks expert in the classification of each

place feature. There are other problems as well.

For example, the loci of maximum articulatory

constriction for stops differ from those associated

with fricatives. Moreover, articulatory constriction

has a different manifestation for consonants com-

pared to vowels. The number of distinct places of
articulation for any given manner class is usually
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just three or four. Thus, if it were possible to iden-

tify manner of articulation with a high degree of

assurance it should be possible, in principle, to

train an articulatory-place classification system in

a manner-specific manner that could potentially
enhance place-feature extraction performance. To-

wards this end, a frame-selection procedure was

developed.

With respect to articulatory-feature classifica-

tion, not all frames are created equal. Frames situ-

ated in the center of a phonetic segment tend to be

classified with greater accuracy than those close to

the segmental borders (Chang et al., 2000). This
‘‘centrist’’ bias in feature classification is paralleled

by a concomitant rise in the ‘‘confidence’’ with

which MLPs classify AFs, particularly those asso-

ciated with manner of articulation (Fig. 3). For

this reason the maximum output level of a network

can be used as an objective metric with which to

select frames most ‘‘worthy’’ of manner designa-

tion. In other words, for each frame, the maxi-
mum value of all output nodes—the posterior
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 Frame
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of articulation on the NTIMIT corpus (bottom panel) and the
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e decrement is reflected in a concomitant decrease in the MLP



Table 4

Classification performance (percent correct, marked in bold) associated with using an elitist frame-selection approach for manner

classification

Reference ARTIFEX classification performance

Vocalic Nasal Stop Fricative Flap Silence

All Best All Best All Best All Best All Best All Best

Vocalic 96 98 02 01 01 01 01 00 00 00 00 00

Nasal 14 10 73 85 04 02 04 01 01 00 04 02

Stop 09 08 04 02 66 77 15 09 00 00 06 04

Fric 06 03 02 01 07 03 79 89 00 00 06 04

Flap 29 30 12 11 08 04 06 02 45 53 00 00

Silence 01 01 02 00 03 01 05 02 00 00 89 96

‘‘All’’ refers to the manner-independent system using all frames of the signal, while ‘‘Best’’ refers to the frames exceeding the 70%

threshold. The confusion matrix illustrates the pattern of classification errors.
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Fig. 4. Manner-of-articulation classification performance for

the NTIMIT corpus. A comparison is made between the

baseline system (‘‘All Frames’’) and the Elitist approach (‘‘Best

Frames’’) using the MLP confidence magnitude threshold of

70%. For all manner classes there is an improvement in

classification accuracy when this MLP threshold is used.
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probability estimate of the winning feature—is

designated as the ‘‘confidence’’ measure of the

classification. It should be noted that it is possible,

and sometimes even desirable, to use other confi-

dence measures, such as those based on entropy.

However, in the current study it is natural and

computationally convenient to use a posterior-

probability-based confidence measure as classifica-
tion results are evaluated in a winner-take-all

fashion.

By establishing a network-output threshold of

70% (relative to the maximum) for frame selection,

it is possible to increase the accuracy of manner-of-

articulation classification for the selected frames be-

tween 2% and 14% absolute, compared to the accu-

racy for all frames, thus achieving an accuracy level
of 77–98% frames correct for all manner classes ex-

cept the flaps (53%), as illustrated in Table 4 and

Fig. 4. Most of the frames discarded are located

in the interstitial region at the boundary of adjacent

segments. The overall accuracy of manner classifi-

cation increases from 85% to 93% across frames,

thus making it feasible, in principle, to use a man-

ner-specific classification procedure for extracting
place-of-articulation features. We refer to this con-

fidence-based frame selection of optimum regions

in the speech signal as the elitist approach.

The primary disadvantage of this elitist ap-

proach concerns the approximately 20% of frames

that fall below threshold and are discarded from

further consideration (Fig. 5). The distribution of

these abandoned frames is not entirely uniform.
In a small proportion of phonetic segments (6%),
all (or nearly all) frames fall below threshold,

and therefore it would be difficult to reliably clas-

sify AFs associated with such phones. By lowering

the threshold it is possible to increase the number
of phonetic segments containing supra-threshold

frames but at the cost of classification fidelity over

all frames. A threshold of 70% represents a com-

promise between a high degree of frame selectivity

and the ability to classify AFs for the overwhelm-

ing majority of segments (see Fig. 5 for the func-

tion relating the proportion of frames and

phones discarded).
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frame-classification accuracy and keeping the number of discarded segments to a minimum (�6%).
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6. Manner-specific articulatory place classification

In the experiments illustrated in Fig. 2 and

Table 3 for manner-independent classification,

place-of-articulation information was correctly

classified for 71% of the frames. The accuracy

for individual place features ranged between 11%
and 82% (Table 3).

Articulatory-place information is likely to be

classified with greater precision if performed for

each manner class separately. Fig. 9 and Table 5

illustrate the results of such manner-specific, place

classification. In order to characterize the potential

efficacy of the method, manner information for the

test materials was initially derived from the refer-
ence labels for each phonetic segment rather than

from automatic classification of manner of articu-

lation (also shown in Table 5). In addition, classi-

fication performance is shown for those conditions

in which a manner-specific MLP was used to deter-

mine the output of the manner classification MLP

rather than the reference manner labels (M-SN).

Classification accuracy was also computed for a
condition similar to that of M-SN, except that per-

formance was computed only on selected frames,

applying the elitist approach to the manner MLP

output using a threshold of 70% of the maximum

confidence level.

Separate MLPs were trained to classify place-

of-articulation features for each of the five manner
classes—stops, nasals, fricatives, flaps and vowels

(the latter includes the approximants). The place

dimension for each manner class was partitioned

into three basic features. For consonantal seg-

ments the partitioning corresponds to the relative

location of maximal constriction—anterior, cen-

tral and posterior (as well as the glottal feature

for stops and fricatives). For example, ‘‘bilabial’’
is the most anterior feature for stops, while the

‘‘labio-dental’’ and ‘‘dental’’ loci correspond to

the anterior feature for fricatives. In this fashion

it is possible to construct a relational place-of-

articulation pattern customized to each consonan-

tal manner class. For vocalic segments, front

vowels were classified as anterior, and back vow-

els as posterior. The liquids (i.e., [l] and [r]) were



Table 5

Manner-specific (M-S) classification (percent correct, marked in bold) for place-of-articulation feature extraction for each of the four major manner classes

Reference ARTIFEX classification performance

Anterior Central Posterior Glottal

M-I M-S M-SN M-SNE M-I M-S M-SN M-SNE M-I M-S M-SN M-SNE M-I M-S M-SN M-SNE

Stop Anterior 66 80 68 73 17 13 26 20 04 06 05 06 01 02 01 01

Central 07 13 15 11 76 77 78 82 06 09 07 07 01 02 01 00

Posterior 11 12 15 10 19 14 21 14 61 74 64 76 01 01 00 00

Glottal 09 12 34 37 16 13 28 23 04 07 08 06 29 68 30 34

Fric Anterior 46 44 43 48 40 55 54 59 01 00 03 02 01 00 00 00

Central 04 02 04 03 85 96 94 95 00 01 02 02 03 00 00 00

Posterior 01 01 06 03 31 43 41 41 62 57 53 56 00 00 00 00

Glottal 16 15 24 27 30 49 45 48 06 02 14 13 19 34 17 12

Nasal Anterior 64 65 63 67 20 31 31 27 02 04 06 05 – – – –

Central 12 09 16 16 69 86 77 78 03 05 06 07 – – – –

Posterior 10 05 19 17 32 39 38 33 28 56 44 51 – – – –

Vowel Anterior 82 83 82 84 07 14 15 13 02 03 04 03 – – – –

Central 12 11 23 23 69 80 71 72 10 09 05 05 – – – –

Posterior 17 16 20 20 24 35 30 30 48 50 49 50 – – – –

Place classification performance for the manner-independent (M-I) system is shown for comparison. M-SN refers to the manner-specific classification in which a manner-

specific MLP was used to determine the output of the manner classification MLP rather than the reference manner labels. The M-SNE condition is similar to M-SN

except that the performance was computed only on selected frames applying the elitist approach to the manner MLP output using a threshold of 70% of the maximum

confidence level. Values in some rows do not add up to 100% because silence and non-applicable features are omitted from the table.
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assigned a ‘‘central’’ place given the contextual

nature of their articulatory configuration. This

relational place-of-articulation scheme is illus-

trated in Fig. 6.
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Fig. 7. A comparison of manner-specific and manner-indepen-

dent classification accuracy for two separate consonantal

manner classes, stops and nasals, in the NTIMIT corpus.

Place-of-articulation information is represented in terms of

anterior, central and posterior positions for each manner class.

A gain in classification performance is exhibited for all place

features in both manner classes. The magnitude of the

performance gain is largely dependent on the amount of

training material associated with each place feature.
The gain in place-of-articulation classification

associated with manner-specific feature extraction

is considerable for most manner classes, as illus-

trated in Table 5, as well as in Figs. 7–9. In many

instances the gain in place classification is between

10% and 30% (in terms of absolute performance).

In no instance does the manner-specific regime
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training material associated with each place and height feature.
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sions. For each manner class there is an appreciable gain in

classification performance using the Elitist approach.

Table 6

Classification performance (in percent correct, marked in bold)

associated with an elitist frame-selection approach for classifi-

cation of non-place articulatory features of vowel height,

intrinsic vowel duration (tense/lax) and rate of spectral change

(static/dynamic)

Reference ARTIFEX classification performance

M-I M-S M-I M-S M-I M-S

Vowel height Low Mid High

Low 77 83 13 16 01 01

Mid 15 18 58 73 12 09

High 02 05 11 22 73 73

Vowel length Tense Lax

Tense 78 91 16 09 – –

Lax 23 38 69 62 – –

Spectrum Static Dynamic

Static (vowels) 81 77 19 23 – –

Dynamic 31 21 69 79 – –

Static (Fricatives) 86 98 09 02 – –

Dynamic 37 50 59 50 – –

Values in some rows do not add up to 100% since silence and

non-applicable features are omitted from the table.
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significantly impair performance. The gain in clas-

sification performance is most likely derived from

two specific factors—(1) a more homogeneous set

of training material for manner-specific place
material and (2) a smaller number of place-feature

targets for each manner class.
7. Manner-specific non-place feature classification

MLPs were also trained to classify each frame

with respect to rate of spectral change (static/

dynamic) for all manner classes, as well as on the

dimensions of height (high, mid, low—see Fig. 8)

and intrinsic duration (tense/lax) for vocalic seg-

ments only (Table 6). The dynamic/static features
are useful for distinguishing affricates (such as

[ch] and [jh]) from ‘‘pure’’ fricatives, as well as sep-

arating diphthongs from monophthongs among

the vowels. The height feature is necessary for dis-

tinguishing many of the vocalic segments. The

tense/lax feature provides important information

pertaining to vocalic duration and stress-accent

(see Hitchcock and Greenberg, 2001; Greenberg
et al., 2002). Although there are gains in per-

formance (relative to manner-independent classifi-

cation) for many of the features (Table 6), the

magnitude of improvement is not quite as impres-

sive as observed for articulatory-place features.
8. Cross-linguistic transfer of articulatory features

Articulatory-acoustic features for Dutch were

automatically derived from phonetic-segment la-
bels using the mapping pattern illustrated in Table

7 for the VIOS corpus. The feature dimensions,

‘‘Front-Back’’ and ‘‘Rounding’’ applied solely to

vocalic segments. The rhoticized segments, [r]

and [R], were assigned a place feature (+rhotic)

unique unto themselves in order to accommo-

date their articulatory variability (Lindau, 1985;

Vieregge and Broeders, 1993). Each articulatory
feature dimension also contained a class for ‘‘si-

lence.’’ In the manner-specific classification, the

approximants (i.e., glides, liquids and [h]) were

classified as vocalic with respect to articulatory

manner rather than as a separate consonantal

class.

The context window for the MLP inputs was

9 frames (i.e., 105 ms). Two hundred units (dis-
tributed over a single hidden layer) were used for

the MLPs trained on the voicing, rounding and

front-back dimensions, while the place and

manner dimensions used 300 hidden units (with a

similar network architecture).



Table 7

Articulatory feature characterization of the phonetic segments in the VIOS corpus

Consonants Manner Place Voicing

[p] Stop Bilabial �
[b] Stop Bilabial +

[t] Stop Alveolar �
[d] Stop Alveolar +

[k] Stop Velar �
[f] Fricative Labiodental �
[v] Fricative Labiodental +

[s] Fricative Alveolar �
[z] Fricative Alveolar +

[S] Fricative Velar �
[x] Fricative Velar +

[m] Nasal Bilabial +

[n] Nasal Alveolar +

[N] Nasal Velar +

Approximants Manner Place Voicing

[w] Vocalic Labial +

[j] Vocalic High +

[l] Vocalic Alveolar +

[L] Vocalic Alveolar +

[r] Vocalic Rhotic +

[R] Vocalic Rhotic +

[h] Vocalic Glottal +

Vowels Front-Back Place Rounding

[i] Front High �
[u] Back High +

[iy] Front High +

[y] Front High �
[I] Front High �
[e:] Front Mid +

[2:] Back Mid +

[o:] Front Mid �
[E] Back Mid +

[O] Back Mid �
[Y] Back Mid �
[@] Front Mid �
[Ei] Front Low �
[a:]* Back Low �
[A] Back Low +

[Au] Front Low +

9y Front High �

Approximants Front-Back Place Voicing

[w] Back High +

[j] Front High +

[l] Central Mid +

[l] Central Mid +

[L] Central Mid +

[r] Central Mid +

[R] Central Mid +

[h] Back High +

The approximants are listed twice—at top for the manner-independent features, and at bottom for manner-specific place features. The

phonetic orthography is derived from SAMPA.
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Fig. 10. Comparison of articulatory-feature classification per-

formance for five separate AF dimensions on the VIOS corpus

as a function of whether the MLPs were trained initially on

VIOS or on NTIMIT (i.e., with cross-linguistic transfer of AF

training). Performance is computed without taking into account

classification accuracy for the ‘‘silence’’ feature (see Table 8 for

a comparison when performance does include ‘‘silence’’ classi-

fication). The cross-linguistic transfer of AF classification is

excellent for voicing and satisfactory for the other AF dimen-

sions, except for place of articulation.
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A comparable set of MLPs were trained on

approximately 3 h of material from the NTIMIT

corpus, using a cross-validation set of approxi-

mately 18 min duration.

Classification experiments were performed on
the VIOS test material using MLPs trained on

the VIOS and NTIMIT corpora, respectively (cf.

Table 8). Because approximately 40% of the test

material was composed of ‘‘silence,’’ classification

results are partitioned into two separate condi-

tions, one in which silence was included in the

evaluation of frame accuracy (+ silence), the other

in which it was excluded (� silence) from compu-
tation of frame-classification performance.

Classification performance of articulatory-

acoustic features trained and tested on VIOS is

more than 80% correct for all dimensions except

place of articulation. Performance is slightly

higher for all feature dimensions when silence is

included, a reflection of how well silence is rec-

ognized. Overall, performance is comparable, or
superior, to that associated with other American

English (Chang et al., 2000; King and Taylor,

2000) and German (Kirchhoff, 1999; Kirchhoff

et al., 2002) material.

Classification performance for the system

trained on NTIMIT and tested on VIOS is lower

than the system that is both trained and tested

on VIOS (Table 8 and Fig. 10). The decline in per-
formance is generally approximately 8–15% for all

feature dimensions, except for place, for which
Table 8

Comparison of feature-classification performance (percent cor-

rect at frame level) for two different systems—one trained and

tested on Dutch (VIOS–VIOS), the other trained on English

and tested on Dutch (NTIMIT–VIOS)

Feature ARTIFEX classification performance

VIOS–VIOS NTIMIT–VIOS

+Silence �Silence +Silence �Silence

Voicing 89 85 79 86

Manner 85 81 73 74

Place 76 65 52 39

Front-Back 83 78 69 67

Rounding 83 78 70 69

Two different conditions are shown—classification with silent

intervals included (+Silence) and excluded (�Silence) in the test

material.
there is a somewhat larger decrement (26%) in
classification accuracy. Voicing is the one dimen-

sion in which classification is nearly as good for

a system trained on English as it is for a system

trained on Dutch (particularly when silence is

neglected). The manner dimension also transfers

reasonably well from training on NTIMIT to

VIOS. However, place-of-articulation classifica-

tion does not transfer particularly well between
the two languages.

One reason for the poor transfer of place-of-

articulation feature classification for a system

trained on NTIMIT and tested on VIOS pertains

to the amount of material on which to train. Fea-

tures which transfer best from English to Dutch

are those trained on the greatest amount of data

in English. This observation suggests that a poten-
tially effective means of improving performance on

systems trained and tested on discordant corpora

would be to evenly distribute the training materials

over the feature classes and dimensions classified.
9. The elitist approach goes Dutch

The efficacy of frame selection for manner clas-

sification in Dutch is illustrated in the left-hand



Table 9

The effect (in percent correct) of using an elitist frame-selection approach on manner classification for two different systems—one

trained and tested on Dutch (VIOS), the other trained on English (NTIMIT) and tested on Dutch (VIOS)

Trained and tested on Dutch Trained on English, but tested on Dutch

Vocalic Nasal Stop Fricative Silence Vocalic Nasal Stop Fricative Silence

All Best All Best All Best All Best All Best All Best All Best All Best All Best All Best

Vocalic 89 94 04 03 02 01 03 02 02 01 88 93 03 02 05 03 03 02 00 00

Nasal 15 11 75 84 03 02 01 00 06 03 46 48 48 50 02 01 02 01 01 01

Stop 16 12 05 03 63 72 07 06 10 07 22 24 10 08 45 46 21 20 02 02

Fricative 13 09 01 00 02 01 77 85 07 04 21 19 01 00 07 04 70 77 00 00

Silence 04 02 02 01 02 01 02 01 90 94 07 05 04 02 08 05 09 06 72 81

‘‘All’’ refers to using all frames of the signal, while ‘‘Best’’ refers to the frames exceeding the 70% threshold.
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portion of Table 9 for a system trained and tested

on VIOS. By establishing a network-output

threshold of 70% (of maximum output) for frame

selection, it is possible to increase the accuracy of
manner classification between 5% and 10%, thus

achieving an accuracy level of 84–94% correct for

all manner classes except stop consonants. The

overall accuracy of manner classification increases

from 85% to 91% across frames. Approximately

15% of the frames fall below threshold and are dis-

carded from further consideration (representing

5.6% of the phonetic segments). Most of the
discarded frames are associated with the boundary

regions between adjacent segments.

The right-hand portion of Table 9 illustrates the

results of the frame-selection method for a system

trained on NTIMIT and tested on VIOS. The

overall accuracy at the frame level increases from

73% to 81% using the elitist approach (with

�19% of the frames discarded). However, classifi-
cation performance does not appreciably improve

for either the stop or nasal manner classes.
10. Manner-specific articulatory place

classification in Dutch

In the classification experiments described in
Sections 8 and 9 (and Table 9), place information

was correctly classified for only 65–76% of the

frames associated with a system trained and tested

on Dutch. Place classification was even poorer for

the system trained on English material (39–52%).

A potential problem with place classification is

the heterogeneous nature of the articulatory-
acoustic features involved. The place features for

vocalic segments (for the VIOS corpus, they are

low, mid and high) are quite different than those

pertaining to consonantal segments such as stops
(labial, alveolar, velar). Moreover, even among

consonants, there is a lack of concordance in place

of articulation (e.g., the most forward constriction

for fricatives in both Dutch and English is poster-

ior to that of the most anterior constriction for

stops).

Such factors suggest that articulatory place

information is likely to be classified with greater
precision if performed for each manner class sepa-

rately using a scheme illustrated in Fig. 11. This

manner-specific, place-of-articulation classification

is similar to that employed for the NTIMIT corpus

illustrated in Fig. 6. The principal difference per-

tains to the number and specific identity of the

place features for the two languages. For example,

in Dutch there are only three place-of-articulation
features per manner class, while in English some

manner classes have four place features. The man-

ner class, ‘‘flap’’ is present in English, but not in

Dutch. There is no voiced velar stop segment in

Dutch corresponding to the [g] in English. Rather,

the fricative manner class in Dutch contains a

voiced velar (associated with the orthographic

‘‘g’’) that is entirely absent in English.
Fig. 12 illustrates the results of such manner-

specific, place classification for a system trained

and tested on Dutch (VIOS). In order to character-

ize the potential efficacy of the method, manner

information for the test material was derived from

the reference labels for each phonetic segment

rather than from automatic classification.
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Five separate MLPs were trained to classify

place-of-articulation features—one each for the

consonantal manner classes of stop, nasal and

fricative—and two for the vocalic segments

(front-back and height). The place dimension
for each manner class was partitioned into three

features (see Fig. 11). For consonantal segments

the partitioning corresponded to the relative loca-

tion of maximal constriction—anterior, central

and posterior, analogous to the scheme used for
English (Fig. 6). The primary difference between

English and Dutch is the presence of three

place-of-articulation features per manner class in

the latter (in contrast to English where there are

occasionally four place features in a manner

group).

Fig. 12 illustrates the gain in place classification

performance (averaged across all manner classes)
when the networks are trained using the manner-

specific scheme. Accuracy increases between 10%

and 20% for all place features, except ‘‘low’’

(where the absolute gain in performance is 5%).

Assigning the place features for the ‘‘approxi-

mants’’ (liquids, glides and [h]) in a manner

commensurate with vowels (Table 7) results in a

dramatic increase in the classification of these fea-
tures (Fig. 13), suggesting that this particular man-

ner class may be more closely associated with

vocalic than with consonantal segments (in Dutch

all instances of [h] appear to be of the voiced vari-

ety, in contrast to English where [h] can be realized

as an unvoiced, glottal fricative proceeding high,

front vowels).



1 A frame-level phone classification of 61.5% was obtained

when phonetic identity is derived from manner-independent,

articulatory-feature inputs. The phonetic classification was

performed on the phone set listed in Table 1. This classification

accuracy would have been higher if a smaller phone set were

used, such as the 39-phone set used in some earlier studies

focused on TIMIT (e.g., Lee and Hon, 1989).
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Fig. 13. A comparison of manner-specific and manner-inde-

pendent classification for AFs required to distinguish approx-

imant segments from other phones. In each instance the

manner-specific classification is based on training where the

approximants are grouped with vowels. In the manner-inde-

pendent classification the approximants are a separate class

(essentially a consonantal group). The lower-case and capital-

letter symbols associated with the liquid segments distinguish

between syllable-onset and syllable-coda versions of the phones.

The data are derived from MLP classifiers trained on VIOS

material.
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11. Discussion and conclusions

Current methods for annotating spoken-lan-
guage material focus on the phonetic segment

and the word. Manual annotation is both costly

and time-consuming. Moreover, few individuals

possess the complex constellation of skills and

expertise required to perform large amounts of

such annotation in highly accurate fashion. Hence,

the future of spoken-language annotation is likely

to reside in automatic procedures (Greenberg,
2003; Schiel, 1999).

Current-generation speech recognition (ASR)

systems often rely on automatic-alignment proce-

dures to train and refine phonetic-segment models.

Although these automatically generated align-

ments are designed to approximate the actual

phones contained in an utterance, they are often

erroneous in terms of their phonetic identity. For
instance, over forty percent of the phonetic labels
generated by state-of-the-art automatic alignment

systems differ from those generated by phoneti-

cally trained human transcribers for the Switch-

board corpus (Greenberg et al., 2000). The most

advanced of the current automatic phonetic anno-
tation systems (Beringer and Schiel, 2000; Kessens

et al., 1999; Schiel, 1999) require a word transcript

to perform, and even under such circumstances the

output is in the form of phonetic segments only.

Moreover, the output of such ‘‘super-aligners’’ is

subject to error because of the limited capability

of the pronunciation models built into these sys-

tems to accommodate idiolectal and dialectal var-
iation. The ability to capture fine nuances of

pronunciation at the level of the phonetic segment

is limited by virtue of the extraordinary amount of

variation observed at this level in spontaneous

material (Greenberg, 1999).

It is therefore not surprising that the ability to

convert AFs into phonetic segments is limited.

For the NTIMIT corpus the use of the ARTIFEX
system improves phone classification at the frame

level by only a small amount. Using a single-layer

MLP with 600 hidden units to perform direct

phonetic classification, we obtained a frame-level

classification accuracy of 55.7%.1 The elitist frame-

work provides only a small additional gain in

performance at the phonetic-segment level despite

the more significant improvement in AF classifica-
tion; such a result implies that the phonetic seg-

ment may not be the optimum unit with which

to characterize the phonetic properties of spoken

language.

For such reasons, future-generation speech rec-

ognition and synthesis systems are likely to require

much finer detail in modeling pronunciation than

is currently afforded by phonetic-segmental repre-
sentations. The ARTIFEX system, in tandem with

the elitist approach, provides one potential means

with which to achieve high-fidelity, phonetic
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characterization for speech technology develop-

ment and the scientific study of spoken language.

This approach improves manner-of-articulation

classification through judicious (and principled)

selection of frames and enhances place-of-articula-
tion classification via a manner-specific training

and testing regime. Place-of-articulation informa-

tion is of critical importance for classifying pho-

netic segments correctly (Greenberg and Chang,

2000; Kirchhoff, 1999) and therefore may be of

utility in enhancing the performance of automatic

speech recognition systems. The quality of auto-

matic labeling is potentially of great significance
for large-vocabulary ASR performance, as word-

error rate is largely dependent on the accuracy of

phone recognition (Greenberg et al., 2000). More-

over, a substantial reduction in word-error rate is,

in principle, achievable when phone recognition is

both extremely accurate and tuned to the phonetic

composition of the recognition lexicon (McAllas-

ter et al., 1998).
Articulatory-acoustic features also provide a

potentially efficient means for developing speech

recognition systems across languages. The present

study has demonstrated that certain AF dimen-

sions, such as voicing and manner of articulation,

transfer relatively well between English and Dutch.

However, a critical dimension, place of articula-

tion, transfers much more poorly. This difficulty
in transferring place features trained on English

to Dutch may reflect specific constraints (and lim-

itations) of the specific corpora involved, or may

indicate something more basic about the nature

of language-specific features. It would be of inter-

est to ascertain if place-of-articulation cues trans-

fer equally poorly across languages other than

English and Dutch. Results from Williams et al.
(1998) on transfer rates of broad phonetic feature

classification across several languages other than

English suggest that this may well be the case.

Because of the possibility that place features are

language-specific (and manner features potentially

less so) using the elitist approach in concert with

manner-specific training may offer a means of effi-

ciently training ASR systems across different
languages.

Another potential application of the elitist ap-

proach pertains to segmentation of the speech sig-
nal at the phonetic-segment level. Although there

are many articulatory feature dimensions that cut

across segmental boundaries, manner-of-articula-

tion cues are largely co-terminous with segmental

units in the vast majority of instances, particu-
larly when syllable juncture is taken into account.

Because it is highly unusual for two phonetic seg-

ments of the same manner class to occur in prox-

imity within the same syllable (see Chang, 2002),

accurate classification of the manner dimension

is essentially equivalent to segmentation at the

phone level. Promising results in segmentation

based on manner-feature landmark detection were
reported by Juneja and Espy-Wilson (2002). More-

over, the correlation between MLP confidence lev-

els and segmental centers (and by implication,

boundaries) provides the capability of flagging

automatically the temporal intervals in the speech

signal associated with discrete segments. Such

knowledge could be useful for training speech rec-

ognition systems, as well as applying temporal
constraints on the interpretation of the acoustic

signal.

What is currently absent from the ARTIFEX

system is an explicit connection to a syllabic topol-

ogy. At present, articulatory features at the onset

of a syllable are trained in the same manner as

those in the coda (except for the liquids in Dutch).

It is known that the articulatory (and hence the
acoustic) properties of many consonantal seg-

ments differ in onset and coda position (e.g., stops

are rarely accompanied by articulatory release in

coda position, but are typically so at syllable

onset). Combining articulatory feature classifica-

tion with knowledge of syllable position is likely

to significantly improve classification perfor-

mance beyond what is possible with the current
ARTIFEX system.

The ARTIFEX system also does not currently

incorporate prosodic properties such as stress-

accent, which are known to interact with certain

articulatory properties associated with vocalic

segments (cf. Hitchcock and Greenberg, 2001;

Greenberg et al., 2001, 2002). Linking articulatory

feature classification to stress accent in a principled
way is also likely to improve the performance of the

ARTIFEX system, and thus enhance its capability

within the context of a speech recognition system.
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However, in order for articulatory-based fea-

tures to prove truly useful for speech recognition

technology, it will be necessary to develop lexical

representations and pronunciation models tuned

to this level of abstraction. The development of pro-
nunciation models that transcend the conventional

phonetic segment represents the frontier of future-

generation speech recognition technology and is

therefore likely to yield considerable advances in

ASR performance for large vocabulary tasks.

Finally, the ARTIFEX system (and its ultimate

successors) is capable of deepening our scientific

insight into the nature of spoken language. Until
recently most of our knowledge concerning the

phonetic and prosodic properties of speech was

based on laboratory studies using highly artificial

material (such as carefully crafted sentences or

newspaper articles). Such scripted speech differs

in significant ways from spontaneous dialogue

material (Greenberg, 1999; Greenberg and Fosler-

Lussier, 2000). The most efficient means with which
to characterize the phonetic properties of such

spontaneous material is through automatic label-

ing; manual annotation, although convenient for

initial training of an automatic system, is far too

time-consuming (and expensive) to deploy on a

wide-spread basis. Generation of high-quality pho-

netic annotation can provide the sort of empirical

foundation required to test models of language,
extending the scientific frontier of spoken language

research and thereby providing a firm foundation

for its incorporation into speech technology.
Acknowledgement

The research described in this study was sup-

ported by the US Department of Defense and the

National Science Foundation. Shuangyu Chang

(shawn@tellme.com) is now with TellMe, Inc. Mir-

jam Wester (mwester@inf.ed.ac.uk) is currently
affiliated with the Centre for Speech Technology

Research, University of Edinburgh. Steven Green-

berg (steveng@savant-garde.net) is now affiliated

with the Technical University of Denmark and

the University of California, Santa Cruz.

This paper is based on presentations made at

Eurospeech-2001 (Chang et al., 2001; Wester
et al., 2001) and incorporates a substantial amount

of material not included in the papers published in

the conference proceedings.

We thank three anonymous reviewers for their

suggestions for improving an earlier version of this
paper.
References

Beringer, N., Schiel, F., 2000. The quality of multilingual

automatic segmentation using German MAUS. In: Proc.

Internat. Conf. on Spoken Language Processing, Vol. IV,

pp. 728–731.

Bourlard, H., Morgan, N., 1993. Connectionist Speech Recog-

nition: A Hybrid Approach. Kluwer, Boston.

Chang, S., 2002. A syllable, articulatory-feature, and stress-

accent model of speech recognition. Ph.D. thesis, Depart-

ment of Electrical Engineering and Computer Science,

University of California, Berkeley. Available as ICSI

Technical Report 2002-007 at www.icsi.berkeley.edu/publi-

cations.html.

Chang, S., Shastri, L., Greenberg, S., 2000. Automatic phonetic

transcription of spontaneous speech (American English).

In: Proc. Internat. Conf. on Spoken Language Processing,

Vol. IV, pp. 330–333.

Chang, S., Greenberg, S., Wester, M., 2001. An elitist approach

to articulatory-acoustic feature classification. In: Proc. 7th

Internat. Conf. on Speech Communication and Technology

(Eurospeech-2001), pp. 1725–1728.

Chen, M.Y., 2000. Nasal detection module for a knowledge-

based speech recognition system. In: Proc. Internat. Conf.

on Spoken Language Processing, Vol. IV, pp. 636–639.

Chomsky, N., Halle, M., 1968. The Sound Pattern of English.

Harper and Row, New York.

Deng, L., 1998. Integrated-multilingual speech recognition and

its impact on Chinese spoken language processing. In: Proc.

Internat. Symposium on Chinese Spoken Language Pro-

cessing, Singapore, pp. 22–30.

Deng, L., Sun, D., 1994. A statistical approach to automatic

speech recognition using the atomic speech units con-

structed from overlapping articulatory features. J. Acoust.

Soc. Amer. 95, 2702–2719.

Deng, L., Ramsay, G., Sun, D., 1997. Production models as a

structural basis for automatic speech recognition. Speech

Comm. 22, 93–111.

Espy-Wilson, C., 1994. A feature-based approach to speech

recognition. J. Acoust. Soc. Amer. 96, 65–72.

Greenberg, S., 1999. Speaking in shorthand—A syllable-centric

perspective for understanding pronunciation variation.

Speech Comm. 29, 159–176.

Greenberg, S., 2003. Strategies for automatic multi-tier anno-

tation of spoken language corpora. In: Proc. 8th European

Conf. on Speech Communication and Technology (Euro-

speech-2003), pp. 45–48.

http://www.icsi.berkeley.edu/publications.html
http://www.icsi.berkeley.edu/publications.html


310 S. Chang et al. / Speech Communication 47 (2005) 290–311
Greenberg, S., Chang, S., 2000. Linguistic dissection of switch-

board-corpus automatic speech recognition systems. In:

Proc. ISCA Workshop on Automatic Speech Recognition:

Challenges for the New Millennium, Paris, pp. 195–202.

Greenberg, S., Fosler-Lussier, E., 2000. The uninvited guest:

Information�s role in guiding the production of spontaneous

speech. In: Proc. Crest Workshop on Models of Speech

Production: Motor Planning and Articulatory Modelling,

pp. 129–132.

Greenberg, S., Chang, S., Hollenback, J., 2000. An introduction

to the diagnostic evaluation of Switchboard-corpus auto-

matic speech recognition systems. In: Proc. NIST Speech

Transcription Workshop, College Park, MD.

Greenberg, S., Chang, S., Hitchcock, L., 2001. The relation

between stress accent and vocalic identity in spontaneous

American English discourse. In: Proc. ISCA Workshop on

Prosody inSpeechRecognitionandUnderstanding, pp. 51–56.

Greenberg, S., Carvey, H.M., Hitchcock, L., Chang, S., 2002.

Beyond the phoneme—A juncture-accent model for spoken

language. In: Proc. Second Internat. Conf. on Human

Language Technology Research, pp. 36–43.

Hermansky, H., 1990. Perceptual linear predictive (PLP)

analysis for speech. J. Acoust. Soc. Amer. 87, 1738–1752.

Hitchcock, L., Greenberg, S., 2001. Vowel height is intimately

associated with stress-accent in spontaneous American

English discourse. In: Proc. 7th Internat. Conf. on Speech

Communication and Technology (Eurospeech-2001), pp.

79–82.

Howitt, A.W., 2000. Vowel landmark detection. In: Proc.

Internat. Conf. on Spoken Language Processing, pp. 628–

631.

Jakobson, R., Fant, C.G.M., Halle, M., 1952. Preliminaries to

Speech Analysis: The Distinctive Features and Their Cor-

relates. MIT Press, Cambridge, MA (originally published as

an MIT RLE Technical Report in 1952 and subsequently

published by MIT Press as a monograph).

Jankowski, C., Kalyanswamy, A., Basson, S., Spitz, J., 1990.

NTIMIT: A phonetically balanced, continuous speech,

telephone bandwidth speech database. In: Proc. IEEE

Internat. Conf. on Acoustics, Speech and Signal Processing,

pp. 109–112.

Juneja, A., Espy-Wilson, C., 2002. Segmentation of continuous

speech using acoustic-phonetic parameters and statistical

learning. In: Proc. 9th Internat. Conf. on Neural Informa-

tion Processing, Singapore, pp. 726–730.

Kessens, J.M., Wester, M., Strik, H., 1999. Improving the

performance of a Dutch CSR by modeling within-word and

cross-word pronunciation. Speech Comm. 29, 193–207.

King, S., Taylor, P., 2000. Detection of phonological features in

continuous speech using neural networks. Comput. Speech

Lang. 14, 333–345.

Kirchhoff, K., 1999. Robust speech recognition using articula-

tory information. Ph.D. thesis, University of Bielefeld

(Germany).

Kirchhoff, K., Fink, G.A., Sagerer, G., 2002. Combining

acoustic and articulatory feature information for robust

speech recognition. Speech Comm. 37, 303–319.
Ladefoged, P., 1993. A Course in Phonetics, third ed. Harcourt,

Brace, New York.

Lamel, L.F., Garafolo, J., Fiscus, J., Fisher, W., Pallett, D.,

1990. TIMIT: The DARPA acoustic-phonetic speech cor-

pus. National Technical Information Service Publication

PB91-505065INC.

Lee, K.F., Hon, H.W., 1989. Speaker-independent phoneme

recognition using hidden Markov models. IEEE Trans.

Acoust. Speech Signal Process. 37, 1641–1648.

Lindau, M., 1985. The story of /r/. In: Fromkin, V. (Ed.),

Phonetic Linguistics: Essays in Honor of Peter Ladefoged.

Academic Press, Orlando, FL, pp. 157–168.

McAllaster, D., Gillick, L., Scattone, F., Newman, M., 1998.

Fabricating conversational speech data with acoustic mod-

els: A program to examine model-data mismatch. In: Proc.

Internat. Conf. on Spoken Language Processing, pp. 1847–

1850.

Miller, G.A., Nicely, P.E., 1955. An analysis of perceptual

confusions among some English consonants. J. Acoust. Soc.

Amer. 27, 338–352.

Niyogi, P., Burges, C., Ramesh, P., 1999. Distinctive feature

detection using support vector machines. In: Proc. IEEE

Internat. Conf. on Acoustics, Speech, and Signal Processing

(ICASSP-99), pp. 425–428.

Omar, M.K., Hasegawa-Johnson, M., 2002. Maximum mutual

information based acoustic features representation of pho-

nological features for speech recognition. In: Proc. IEEE

Internat. Conf. on Acoustics, Speech and Signal Processing

(ICASSP), pp. 1916–1919.

Ostendorf, M., 2000. Moving beyond the beads-on-a-string

model of speech. In: Proc. IEEE Automatic Speech Recog-

nition and Understanding Workshop, pp. 72–82.

Rose, R., Schroeter, J., Sondhi, M., 1996. The potential role of

speech production models in automatic speech recognition.

J. Acoust. Soc. Amer. 99, 1699–1709.

Schiel, F., 1999. Automatic phonetic transcription of non-

prompted speech. In: Proc. 13th Internat. Congress of

Phonetic Sciences, pp. 607–610.

Steinbiss, V., Ney, H., Haeb-Umbach, R., Tran, B.-H., Essen,

U., Kneser, R., Oerder, M., Meier, H.-G., Aubert, X.,

Dugast, C., Geller, D., 1993. The Philips research system for

large-vocabulary continuous-speech recognition. In: Proc.

Third European Conf. on Speech Communication and

Technology (Eurospeech-93), pp. 2125–2128.

Stevens, K., 1998. Acoustic Phonetics. MIT Press, Cambridge,

MA.

Stevens, K., 2000. From acoustic cues to segments, features and

words. In: Proc. Internat. Conf. on Spoken Language

Processing, Vol. 1, pp. A1–A8.

Strik, H., Russell, A., van den Heuvel, H., Cucchiarini, C.,

Boves, L., 1997. A spoken dialogue system for the Dutch

public transport information service. Internat. Journal

Speech Technol. 2, 119–129.

Sun, J., Deng, L., 2002. An overlapping-feature based phono-

logical model incorporating linguistic constraints: Appli-

cations to speech recognition. J. Acoust. Soc. Amer. 111,

1086–1101.



S. Chang et al. / Speech Communication 47 (2005) 290–311 311
Vieregge, W.H., Broeders, T., 1993. Intra- and interspeaker

variation of /r/ in Dutch. In: Proc. Third European Conf. on

Speech Communication and Technology (Eurospeech-93),

pp. 267–270.

Wester, M., Greenberg, S., Chang, S., 2001. A Dutch treatment

of an elitist approach to articulatory-acoustic feature
classification. In: Proc. 7th Internat. Conf. on Speech

Communication and Technology (Eurospeech-2001), pp.

1729–1732.

Williams, G., Terry,M., Kaye, J., 1998. Phonological elements as

a basis for language-independent ASR. In: Proc. Internat.

Conf. onSpokenLanguageProcessing (ICSLP-98), pp. 88–91.


	An elitist approach to automatic articulatory-acoustic feature classification for phonetic characterization of spoken language
	Introduction
	Corpus materials
	NTIMIT (American English)
	VIOS (Dutch)

	ARTIFEX system overview (for application to NTIMIT)
	Manner-independent feature classification
	An elitist approach to frame selection
	Manner-specific articulatory place classification
	Manner-specific non-place feature classification
	Cross-linguistic transfer of articulatory features
	The elitist approach goes Dutch
	Manner-specific articulatory place�classification in Dutch
	Discussion and conclusions
	Acknowledgement
	References




