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Abstract

Speech resonance signals appear to contain significant amplitude and frequency modulations. An efficient demodula-
tion approach is based on energy operators. In this paper, we develop two new robust methods for energy-based speech
demodulation and compare their performance on both test and actual speech signals. The first method uses smoothing
splines for discrete-to-continuous signal approximation. The second (and best) method uses time-derivatives of Gabor
filters. Further, we apply the best demodulation method to explore the statistical distribution of speech modulation
features and study their properties regarding applications of speech classification and recognition. Finally, we present some
preliminary recognition results and underline their improvements when compared to the corresponding MFCC results.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Nonlinear, time-varying signal models of the
AM–FM type are nowadays receiving significant
attention in nonstationary signal and speech pro-
cessing schemes. The estimation of the signal instan-
taneous frequencies and amplitude envelopes is
referred to as the �Demodulation Problem�. Demod-
ulating AM–FM signals, i.e., nonstationary sines
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that have a combined amplitude modulation (AM)
and frequency modulation (FM)

xðtÞ ¼ aðtÞ cos

Z t

0

xðsÞ ds

� �
ð1Þ

has been a major research problem with many appli-
cations in communication systems, speech process-
ing, and in general, nonstationary signal analysis.
To solve it, a new approach was developed in the
1990�s based on nonlinear differential operators that
can track the instantaneous energy (or its derivatives)
of a source producing an oscillation (Kaiser, 1983,
1990; Maragos and Potamianos, 1995). The main
representative of this class of operators is the contin-
uous-time Teager–Kaiser energy operator (TEO)
W½xðtÞ� � ½ _xðtÞ�2 � xðtÞ€xðtÞ, where _xðtÞ ¼ dxðtÞ=dt.
.
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Applied to the AM–FM signal (1), W yields the
instantaneous source energy, i.e., W[x(t)] �
a2(t)x2(t), where the approximation error becomes
negligible (Maragos et al., 1993) if the instantaneous
amplitude a (t) and instantaneous frequency x(t) do
not vary too fast or too much with respect to the aver-
age value of x(t). Thus, AM–FM demodulation can
be achieved by separating the instantaneous energy
into its amplitude and frequency components. W is
the main ingredient of the first energy separation

algorithm (ESA)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W½ _xðtÞ�
W½xðtÞ�

s
� xðtÞ; W½xðtÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W½ _xðtÞ�
p � jaðtÞj ð2Þ

developed in (Maragos et al., 1993) and used for sig-
nal and speech AM–FM demodulation.

Motivated by the strong evidence of the existence
of amplitude and frequency modulations (AM–FM)
in speech resonance signals, which make their
amplitudes and frequencies vary instantaneously
within a pitch period (Maragos et al., 1993), we pro-
pose to model each speech resonance with an AM–
FM signal

rðtÞ ¼ A exp �
Z t

0

bðsÞ ds

� �
cos

Z t

0

xðsÞ ds

� �
ð3Þ

and the total speech signal as a superposition of a
small number of such AM–FM signals. The smooth
estimation of their instantaneous frequencies x(t)
and amplitude envelopes |a(t)| is of significant
importance for speech analysis and feature extrac-
tion applications.

The instantaneous energy separation methodol-
ogy has led to several classes of algorithms for
demodulating discrete-time AM–FM signals

r½n�¼ rðnT Þ¼Aexp �
Z n

0

b½k�dk
� �

cos

Z n

0

x½k�dk
� �

;

ð4Þ

where a[n] = a(nT) and x[n] = Tx(nT). Note that in
Eq. (4) the

R
½�� notation is used symbolically instead

of the summation notation
P
½�� for the discrete

signals involved; i.e., in the FM-part it is used to
underline the differential relationship between x
and phase. A direct approach to this objective is
to apply the discrete-time Teager–Kaiser operator
Wd ½xn� � x2

n � xn�1xnþ1, where xn � x[n], to the dis-
crete-time AM–FM signal (4) and thus derive dis-
crete energy equations of the form

Wd ½rn� � a2½n�sin2ðx½n�Þ. ð5Þ
This yields the following algorithm, called Discrete

ESA or DESA (Maragos et al., 1993)

arccos 1�Wd ½rn � rn�1� þWd ½rnþ1 � rn�
4Wd ½rn�

� �
� x½n� ¼ 2pf ½n�; ð6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wd ½rn�

sin2ðx½n�Þ

s
� ja½n�j. ð7Þ

Another approach involves estimating the instanta-
neous frequency by modeling the discrete-time signal
rn via the exact Prony, as shown in (Fertig and
McClellan, 1996; Ramalingam, 1996). This yields
algorithms that also contain the discrete energy oper-
ator as their main ingredient. The advantages of the
ESAs are efficiency, low computational complexity
and excellent time resolution (5-sample window).
Their main disadvantage, though, is a moderate sen-
sitivity to noise (Potamianos and Maragos, 1994).

In this paper, two more systematic demodulation
approaches are developed where at first, the dis-
crete-time signal is expanded in the continuous-time
domain and then, the continuous-time ESA of Eq.
(2) is applied upon. The first approach is to approx-
imate the signal with smoothing splines and then
differentiate the approximating continuous-time
polynomials (Dimitriadis and Maragos, 2001). The
second one combines time-differentiation and filter-
ing of the signal with a Gabor filterbank into convo-
lutions of the signal with the time-derivatives of the
Gabor filter�s impulse response. The advantages of
such approaches are that we can both avoid having
the noisy one-sample discrete-time approximations
of the derivatives and also succeed in having
smoother estimates of the signal�s time-derivatives
in the presence of noise.

Another contribution of this paper is the applica-
tion of these novel proposed algorithms for speech
analysis and feature extraction. Significant conclu-
sions have been drawn from the instantaneous
signals and their distributions. Finally, features
inspired from the speech resonance model, Eq. (3),
are extracted. The motivation for such feature anal-
ysis scheme stems from improvements in ASR rec-
ognition rates which we have observed in previous
experimental work (Dimitriadis and Maragos,
2003; Dimitriadis et al., 2002). In this paper, we
study their distributions and dependencies on vari-
ous aspects of the speech signal. Finally, we present
some recognition results indicating the improve-
ment of ASR rates in clean and noisy speech when
the AM–FM feature vectors augment the MFCCs.
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The paper is organized as follows: Section 2
describes the smoothing spline approach presenting,
at the beginning, a brief background on splines. Sec-
tion 3 presents the differentiated Gabor filtering
approach. In Section 4 the experimental results,
comparing these two new approaches with the stan-
dard DESA, are presented and the best algorithm is
proposed. In Section 5, we apply this algorithm to
speech analysis and feature extraction. We examine
their statistical distributions and classification prop-
erties and we apply them to clean and noisy speech
recognition tasks. Finally, in Section 6 some overall
conclusions are presented.

2. Spline ESA

In this section we interpolate1 discrete-time sig-
nals with splines. Spline functions are piecewise
continuous polynomials assembled as linear combi-
nations of B-splines. A spline function of order n
has continuous (and smooth) derivatives up to order
n � 1, a very important property when using the
W-operator. This was our principal motivation for
introducing the use of splines. In addition, smooth-
ing splines provide even smoother time-derivatives
than the exact splines, without losing the property
of continuity.

2.1. Exact splines

Given the initial signal samples x[n], where
n = 1, . . . ,N, the interpolating spline function is
given by

smðtÞ ¼
Xþ1

n¼�1
c½n�bmðt � nÞ; ð8Þ

where bm(t) is the B-spline of order m and the coeffi-
cients c[n] depend only on the data x[n] and the ana-
lytic expression of the B-spline. The B-spline of
order m can be formed as the (m + 1)th-fold convolu-
tion of the zeroth-order B-spline with itself

bmðtÞ � b0ðtÞ � b0ðtÞ � � � � � b0ðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðmþ1Þ-times

;

where the zeroth-order B-spline is defined by
1 We have also experimented with least-square polynomials for
the interpolation process. However, the main problem using such
polynomials is that there is no theoretical guaranty that the time-
derivatives of the interpolant are smooth.
b0ðtÞ ¼
1 if jtj < 1=2;

1=2 if jtj ¼ 1=2;

0 otherwise.

8><
>:

Using the discrete B-spline bm[n] � bm(n), Eq. (8)
becomes

smðnÞ ¼ ðc � bmÞ½n�. ð9Þ
For the exact interpolation problem, sm(n) = x[n]. By
transforming Eq. (9) in the Z domain, we obtain

CðzÞ ¼ X ðzÞ
BmðzÞ

. ð10Þ

Thus, the spline coefficients c[n] can be determined
recursively from the above equation. This approach
can be considered, also, as a filter with frequency
response H(z) = 1/Bm(z) that is called spline filter.
Spline filters of odd orders are proved to be always
stable (Unser et al., 1991). Each original sample
sm(n) = x[n] is resynthesized by the contribution of
m neighbor spline coefficients.

2.2. Smoothing splines

We have used exact splines to improve the
performance of the ESA and tested them on noisy
AM–FM signals with different levels of SNR. The
results were, however, disappointing as the exact fit-
ting of the curve was the source of large estimation
errors due to the presence of noise. The problem of
noise led us to the need for approximating signal
samples with the use of smoothing splines. The main
advantage of smoothing splines is that the approxi-
mating polynomial does not pass precisely through
the signal samples but ‘‘close enough’’.

The ‘‘smoothing spline approximating function’’
is defined as the function sm of order m = 2r � 1 that
minimizes the mean square error criterion (Unser
et al., 1993).

� ¼
Xþ1

n¼�1
ðx½n� � smðnÞÞ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�d

þk
Z þ1

�1

orsmðxÞ
oxr

� �2

dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�s

;

where �d is the mean square error of the approxima-
tion function and �s is the mean square error intro-
duced by the need for a smoothed curve. This
criterion is a compromise between the need for
closer-to-the-data points approximation curve and
the need for a smoothed curve. The positive parame-
ter k quantifies the approximating curve�s smooth-
ness, criterion �s, and how close to the data points
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this curve pass, criterion �d. For k = 0, no smoothing
effect takes place and the approximation curve fits
exactly the signal samples. If k50, the deviation from
the data samples increases with k in a nonlinear way,
while concurrently the smoothing performance is
increasing, too. r is the order of the polynomial�s
time-derivative that regulates its smoothness.

As shown in (Unser et al., 1993), the approximat-
ing polynomial sm(t) minimizing the mean square
error � is a linear combination of splines bm, as in
Eq. (8), though the coefficients c[n] are computed
as the output of an IIR filter H k

mðzÞ, much different
from the filter in (10)

CðzÞ ¼ H k
mðzÞX ðzÞ ¼

X ðzÞ
P k

mðzÞ
; ð11Þ

where P k
mðzÞ is given by

P k
mðzÞ ¼ BmðzÞ þ kð�zþ 2� z�1Þr ð12Þ

and r is defined as above. The IIR filter H k
mðzÞ has a

symmetric impulse response and all its poles lie
inside the unit circle of the complex plane (Aldroubi
et al., 1992). So, spline coefficients c[n] can be stably
determined via a few recursive equations (Unser
et al., 1993). Henceforth, smoothing splines with
k50 are applied in every case, unless stated
otherwise.

2.3. Spline ESA

The previous discussion leads us to approximate
a discrete-time signal x[n] using smoothing splines
of mth-order and thus create a continuous-time
signal

smðtÞ ¼
Xþ1

n¼�1
c½n�bmðt � nÞ. ð13Þ

The basic idea of the new approach for ESA-based
demodulation is to apply the continuous-time
energy operator W and the continuous ESA to the
continuous-time signal sm(t) instead of using the
discrete energy operator Wd and the DESA on
the discrete signal x[n]

W½smðtÞ� ¼
osmðtÞ

ot

� �2

� smðtÞ
o2smðtÞ

ot2
. ð14Þ

The use of continuous ESA requires the estimation
of the signal�s first-, second- and third-order deriva-
tives. A basic property of the B-splines is that their
time-derivatives can be obtained from a recursive
equation
dbmðtÞ
dt
¼ bm�1 t þ 1

2

� �
� bm�1 t � 1

2

� �
. ð15Þ

The time derivative of the polynomial (13) is given
by

osmðtÞ
ot
¼
Xþ1

n¼�1
c½n� obmðt � nÞ

ot
. ð16Þ

Given the coefficients c[n] of the spline approxima-
tion (13) and taking under consideration (15), after
some math, we can derive the following closed-form
expressions of these derivatives, involving only the
coefficients c[n] and the B-spline analytic expressions

osmðtÞ
ot
¼
X

n

ðc½n� � c½n� 1�Þbm�1ðt � nþ 1=2Þ; ð17Þ

o2smðtÞ
ot2

¼
X

n

ðc½nþ 1� � 2c½n� þ c½n� 1�Þbm�2ðt � nÞ;

ð18Þ
o3smðtÞ

ot3
¼
X

n

ðc½nþ 1� � 3c½n� þ 3c½n� 1� � c½n� 2�Þ

� bm�3ðt � nþ 1=2Þ. ð19Þ

By applying these signal derivatives in the continu-
ous ESA, we can estimate the instantaneous ampli-
tude a(t) and frequency x(t) of the continuous
signal sm(t). Finally, we obtain the sampled estimates
of the instantaneous amplitude and frequency sig-
nals (a[n] = a(nT), x[n] = Tx(nT)) of the original
discrete signal x[n]. This whole approach presented
above is called the Spline ESA.

An important part of the Spline ESA is the com-
putation of the spline coefficients c[n]. In the sequel,
the details of this algorithm are discussed. First, the
zeros of the denominator polynomial P k

mðzÞ in
Eq. (11) are estimated. Due to the symmetric form
of this polynomial the zeros come in pairs
ðzi; z�1

i Þ; i ¼ 1; . . . ; r. Thus, the transfer function in
Eq. (11) can be formulated as

H mðzÞ ¼ c0

Yr

i¼1

�zi

ð1� ziz�1Þð1� zizÞ
; ð20Þ

where c0 is a normalizing constant depending on the
spline order m. From Eqs. (11) and (20) (Unser et al.,
1993) the recursive equations are:

yþi ½n� ¼ yi�1½n� þ ziyþi ½n� 1�; n ¼ 2; . . . ;N ;

yi½n� ¼ ziðyi½nþ 1� � yþi ½n�Þ; n ¼ N � 1; . . . ; 1;

yi½N � ¼ aið2yþi ½N � � yi�1½N �Þ
ð21Þ
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as a function of the smoothing parameter k when SNR = 25 dB.
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where ai ¼ �zi=ð1� z2
i Þ, yi � 1[n] is the input and

yi[n] is the output of a digital filter with transfer
function

T iðzÞ ¼
�zi

ð1� ziz�1Þð1� zizÞ

and y0[n] = x[n]. If the above step is repeated as
many times as the number of pole pairs ðzi; z�1

i Þ,
the final output sequence yr[n] equals c[n]. The
boundary conditions can be set as

yþi ½1� ¼
Xk0

k¼1

zjk�1j
i yi�1½k�;

where k0 is an integer that ensures a certain level of
precision, defined a priori.

An example is presented for two different values
of k, k = 0 and k = 0.5 to clarify the estimation pro-
cess of c[n] for splines of order m = 5 (r = 3). First,
when k = 0, we interpolate the input signal using
exact splines of order m = 5. The denominator of
the transfer function H5(z) is P5(z) � B5(z) and the
poles are

z1 ¼ �0:04309; z2 ¼ 0:43057;

z3 ¼ z�1
1 ; z4 ¼ z�1

2 .

Setting k = 0.5 (when m = 5) in Eq. (12) the poles of
H5(z) = 1/P5(z) are

z1 ¼ 0:32548;

z2 ¼ 0:32154� 0:47128i; z3 ¼ 0:32154þ 0:47128i;

z4 ¼ z�1
1 ; z5 ¼ z�1

2 ; z6 ¼ z�1
3 .

In both cases, we find c[n] using the algorithm of Eq.
(21), even though the number and values of the
poles are quite different. Having computed c[n],
the coefficient sequence is convolved with the B-
spline bm to yield the approximating signal sm. In gen-
eral, the evaluation of the spline coefficients by the
filtering approach, presented above, is less computa-
tionally intensive than the standard numerical anal-
ysis approach using sparse Toeplitz matrices.

The choice of spline order of m = 5 is the result of
both experimentation and theoretical analysis. The
use of the Spline ESA requires the estimation of
the signal (or its continuous-time expansion) time-
derivatives up to those of third-order. It becomes
obvious that the smallest possible order of B-spline
with continuous derivatives is m = 5. Besides the
theoretical need for continuity of the derivatives
(for the use of CT-ESA), several experiments were
undertaken for different B-spline order and the best
results were again obtained for the fifth-order
splines, as presented in Fig. 1. Finally, only five
samples are needed for the estimation of the spline
coefficients c[n], when selecting m = 5 and the time-
resolution remains the same as the corresponding
one of the DESA. For larger values of m the time-
resolution becomes successively poorer.

The choice of the optimal value of k is not com-
pletely arbitrary, too. We have attempted to exper-
imentally determine a suitable range of values for
the k-parameter for different SNRs. In Fig. 1, the
mean absolute errors of the cubic, fifth- and sev-
enth-order smoothing spline polynomials are
presented for various values of the k parameter
when SNR = 25 dB. For a given AM–FM signal,
Eq. (25), Spline ESA is applied to estimate the
demodulating error performance as a function of
the k-parameter and the spline order. In these exper-
iments the corresponding mean absolute curves
show global minima for particular range of k-values
around 0.75. More specifically, the global minima
occur when k 2 [0.1,1] independently of the SNR
values. The mean absolute errors of the seventh-
order smoothing spline approximation are always
smaller than the corresponding ones of the cubic
and fifth-order spline polynomials. Noticing that,
the global minimum values are quite similar for these
two approximation curves (the fifth-and seventh-
order spline polynomials), we are proposing the use
of the fifth-order smoothing spline approximation
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polynomial since it yields almost the optimal mini-
mum error rates and has better time-resolution, five
sample window instead of seven. The optimal value
of k is not a priori known and can be determined only
through experimentation because the estimation
errors implicitly depend on the SNR, the signal,
and the application.

3. Gabor ESA

The ESA cannot handle wideband signals, such
as speech signals, due to inherent limitations of
the algorithm. One efficient way to deal with such
limitations is bandpass filtering of the signal. For
this process, the Gabor filters are chosen for several
reasons listed in (Maragos et al., 1993), such as the
optimal time-frequency discriminability. In Section
2, smoothing splines are used to approximate the
discrete-time signals x[n] and then they are derived
using closed formulas. The continuous-time TEO
W, combined with bandpass filtering and sampled
at time instances t = nT, is given by

W½sðtÞ� ¼ _s2ðtÞ � sðtÞ€sðtÞjt¼nT ; sðtÞ ¼ xðtÞ � gðtÞ;
ð22Þ

where x(t) is the continuous-time signal and g(t) is
the Gabor filter impulse response

gðtÞ ¼ expð�b2t2Þ cosðxctÞ. ð23Þ
The constants b and xc are the filter parameters.

Since convolution commutes with time-differenti-
ation (Papoulis, 1962)

dm

dtm
ðxðtÞ � gðtÞÞ ¼ xðtÞ � dm

dtm
gðtÞ; m ¼ 1; 2; 3; . . .

ð24Þ
The Gabor time-derivatives are given by closed
formulae

dgðtÞ
dt
¼ �2b2t cosðxctÞ � xc sinðxctÞ
� 	

expð�b2t2Þ;

d2gðtÞ
dt2

¼ 4b2xct sinðxctÞ
�

þð4b4t2 � 2b2 � x2
cÞ cosðxctÞ

	
� expð�b2t2Þ;

d3gðtÞ
dt3

¼ 12b4t � 8b6t3 þ 6b2x2
ct

� 	
cosðxctÞ



þ 6b2xc � 12b4xct2 þ x3

c

� 	
sinðxctÞ

�
expð�b2t2Þ.

Using the above equations in Eq. (22), the output of
W acting on the bandpass filtered signal is given by
W½sðtÞ� ¼ W½xðtÞ � gðtÞ�

¼ d

dt
ðxðtÞ � gðtÞÞ

� �2

� ðxðtÞ

� gðtÞÞ d2

dt2
ðxðtÞ � gðtÞÞ

� �

¼ xðtÞ � dgðtÞ
dt

� �2

� ðxðtÞ � gðtÞÞ xðtÞ � d2gðtÞ
dt2

� �
.

Through this approach, the necessary processes of
bandpass filtering and the subsequent differentia-
tions are combined into a single convolution with
derivatives of the Gabor filter�s impulse response.

Since the output of the continuous-time TEO W
will be sampled at time instances t = nT, to imple-
ment the Gabor TEO we must essentially convolve
the discrete-time speech signal x[n] with the sampled
derivatives of the Gabor function

gðmÞ½n� ¼ dm

dtm
gðtÞjt¼nT .

The next step is to incorporate the Gabor TEO into
the continuous-time ESA formulae. The resulting
demodulation algorithm is called the Gabor ESA.
This algorithm exhibits some advantages compared
to the Spline ESA or to the original discrete demod-
ulation algorithm DESA. First, bandpass filtering
of noisy signals increases the SNR of the filtered sig-
nals. Second, fewer parameters are required, com-
pared to the Spline ESA where the k-parameter is
important. The parameters needed are only those
concerning the filterbank specifications. Finally,
the differentiation is introduced on the filters and
not on the speech signal itself and this fact leads
to smoother results.

The Gabor ESA is computationally more inten-
sive than the original DESA or the Spline ESA when
they are applied upon bandpass filtered signals. On
the other hand, as shown in Fig. 2, Gabor ESA
provides smoother estimates of the instantaneous
frequency compared to the corresponding ones of
the DESA, especially on noisy signals.

In Fig. 2, a phoneme /aa/ extracted from the
TIMIT database is filtered by a Gabor filter with
center frequency fc = 1285 Hz and bandwidth
b = 400 Hz. The filter is manually placed according
to the phoneme�s energy spectrum to filter just one
resonance. White Gaussian noise with SNR =
10 dB is added to examine the algorithm robustness
to noise. In general, both Gabor ESA and DESA
provide robustness to noise, but the Gabor ESA
yields somewhat smoother estimates, as shown in
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Fig. 2. This is due to the fact that the differentiation
is held on the filters and not on the signal. Thus, the
differentiation does not introduce additional noise
such as the one introduced by the DESA�s approx-
imation of the signal derivatives.

4. Experimental results

4.1. AM–FM test signals

The first series of experiments are performed with
known input AM–FM signals. The test signals have
different AM and FM modulation depths and are
the same as those used in (Maragos et al., 1993).
This family of AM–FM test signals is

s½n� ¼ 1þ k cos
pn
100

� 
� 

cos

pn
5
þ ‘

p=100
sin

pn
100

� 
� �
þW ½n�;

ð25Þ
where n = 1, . . . , 400, and (k,‘) = (0.05i, 0.05j), i, j =
1, . . . , 10 are, respectively, the AM and FM modula-
tion depths (indexes). Also, zero-mean, gaussian
noise W[n] of different SNR levels is added to exam-
ine the algorithm robustness to noise. The estima-
tion errors, for different SNR levels, are averaged
over 100 different AM–FM depths. The process
followed in this experiment is the same for all three
algorithms. First, the input AM–FM signal for a gi-
ven SNR level and certain AM and FM modulation
indexes is estimated and then, bandpass filtering is
introduced. The Gabor ESA is based on such filter-
ing process so, to keep the comparison of the corre-
sponding error rates fair (input signals should have
the same SNR), the filtering process is held for the
DESA and the Spline ESA, too. This process
increases the SNR of the filtered signals and
consequently improves the algorithm robustness to
noise. The Gabor filter is placed at the mean instan-
taneous frequency value Xc = p/5 and its bandwidth
parameter is b = p/12, so that the signal falls within
the filter�s passband. Then, the demodulated instan-
taneous signals, a[n] and f [n], are estimated and
compared to the reference instantaneous amplitude
and frequency signals

ak½n� ¼ 1þ k cos
p

100
n

� 

and

f ‘½n� ¼
1

2p
p
5
þ ‘ cos

p
100

n
� 
� 


.

The gain of the instantaneous amplitude signal ak[n]
is altered due to the filtering process and a filter
compensation algorithm is followed as proposed in
(Bovik et al., 1993).

As shown in Fig. 3, the instantaneous frequency
estimation error rates are quite small and the filter-
ing process adds additional robustness to the
demodulation algorithms since the error rates seem
to be invariant to the SNR levels.

Spline ESA�s performance is strongly dependent
on the k-parameter. However, to the best of our
knowledge, there is no efficient way to optimally
adjust this parameter for minimizing the demodula-
tion error. Thus, the use of the Gabor ESA is pro-
posed for the demodulation scheme, since it is
simpler and yields smaller errors than both the
Spline ESA and the DESA. This choice is, also, sup-
ported by the next series of experiments with speech
signals, where the Gabor ESA clearly outperforms
the other two algorithms.

4.2. Speech test signals

In this section, the proposed demodulation algo-
rithms are applied upon speech signals. Many
experiments have been conducted with different
phoneme classes and the results, in terms of error
rates, are proved to be quite similar. Thus, similar
results can be reproduced for different kinds of pho-
nemes, without affecting the general conclusions,
although we herein present figures only for a few
phonemes. All phonemes are extracted from the
TIMIT speech database. Their sampling frequency
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Table 1
Mel-spaced Gabor filterbank parameters

Index Gabor filterbank parameters

Center frequency
(in Hz)

Bandwidth
(in Hz)

1 303 606
2 738 870
3 1361 1246
4 2254 1786
5 3535 2561
6 5370 3670
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is Fs = 16 kHz. The phoneme segmentation is based
on the given transcription files of the database.

There is no known method to estimate precisely
and uniquely the instantaneous modulating signals
for a speech signal, in general. As a consequence,
it is impossible to compare the estimation errors in
a quantitative way. Their performance could be
either examined in a qualitative way e.g. in terms
of smoothness and the existence of spikes or singu-
larities, or compared to some reference signals, as in
Fig. 7.

At first, a Gabor filter is placed manually accord-
ing to the phoneme spectrum to demodulate only
one of its formants. The demodulation estimates
are examined in terms of their smoothness (whether
or not spikes appear in the instantaneous modulat-
ing signals) and their numerical singularities, Fig. 2.
Then, in a second experiment, a Gabor filterbank is
used to concurrently test the algorithm performance
using various filters. The filterbank is mel-spaced
spanning the interval [0 � Fs/2] Hz and six filters,
in total, are used with a frequency overlap of 50%,
Table 1. In Fig. 4, the afforementioned filterbank
is superimposed over the spectrum of a phoneme
/aa/. The filterbank parameters are the same as those
used for ASR experiments. The bandpass speech
outputs are demodulated using all three algorithms
and their corresponding estimates are presented in
Fig. 5. The continuous-time algorithms yield quite
similar instantaneous estimates, thus, for the next
experiment where a phoneme /aa/ is demodulated,
only one of these algorithms is used. In Fig. 6, the
output of the fifth-filter for a phoneme /aa/ is
demodulated and the instantaneous frequency esti-
mates are presented. The continuous algorithm pro-
vides smoother estimates, with smaller fluctuations
concerning the instantaneous frequency signals.

The DESA is, always, outperformed by both the
Gabor ESA and the Spline ESA (when the k param-
eter is chosen properly) independently of the input
speech signal. Parameter k regulates the Spline filter
bandwidth, Eqs. (11) and (12), where smoother
approximating curves correspond to filtering out
the higher frequency part of the signal spectrum. This
Spline filter is a lowpass filter and its passband is reg-
ulated by the k parameter. Choosing too large a value
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for k causes problems of oversmoothing, eliminating
a significant part of the input signals� spectrum, i.e.,
loosing some part of the modulation signals.

Finally, one more set of experiments is conducted
to examine the performance of the demodulation
algorithms in different parts of the speech spectrum,
using a Gabor filterbank of varying parameters. The
corresponding instantaneous signals of speech can-
not be determined exactly. So, the clean bandpass
speech signal estimates a0

i ½n� and f 0
i ½n� (where i =

1, . . . ,N and N the number of filters) are used as
reference signals. White, gaussian noise is added
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to the speech signals and the yielded noisy estimates
aj

i ½n� and f j
i ½n� (j is the index of the SNR values—here

j = 1, . . . , 10) are compared to the reference signals
a0

i ½n� and f 0
i ½n�. The RMS errors are averaged over

all the different noise levels. A linearly spaced Gabor
filterbank, with 25 (N = 25) filters and filter overlap
equal to 50%, is used. This experiment provides use-
ful insight on the algorithm performance as a func-
tion of the frequency bins (indexes of the filter
center frequencies) and different SNR values. The
results appear to be quite similar for different pho-
neme classes. For this reason only one experiment,
for the phoneme /aa/, is herein presented. In Fig. 7,
Gabor ESA seems to be more robust across different
filter indexes and exhibits an almost flat error-rate
curve, independent of the filter center frequencies.
On the other hand, both DESA and Spline ESA exhi-
bit a good behaviour for the lower part of the spec-
trum but they become unstable for the higher part
of the spectrum, as their estimation errors increase
significantly in direct proportion to the filter indexes.

The Gabor ESA is proven to be the best demod-
ulating algorithm among all three candidates. The
experimental results show that it is more robust in
terms of noise, exhibits a uniform performance
when used in different parts of the speech spectrum
and finally, it yields the smoother instantaneous
estimates. Also, it requires fewer parameters than
the Spline ESA does. Henceforth, the Gabor ESA
will be uniformly used, unless otherwise stated.

5. Distributions of speech modulation signals

The AM–FM model of speech is especially
important as it provides useful insight for the for-
mant structure of different phoneme classes, like
the vowels, in time scales that the linear source-filter
model considers it fixed (Rabiner and Schafer,
1978). In (Potamianos and Maragos, 1996, 1999)
some first preliminary results were presented point-
ing that the instantaneous modulation signals
appear to have different patterns depending on the
phoneme classes and the speaker articulation.
Herein, these dependencies are being investigated
in a more detailed and thorough manner. Different
phoneme classes have quite different formant struc-
ture; therefore, the demodulated instantaneous esti-
mates ai[n] and fi[n] (where i is the filter index
number) of these classes should have different distri-
butions too. As a consequence, nonlinear speech
features, based on these instantaneous signals, exhi-
bit different distributions, and therefore, they can be
useful for recognition tasks. Herein, the histograms
of both the raw instantaneous signals |ai[n]| and fi[n]
and the novel AM–FM features are presented for
different phoneme classes. These histograms reveal
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some part of the AM–FM formant structure of
speech, potentially leading to successful pattern
classification and ASR applications.

The phoneme signals are extracted from the
TIMIT database according to the given transcrip-
tions. The phoneme steady-state part is extracted
(middle one third) and the proposed features are esti-
mated over the whole span of this segment (i.e., the
steady-state of the phoneme is assumed as one large
speech frame). In this case, some of the transient
phenomena present in speech are not taken under
consideration and they are smoothed out. For the
demodulation process, a mel-spaced Gabor filter-
bank is used as in Section 4.2. The histograms of
the raw instantaneous signals are directly estimated
from their corresponding values without any further
postprocessing. The histogram bins span between
[0. . .1] and [0. . .8] kHz for the normalized instanta-
neous amplitude and frequency signals, respectively.
For the modulation features case, the histograms
span their corresponding dynamic range. The distri-
butions for both cases are estimated as histograms of
30 fixed, linearly spaced bins.

5.1. Distributions of instantaneous modulating

signals

In this section, the raw instantaneous modulating
signal distributions are being examined. First, differ-
ent histograms for the same class of phonemes
depending on the speaker�s gender are estimated
to examine whether or not the gender is an impor-
tant factor affecting the structure of the instanta-
neous estimates. This experiment is held for
several different phoneme classes and the estimated
histograms for both genders appear to be quite
similar. According to these experimental results, it
seems that the speaker gender is not affecting the
raw instantaneous signal distributions.

Further, the distributions of different phoneme
classes are estimated to examine whether or not they
exhibit significant differences. The vertical axis of
the frequency-related histograms is plotted on the
log-scale to examine whether the instantaneous
frequency estimates exhibit exponential type dis-
tributions, e.g., Laplacian or Gaussian. The speech
signals are randomly chosen from the TIMIT data-
base to obtain unbiased distributions, independent
of the speaker�s accent and gender. Their histograms
are superimposed investigating the existence of
patterns in their distributions.

In Figs. 8 and 9 the distributions of the instanta-
neous signals |ai[n]| and fi[n] (for all six filters) are
plotted for five randomly chosen instances of two
different phoneme classes (phonemes /aa/ and /sh/).
The log-frequency distributions are quite linear,
which leads to the conjecture that they follow an
exponential distribution. Their peak is close to the
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Fig. 8. (a) Five histograms of the instantaneous amplitude signals of phoneme /aa/, (b) five histograms of the instantaneous amplitude
signals of phoneme /sh/.
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Fig. 9. (a) Five histograms of the instantaneous frequency signals of phoneme /aa/, (b) five histograms of the instantaneous frequency
signals of phoneme /sh/.
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center frequency fc of the filters as dictated by the
AM–FM resonance model and shown in Fig. 2.
Also, the |ai[n]|-distributions appear to have differ-
ent patterns. For the phoneme /aa/ case, the histo-
grams are concentrated in the lower-index bins
and they exhibit small variance. On the other hand,
for the phoneme /sh/ case, the distributions are pre-
senting larger variance and span a bigger number of
bins.
5.2. Distributions of modulation-related speech

features

Besides the raw instantaneous signal distribu-
tions, the distributions of the proposed nonlinear
modulation features are examined. These novel fea-
tures consist of either the Mean Values of the instan-
taneous amplitude (IA-Mean), frequency (IF-Mean)
and AM-modulating signals b[n] (BandW-Mean) (4)
or the FM-modulation percentages (FMP), estimated
over the bandpassed speech signals, as above.

The IA-Mean and IF-Mean features are the
short-time means of the normalized instantaneous
amplitude and frequency signals ai[n], fi[n]. The
instantaneous frequency signal values have been
trimmed within ±5% of their mean value so that
isolated spikes are ignored. The FMP features are
defined as FMPi = Bi/Fi for each filter i, where Bi

is the mean bandwidth (a weighted version of the
fi[n]-signal deviation (Potamianos and Maragos,
1996)) and Fi is the (amplitude) weighted mean
frequency value. Fi and Bi are estimated from the
information signals ai[n] and fi[n] as follows:

F i ¼
PT

k¼0fi½k�a2
i ½k�PT

k¼0a2
i ½k�

;

Bi ¼
PT

k¼0½ _a2
i ½k� þ ðfi½k� � F iÞ2a2

i ½k��PT
k¼0a2

i ½k�
; ð26Þ

where i = 1, . . . , 6 is the filter index and T the time
window length. Finally, the AM-modulating signal
b(t) is defined as the ratio of the first time-derivative
of the instantaneous amplitude over that signal

biðtÞ ¼ � _aiðtÞ=aiðtÞ ð27Þ

and b[n] = b(nT) is the sampled version of this signal
(4). The proposed features provide information
about the speech formant fine-structure taking
advantage of the excellent time-resolution of the
ESA. Thus, some of the transitional phenomena
and the instantaneous formant variations are
mapped onto these nonlinear AM–FM features.

The features are estimated over 1000 instances of
different phonemes and their histograms are
obtained. This experiment reveals different patterns
for different phoneme classes. In Figs. 10–13 the dis-
tributions of the IA-Mean, IF-Mean, BandW-Mean
and FMP features for the phoneme classes /aa/, /ae/,
/sh/, /f/, /p/ and /b/ are presented. In those figures,
the vowel distributions seem to be different from
the corresponding ones of the fricatives and the plo-
sives. Each of the three different classes (vowels,
fricatives and plosives) show similar distributions
with small intra-distribution variance but on the
contrary, they exhibit significant inter-distribution
variance. This, however, is expected since the
selected sound-classes are characterized by different
formant (resonance) structure. These differences are
mapped into the modulated signals. The fricative,
plosive and vowel signals exhibit a very different
amplitude and frequency structure as their instanta-
neous signals clearly indicate. Moreover, the instan-
taneous frequency mean values are clustered around
the filter center frequencies, Fig. 11.

Figs. 10–13 indicate that there are observable
differences among the collective distributions of the
features for different phoneme classes. Another con-
clusion is that different phonemes of the same class
have similar distributions over some filters, while
they differentiate over the rest of their filter distribu-
tions. The classification information of the phonemes
must be considered collectively over the whole filter-
bank of instantaneous signal. Vowels appear to have
distributions with mean values well-centered in the
middle bins and large variance. Fricative distribu-
tions show similar mean values but smaller variance.
Finally, the distributions of plossives have small
mean values but they exhibit large variance and span
several bins.

The next step is to estimate the statistical
moments of the distributions and to examine
whether they differ sufficiently, depending on the
phoneme classes analyzed. Towards this approach
the following clustering experiments are applied.

5.3. PCA Plots of modulation-related speech

features

Using a feature reduction technique, the feature
sets are projected onto a 3D-space. The feature
dimensionality is thus reduced to one half of the ori-
ginal set using the DCT. Thus, only the three most



Fig. 10. Histograms of IA-Mean features for 1000 instances of phonemes /aa/, /ae/, /sh/, /f/, /p/ and /b/.

D. Dimitriadis, P. Maragos / Speech Communication 48 (2006) 819–837 833
important coefficients of each feature vector are
kept. This reduction is used to study the data clus-
tering properties in a computationally more efficient
way. After this process, we observe that the
smoothed features (only the steady-state part of
the phonemes is taken under consideration) form
clusters with small overlap, as shown in Fig. 14.
The 3D ellipsoids depicted, corresponding to the
gaussian dispersion characteristics of the respective
feature sets, are estimated by

ðx� lÞTR�1ðx� lÞ ¼ const; ð28Þ
where l, R are the mean vectors and the covariance
matrices of the individual phoneme classes pre-
sented and const is the probability level correspond-
ing to the percentage of samples included in each
volume (Duda et al., 2001). Here, the ellipsoids
are estimated by setting their principal axes length
equal to two times the corresponding standard devi-
ation; i.e., their x-axis length is set equal to 2rx. In
Fig. 14, the 3D-projections of the proposed nonlin-
ear feature distributions, when examined in pairs,
exhibit some separability and thus, these features
could be useful in speech recognition tasks by fol-
lowing some well established pattern classification
methodology.

5.4. Speech recognition using modulation-based

features

The proposed features are applied to clean and
noisy recognition tasks, after studying their distri-
butions and classification properties. The goal is
to examine whether the correct phoneme recogni-
tion rates can be improved when the standard
MFCC feature set is augmented by the proposed
nonlinear features and if they show additional
robustness to noise. The speech databases used were
obtained from the TIMIT database after adding
two different kinds of noise and fixing their SNR
level equal to 10 dB. Specifically, we created these
TIMIT + Noise databases by adding white and pink
noise only to the test set of the original TIMIT data-
base, leaving the training set unaltered. We have
used the HTK Toolkit (Young et al., 2002) as the
HMM-based recognizer. The HMMs are 3-state,
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left–right with 16 gaussian mixtures per state. The
grammar used for all cases is the all-pair,
unweighted grammar. All HMM models are trained
in the clean speech training set and tested in the
noise-corrupted versions of the testing set.

The input vectors are split into two different data
streams, one for the standard features MFCC and
the other for the modulation-based features. The
data streams are assumed independent (Young
et al., 2002). The augmented feature vector consists
of 57 coefficients, 39 samples for the �standard� fea-
tures (normalized energy, MFCCs, first and second
time-derivatives) and 18 for the modulation features
(6 coefficients plus their first and second time-deriv-
atives). The frame length is set equal to 30 ms with
frame-period equal to 10 ms. The weights of these
two independent data streams are set s1 = 1.00
and s2 = 0.50, for the MFCCs and the modulation
features, correspondingly. In Table 2 the recogni-
tion results are presented for the TIMIT-based
ASR tasks. By combining MFCCs with the pro-
posed AM–FM features, a performance improve-
ment is obtained for the clean and especially for
the noisy tasks where the improvement is larger
(TIMIT + Noise) driving us to the conclussion that
the proposed nonlinear features exhibit additional
robustness to noise. The mean relative improvement
is ranging from 18% to 25% and is achieved when
the MFCC feature vectors are augmented with the
proposed nonlinear modulation features.

6. Conclusions and discussion

In this paper, two new continuous-time methods
are proposed for the standard speech demodulation
approach (ESA). It is shown that these methods
exhibit better demodulation performance, especially
when noisy input signals are concerned. The best of
these algorithms (the Gabor ESA) is then employed
for modulation speech analysis and feature
extraction.

Several useful conclusions are deduced from the
proposed speech analysis scheme. First, our experi-
ments have shown that the instantaneous amplitude
and frequency signals do not seem to depend on the
speaker genders since their individual distributions
seem to be quite similar. These signals seem to be
dependent only on the phoneme classes, as presented
in Figs. 8 and 9, where the estimated histograms
appear to be different for each one of the phoneme
classes. Similar distributions have also been esti-
mated for other phoneme classes. The inter-class dif-
ferences appear to be quite significant, while only
minor ones appear for phonemes of the same class.



Fig. 14. Instances of 3D DCT projections for phonemes /aa/, /sh/ and /b/of the vectors (a) IA-Mean, (b) IF-Mean, (c) BandW-Mean and
(d) FMP. (The markers ‘‘o’’, ‘‘x’’ and ‘‘+’’ represent the projections of the phoneme classes /aa/, /sh/ and /b/, respectively.)

Table 2
Correct phoneme accuracies (%) and mean relative improvement for modulation features on the TIMIT and TIMIT + Noise tasks

Features Database

TIMIT TIMIT + white TIMIT + pink Mean rel. improv.

Phoneme accuracy for the TIMIT tasks (%) (for SNR = 10 dB)

MFCC 58.40 17.72 18.60 –
MFCC + IA-Mean 59.61 26.03 31.05 23.22
MFCC + IF-Mean 59.34 25.38 30.92 22.11
MFCC + BandW-Mean 59.23 24.78 28.55 18.85
MFCC + FMP 59.92 26.15 32.84 25.56
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The distributions of the instantaneous frequency
signals appear to follow an exponential law. Their
linear parts (when the y-axes are log-scaled) are
clear indications of such type of distribution.

In addition, nonlinear features based on the
AM–FM resonance model of speech are proposed.
Similarly, differences appear in their distributions,
as shown in Figs. 10–13. The corresponding mean
values and variances appear different and highly
dependent on the phoneme classes. Similar conclu-
sions are drawn by studying the 3D ellipsoids which
are based on their lower-order statistical moments.

The proposed features are projected to the 3D
feature-space and their corresponding equal-
likelihood ellipses are estimated, taking under
consideration their statistical properties. The corre-
sponding ellipsoid volumes seem to have a relatively
small overlap when considering different pairs of
phoneme classes. We provide some experimental
evidence that the AM–FM features exhibit different
and reasonably separable distributions for different
phoneme classes.

These experiments show that the proposed fea-
tures could efficiently be used for speech classifica-
tion and recognition tasks, as well. They appear to
efficiently differentiate for different phoneme classes
and thus, they could be useful to adequately dis-
criminate these phoneme classes. Motivated by this
feature analysis, we have also applied these AM–
FM features to some clean and noisy speech recog-
nition tasks, with a clear improvement of the correct
accuracy results when compared to the correspond-
ing results of the MFCCs.
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