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Frequency-Domain Criterion for the Speech
Distortion Weighted Multichannel Wiener
Filter for Robust Noise Reduction

Simon Doclo®, Ann Spriet, Jan Wouters, Marc Moonen

Katholieke Universiteit Leuven, Dept. of Electrical Engineering (ESAT - SCD),
Kasteelpark Arenberg 10, 3001 Heverlee (Leuven), Belgium

Abstract

Recently, a generalized multi-microphone noise reduction scheme, referred to as
the spatially pre-processed speech distortion weighted multichannel Wiener filter
(SP-SDW-MWF), has been presented. This scheme consists of a fixed spatial pre-
processor and a multichannel adaptive noise canceler (ANC) optimizing the SDW-
MWTF cost function. By taking speech distortion explicitly into account in the design
criterion of the multichannel ANC, the SP-SDW-MWF adds robustness to the stan-
dard generalized sidelobe canceler (GSC). In this paper, we present a multichannel
frequency-domain criterion for the SDW-MWF, from which several — existing and
novel — adaptive frequency-domain algorithms can be derived. The main differ-
ence between these adaptive algorithms consists in the calculation of the step size
matrix (constrained vs. unconstrained, block-structured vs. diagonal) used in the
update formula for the multichannel adaptive filter. We investigate the noise reduc-
tion performance, the robustness and the tracking performance of these adaptive
algorithms, using a perfect voice activity detection (VAD) mechanism and using an
energy-based VAD. Using experimental results with a small-sized microphone array
in a hearing aid, it is shown that the SP-SDW-MWF is more robust against signal
model errors than the GSC, and that the block-structured step size matrix gives
rise to a faster convergence and a better tracking performance than the diagonal
step size matrix, only at a slightly higher computational cost.
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algorithms, multichannel Wiener filter, generalized sidelobe canceler, hearing aids
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1 Introduction

In many speech communication applications, such as hands-free mobile tele-
phony, hearing aids and voice-controlled systems, the recorded speech signals
are corrupted by acoustic background noise. Generally speaking, background
noise is broadband and non-stationary, and the signal-to-noise ratio (SNR)
may be quite low. Background noise causes a signal degradation that can lead
to total unintelligibility of the speech signal and that substantially decreases
the performance of speech coding and speech recognition systems. Therefore
efficient speech enhancement techniques are called for.

Since the desired speech signal and the undesired noise signal usually occupy
overlapping frequency bands, single-microphone speech enhancement tech-
niques, such as spectral subtraction, Kalman filtering, and signal subspace-
based techniques, often fail to reduce the background noise without intro-
ducing artifacts (e.g. musical noise) or speech distortion. However, when the
speech and noise sources are physically located at different positions, it is pos-
sible to exploit this spatial diversity by using a microphone array, such that
both the spectral and the spatial characteristics of the sources can be used.

Well-known multi-microphone speech enhancement techniques are fixed and
adaptive beamforming [1]. In a minimum variance distortionless response
(MVDR) beamformer [2], the energy of the output signal is minimized under
the constraint that signals arriving from the look direction, i.e. the assumed
direction of the speech source, are processed without distortion. A widely
studied adaptive implementation of this beamformer is the generalized side-
lobe canceler (GSC) [3], which consists of a fixed spatial pre-processor, i.e. a
fixed beamformer and a blocking matrix, combined with a multichannel adap-
tive noise canceler (ANC). The fixed beamformer creates a so-called speech
reference, the blocking matrix creates so-called noise references, and the mul-
tichannel ANC eliminates the noise components in the speech reference that
are correlated with the noise references.

Due to room reverberation, microphone mismatch, look direction error and
spatially distributed sources, speech components may however leak into the
noise references of the standard GSC, giving rise to speech distortion and
possibly signal cancelation. Several techniques have been proposed to limit
the speech distortion resulting from this speech leakage, e.g.

o reducing the speech leakage components in the noise references, e.g. using a
more robust fixed blocking matrix design [4-7]; using an adaptive blocking
matrix [8-10]; or by constructing a blocking matrix based on estimating
the ratios of the acoustic transfer functions from the speech source to the
microphone array [11];

o limiting the distorting effect of the remaining speech leakage components by



- updating the multichannel ANC only during periods (and for frequencies)
where the noise component is dominant, i.e. where the SNR is low [4,8-15];
and

- constraining the update formula for the multichannel adaptive filter, e.g.
by imposing a quadratic inequality constraint (QIC) [9,16-18]; by using
the leaky least mean square (LMS) algorithm [5,6]; or by taking speech
distortion due to speech leakage into account using the so-called speech
distortion weighted multichannel Wiener filter (SDW-MWF) [19-21].

In this paper, we will focus on implementation aspects of the SDW-MWF. In
[22-24], recursive matrix-decomposition-based implementations for the SDW-
MWF have been presented, which are computationally quite expensive. In
[20] cheaper (time-domain and frequency-domain) stochastic gradient algo-
rithms have been proposed. These algorithms however require large circu-
lar data buffers, resulting in a large memory requirement. In [21], adaptive
frequency-domain algorithms for the SDW-MWF have been presented using
frequency-domain correlation matrices, reducing the memory requirement and
the computational complexity.

Recently, a generalized multichannel frequency-domain filtering framework has
been proposed, which takes into account both the autocorrelation of the indi-
vidual channels as well as the cross-correlation between the different channels
[25,26]. Using this framework, several adaptive algorithms can be derived,
which have been applied to e.g. multichannel acoustic echo cancelation and
the GSC. In this paper, we will use this framework to formulate a frequency-
domain criterion for the SDW-MWF', trading off noise reduction and speech
distortion. From the proposed criterion several adaptive frequency-domain al-
gorithms for the SDW-MWF can be derived. The main difference between
these algorithms consists in the calculation of the step size matrix in the up-
date formula for the multichannel adaptive filter and in the calculation of a
particular regularization term (cf. Sections 3 and 4).

The paper is organized as follows. In Section 2, the GSC and the spatially
pre-processed SDW-MWEF are briefly reviewed. In Section 3, the frequency-
domain criterion for the SDW-MWF is presented. A recursive (RLS-type)
algorithm is derived from this criterion and it is shown how this algorithm can
be implemented in practice. In Section 4, several approximations are proposed
for reducing the computational complexity, leading to adaptive (LMS-type)
frequency-domain algorithms, some of which have already been presented in
the literature [21]. Section 5 discusses the computational complexity of the
different adaptive algorithms. In Section 6, the noise reduction performance,
the robustness against signal model errors, and the tracking performance of
the proposed algorithms are illustrated using experimental results for a small-
sized microphone array in a hearing aid. In addition, the impact of using a
non-perfect VAD on the performance is analyzed.



2 GSC and Spatially Pre-Processed SDW-MWF
2.1 Notation and General Structure

Consider a microphone array with M microphones, where each microphone
signal u;[k], ¢ = 1... M, at time k, consists of a filtered version of the clean
speech signal s[k] and additive noise, i.e.

wilk] = hilk]  s[k] + ul[k], i = 1... M, (1)

where h;[k] represents the acoustic impulse response between the speech source
and the ith microphone and * denotes convolution. The additive noise u}[k]
can be colored and is assumed to be uncorrelated with the clean speech signal.

The spatially pre-processed speech distortion weighted multichannel Wiener
Filter (SP-SDW-MWF) [19] is depicted in Figure 1. It consists of a fixed
spatial pre-processor, i.e. a fixed beamformer and a blocking matrix, and a
multichannel ANC. Note that the structure of the SP-SDW-MWF strongly
resembles the standard GSC, but the difference lies in the fact that the SDW-
MWEF cost function is used in the multichannel ANC and that it is possible
to include an extra filter wy on the speech reference.

The fized beamformer creates a so-called speech reference
Yolk] = wolk] + vo[K], (2)

with zg[k] and vg|k] respectively the speech and the noise component of the
speech reference, by steering a beam towards the assumed direction of the
speaker. The fixed beamformer should be designed such that the distortion
of the speech component xy[k|, due to possible errors in the assumed signal
model (e.g. look direction error, microphone mismatch) is small. A delay-and-
sum beamformer, which time-aligns the microphone signals, offers sufficient
robustness against signal model errors since it minimizes the noise sensitivity.
However, in order to achieve a better spatial selectivity while still preserving
robustness, the fixed beamformer can be optimized, e.g. by using statistical
knowledge about the signal model errors that occur in practice [7].

The blocking matrix creates M — 1 so-called noise references
Ynlk] = zp[k] +0plk], n=1...M—1, (3)

by steering zeroes towards the assumed direction of the speaker. A simple
technique to create the noise references consists of pair-wisely subtracting the
time-aligned microphone signals. Under ideal conditions (i.e. no reverberation,
point speech source, no look direction error, no microphone mismatch), the
noise references only contain noise components v,[k]. Since these conditions
are never fulfilled in practice, undesired speech components z,[k], i.e. so-called



speech leakage components, are present in the noise references. Although sev-
eral techniques have been proposed for reducing the speech leakage compo-
nents in the noise references [4-11], speech leakage can never be completely
avoided in practice.

During speech periods, the speech and the noise references consist of speech
and noise components, i.e. y,[k| = z,[k| + v,[k], whereas during noise-only
periods (speech pauses), only the noise components v,[k] are observed. We
assume that the second-order statistics of the noise are sufficiently stationary
such that they can be estimated during noise-only periods and used during
subsequent speech periods. This requires the use of a voice activity detection
(VAD) mechanism [27,28] or an on-line SNR estimation procedure [29].

The goal of the multichannel ANC' is to estimate the noise component wvg[k]
in the speech reference and to subtract this noise estimate from the speech
reference in order to obtain an enhanced output signal z[k]. Let N be the
number of input channels to the multichannel filter (N = M if the filter
wo on the speech reference is present, N = M — 1 otherwise). Let the FIR
filters w,[k], n = M — N,..., M — 1, have filter length L, and consider the L-
dimensional data vectors y,[k], the N L-dimensional stacked data vector y[k],
and the N L-dimensional stacked filter w[k], defined as

yalk] = :yn[k] yulk = 1] . ynlk — L+ 1] T: n=M-N,.. M-1(
ylk] = :yﬂ_N[k] Yar-nialk] - yﬂ_l[/ﬂrv (5)
wlk] = :wﬂ_N[k:] wh vkl . w@_l[k]r, (6)

where T denotes transpose of a vector or a matrix. The stacked data vector can
be decomposed into a speech and a noise component, i.e. y[k] = x[k] + v[k],
where x[k] and v[k] are defined similarly as in (4) and (5). The goal of the
filter w[k] is to estimate the delayed noise component vy[k — A] in the speech
reference! . This noise estimate is then subtracted from the speech reference
in order to obtain the enhanced output signal z[k], i.e.

2kl =yolk — A] — w [k]y[K] (7)
=2k — A] + (volk — A] — Wl [k]v[k]) — w’ [k]x[K] . (8)

€y [k] Cx [k}

Hence, the output signal z[k] consists of 3 terms: the delayed speech component
xo[k — A] in the speech reference, residual noise e,[k|, and (linear) speech

1 The delay A is applied to the speech reference in order to allow for non-causal
filter taps. This delay is usually set equal to [L/2], where [z] denotes the smallest
integer larger than or equal to x.



distortion e,[k|. The goal of any speech enhancement algorithm is to reduce
the residual noise as much as possible, while simultaneously limiting the speech
distortion. The speech distortion can e.g. be limited by reducing the speech
leakage components x[k] and/or by constraining the filter w[k].

In this paper we will assume a fixed blocking matrix, such that speech leakage
components are always present, especially when microphone mismatch occurs.
We will not consider techniques here that aim to minimize the speech leakage
components by using an adaptive blocking matrix (ABM) [8-11]. One should
however realize that these ABM-techniques may be used as an alternative or
even in combination with the SDW-MWF.

2.2 Generalized Sidelobe Canceler (GSC)

The standard GSC aims to minimize the residual noise energy £2[k] without
taking into account speech distortion, i.e.

Jasc(wlk]) = ej[k] = E{|volk — A] - w'[k]v[k]*}, (9)

where E denotes the expected value operator. The filter w[k| minimizing this
cost function is equal to

wlk] = E{v[kIVT[k]} " E{vik]uo[k — AJ}, (10)

where the noise correlation matrix E{v[k]v’[k]} and the noise cross-correlation
vector E{v[k|v[k — A]} are estimated during noise-only periods. Hence, in
a typical adaptive implementation, the filter w[k] is allowed to be updated
only during noise-only periods [4,8-15], since adaptation during speech peri-
ods would lead to an incorrect solution and possibly signal cancelation. Note
however that signal distortion due to speech leakage still occurs even when
the adaptive filter is updated only during noise-only periods, since the speech
distortion term e,[k] is still present in the output signal z[k].

A commonly used approach to increase the robustness against signal model
errors is to apply a quadratic inequality constraint (QIC) [16-18], i.e.

wl[kw(k] < B2. (11)

The QIC avoids excessive growth of the filter coefficients w|k], and hence
limits speech distortion w7 [k]x[k] due to speech leakage.

In the GSC the number of input channels to the adaptive filter is typically
equal to N = M — 1. It is however not possible to include the filter wg on the
speech reference, since in this case the filter w[k] in (10) would be equal to

wolk] =uay, Wwuplk]=0, n=1...M -1, (12)



with w; the [th canonical L-dimensional vector, i.e. a vector of which the [th
element is equal to 1 and all other elements are equal to 0, such that the
output signal z[k] = 0.

2.8  Speech Distortion Weighted Multichannel Wiener Filter (SDW-MWF)

The SDW-MWF takes speech distortion due to speech leakage explicitly into
account in the design criterion of the filter w[k] and aims to minimize a
weighted sum of the residual noise energy e2[k] and the speech distortion
energy €2[k], i.e.

Tspw—swr(WIk]) = €2[k] + ~2[k
p (13)

where the parameter p € [0, 00] provides a trade-off between noise reduction
and speech distortion [19,23,30]. If 4 = 1, the minimum mean square error
(MMSE) criterion is obtained. If u < 1, speech distortion is reduced at the
expense of increased residual noise energy. On the other hand, if 4 > 1, residual
noise is reduced at the expense of increased speech distortion.

The filter w[k] minimizing the cost function in (13) is equal to

-1

wlk] = |E{v[k]v"[k]} + %E{X[HXT[%]} E{v[klvolk — A}, (14)

where, using the independence assumption between speech and noise, the
speech correlation matrix E{x[k]x’[k]} can be computed as

E{x[k]x"[k]} = BE{y[k]ly" [k]} — E{v[k]v"[k]}. (15)

The correlation matrix E{y[k]y”[k]} is estimated during speech periods and
the noise correlation matrix E{v[k]v’[k]} is estimated during noise-only peri-
ods. As already mentioned, we assume that the spectral and/or spatial char-
acteristics of the noise are sufficiently stationary.

Since the SDW-MWF takes speech distortion explicitly into account in its
optimization criterion, it is now possible to include an extra filter wg on the
speech reference. Depending on the setting of the parameter pu and the pres-
ence/absence of the filter wy, different algorithms are obtained:

e Without a filter wg (N = M —1), we obtain the speech distortion regqularized
GSC (SDR-GSC), where the standard optimization criterion of the GSC in
(9) is supplemented with a regularization term 1/ue2. For u = oo, speech
distortion is completely ignored, which corresponds to the standard GSC.



For . = 0, all emphasis is put on speech distortion, such that w[k] = 0 and
the output signal z[k| is equal to the delayed speech reference yolk — A|.
Compared to the QIC-GSC, the SDR-GSC is less conservative, since the
regularization term is proportional to the actual amount of speech leakage
in the noise references. In [19] it has been shown that in comparison with the
QIC-GSC, the SDR-GSC obtains a better noise reduction for small model
errors, while guaranteeing robustness against large model errors.

e With a filter wy (N = M), we obtain the spatially pre-processed speech dis-
tortion weighted multichannel Wiener filter (SP-SDW-MWF). For u = 1,
the output signal z[k] is the MMSE estimate of the delayed speech compo-
nent xo[k — A] in the speech reference. In [19] it has been shown that, for
infinite filter lengths, the performance of the SP-SDW-MWTF is not affected
by microphone mismatch. Hence, the extra filter on the speech reference
further improves the performance.

In [22-24], recursive matrix-decomposition-based implementations have been
presented, which are computationally quite expensive. Starting from the cost
function in (13), a cheaper time-domain stochastic gradient algorithm has
been derived. To speed up convergence and reduce the computational com-
plexity, this algorithm has been implemented in the frequency-domain [20].
It has been shown that for highly non-stationary noise, this stochastic gra-
dient algorithm suffers from a large excess error, which can be reduced by
low-pass filtering a particular regularization term, i.e. the part of the gradient
estimate that limits speech distortion. The computation of this regularization
term however requires the storage of circular data buffers, giving rise to a large
memory requirement. In [21], the regularization term has been approximated
in the frequency-domain, using (diagonal) speech and noise correlation matri-
ces in the frequency-domain. This approximation leads to a drastic decrease in
memory requirement and also further reduces the computational complexity.

In the following section, a novel frequency-domain criterion for the SDW-
MWEF is presented, which is similar to the cost function in (13). This frequency-
domain criterion is an extension of the criterion used in [25,26] for multichannel
echo cancelation. Furthermore, it provides a way for linking existing adaptive
frequency-domain algorithms for the SDW-MWF [21] and for deriving novel
adaptive algorithms, as will be shown in Section 4.

3 Frequency-Domain Criterion for the SDW-MWF

We first define block signals for the residual noise and the speech distortion,
which can be computed using frequency-domain operations. Using these block
signals, we define a frequency-domain cost function for the SDW-MWF. By
setting the derivative of this cost function to zero, we obtain the normal equa-
tions, from which a recursive (RLS-type) algorithm can be derived. Next, we
discuss some practical implementation issues, i.e. adaptation during noise-only



periods and computation of the regularization term. The general block dia-
gram of the frequency-domain implementation of the SDW-MWF is depicted
in Figure 2.

3.1  Frequency-Domain Notation

We define the L-dimensional block signals e,[m| and e,[m] as

" (16)

" (a7)

e,[m] = {ev[mL] eolmL +1] ... e,JmL + L — 1]

e,[m|= {em[mL} exlmL+1] ... e;[mL+ L —1]

with m the block time index. Using (8), the block signal e,[m], representing
the residual noise, can be computed using frequency-domain operations as
[25,26,31]

M—1 IL
eulm] =dm] - [0, 1, | Pl Y Dualm|Far | " | wa, (18)
n=M-N 0,
with
djm] = [UO[mL—A] vo[mL — A +1] ... vo[mL — A+ L —1] ! . (19)

0, represents the L x L-dimensional zero matrix, I represents the L x L-
dimensional identity matrix, Foy, is the 2L x 2L-dimensional discrete Fourier
transform matrix and D, ,,[m] is a 2L x 2L-dimensional diagonal matrix whose
elements are the discrete Fourier transform of the 2L-dimensional vector

T
vpmL — L] ... vpmL — 1) v,[mL] ... v,[mL+ L —1]| . (20)
The block signal e,[m] can also be written as
e.fm) = dlm] - |0, 1, | 5 Ul w, 21)
with the 2L x N L-dimensional matrix U,[m| defined as
IL IL
Uv [m] = DU,M_N[TI’L] FQL e DU7M_1[m} FQL (22)
OL 0L
=D, [m] Fyyrni: (23)

and the 2L x 2N L-dimensional matrix D, [m] and the 2N L x N L-dimensional
block diagonal matrix Fi%;; . v; equal to



Dv[m] - DU7M,N[m} . DU7M,1[m] (24)

FoNpxyy = diag | Far o Fop : (25)

Similarly, the block signal e,[m], representing the speech distortion, can be
computed as

ealm] =0, 1, | F3l Uslm]w = 0, 1, | Pl Dufm] i3y w. (26)

where U,[m| and D,[m| are defined similarly as U,[m] and D,[m] for the
speech component instead of the noise component.

If we multiply the block signals in (21) and (26) with the L x L-dimensional dis-
crete Fourier transform matrix F;, we obtain the error signals in the frequency-
domain (denoted by underbars), i.e.

e,[m|=Fpe,[m] =d[m] — GI,, U, [m]w, (27)
L [m] =Fre; [m] = G%IXQLUSC [m] W, (28)

with d[m] = Fy, d[m] and GO, = F, [OL IL] ;.

Using these frequency-domain signals, we now define a frequency-domain cri-
terton for the SDW-MWF, minimizing the weighted sum of the residual noise
energy and the speech distortion energy, i.e.

Iyl = (1= X)X el el + (1= A AP el e | (29

where # denotes complex conjugate of a vector or a matrix, A, and ), are
exponential forgetting factors respectively for noise and speech (0 < A, < 1,
0 < Ay < 1), and 1/u is the trade-off parameter between noise reduction
and speech distortion. Note that typically quite large values are used for the
exponential forgetting factors (cf. Section 6.2), implying that mainly the long-
term spatial and spectral characteristics of the speech and the noise sources
are used.

3.2 Normal Equations
The cost function J¢[m| can be minimized by setting its derivative with respect

to the (time-domain) filter coefficients w[m| equal to zero. Using (27) and (28),
the derivative is equal to

10



ow[m] =(1- Z)‘m Z(UHHG(Q)LX2LU [i]w[m] — UHH%LM)
Z)‘;n ZUH ] GoLxor Uz [i]w[m], (30)
=0
with
01 \H 0L
dyr[m] =2(Gp )" dlm] = Fyp ! d[m] (31)
L
0,0
Gr(2)1L><2L = 2(G0LIX2L)HG%IXQL7 =Fop FQE' (32)
0, I,
Hence, the normal equations can be written as
1
S,[m] + ;Sm[m] w[m| = s[m] (33)

with the N L x N L-dimensional correlation matrices S, [m] and S,[m], and the
N L-dimensional cross-correlation vector s[m/| defined as

S, [m] = (1 = A) 32 A7 UZ i) Gl U ] (34)
S, iim 1= ) U] G0, U, ], (35)
S, [m] = (1= Aa) SN UH [ GLL o U ] (36)
:Azsz[mi(iH(l—Ax)UH[ | G0, U], (37)
s[m]zu—xv)f;w U] dy [] (39)
sl — 14 (1= A,) U ] dyy ] (39)

3.8 Recursive Algorithm

A recursive (RLS-type) algorithm for updating w[m| can be found by enforcing
the normal equations (33) at block time m and m — 1, i.e.

S,[m]+ Sl [wlm] = Asfm = 1]+ (1= A,) U ] dy ]
1
=X\ [Sv[m — 1]+ ;Sx[m —1]| w[m — 1] +

(1= Ao) Uyl [m] dap [m]

11



= [Sv[m] — (1= X) Ul [m] Gy 0, U [m] +
1A,
A
wlm — 1]+ (1 = A,) U [m] dyr [m],

(Selm] = (1= Ae) UM [m] GS} o, U [m]) | -

such that the recursive update formula for w[m] can be written as

1 - 1A,
w[m] = [Sv[m] + ;Sz[m]] { [Sv[m] + M}\—xSx[m]] wim — 1] 4+
(1= MU ] = 1300~ AU bl aal] (40
e, 20[m] = Far ‘I) eufm] = dom] — GIL, o Unlm] wim = 1], (41)
:OL:
€21 [m]=Fyp I e,[m| = G81L><2LU1‘ [m] wim — 1]. (42)

For convenience, we now define the 2N L x 2N L-dimensional correlation ma-
trices Q,[m] and Q,[m] as

Sy[m]= (F%?VLXNL)H Q,[m] F%?VLXNL? (43)

Sz[m] = (F%?VLXNL)H Q. [m] F%(])VLXNLa (44)
such that

Q,[m]=2,Qu[m — 1] + (1 = A,) Df[m] Gg}:wLDv[m]v (45)

Q. [m] =XQqum = 1] + (1 = A\z) Df[m] GglezLDa:[m]- (46)

In addition, we define the 2N L-dimensional frequency-domain filter wyy [m]
as

T
Wong[m] = F%[J)VLXNLW[m] = {ﬂﬂz\@u[m] ﬂﬂ,mL[m] ; (47)

with

I
)

WL [m] = Far

] W, [m)]. (48)

By pre-multiplying both sides of (40) with Fi%, .y, and by using (43) and
(44), we obtain

12



~1
1
Wonz[m] =Fipune [Sv [m] + Esx[m]] (Fanxn)?

{ [QU ] + ij—:Qz[mﬂ warlm — 1]+ (1~ A)D¥ e, orlm

1\, o
A=A D el (19)
e, op[m|=dy[m] — G2} o Dulm] wonp[m — 1], (50)
Qx,zL[m] = G(Q)lLXQLDI[m] Wonz[m — 1]. (51)

In [25], it has been shown that

Fovpxne ot [m) (Fanpene)” = Gavpxane Qo' ml, (52)
with the 2N L x 2N L-dimensional block diagonal matrix Gi%; . oy defined as
with

I, 0
0, 0

G%OLXQL =Fy F2_L17 (54)

such that (49) can be written as

-1
Worrs ] = Gl o [QU ]+ %Qx[m]]

{ [Qv[m] 12, [m]] waxsm — 1]+ (1 =AD" mle, oy m]

1 )\v H
A=A D el (55)

In the sequel, we will assume equal exponential forgetting factors for speech
and noise, i.e. A\, = A\, = A, such that using G, oy Wonr[m — 1] =
Wonz[m — 1], (55) reduces to

Wonplm] = Wonpm — 1]+ (1= \) G, ons [Q,,[m] n ;Qx [m]] o -

i —l Hm e m
{Dy ) e arlm] = D[] ey o0}

When the trade-off parameter 1/p = 0, this algorithm is equal to the multi-
channel frequency-domain adaptive filtering algorithm derived in [25,26], ap-
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plied to the GSC. For 1/u > 0, the 2N L-dimensional additional regularization
term

1 1
ronp[m] = ;Df[m] €01 [m] = ;Df[m] GglezLDx[m] Wonz[m —1] (57)

limits speech distortion due to speech leakage components in the noise refer-
ences.

3.4 Practical Implementation

If we take a closer look at (56), we notice that D,[m] and e,,;[m] can be
computed only during noise-only periods, whereas D,[m] and e, 5, [m] can be
computed only during speech periods. We will now take a similar approach
as in the standard GSC, i.e. we will update the filter coefficients only during
noise-only periods. Since during noise-only periods the (instantaneous) cor-
relation matrix DH[m]G3} ,; D.[m] of the clean speech signal, required in
the computation of the regularization term ryy;[m], is not available, we will
approximate this term by the (average) correlation matrix Q,[m]?, i.e. the

regularization term will be computed as
1
ryng[m] ~ pr[m] woyr|[m —1]. (59)

In fact, using the correlation matrix Q,[m] instead of DX [m|GSt  ,; D.[m] is
quite similar to low-pass filtering a similar time-domain regularization term,
which has been proposed in [20] to improve the performance in highly non-
stationary noise. Using the assumption that speech and noise components are
uncorrelated, the speech correlation matrix will be computed in practice as

Q.[m] = Qy[m] — Qu[m], (60)

where Q,[m] is the 2N L x 2N L-dimensional correlation matrix updated during
speech periods, i.e.

Qylm] = AQy[m — 1] + (1 = A) D/ [m] Gyp,p, Dy [m], (61)

where D, [m] is defined similarly as D,[m]. The complete recursive frequency-
domain algorithm for updating the filter wyy [m] is summarized in Table 1.

2 Note that a similar reasoning for computing the term D[m] €, [m] during
speech periods is not possible, since

D,/ [m]e, 5.[m] = Dy [m] dyy [m] — Dy [m] G31 o  Do[m] Wy [m — 1] (58)

cannot easily be approximated, because of the term D [m] dy; [m].
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4 Frequency-domain adaptive algorithms

The algorithm in Table 1 constitutes a general framework from which dif-
ferent adaptive algorithms can be derived by introducing different types of
approximations. Some of these algorithms have already been presented in the
literature [21], whereas other algorithms represent novel techniques for im-
plementing the SDW-MWF cost function in the frequency-domain. Figure 3
depicts the block diagram of the algorithms for updating the filter coefficients
that will be discussed in this section. The difference between these algorithms
consists of whether block-structured or diagonal correlation matrices are used
(cf. Sections 4.1 and 4.2) and whether the update formula is constrained or
unconstrained (cf. Section 4.3).

4.1 Block-structured Correlation Matrices (Algo 1)

Since the correlation matrices Q,[m] and Q,[m] do not have a special struc-
ture, both updating these correlation matrices according to (45) and (61),
and the matrix inversion in (56) are computationally expensive operations
[O((NL)?)], such that in fact the algorithm in Table 1 is not very useful in
practice. However, in [25,26] it has been shown that the matrix GY; .,; may be
well approximated by Is; /2, because — for large L — the off-diagonal elements
of G} 5, are small compared to the diagonal elements.

Using this approximation, we obtain the following update formula for the
block-structured correlation matrices Q,[m] and Q,[m],
. AQufm — 1]+ (1 = \) Dy/[m] D, m]/2, (62)

Qy[m] =AQy[m — 1] + (1 = A) D}/ [m] D, [m]/2, (63)

o
3
||

which are N x N block matrices with 2L x 2L-dimensional diagonal blocks
Qunplm] and Qypm], n=M—-N,... . M—1,p=M-—N,...,M—1. Hence,
we obtain the following update formula for the filter coefficients,

ﬂzNL[m] = EQNL[m B 1] + '0(1 N )\) G%(]]VLXZNL [QU [m] " %Qx[m]] 7 . (64)

{DYIm] e, s[m] = rayrm]}

where p is a step size parameter and the regularization term now is defined as
1 -~
ryng[m] = ;Qw[m] Wong[m — 1], (65)

with Q.[m] = Q,[m] — Q,[m]. This update formula will be referred to as
Algo 1.
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The update formula in (64) involves computing the inverse of the matrix
Q,[m| + 1/ Qzlm]. It is well known that the inverse of an N x N block
matrix Q with 2L x 2L-dimensional diagonal blocks Q,,,, i.e.

QMfN,MfN QMfN,Mfl
Q= : : , (66)
QM—LM—N QM—I,M—I

is again a block matrix with diagonal blocks. Computing the inverse corre-
sponds to inverting 2L, N x N-dimensional matrices, which is attractive from
a computational complexity point of view. More in particular, the block matrix
Q can be permuted into the block diagonal matrix Q,

Q=diag| Qo ... Qar 1| (67)

with NV x N-dimensional sub-matrices Q;, [ = 0...2L — 1, on its diagonal, by
means of row and column permutations, i.e.

Q=ATQA. (68)

The matrix A is a 2N L x 2N L-dimensional column permutation matrix (and
hence AT is a row permutation matrix), consisting of 2N L 2L x N-dimensional
sub-matrices A, n =M —N,... .M =1,1=0...2L — 1, where the (I, n)-th
element of A, is equal to 1. It readily follows that

Q' =AQ AT, (69)

where Q™! can be computed by inverting the N x N-dimensional sub-matrices

Q on its diagonal, i.e.
Q' =diag | Q" ... Qyf |- (70)

In addition, one should make sure that the matrix Q,[m] + 1/uQ,[m] in
(64) is positive definite. When this matrix is not positive definite, this actu-
ally has the same effect as a negative step size p, i.e. leading to divergence
of the filter coefficients. The noise correlation matrix Qv [m] is always pos-
itive definite, but the speech correlation matrix Qx [m] may not always be
positive definite (especially for non-stationary signals), since it is computed
as Q.[m] = Q,[m] — Q,[m], where Q,[m] and Q,[m] are estimated during
(different) speech periods and noise-only periods. Checking the positive defi-
niteness of a matrix comes down to computing its eigenvalues. By using (68)
and the fact that AAT = I,y and det(A) = +1, it readily follows that

det(Q — 7Ionz) = det (A(Q — fyIzNL)AT) = det(Q — YIony1) , (71)
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such that the eigenvalues 7 of the block matrix Q are equal to the set of
eigenvalues of its N x N-dimensional sub-matrices Q;, { =0...2L — 1.

Hence, instead of directly computing the inverse of the matrix Q.[m]+1/1 Qu[m)]
in (64), we first compute the eigenvalues of the matrix Q,[m], and then use
the inverse of the positive definite matrix

Q.[m] + ; [Qz[m] — Min(Ypnin, 0) IQNL] +0Ians (72)

in (64), with v,,;, the smallest eigenvalue of Q. [m] and § a small positive regu-
larization factor (a typical value is § = 1le —6). Whereas in general computing
the smallest eigenvalue of an N x N-dimensional Hermitian matrix is com-
putationally quite complex, for N = 2 (e.g. in a two- or a three-microphone
application) the smallest eigenvalue 7, ,,;, of the sub-matrix

- Q111 qi12
Ql - ) (73)

e
4;12 41,22

with @11 and @922 real-valued, is equal to

(@11 + qQi22) — \/(671,11 — Q1.22)% +4[q12)?
5 )

(74)

V,min =

4.2 Diagonal Correlation Matrices (Algo 2 and 3)

In a further approximation, we can decouple the updates for the N filters
W, o, [m] in (64) by neglecting the off-diagonal elements of the matrix Q.[m]+
1/1 Q. [m], which represent the inter-channel correlation. Hence, the update
formula for the filter coefficients w,, 57 [m], n = M — N,..., M — 1 becomes

-1

~ 1 -~
ﬂn,QL[m] y ﬂn,?L[m - 1] + p(l - )\) G%OLXZL le,nn[m} + ﬁng,nn[m]

(DI, Im] e, or[m] — 1, [m]}

(75)

with me [m] and Qx,m [m] the 2L x 2 L-dimensional diagonal sub-matrices on
the diagonal of Q,[m] and Q,[m], and r, ,;[m] a 2L-dimensional sub-vector
of Ty [m]? . This update formula will be referred to as Algo 2.

Ensuring the positive definiteness of me [m] now is straightforward, since
the eigenvalues of Q,,,[m] are equal to the diagonal elements. As will be

3 Note that we still use the off-diagonal elements of Qm[m] for computing the reg-
ularization term ropy[m], i.e. (65).
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shown in the experimental results in Section 6, updating the filter coefficients
using block-structured correlation matrices gives rise to a faster convergence
than using diagonal correlation matrices, since the inter-channel correlation
is taken into account. This has also been observed in [26] when applying this
algorithm to the GSC, i.e. for N =2 and 1/ = 0.

Where in (75) a different step size matrix Qq (] + 1/uQu nn[m] is used for
each channel n, it is also possible to use a common step size matrix Q., e.g.
the sum or the average over all channels, i.e.

ﬂn,u[m] = ﬂn,2L[m - 1] + P(l —A) GéoszLQc_l[m]'

{Dll){n [m] Q11,2L[7n] - Kn,QL [m]} (76)
- 1 M-1 1 -
Q) = () E Quulml+ | Quanlm

This update formula will be referred to as Algo 3. In fact, this algorithm is
very similar to the algorithm already presented in [21]. Note however that the
algorithm in [21] has been derived as a frequency-domain implementation of a
time-domain stochastic gradient algorithm for minimizing the (time-domain)
cost function in (13).

4.8 Unconstrained Algorithms

In Section 4.1 the term GY} . in the calculation of the correlation matrices
has been approximated by Isz /2. It is also possible to use the same approxi-
mation for the term Gi%. ,; and hence approximate G3%; .y in the update
formula for the filter coefficients in (56) by

G\ pwony =~ diag [T, /2 ... IQL/2:| =Ione/2, (77)

resulting in the following so-called unconstrained update formula, i.e.

(1=X)

Wonp[m] = Wonp[m — 1]+ —— le[m] + %Qx[m]] -

{DY[m] e, [m] = rayrm]}

(78)

This update formula gives rise to a lower computational complexity, since it
requires 2N less FFT operations, cf. Section 5. However, when using this up-
date formula one cannot guarantee that the second half of F5, LlﬂmQ lm], n =
M — N,...,M — 1, is equal to zero, cf. (48). In addition, for the uncon-
strained algorithms one can also approximate the correlation matrices Q,[m|
and Q,[m] by block-structured or diagonal matrices.
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4.4 Summary

Summarizing all presented algorithms in Section 4, the update formula for the
filter coefficients wyn[m] can be written as

Wonp[m] = Wonp[m — 1]+ p(1 = A) A[m]{Df[m} e,2[m] — KQNL[m]} (79)

1 -
ronp[m] = ;Qx[m] Wong[m — 1]

where the 2NL x 2N L-dimensional step size matrix A[m] is summarized in
Table 2. For all algorithms, the matrix Qw[m] needs to be regularized in order
to make sure that it is positive definite. The algorithm already presented in
[21] corresponds to the constrained version of Algo 3. Figure 3 depicts the
block diagram of these algorithms for updating the filter coefficients.

5 Computational complexity

Table 3 summarizes the computational complexity of several frequency-domain
adaptive algorithms for robust multi-microphone noise reduction: the QIC-
GSC using the Scaled Projection Algorithm (SPA) [17], the stochastic gradient
buffer-based implementation of the SDW-MWF [20], and the different adap-
tive algorithms implementing the frequency-domain criterion for the SDW-
MWE, which have been discussed in this paper. The computational complexity
is expressed as the number of operations, i.e. real multiplications and additions
(MAC), per second. We assume that one complex multiplication is equivalent
to 4 real multiplications and 2 real additions and that a 2L-point FFT of a real
input vector requires 2L log, 2L real MACs (using the radix-2 FFT algorithm).
For Algo 1 the cost of ensuring the positive definiteness of the block-structured
step size matrix, and hence calculating the smallest eigenvalue of Q. [m], has
been included in the computational complexity. Therefore the computational
complexity for Algo 1 in Table 3 is only valid for N = 2, i.e. when a closed-
form expression is available for calculating the smallest eigenvalue, cf. (74).
The computational complexity has been explicitly calculated for the parame-
ter values used in the simulations in Section 6, i.e. M = 3, L = 128, sampling
frequency fs = 16 kHz, and either N = M — 1 or N = M input channels to
the multichannel adaptive filter.

From this table we can draw the following conclusions:

e The complexity of all SDW-MWF algorithms (constrained version) is higher
than the complexity of the QIC-GSC. However, as has been shown in [19],
the SDW-MWF obtains a better noise reduction than the QIC-GSC for
small model errors, while guaranteeing robustness against large model er-
Tors.
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e The complexity of the adaptive algorithms implementing the frequency-
domain criterion for the SDW-MWF is lower than the stochastic gradient
buffer-based implementation of the SDW-MWF [20]. However, this only
remains true for a small number of input channels, since the complexity of
these frequency-domain algorithms contains a quadratic term O(N?).

e The complexity of the algorithms using a diagonal step size matrix (Algo 2
and Algo 3) is smaller than the complexity of Algo 1 using a block-structured
step size matrix. As will be shown, these algorithms however give rise to a
slower convergence behavior.

e The unconstrained algorithms require 2N less FFT operations than the
constrained algorithms.

6 Experimental Results

In this section, experimental results are presented for a hearing aid appli-
cation. For small-sized microphone arrays as typically used in hearing aids,
robustness is very important, since these microphone arrays exhibit a large
sensitivity to signal model errors [32]. Section 6.1 describes the setup and
defines the performance measures used here. In Section 6.2 the performance,
i.e. SNR improvement and speech distortion, and the convergence behavior of
different adaptive algorithms is analyzed, and the effect of different parameter
settings (i.e. filter wy and 1/p) on the performance and the robustness against
signal model errors is evaluated. In Section 6.3 the performance difference be-
tween using a perfect voice activity detection (VAD) mechanism and using a
non-perfect VAD is investigated for different input SNRs. In Section 6.4 the
tracking performance is analyzed for a time-varying scenario.

6.1 Setup and Performance Measures

A hearing aid with M = 3 omni-directional microphones (Knowles FG-3452)
in an end-fire configuration has been mounted on the right ear of a dummy
head in an office room. The distance between the first and the second mi-
crophone is about 1cm and the distance between the second and the third
microphone is about 1.5cm. The reverberation time Tyy of the room is ap-
proximately 700 ms. The speech and the noise sources are positioned at a
distance of 1 m from the head: the speech source in front of the head (0°), and
the noise sources at an angle 6 with respect to the speech source. The record-
ing environment is depicted in Figure 4. Both the speech and the noise signal
have a level of 70dB at the center of the head. For evaluation purposes, the
speech and the noise signal are recorded separately. The sampling frequency
is equal to 16 kHz.

The microphone signals are pre-whitened prior to processing in order to im-

prove the intelligibility, and the output signal z[k| is de-whitened accordingly
[33]. The microphones are calibrated using anechoic recordings of a speech-
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weighted noise signal at 0° with the microphone array mounted on the head.
A delay-and-sum beamformer is used for the fixed beamformer, since — in the
case of small microphone distances — this beamformer is quite robust against
signal model errors. The blocking matrix pair-wisely subtracts the time-aligned
calibrated microphone signals to generate the noise references.

To assess the performance of the different algorithms, the broadband intelli-

gibility weighted signal-to-noise ratio improvement ASNRjytenig is used, which
is defined as [34]

ASl\u%intellig - Z Iz (SNRi,out - SNRi,in)7 (80)

where the band importance function I; expresses the importance of the 7th
one-third octave band with center frequency f; for intelligibility, and where
SNR; out and SNR; ;, represent respectively the output SNR and the input SNR
(in dB) in this band. The center frequencies f{ and the values I; are defined
in [35]. The intelligibility weighted SNR improvement reflects how much the
speech intelligibility is improved by the noise reduction algorithms, but does
not take into account speech distortion.

In order to measure the amount of (linear) speech distortion, we similarly
define an intelligibility weighted spectral distortion measure SDipgeliig,

SDintenig = Y 13 SD; (81)

with SD; the average spectral distortion (dB) in the ith one-third octave band,

21/6fic
1
SD; = (21/6 — 2-1/6) fe / [101ogo G (f)] df, (82)
v 2-1/6 f¢

with G,(f) the power transfer function for the speech component from the
input to the output of the noise reduction algorithm.

In order to exclude the effect of the spatial pre-processor, the performance
measures (80) and (81) are calculated with respect to the output of the fixed
beamformer, i.e. the speech reference yo[k]. In some experiments, a microphone
gain mismatch of 4 dB is applied to the second microphone in order to illustrate
the sensitivity to signal model errors. Among the different possible signal
model errors, microphone mismatch has been found to be quite harmful to
the performance of the GSC in a hearing aid application [32]. In hearing aids,
microphones are rarely matched in gain and phase, with typical gain and phase
differences of up to 6dB and 10° [36].

All algorithms are evaluated with a filter length L = 128. In Sections 6.2 and
6.4, the input SNR of the microphone signals is equal to 0dB, whereas in
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Section 6.3 different input SNRs, ranging from —10dB to 5dB, are used. In
Section 6.2 a (non-perfect) energy-based VAD [27] is used, whereas in Section
6.4 a perfect VAD is used, i.e. the speech periods and the noise-only periods
have been marked manually. In Section 6.3 the performance difference between
using a perfect and a non-perfect VAD is investigated.

6.2 SNR Improvement and Robustness Against Microphone Mismatch

For the experiments in this section, the desired speech source at 0° consists
of sentences from the HINT-database [37] spoken by a male speaker, and a
complex noise scenario consisting of 5 spectrally non-stationary multi-talker
babble noise sources at 75°, 120°, 180°, 240° and 285°, is used. The input SNR
of the microphone signals is equal to 0dB and an energy-based VAD [27] is
used. As will be seen in Section 6.3, the effect of using an energy-based VAD
instead of a perfect VAD is quite small for SNR=0 dB.

Figure 5 plots the convergence of the SNR improvement for different adaptive
algorithms (constrained vs. unconstrained, block-structured vs. diagonal step
size matrix) for different values of the step size parameter p and the expo-
nential forgetting factor \. Instead of A we use the corresponding time T},
i.e. the factor A corresponds to an averaging of the correlation matrices over
approximately 1/(1 — A) blocks of L samples, such that

1 L

Hence, for L = 128, T, = 0.8 s corresponds to A = 0.99, T, = 1.6's corresponds
to A = 0.995, and T = 3.2s corresponds to A = 0.9975. Typically, quite large
values are used for the exponential forgetting factor, implying that mainly
the long-term spatial and spectral characteristics of the speech and the noise
sources are used. In this experiment, we have used the SDR-GSC (N = 2) with
trade-off parameter 1/p = 0.5 and with no microphone mismatch present.
Obviously, similar plots can be obtained for the SP-SDW-MWF (N = 3), for
different values of the trade-off parameter and when microphone mismatch is
present. From Figure 5 it can be seen that a block-structured step size matrix
gives rise to a substantially faster convergence than a diagonal step size matrix,
which can be explained by the fact that a block-structured step size matrix
takes into account the inter-channel correlation. Hence, the observations in
[26] for the GSC are also valid for the SDR-GSC and the SP-SDW-MWF.
In addition, the main factor affecting the convergence speed is p(1 — \), i.e.
the larger p, the faster the convergence and the larger A, the slower the con-
vergence. However, the SNR improvement at convergence will be worse for
larger p(1 — A) because of the larger misadjustment of the adaptive filter co-
efficients (taking p(1 — \) too large obviously even leads to divergence). The
SNR improvement at convergence is slightly better for larger A, because a
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better estimate of the regularization term is obtained (for spectrally and/or
spatially stationary sources). Taking A too small results in a highly time-
varying regularization term, which is undesirable. Moreover, for this scenario,
the performance difference between the constrained and the unconstrained
update formula is quite small. For the experimental results in this section and
in Section 6.3 we will use p =2 and 7 = 1.6s.

Figure 6 plots the SNR improvement and the speech distortion at convergence
for the SDR-GSC (N = 2) and for the SP-SDW-MWF (N = 3) as a function
of the trade-off parameter 1/u, using the unconstrained update formula with
block-structured step size matrix. This figure also depicts the effect of a gain
mismatch of 4dB at the second microphone. Similar conclusions as in [19,20]
can be drawn:

e SDR-GSC (N = 2): In the absence of microphone mismatch, the amount
of speech leakage into the noise references is limited, such that the speech
distortion is small for all 1/u. However, since there is some speech leakage
present due to reverberation, the SNR improvement decreases for increasing
1/p. In the presence of microphone mismatch, the amount of speech leakage
into the noise references grows. For the standard GSC, i.e. 1/u = 0, signif-
icant speech distortion now occurs and the SNR improvement is seriously
degraded. Setting 1/ > 0 improves the performance of the GSC in the
presence of signal model errors, i.e. the speech distortion decreases and the
SNR degradation becomes smaller.

o SP-SDW-MWF (N = 3): The SNR improvement and the speech distortion
also decrease for increasing 1/p. Compared to the SDR-GSC, the speech dis-
tortion however is larger 4, but both the SNR improvement and the speech
distortion are hardly affected by microphone mismatch.

Figure 8 shows the spectrograms of the microphone signal u,[k], the speech
reference signal yo[k], and the output signal z[k] for the GSC (1/u = 0),
the SDR-GSC (1/p = 0.5) and the SP-SDW-MWF (1/u = 0.1,0.5), with and
without mismatch. As can be observed from this figure, in the presence of mis-
match significant speech distortion occurs for the GSC, whereas less distortion
occurs for the SDR-GSC (1/u = 0.5). Although the SP-SDW-MWF seems to
reduce substantially more noise than the SDR-GSC, also more spectral dis-
tortion occurs. However, the performance difference for the SP-SDW-MWF
between mismatch and no mismatch is hardly noticeable.

Figure 7 depicts the SNR improvement and the speech distortion of the QIC-
GSC as a function of the constraint value 4%, with and without microphone
mismatch. Like the SDR-GSC, the QIC-GSC increases the robustness of the

GSC: in the presence of mismatch, the speech distortion decreases for de-

4 In [19], it has been shown that the SP-SDW-MWF can be interpreted as an
SDR-GSC with a single-channel post-filter in the absence of speech leakage.
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creasing 3* (but also the SNR improvement decreases). The constraint value
3% should be chosen such that the maximum allowable speech distortion level
is not exceeded for the largest possible model errors. E.g. a maximum allowable
speech distortion level of 4dB for a gain mismatch of 4 dB, corresponding to
(3? = 0.3, results in an SNR improvement of 4.8 dB with mismatch and 5.0 dB
without mismatch. On the other hand, for the SDR-GSC the emphasis on
speech distortion is only increased when the amount of speech leakage grows.
As a result, a better SNR improvement is obtained without mismatch (6.8 dB
for 1/ = 0.9), while guaranteeing sufficient robustness when mismatch occurs
(4.8dB). The SP-SDW-MWF even further improves the performance in the
presence of mismatch (6.3dB).

6.3 Impact of energy-based VAD

In this section, we compare the performance, i.e. the SNR improvement and
the speech distortion, between using a perfect VAD and using an energy-based
VAD [27]. This comparison is performed for different input SNRs, ranging from
—10dB to 5dB, which is an important range for hearing aid applications. We
have used the same speech and noise scenario as in Section 6.2.

Figure 9 depicts the speech component x[k] in the speech reference, together
with the perfect VAD and the output of the energy-based VAD for different
input SNRs. For each input SNR, the percentage of speech frames classified
as noise and noise frames classified as speech is indicated. As can be seen,
the percentage of speech frames classified as noise decreases as the input SNR
grows, whereas the percentage of noise frames classified as speech increases as
the input SNR grows. However, wrongly classified speech frames have a larger
impact on the performance than wrongly classified noise frames, as already
shown in [38]. Hence, we expect the performance difference between using a
perfect and an energy-based VAD to be larger for low input SNRs.

Figure 10 plots the SNR improvement and the speech distortion at convergence
for the GSC (1/pn = 0) and the SDR-GSC (1/p = 0.5) as a function of the
input SNR, when using a perfect VAD and when using the energy-based VAD,
with and without microphone mismatch. We have used the unconstrained up-
date formula with block-structured step size matrix. For all input SNRs, the
conclusions from Section 6.2 still hold, i.e. in comparison with the GSC the
SDR-GSC gives rise to an improved robustness (lower speech distortion and
smaller SNR degradation) when microphone mismatch occurs. These effects
are more pronounced for high SNRs, presumably due to the fact that relatively
more speech leakage components are present in the noise references. Compared
to the perfect VAD, the energy-based VAD gives rise to a degraded perfor-
mance, i.e. lower SNR improvement and slightly higher speech distortion. This
effect is more pronounced for low SNRs, since at low SNRs the energy-based
VAD generates more speech detection errors.
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Figure 11 plots the SNR improvement and the speech distortion at convergence
for the SP-SDW-MWF (1/1 = 0.1,0.5) as a function of the input SNR, when
using a perfect VAD and when using the energy-based VAD, with and without
microphone mismatch. It can be observed that the trade-off parameter 1/u
mainly has an influence on the speech distortion and to a smaller extent on
the SNR improvement. Moreover, for all conditions the performance measures
are hardly affected by microphone mismatch. However, it can be observed that
compared to the perfect VAD, the energy-based VAD gives rise to a degraded
performance, especially for low SNRs. In general, the performance of the SP-
SDW-MWTF is better than the SDR-GSC when microphone mismatch occurs,
also when using the energy-based VAD.

6.4 Tracking Performance

To investigate the tracking performance of the frequency-domain adaptive
algorithms, we consider a noise scenario consisting of 5 multi-talker babble
noise sources at 75°, 120°, 180°, 240° and 285°, and a switching speech scenario
with a speech source at 0° (scenario 1) and 45° (scenario 2). Every 20 seconds,
the speech scenario suddenly changes between scenario 1 and 2. We have used
a stationary speech-weighted noise signal both for the speech source and for
the noise sources. The speech component consists of alternating segments of
signal and silence, each with a length of 1600 samples. The input SNR of the
microphone signals is equal to 0 dB and we have used a perfect VAD.

In addition to the SNR improvement and the speech distortion, we will also
compare the filter convergence, defined as

_ |[wilm] = wopll

Awlm] = el ™)

where for each of the two noise scenarios the “optimal” filter w,,; is calculated
using (14) and where the correlation matrices in (14) are constructed using
all available speech and noise samples.

Figure 12 plots the filter convergence Aw[m| for the SDR-GSC (N = 2), using
the unconstrained update formula (block-structured vs. diagonal step size ma-
trix), for different values of p and 7). The trade-off parameter 1/ = 0.5 and
a microphone mismatch of 4 dB is present. For the switching scenario, similar
results as in Figure 5 are obtained: the block-structured step size matrix gives
rise to a substantially faster convergence than the diagonal step size matrix
and the main factor affecting the convergence speed is p(1 — \), i.e. the larger
p, the faster the convergence and the larger A, the slower the convergence. For
equal p(1 — \), the convergence behavior is smoother for larger A.

Figure 13 plots the SNR improvement, the speech distortion and the filter
convergence for the GSC (1/u = 0) and the SDR-GSC (1/p = 0.5), both us-
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ing the unconstrained update formula with block-structured step size matrix,
with and without mismatch. The step size parameter p = 2 and 7) = 0.8s.
Again, this figure shows that when microphone mismatch is present, the noise
reduction performance of the GSC decreases (quite substantially for scenario
2) and the speech distortion substantially increases (more for scenario 2 than
for scenario 1). Compared to the GSC, the SDR-GSC (1/u = 0.5) gives rise
to considerably less speech distortion when microphone mismatch is present,
whereas the SNR improvement for both scenarios only slightly decreases.

7 Conclusion

In this paper, we have presented a novel frequency-domain criterion for the
SDW-MWF cost function, trading off noise reduction and speech distortion.
From this frequency-domain criterion several adaptive algorithms have been
derived for implementing the SDW-MWF. The main difference between these
algorithms consists in the calculation of the step size matrix (constrained vs.
unconstrained, block-structured vs. diagonal) used in the update formula for
the multichannel adaptive filter. The computational complexity for all adap-
tive algorithms is quite similar, where the complexity for the unconstrained
algorithms is smaller than the constrained algorithms and the complexity for
the diagonal step size matrix is smaller than the block-structured step size
matrix. Experimental results with a small-sized microphone array in a hear-
ing aid show that the SDR-GSC and the SP-SDW-MWF are more robust
against signal model errors than the GSC, both in stationary and in time-
varying scenarios. The main factor affecting the convergence speed is p(1—\),
and the block-structured step size matrix gives rise to a substantially faster
convergence than the diagonal step size matrix, only at a slightly higher com-
putational cost. Compared to a perfect VAD, an energy-based VAD generally
gives rise to a degraded performance, especially at low input SNRs (< 0dB),
since at these SNRs an energy-based VAD generates more detection errors.
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Fig. 1. Structure of the spatially pre-processed speech distortion weighted multi-
channel Wiener filter (SP-SDW-MWF).
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Matrix definitions:
For, = 2L x 2L-dimensional DFT matrix

07, = L X L-dimensional zero matrix, I; = L x L-dimensional identity matrix

0z Op I; Of,
01 _ -1 10 _ —1
Gorxor = Far For. Gaiwor =Far F,,
0r I 07 0,
10 1
GoNpxany = diag [GéoLx2L G%%XQL

For each new block of L samples:
T
dim] = | yolmL — A] yolmL — A+ 1] ... yomL — A+ L — 1] |

T
Dy,n[m]:diag{Fu [yn[mL—L] yn[mL—i-L—l]} }, n=M-N,.... M—-1

D,[m] = [ D, im] ... Dyarifm]
Output signal:
efm] = dfm] — [ 0, 1, | F3 Dy m] woy[m — 1]
If speech detected:
Qy[m] = AQy[m — 1]+ (1 = N) D}/ [m] G310, Dy[m],  Qulm] = Qu[m — 1]
Wonrm| = Wonp[m — 1]
If noise detected: D,[m] = D, [m]
Qu[m] = AQu[m — 1] + (1 = A\) D [m] G3} o Do[m],  Qylm] = Qy[m —1]
Qz[m] = Qy[m] = Qu[m]
ronz[m] = 4 Qulm] wonp[m — 1]
e arlm] =T | " | el
I
Wonz[m] = Wonp[m — 1]+ (1= A) GYpwons, [Qv [m] + Q[

{Dm]e, a0lm] — ranlml |

-1

Table 1
Algorithmic description of recursive frequency-domain implementation of SDW-
MWF
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Algorithm

Step size matrix

Algo 1 - constr (64)

Algo 1 - unconstr

Algo 2 - constr (75)

- - ~1
G3¥xon diag{ [Q’U,nn [m] + %Qzﬂm [m]} }

Algo 2 - unconstr

%diag{ [Qv,nn[m] + ivann[m]] B }

Algo 3 - constr (76)

G3¥xon diag{ [(1/N) Zn M-N Q. nn[m] + %sz[m]} o }

Algo 3 - unconstr

3 ing{ [(1/N) X250 Q] + 2Qaf]] '}

Table 2

Step size matrix A[m] for different adaptive frequency-domain algorithms

Algorithm Computational complexity 10 MAC
QIC-GSC-SPA (constr) [17] (3M —1)FFT 4+ 16M —9 2.67
SDW-MWF (buffer - constr) [20] (3N + 5)FFT + 30N + 10 3.94(a) 5.18(b)
SDW-MWE (Algo 1 - constr, N=2) | (3N + 2)FFT + 14N2? + 10N + 12 | 3.46(2)
SDW-MWF (Algo 1 - unconstr, N=2) | (N + 2)FFT + 14N2? + 12N + 12 | 2.50(2)
SDW-MWF (Algo 2 - constr) (3N +2)FFT +8N2 + 13N | 2.98(3), 4.59(P)
SDW-MWF (Algo 2 - unconstr) (N +2)FFT + 8N2 + 15N 2.02(2), 3.15(P)
SDW-MWTF (Algo 3 - constr) (3N + 2)FFT + 8N2 + 12N | 2.04(8) 4.54(P)
SDW-MWF (Algo 3 - unconstr) (N + 2)FFT + 8N2 + 14N 1.98(8), 3.10(P)
Table 3

Computational complexity for frequency-domain adaptive algorithms (M =3, L =
128, f, = 16kHz, (a) N = M — 1, (b) N = M)
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A on the convergence of the SNR improvement for different adaptive algorithms
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Unconstrained update, block—structured step size matrix, p=2, T,=16s, energy—based VAD
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Fig. 6. SNR improvement and speech distortion of SDR-GSC (N = 2) and
SP-SDW-MWF (N = 3) as a function of 1/u, with and without microphone mis-
match (unconstrained update, block-structured step size matrix, p = 2, T) = 1.65,

energy-based VAD).
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Fig. 7. SNR improvement and speech distortion of QIC-GSC as a function of 32,
with and without microphone mismatch.
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Fig. 8. Spectrogram of the microphone signal u;[k], the speech reference signal
yo[k], and the output signal z[k] for GSC (1/u = 0), SDR-GSC (1/p = 0.5) and
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Fig. 9. VAD performance for different input SNRs, ranging from —10dB to 5dB.

For each input SNR the percentage of speech frames classified as noise and noise
frames classified as speech is indicated.
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Fig. 10. Effect of energy-based VAD on SNR improvement and speech distortion
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without microphone mismatch (unconstrained update, block-structured step size

matrix, p =2, T\ = 1.658).

37



ASNR [dB]

Speech distortion [dB]

Unconstrained, block-structured, p=2, T/\: 1.6s, 1/u=0.1

T T

-10 -5 0 5

input SNR [dB]

Unconstrained, block-structured, p=2, Tf 1.6s, 1/u=0.1

g
25c

B — . j ]

0
-10 -5 0 5
input SNR [dB]

Unconstrained, block-structured, p=2, TA: 1.6s, 1/u=0.5

ASNR [dB]

O

-5 0 5
input SNR [dB]

Unconstrained, block-structured, p=2, TA= 1.6s, 1/u=0.5

251

201

Speech distortion [dB]

—o— no mismatch, perfect VAD| |
— © —no mismatch, energy VAD
——8&— mismatch, perfect VAD 1
— B — mismatch, energy VAD

-10

-5 0 5
input SNR [dB]

Fig. 11. Effect of energy-based VAD on SNR improvement and speech distortion
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microphone mismatch (unconstrained update, block-structured step size matrix,

p=2 Ty=1659).
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Fig. 12. Filter convergence Aw[m] of SDR-GSC for a switching speech scenario
(unconstrained update, 1/p = 0.5, mismatch, perfect VAD).
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Fig. 13. SNR improvement, speech distortion and filter convergence of GSC
(1/p = 0) and SDR-GSC (1/p = 0.5) for a switching speech scenario, with and
without microphone mismatch (unconstrained update, block-structured step size
matrix, p = 2, T\ = 0.8s, perfect VAD).
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Abstract

Recently, a generalized multi-microphone noise reduction scheme, referred to as
the spatially pre-processed speech distortion weighted multichannel Wiener filter
(SP-SDW-MWF), has been presented. This scheme consists of a fixed spatial pre-
processor and a multichannel adaptive noise canceler (ANC) optimizing the SDW-
MWTF cost function. By taking speech distortion explicitly into account in the design
criterion of the multichannel ANC, the SP-SDW-MWF adds robustness to the stan-
dard generalized sidelobe canceler (GSC). In this paper, we present a multichannel
frequency-domain criterion for the SDW-MWF, from which several — existing and
novel — adaptive frequency-domain algorithms can be derived. The main differ-
ence between these adaptive algorithms consists in the calculation of the step size
matrix (constrained vs. unconstrained, block-structured vs. diagonal) used in the
update formula for the multichannel adaptive filter. We investigate the noise reduc-
tion performance, the robustness and the tracking performance of these adaptive
algorithms, using a perfect voice activity detection (VAD) mechanism and using an
energy-based VAD. Using experimental results with a small-sized microphone array
in a hearing aid, it is shown that the SP-SDW-MWF is more robust against signal
model errors than the GSC, and that the block-structured step size matrix gives
rise to a faster convergence and a better tracking performance than the diagonal
step size matrix, only at a slightly higher computational cost.

Key words: multi-microphone noise reduction, adaptive frequency-domain
algorithms, multichannel Wiener filter, generalized sidelobe canceler, hearing aids
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