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Abstract

Audio-visual speech source separation consists in mixing visual speech processing

techniques (e.g., lip parameters tracking) with source separation methods to improve

the extraction of a speech source of interest from a mixture of acoustic signals.

In this paper, we present a new approach that combines visual information with

separation methods based on the sparseness of speech: visual information is used as

a voice activity detector (VAD) which is combined with a new geometric method

of separation. The proposed audiovisual method is shown to be efficient to extract

a real spontaneous speech utterance in the difficult case of convolutive mixtures

even if the competing sources are highly non-stationary. Typical gains of 18-20dB

in signal to interference ratios are obtained for a wide range of (2 × 2) and (3 ×

3) mixtures. Moreover, the overall process is computationally quite simpler than

previously proposed audiovisual separation schemes.

Key words: speech source separation, convolutive mixtures, voice activity
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detector, visual speech processing, speech enhancement, highly non-stationary

environments.

1 Introduction

Audio-visual speech source separation (AVSSS) is a growing field of interest to

solve the source separation problem when speech signals are involved. It con-

sists of exploiting the bimodal (audio-visual) nature of speech to improve the

performance of acoustic speech signal separation [1,2]. For instance, pioneer

works by Girin et al. [3] and then by Sodoyer et al. [4] have proposed to use

a statistical model between the coherence of audio and visual speech features

to estimate the separating matrix for additive mixtures. Later, Dansereau [5]

and Rajaram et al. [6] respectively plugged the visual information in a 2 × 2

decorrelation system with first-order filters and in the Bayesian framework

for a 2 × 2 linear mixture. Unfortunately, real audio mixtures are generally

more complex and better described as convolutive mixtures with quite long

filters. Recently, Rivet et al. [7] have proposed a new approach to exploit vi-

sual speech information in such convolutive mixtures. Visual parameters were

used to regularize the permutation and the scale factor indeterminacies that

arise at each frequency bin in frequency-domain separation methods [8–11].

In parallel, the audiovisual (AV) coherence maximization approach was also

considered for the estimation of deconvolution filters in [12].

In this paper, we propose a simpler and more efficient approach for the same

problem (extracting one speech source from convolutive mixtures using the

∗ Corresponding author: rivet@icp.inpg.fr
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visual speech information). First we propose to use visual speech information,

for instance lip movements, as a voice activity detector (VAD): the task is to

assess the presence or the absence of a given speaker’s speech signal in the

mixture, crucial information to be further used in separation processes. Such

visual VAD (V-VAD) is characterized by a major advantage as opposed to

usual acoustic VADs: it is robust to any acoustic environment, whatever the

nature and the number of competing sources (e.g. simultaneous speaker(s),

non-stationary noises, convolutive mixture, etc.). Note that previous work on

VAD based on visual information can be found in [13]. The authors proposed

to model the distribution of the visual information using two exclusive classes

(one for speech non-activity and one for actual speech activity): the decision

is then based on likelihood criterion. However, the presented approach is com-

pletely different since we exploit the temporal dynamic of lip movements and

we do not use an a priori statistical model (Section 2).

Secondly, we propose a geometric approach for the extraction process exploit-

ing the sparseness of the speech signals (Section 3). One of the major drawback

of the frequency-domain separation methods is the need for regularizing the in-

determinacies encountered at each frequency bin [14]. Indeed, the separation is

generally done separately at each frequency bin by statistical considerations,

and arbitrary permutations between estimated sources and arbitrary scale

factors can occur leading to a wrong reconstruction of the estimated sources.

Several solutions to the permutation problem were proposed e.g. exploiting

the correlation over frequencies of the reconstructed sources [9,10], exploiting

the smoothness of the separating filters [11] or exploiting AV coherence [7].

Alternately, other methods try to exploit the sparseness of the sources. For

instance, Abrard and Deville in [15] proposed a solution in the case of instan-
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taneous mixture. They exploit the frequency sparseness of the sources: in the

time-frequency plane, areas where only one source is present are selected by

using an acoustic VAD, allowing the determination of the separating matrix.

However, their method has two restrictions: i) it concerns instantaneous mix-

tures while real mixtures are often convolutive, ii) it requires time-frequency

areas where only one source is present, which is a very strong assumption (the

number of such areas is very small 1 ). Recently, Babaie-Zadeh et al. [16] pro-

posed a geometric approach in the case of instantaneous mixtures of sparse

sources. The method is based on the identification of the main directions of

the present sources in the mixtures. Our proposed method is also geometric

but is quite different from their method, since in our approach i) only the

source to be extracted has to be sparse, ii) the indexation of the sections

where the source to be extracted is absent is done thanks to the proposed

V-VAD, iii) the case of convolutive mixtures is addressed. Also, in addition

to intrinsically solve the permutation problem for the reconstructed source,

the proposed method is refined by an additional stage to regularize the scale

factor ambiguity.

This paper is organized as follows. Section 2 presents the basis of the proposed

V-VAD. Section 3 explains the proposed geometrical separation using the

V-VAD first in the case of instantaneous mixtures and then in the case of

convolutive mixtures. Section 4 presents both the analysis of the V-VAD and

the results of the AV separation process before conclusions in Section 5.

1 In the case of N sources, if p is the probability of the source absence, the proba-

bility that only a given source is present is equal to pN−1 (1− p), assuming that the

presence of the sources is independent.
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2 Visual voice activity detection

In this section, we present our visual voice activity detector (V-VAD) [17]. For

the purpose of developing and assessing this V-VAD, a dedicated audiovisual

corpus, denoted C1, of 45min of spontaneous speech was recorded. Two male

French speakers were set in a spontaneous dialog situation with many speech

overlapping and non-speech events. The two speakers were placed and recorded

in a different room to collect separately the two audio signals. Each speaker

had a microphone and a micro-camera focused on the lip region (Figs. 1(a)

and 1(b)).

The visual information consists of the time trajectory of basic lip contour ge-

ometric parameters, namely interolabial width w(k) and height h(k), where k

represents discrete time index (Fig. 1(c)). Indeed, several studies have shown

that the basic facial lip edge parameters contain most of the visual informa-

tion according to both intelligibility criterion [18] and statistical analysis [19].

These parameters were automatically extracted by using a device and an al-

gorithm developed at the ICP [20]. The technique is based on blue make-up,

Chroma-Key system and contour tracking algorithms. The parameters are ex-

tracted every 20ms (the video sampling frequency is 50Hz), synchronously

with the acoustic signal which is sampled at 16kHz. Thus in the following, an

audiovisual signal frame is a 20ms section of acoustic signal associated with a

video pair parameters (w(k), h(k)).

The aim of a voice activity detector (VAD) is to discriminate speech and non-

speech sections of the acoustic signal. However, we prefer to use the distinction

between silence (defined as vocal inactivity) and non-silence sections for a

5
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(a)

(b)

(c)

Fig. 1. Experimental conditions used to record the corpus C1 (Fig 1(a) and 1(b)).

Fig. 1(c) presents the video parameters: internal width w and internal height h.

given speaker because non-speech sections are not bound to be silence, since

many kinds of non-speech sounds can be produced by the speaker (e.g. laughs,

sighs, growls, moans, etc.). Moreover, the separation system of Section 3 is

based on the detection of complete non activity of the speaker to be extracted

from the mixture (i.e. the detection of time periods where no sound is produced

by the speaker is used to extract the speech signal produced during active

periods). To provide an objective reference for the detection, we first manually

identified and labeled acoustic sections of silence and non-silence. Then, we
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Fig. 2. Distribution of the visual parameter π(t) for non-silence frames (Fig. 2(a))

and silence frames (Fig. 2(b)). Note that 10% and 36% of the points are at the

origin (closed lip shape) for the 2(a) and 2(b) figures respectively. A total (silence

and non-silence) of about 13200 20ms-frames was used.

defined a normalized video vector as π(k) = [w(k)/µw, κ h(k)/µh]
T where κ is

the coefficient of linear regression between w(k) and h(k), µw and µh the mean

values of w(k) and h(k) calculated on the complete corpus for each speaker

(T denotes the transpose operator).

As explained in [17], a direct VAD from raw lip parameters cannot lead to

satisfactory performances because of the intricate relationship between visual

and acoustic speech information. Indeed, Fig. 2 represents the distribution of

the first component π1(k) and the second component π2(k) of vector π(k) for

non-silence frames (Fig. 2(a)) and silence frames (Fig.2(b)). One can see that

there is no trivial partition between the two classes (silence vs. non-silence): for

instance, closed lip-shapes are present in both distributions and they cannot

be systematically associated with a silence frame. The V-VAD [17] is based

on the fact that silence frames can be better characterized by the lip-shape

movements. Indeed, in silence sections, the lip-shape variations are generally

small, whereas in speech sections these variations are generally quite stronger.
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So we proposed the following dynamical video parameter

v(k) =
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∂π2(k)

∂k

∣

∣

∣

∣

∣

, (1)

where the derivations will be implemented as differences. The k-th input frame

is classified as silence if v(k) is lower than a threshold and it is classified as

speech otherwise. However, direct thresholding of v(k) does not provide opti-

mal performance: for instance, the speaker’s lips may not move during several

frames, while he is actually speaking. Thus, we smooth v(k) by summation

over T consecutive frames

V (k) =
T−1
∑

i=0

αi v(k − i), (2)

where α is a real coefficient between 0 and 1 and T is chosen large enough

so that αT−1 is very small compared to α. Finally, the k-th frame is classified

as silence if V (k) is lower than a threshold δ (V (k) < δ), and it is classified

as speech otherwise (V (k) ≥ δ). Fig. 3 shows that the choice of coefficient α

must be considered carefully. A too small value of α (or no summation) leads

to a detection which is very sensitive to local perturbations (Fig. 3(a)). On the

contrary, a too large α leads to a quite incorrect detection (Fig. 3(c)). Fig. 3(b)

shows that the choice of α can largely improve the separation of silence and

non-silence sections. Since the aim of the V-VAD, as explained in Section 3,

is to detect frames where the speaker does not produce sounds, we propose

an additional stage before the decision in order to decrease the false alarm

(silence decision while speech activity). Only sequences of at least L frames

of silence are actually considered as silences. The value of L is varied in the

experiments section and the corresponding results are discussed. Finally, the

proposed V-VAD is robust to any acoustic noise and can be exploited even
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(c) α = .99, T = 1000

Fig. 3. Histograms of the dynamical visual parameter V (k) (on log-scale) for three

values of the pair (α, T ). Figure (a): instantaneous case α = 0 and T = 1 (i.e.

V (k) = v(k) since we adopt the classical convention 00 = 1 in (2)). Figure (b):

suitable value of α = .82, with T = 50. Figure (c): too large value of α = .99,

with T = 1000. In each case, the histogram plotted in black represents values V (k)

associated with silence sections, and the histogram plotted in white represents values

V (k) associated with non-silence sections. A total (silence and non-silence) of about

130,000 20ms-frames was used for this plot.

in difficult non-stationary environments. The performance of the proposed

V-VAD is given in Subsection 4.1.

3 Speech source separation using visual voice activity detector

In this section, we present the new geometrical method to extract one source of

interest, say s1(k), from the observations x(k). The main idea of the proposed

method is to exploit both i) the “sparseness” property of speech signals: in real

spontaneous speech situations (e.g. dialog), there exist some periods (denoted

“silence”) during which each speaker is silent as discussed in Section 2, ii) the

possibility to detect these silent sections by using the V-VAD of Section 2.

Note that the method allows the source with detected silence sections to be

extracted from the mixtures. If other sources are to be extracted, they should
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have their own associated silence detector. We first explain the principle of the

separation process in the simple case of complex instantaneous mixtures, then

we extend it to convolutive mixtures. We use the complex value for purpose of

generality because in the case of convolutive mixture, complex spectral values

will be considered.

3.1 Case of complex instantaneous mixtures

Let us consider the case of N complex independent centered sources s(k) ∈ CN

and N complex observations x(k) ∈ CN obtained by a complex mixing matrix

A ∈ CN×N :

x(k) = A s(k) (3)

where s(k) = [s1(k), · · · , sN(k)]T and x(k) = [x1(k), · · · , xN(k)]T . We suppose

that A is invertible. Thus to extract the sources s(k), we have to estimate a

separating matrix B ∈ CN×N , which is typically an estimate of the inverse

of A. It is a classical property of usual source separation systems that the

separation can only be done up to a permutation and a scaling factor [14],

that is

B ≃ P DA−1 (4)

where P is a permutation matrix and D is a diagonal matrix. We denote

C = BA as the global matrix. Thus, to extract the first source s1(k), only one

10
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row of B is necessary, we arbitrary choose the first one, denoted b1,:

2 :

ŝ1(k) = b1,: x(k) = b1,: A s(k) ≃ c1,1 s1(k). (5)

In the following, we propose a novel method to estimate b1,:. Moreover, we

go one step further by regularizing the scale factor so that the source s1(k) is

estimated up to a1,1 instead of c1,1. This corresponds to the situation where

the estimation of the source s1(k) is equal to the signal contained in x1(k)

when the other sources vanish (in other words, s1(k) is estimated up to its

mixing matrix ,i.e. channel+sensor, coefficient a1,1 defined in (3)).

To estimate b1,:, we propose a novel geometric method. The dimension of

the spaces Ss and Sx, spanned by the sources s(k) and the observations x(k)

respectively, is N (Fig. 4(a) and Fig. 4(b) for three uniform distributed real

sources). The space spanned by the contribution of source s1 in Sx is a straight

line denoted D1 (Fig. 4(c)). Now, suppose that an oracle 3 gives us T , a set

of time indexes when s1(k) vanishes, then the space S ′
x (resp. S ′

s), spanned by

x(k) (resp. s(k)), with k ∈ T is a hyper-plane (i.e. space of dimension N − 1)

of Sx (resp. Ss). Moreover, D1 is a supplementary space of S ′
x in Sx:

Sx = S ′
x ⊕D1. (6)

Note that S ′
x and D1 are not necessary orthogonal. Moreover, S ′

x is the space

spanned by the contribution of sources {s2(k), · · · , sN(k)} in Sx. Thus to ex-

tract s1, we have to project the observations x(k) on a supplementary space

of S ′
x (not necessary D1).

2 In this paper, bi,: = [bi,1, · · · , bi,N ], and b:,i = [b1,i, · · · , bN,i]
T , where bi,j is the

(i, j)th element of matrix B.
3 Such an oracle is provided by the V-VAD of Section 2.
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Ss
ց

(a)

Sx
ց

(b)

Sx
ց

S ′
x

↓
D1
↓

(c)

Sx
ց

S ′
x

↓
D′

1
↓

(d)

Fig. 4. Illustration of the geometric method in the case of 3 observations obtained

by an instantaneous mixture of 3 uniform sources. Fig. 4(a) shows 3 independent

sources (s1, s2, s3) (dots) with uniform distribution and Ss the space spanned by

them. Fig. 4(b) shows a 3 × 3 instantaneous mixture (x1, x2, x3) (dots) of these

sources and Sx the space spanned by the mixture. Fig. 4(c) shows S ′
x and D1 (solid

line). Fig. 4(d) shows S ′
x and D′

1 (solid line)

To find this supplementary space, a proposed solution is to use a principal

component analysis (PCA). Indeed, performing an eigenvalue decomposition

of the covariance matrix C
xx

= E{x(k)xH(k)} (.H denotes the complex con-

jugate transpose) of the observations x(k) with k ∈ T (the set of time indexes

when s1(k) vanishes) provides N orthogonal (since C
xx

is Hermitian) eigen-

vectors associated with N eigenvalues that represent the respective average
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powers of the N sources during time slots T . Since s1(k) is absent for k ∈ T ,

the smallest eigenvalue within the eigenvalues set is to be associated to this

source (this smallest eigenvalue should be close to zero). The straight line

D′
1, spanned by the (row) eigenvector, denoted g = [1, g2, · · · , gN ] (g1 is arbi-

trary chosen equal to 1), associated with the smallest eigenvalue, defines the

orthogonal supplementary space of S ′
x in Sx:

Sx = S ′
x

⊥
⊕ D′

1. (7)

Thus, for all time indexes k (now including when source s1 is active), an

estimate of source s1(k) can be extracted thanks to

ŝ1(k) = g x(k) ≃ c1,1s1(k). (8)

This way, b1,: is identified to g (i.e. we set b1,: = g), and we furthermore

have c1,1 = a1,1 + b1,2 a2,1 + · · ·+ b1,N aN,1. Note that scaling factor c1,1 can be

interpreted as an unchecked distortion since D1 is, a priori, a supplementary

space of S ′
x and not necessary the orthogonal supplementary space of S ′

x. As

explained below (Subsection 3.2), in the convolutive case this distortion can

dramatically alter the estimation of the source.

Now, we address the last issue of fixing the scaling factor to a1,1 instead of c1,1,

i.e. we have to find a complex scalar λ such that s†1(k) = λ ŝ1(k) ≃ a1,1 s1(k).

Thus λ is given by

λ =
a1,1

a1,1 +
∑

i>1 b1,i ai,1

=
1

1 +
∑

i>1 b1,i ai,1/a1,1

(9)

where ∀ i, b1,i were estimated as explained above (by identifying g and b1,:)

and the set {ai,1/a1,1}i has to be estimated. To estimate these coefficients, we
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propose a procedure based on the cancellation of the contribution of ŝ1(k) in

the different mixtures xi(k). Thus, let denote ǫi(βi) = E
{

|xi(k) − βi ŝ1(k)|2
}

,

where E{·} denote the statistical expectation operator. Since the sources are

independent, we have thanks to (3) and (8)

ǫi(βi) = E
{

|(ai,1 − βi c1,1)s1(k)|2
}

+
∑

j>1

E
{

|ai,j sj(k)|2
}

. (10)

Moreover, ∀ βi, ǫi(βi) is lower bounded by
∑

j>1 E
{

|ai,j sj(k)|2
}

and the lower

bound is obtained for βi = ai,1/c1,1. Let us denote β̂i as the optimal estimation

of βi in the minimum mean square error sense. β̂i is classically given by:

β̂i = arg min
βi

ǫi(βi) =
E{x∗

i (k) ŝ1(k)}

E{|ŝ1(k)|2}
(11)

where ·∗ denotes the complex conjugate. In practice, the expectation is re-

placed by time averaging and β̂i is given by

β̂i =

∑K
k=1 x∗

i (k)ŝ1(k)
∑K

k=1 |ŝ1(k)|2
. (12)

So, λ is given by (9) where ai,1/a1,1 is replaced by β̂i/β̂1. Note that we use the

ratio ai,1/a1,1 rather than ai,1 alone since βi is equal to ai,1 up to the unknown

coefficient c1,1. Finally, the source s1(k) is estimated by

s†1(k) = λb1,: x(k) ≃ a1,1 s1(k). (13)
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3.2 Case of convolutive mixtures

Let us now consider the case of convolutive mixtures of N centered sources

s(k) = [s1(k), · · · , sN(k)]T to be separated from N observations x(k) = [x1(k), · · · , xN (k)]T :

xm(k) =
N

∑

n=1

hm,n(k) ∗ sn(k). (14)

The filters hm,n(k), which model the impulse response between the nth source

and the mth sensor, are the entries of the global mixing filter matrix H(k).

The aim of the source separation is to recover the sources by using a dual

filtering process:

s†n(k) =
N

∑

m=1

gn,m(k) ∗ xm(k) (15)

where gn,m(k) are the entries of the global separating filter matrix G(k) that

must be estimated. The problem is generally considered in the frequency do-

main [8–11] where the single convolutive problem becomes a set of F (the

number of frequency bins) simple linear instantaneous problems with complex

entries. For all frequency bins f

Xm(k, f)=
N

∑

n=1

Hm,n(f)Sn(k, f) (16)

S†
n(k, f)=

N
∑

m=1

Gn,m(f)Xm(k, f) (17)

where Sn(k, f), Xm(k, f) and S†
n(k, f) are the Short-Term Fourier Trans-

forms (STFT) of sn(k), xp(k) and s†n(k) respectively. Hm,n(f) and Gn,m(f)

are the frequency responses of the mixing H(f) and demixing G(f) filters re-

spectively. Since the mixing process is assumed to be stationary, H(f) and

G(f) are not time-dependent, although the signals (i.e. sources, observations)
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may be non-stationary. In the frequency domain, the goal of the source sepa-

ration is to estimate, at each frequency bin f , the separating filter G(f). This

can be done thanks to the geometric method proposed in section 3.1. Indeed,

at each frequency bin f , (16) and (17) can be seen as a case of an instantaneous

complex mixture problem. Thus, b1,:(f) is the eigenvector associated with the

smallest eigenvalue of the covariance matrix C
xx

(f) = E{X(k, f)XH(k, f)}

with k ∈ T . Then, βi(f) is a function of frequency f and is estimated thanks

to

β̂i(f) =

∑K
k=1 X∗

i (k, f)Ŝ1(k, f)
∑K

k=1

∣

∣

∣Ŝ1(k, f)
∣

∣

∣

2 . (18)

So λ(f) is given by

λ(f) =
1

1 +
∑

i>1 b1,i(f) ai,1(f)/a1,1(f)
(19)

where ai,1(f)/a1,1(f) is replaced by β̂i(f)/β̂1(f). Finally, the source S1(k, f)

is estimated by

S†
1(k, f) = G1,:(f)X(k, f) ≃ H1,1(f) S1(k, f) (20)

where G1,:(f) = λ(f)b1,:(f), or

s†1(k) = g1,:(k) ∗ x(k) ≃ h1,1(k) ∗ s1(k). (21)

Note that in the convolutive case, if the scale factor regularization λ(f) is

not ensured, the source s1(k) is estimated up to an unknown filter which can

perceptually alter the estimation of the source. On the contrary, performing

the scale factor regularization ensures that the first source is estimated up to

the filter h1,1(k) which corresponds to the “channel+sensor” filter of the first
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observation. The complete method is summarized in the following Algorithm 1.

Algorithm 1 Geometric separation in the convolutive case

Estimate index silence frames T using V-VAD (Section 2)

Perform STFT on the audio observations xm(k) to obtain Xm(k, f)

for all frequency bins f do

{Estimation of b1,:(f)}

Compute C
xx

(f) = E{X(k, f)XH(k, f)} with k ∈ T

Perform eigenvalue decomposition of C
xx

(f)

Select g(f) the eigenvector associated with the smallest eigenvalue

b1,:(f) ⇐ g(f)

{Estimation of λ(f) to fix the scaling factor}

Estimate βi(f) with (18)

λ(f) is given by (19) where ai,1(f)/a1,1(f) is replaced by β̂i(f)/β̂1(f)

{Estimation of the demixing filter}

G1,:(f) ⇐ λ(f)b1,:(f)

end for

Perform inverse Fourier transform of G1,:(f) to obtain G1,:(k)

Estimate source s1(k) thanks to (15)

4 Numerical experiments

In this section, we first present the results about the V-VAD and next the

results of the geometric separation. All these experiments were performed

using real speech/acoustic signals. The audiovisual corpus denoted C1 used

for the source to be extracted, say s1(k), consists of spontaneous male speech

recorded in dialog condition (Section 2). Two others corpus, denoted C2 and
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C3 respectively, consist of phonetically well-balanced sentences in French of a

different male speaker and of acoustic noise recorded in a train, respectively.

4.1 Visual voice activity detector results

We tested the proposed V-VAD on about 13200 20ms-frames extracted from

corpus C1, representing about 4.4min of spontaneous speech. First of all, Fig. 5

illustrates the different possible relations between visual and acoustic data:

i) movement of the lips in non-silence (e.g. for time index k ∈ [3s, 4s]), ii)

movement of the lips in silence (e.g. for time index k ∈ [2s, 2.3s]), iii) non-

movement of the lips in silence (e.g. for time index k ∈ [1.5s, 2s]), iv) non-

movement of the lips in non-silence (e.g. for time index k ∈ [.9s, 1.1s]).

The detection results of the proposed V-VAD are presented as Receiver Op-

erating Characteristics (ROC) (Fig. 6). These curves present the percentage

of silence detection (i.e. ratio between the number of actual silence frames

detected as silence frames and the number of actual silence frames) versus

the percentage of false silence detection (i.e. ratio between the number of

actual non-silence frames detected as silence frames and the number of ac-

tual silence frames). Fig.6(a) highlights the importance of the summation by

a low-pass filter of the video parameter v(k) (1). Indeed, by lessening the

influence of short movement of the lips in silence and the influence of the

short static lips in speech, the summation (2) improves the performance of

the V-VAD: the false silence detection significantly decreases for a given si-

lence detection percentage (e.g. for 80% of correct silence detection, the false

silence detection decreases from 20% to 5% with a correct integration). Fur-

thermore, Fig. 6(b) shows the effect of the post-processing for the unfiltered
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Fig. 5. Silence detection. Top: acoustic speech signal with silence reference (solid

line), frames detected as silence (dotted line) and frames eventually retained as

silence when L = 20 consecutive silence frames (dashed line). Middle: static visual

parameters π1(k) (solid line) and π2(k) (dashed line). Bottom: logarithm of the

dynamical visual parameter V (k) with α = 0.82 (solid line, truncated at -3) and

the logarithm of the threshold δ (dashed line).

version of the video parameter v(k). The ROC curves show that a too large

duration (L = 200 frames corresponding to 4s) leads to a dramatical decrease

in the silence detection ratio. On the contrary, a reasonable duration (L = 20

frames corresponding to 400ms) allows the false silence detection ratio to be

reduced without decreasing the silence detection ratio in comparison to the

case of no post-processing (i.e. L = 1 frame). The gain due to post-processing

is similar to the gain due to the summation. Eventually, combination of both

summation and post-processing leads to a quite robust and reliable V-VAD.
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Fig. 6. ROC silence detection curves. Fig. 6(a): ROC curves with two summation

coefficients of the visual parameter V (k): instantaneous (α = 0, solid line) and suit-

able summation (α = 0.82, dashed line). Fig. 6(b) ROC curves with L consecutive

silence frames, in solid line L = 1 (i.e. instantaneous), in dashed line L = 20 frames

(400ms) and in dotted line L = 200 frames (4s).

4.2 Separation results

In this subsection, we consider the case of sources mixed by matrices of fil-

ters. These filters are finite impulse response (FIR) filters of 320 lags with

three significant echoes. They are truncated versions of measured impulse re-

sponses recorded in a real room [11]. All the acoustic signals are sampled at

16kHz, while the video signal is sampled (synchronously) at 50Hz. Different

configurations of mixing matrices were tested in the case of N sources and N

observations denoted (N ×N): (2× 2) and (3× 3). The three corpuses C1, C2

and C3 are used as s1(k), s2(k) and s3(k) respectively.

To compute the STFT, the signals are subdivided into blocks of 320 samples 4

4 Note that the FFT length is here adapted to the size of the mixing filters. Because

of potential cyclic convolution effects, longer mixing filters may require a refined

processing: e.g. in future work, the FFT-size can be increased according to the
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(i.e. 20ms frames). Then, a fast Fourier transform is applied on each block

using the zero-padding up to 2048 samples. The length of the separating filters

is thus 2048 samples. The blocks are overlapped about 0.85 of the block size.

To evaluate the performance of the proposed geometric method, we use dif-

ferent indexes. Since we are only interested in extracting s1(k), we define first

the performance index r1(f) for the source s1(k) as

r1(f) =
N

∑

j=1

|GH1,j(f)|

|GH1,1(f)|
− 1 (22)

where GH(f) = G(f)H(f) is the global system. This index quantifies the

quality of the estimated separating matrices G(f) for the source of interest.

For a good separation, this index should be close to zero.

We now define the contribution of a signal y(k) in another signal z(k). In a

general way, we can decompose z(k) such that z(k) = f(y(k)) + n(k), where

f(·) is a function. In the following (y|z)(k) denotes the contribution of y(k)

in z(k): (y|z)(k) = f(y(k)). Moreover, let denote Py = 1
K

∑K
k=1 |y(k)|2 the

average power of signal y(k).

Thus, the signal to interference ratio (SIR) for the first source is defined as

SIR(s1|s
†
1
) =

P(s1|s
†
1
)

∑

sj 6=s1
P(sj |s

†
1
)

. (23)

Note that (sj|s
†
1)(k) =

∑N
i=1 g1,i(k) ∗ hi,j(k) ∗ sj(k). This classical index in

source separation quantifies the quality of the estimated source s†1(k). For a

good estimation of the source (i.e. ∀j > 1, (sj |s
†
1)(k) ≃ 0), this index should

be close to infinity. Finally, we define the gain of the first source due to the

length of detected silences.
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separation process as

G1 =
SIR(s1|s

†
1
)

maxl SIR(s1|xl)
= min

l

SIR(s1|s
†
1
)

SIR(s1|xl)
(24)

with SIR(·|·) defined by (23) and (sj |xl)(k) = hl,j(k) ∗ sj(k). This gain allows

the improvement in SIR before and after the separation process to be quan-

tified. (The reference before separation being taken in the mixture where the

contribution of s1(k) is the strongest.)

Fig. 7 presents a typical result of the separation process in the case of two

sources and two sensors (2 × 2) with an approximate SIR for source s1(k)

equal to 0dB for both sensors. The two speech sources are plotted in Fig. 7(a)

and Fig. 7(b). One can see on Fig. 7(c) lnV1(k), the natural logarithm of video

parameter V (k) (continuous line) and ln δ the natural logarithm of the thresh-

old δ = 0.015 (dashdot line) used to estimate the silence frames (Section 2).

In this example, and after the results of Section 2, the smoothing coefficient

α is set to 0.82 and the minimal number of consecutive silence frames L is

chosen equal to 20 (i.e. the minimum length of a detected silence is 400ms).

The results of the V-VAD can be seen on Fig. 7(a): the frames manually in-

dexed as silence are represented by the dashdot line and the detected frames

as silence (which define the estimation of T ) are represented by the dashed

line. In this example 154 frames (i.e. 3.08s) were detected as silence repre-

senting 63.2% of silence detection while the false detection rate is only 1.3%.

The two mixtures obtained from the two sources are plotted in Fig. 7(d) and

Fig. 7(f). The result s†1(k) of the extraction of source s1(k) by the proposed

method is shown in Fig. 7(g). As a reference, the best possible estimation of

the first source (h1,1(k) ∗ s1(k)) is plotted in Fig. 7(e). In this example, the

gain G1 is equal to 17.4dB, while SIR(s1|s
†
1
) =18.4dB. One can see that the
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Fig. 7. Example of separation in the (2 × 2) case. Fig. 7(a) and 7(b): sources s1(k)

and s2(k) respectively. Fig. 7(c): natural logarithm lnV1(k) of the video parameter

associated with the first source s1(k). Fig. 7(d) and 7(f): mixtures x1(k) and x2(k)

respectively. Fig. 7(e): first source s1(k) up to the filter h1,1(k) (i.e. h1,1(k) ∗ s1(k));

tjis signal is used as a reference for the estimation of source s1(k) by our method.

Fig. 7(g): estimation s
†
1(k) of source s1(k) given by (21). Fig. 7(h): performance

index r1(f) (truncated at 1). 23
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Fig. 8. Expected gain G1 versus SIRin in the (2×2) (Fig. 8(a)) and (3×3) (Fig. 8(b))

cases, respectively. The curves show the mean and the standard deviation of G1 in

dB.

extraction of the first source is quite well performed. This is confirmed by the

index performance r1(f) (Fig. 7(h)): most values are close to zero.

Beyond this typical example, we processed extensive simulation tests. For each

simulation, only 20 seconds of signals were used. Each configuration of the

mixing matrices (N × N) and of the SIRin (where SIRin is the mean of the

SIRs for each mixtures: SIRin = 1/N×
∑

l SIR(s1|xl)) was run 50 times and the

presented results are given on average. To synthesize different source signals,

each speech/acoustic signal is shifted randomly in time. Fig. 8 presents the

gain G1 versus the SIRin in both (2×2) and (3×3) cases. One can see that in

both cases, the shape of the gains is the same: from low SIRin (-20dB) to high

SIRin (20dB), the gains are almost constant at a high value, demonstrating

the efficiency of the proposed method: we obtain gains of about 19dB in the

(2 × 2) case and about 18dB in the (3 × 3) case. Then, the gains decrease to

11dB in the (2 × 2) case and to 8dB in the (3 × 3) case for higher SIRin. It

is interesting to note that the gain can happen to be negative for the highest

SIRin (e.g. (2 × 2) with SIRin = 20dB). However, this is a rare situation
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since it happens only for isolated high ratio FA/BD (e.g. FA/BD > 15%),

i.e. when the set T of detected silence frames contains too many frames for

which s1(k) is active. Indeed in this case, a deeper analysis shows us that,

since the average power of s1(k) is larger than the average power of the other

source(s) for high SIRin, the smallest eigenvalue of the covariance matrix

estimated using this set T is not necessary associated with the first source.

On the contrary, even if the ratio FA/BD is high while the SIRin is low, the

influence of interfering s1(k) values occurred during false alarms remains poor

because these values are small compared to the other source(s). Altogether,

the method is efficient and reliable for a large range of SIRin values (note that

despite the previous remark, the smallest gain obtained at SIRin = 20dB for

(2 × 2) mixture is about 11dB on the average).

5 Conclusion

In this paper, we proposed an efficient method which exploits the comple-

mentarity of the bi-modality (audio/visual) of the speech signal. The visual

modality is used as a V-VAD, while the audio modality is used to estimate

the separation filter matrices exploiting detected silences of the source to be

extracted. The proposed V-VAD has a major interest compared to audio only

VAD: it is robust in any acoustic noise environment (e.g. in very low signal

to noise ratio cases, in highly non-stationary environments with possibly mul-

tiple interfering sources, etc.). Moreover, the proposed geometric separation

process is based on the sparseness of the speech signal: when the source to be

extracted is vanishing (i.e. during the silence frames given by the proposed V-

VAD), the power of the corresponding estimated source is minimized thanks
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to the separating filters. The proposed method can be easily extended to ex-

tract other/any sparse sources, using associated vanishing oracle. Note that

results were presented for (2 × 2) and (3 × 3) mixtures but the method can

be applied to any arbitrary (N × N) mixture with N > 3. Also, compared to

other frequency separation methods [7–11], the method has the strong advan-

tage to intrinsically regularize the permutation problem: this regularization

is an inherent byproduct of the“smallest eigenvalue” search. Finally, we can

conclude by underlining the low complexity of the method and low associated

computation cost, the video parameter extraction being set apart: compared

to the methods based on joint diagonalization of several matrices [7,11], the

proposed method requires the simple diagonalization of one single covariance

matrix.

Future works will mainly focus on the extraction of useful visual speech

information in more natural conditions (e.g. lips without make-up, moving

speaker). Also, we intend to develop an on-line version of the geometric algo-

rithm. These points are expected to allow the implementation of the proposed

method for real environment and real-time applications.
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