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In text-to-speech synthesis systems, phone duration influences the quality and natural-
ness of synthetic speech. In this study, we incorporate an ensemble learning technique
called gradient tree boosting into phone duration modeling as an alternative to the conven-
tional approach using regression trees, and objectively evaluate the prediction accuracy of
Japanese, Mandarin, and English phone duration. The gradient tree boosting algorithm
is a meta algorithm of regression trees: it iteratively builds the regression tree from the
residuals and outputs weighting sum of the regression trees. Our evaluation results show
that compared to the regression trees or other techniques related to the regression trees,
the gradient tree boosting algorithm can substantially and robustly improve the predictive
accuracy of the phone duration regardless of languages, speakers, or domains.

1. Introduction

In text-to-speech synthesis, phone duration determines the rhythm and tempo of syn-
thetic speech, and thus influences quality and naturalness. In general, control of phone
duration can be viewed as a problem of estimating nonlinear prediction functions using
several phonetic, prosodic, and linguistic features obtained from input text as explanatory
variables. From this point of view, many researchers have developed effective methods
for phone duration modeling using, e.g., linear regression [1], regression trees [2], neu-
ral networks [3],[4], and so on. However, these methods are not always satisfactory for
reproducing phone duration, as shown in [5].

In this study, we incorporate a promising approach called gradient tree boosting (GTB)
[6],[7] into phone duration modeling as an alternative to the conventional approach using
regression trees. The GTB algorithm is a meta algorithm for constructing multiple regres-
sion trees and taking advantage of them. The algorithm iteratively utilizes the residuals
of the current prediction function as the training data for the next regression tree to

∗The author presently belongs to University of Edinburgh.
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be constructed, and builds an augmented predictive function by simply combining the
iteratively constructed regression trees. Without modifying building algorithms of each
regression tree, it surprisingly increases the expressive ability of the regression trees much
more than with a single large regression tree [8]. To confirm the effectiveness of this ap-
proach and evaluate its language dependency, we have applied it to Japanese, Mandarin,
and English phone duration modeling and have objectively compared the approach with
conventional phone duration modeling approaches.

This paper is organized as follows. Section 2 gives an overview of the GTB algorithm
for reference. Experimental conditions and the objective evaluation results of Japanese,
Mandarin, and English phone duration modeling are described in Section 3. Comparison
results with several conventional duration modeling techniques are also described in this
section. Section 4 summarizes our findings.

2. Gradient Tree Boosting

In this section, we review gradient tree boosting (GTB) [6],[7]. We define explanatory
variables and a target value as x = (x1, x2, · · · , xK) and y, respectively. Let {yi,xi}N

1 be
a set of training data including N pairs. The GTB algorithm iteratively constructs M
different regression trees h(x,a1) . . . h(x,aM) from the set of training data and constructs
the following additive function F (x)

F (x) = β0 +
M∑

m=1

βm h(x,am), (1)

where βm and am are a weight and vector of parameters for the the m-th regression
tree h(x,am), and β0 is an initial value. Both the weight βm and the parameters am

are iteratively determined from m = 1 to m = M so that a loss function Ψ(y, F (x)) is
minimized. Now, we define an additive function that is combined from the first regression
tree to the (m− 1)-th regression tree as Fm−1(x). The weight βm and the parameters am

for the m-th regression tree should be determined as follows:

(βm, am) = argmin
β,a

N∑
i=1

Ψ(yi, Fm−1(xi) + βh(xi,a)), (2)

where F0(x) is an initial value and given by F0(x) = β0 = argminβ

∑N
i=1 Ψ(yi, β).

However, in general, it is not straightforward to solve Eq. (2). Therefore, gradient
tree boosting separately and approximately estimates (βm,am) with a simple two-step
procedure [6]. In the estimation of the parameters am for the regression tree, we determine
them so that the function defined by the regression tree approximates a gradient with
respect to the current function Fm−1(x) in the sense of least-square error as follows:

am = argmin
a

N∑
i=1

(ỹim − h (xi,a))2 , (3)

where ỹim is the gradient and is given by

ỹim = −
[
∂Ψ(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

. (4)
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When the m-th regression tree using the am has Lm leaf nodes, the regression tree is
given by

h(x, {Rlm}Lm
l=1) =

Lm∑
l=1

ȳlm1(x ∈ Rlm), (5)

where Rlm is a disjoint region that the l-th leaf node of the m-th regression tree defines.
1(·) is a Boolean function that outputs 1 in case the argument of the function is true. ȳlm

is a constant for the Rlm-th region, defined as the mean of training data that belongs to
the l-th leaf node of the m-th regression tree. Since the output ȳlm of the regression tree
is constant, the weight βm can be straightforwardly estimated using a line search on the
loss function. Then, a new additive function Fm(x) is updated as follows:

Fm(x) = Fm−1(x) + ν
Lm∑
l=1

γlm1(x ∈ Rlm), (6)

where γlm = βmȳlm and 0 < ν < 1 is a shrinkage parameter to improve the generalization
capability. In this study, we utilize the following least-square loss function Ψ(y, F ) =
(y −F )2/2. This loss function leads to ỹim = yi −Fm−1(xi) and F0(x) = ȳ. Here ȳ is the
mean of all the training data.

3. Experiments

3.1. Experimental Conditions
We conducted objective evaluations of the prediction error of Japanese, Mandarin, and

English phone duration. The Japanese speech database consisted of 503 phonetically
balanced sentences. These sentences were uttered by a female speaker and a male speaker
in a normal reading style. The Mandarin speech database consisted of 1,680 sentences
from the travel domain. These sentences were uttered by a female speaker in a normal
reading style. These speakers are professional narrators. Detailed description and analysis
of these database are given in [10],[11]. The English speech database used was CSTR US
KED Timit2, consisting of 453 phonetically balanced sentences. These sentences were
uttered by an American male speaker in a normal reading style.

In the following experiments, we used the manually labeled phone duration and the
following explanatory variables of the utterances of each speaker. The 47 Japanese ex-
planatory variables consisted of 5 phonetic features, 3 mora-level features, 12 morpheme
features, 12 accentual features, 12 breath-group-level features, and 3 utterance-level fea-
tures. The 47 Mandarin explanatory variables consisted of 5 phonetic features, 10 tone
relevant features, 12 morpheme features, 16 breath-group-level features, and 4 utterance-
level features. The 53 English explanatory variables consisted of 5 phonetic features, 2
segment-level features, 22 syllable-level features, 12 word-level features, 9 phrase-level fea-
tures, and 3 utterance-level features. Here the number of Japanese phonemes including
vowel and consonant was 40. The number of Mandarin units including initial, which is an
initial consonant of a syllable, and final, which is the part after the initial of the syllable,

2http://festvox.org/dbs/dbs_kdt.html
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Final duration, Mandarin female speaker
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Vowel duration, U.S. English male speaker
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Figure 1. Histogram of vowel and final duration.

was 583. The number of English phonemes including vowel and consonant was 44. Note
that the accentual features in Japanese and tone-relevant features in Mandarin were also
manually labeled based on the speech data. Figures 1 and 2 show the histograms of phone
duration for these speakers. From these figures, we can clearly see that the final has a
relatively longer duration than those of the Japanese or English vowels. This would be
due to the fact that Mandarin finals consists of an optional final-head (medial), which
is the diphthong glide before the center vowel, a final-center (nucleus), and an optional
final-tail (coda), which is the part after the center vowel such as /-n/. Those optional
parts in the finals can make its duration longer.

In addition to performance comparison of the GTB algorithm with the conventional
duration modeling methods, there are a lot of interesting factors that might depend on the
performance of the duration modeling. However, since manually labeling duration and
several explanatory variables of the utterances requires huge costs, it is costly impractical
to investigate all possible combinations of the factors. Thus, the following strategy was
adopted for efficiency: Several factors and concerns such as gender or domain dependency
in the GTB algorithm were first evaluated and analyzed in the Japanese database. Then,
language dependency was evaluated via the comparison of GTB and other methods in all
the languages.

We objectively evaluated all the sentences included in these speech databases using a
5-fold cross-validation method. For the objective evaluations of duration modeling, we
utilized the following two measures: pseudo R-squared (R2)4and root mean squared error

3Traditional descriptions of the Mandarin speech utilizes the initials and finals rather than individual
phonemes.
4In nonlinear regression methods, strictly speaking, the original R-squared, that is, the square of the
Pearson product-moment correlation coefficient, is not equivalent to (1 - the relative squared error).
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Consonant duration, Japanese female speaker
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Consonant duration, Japanese male speaeker
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Initial duration, Mandarin female speaker
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Consonant duration, U.S. English male speaker
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Figure 2. Histogram of consonant and initial duration.

(RMSE), between the predicted duration and that of the real utterance. The R2 and
RMSE are defined by

R2 ≡ 1 −
∑T

i=1(F (xi) − yi)
2∑T

i=1(yi − ȳ)2
, (7)

RMSE ≡

√∑T
i=1(F (xi) − yi)2

T
, (8)

where T is the number of test samples, and ȳ =
∑T

i=1 yi/T is the mean of the test samples.
We made use of a free data mining software called WEKA5 [9] in these evaluations.

For the GTB, we utilized binary regression trees. Note that we conducted pruning to
the respective regression trees. We then set the number of regression trees M to 10 and
the shrinkage parameter ν in the GTB to 0.5 based on several preliminary experimental
results, respectively.

3.2. Evaluation of Phone Duration Modeling Using Gradient Tree Boosting
First, we evaluated the prediction accuracy on Japanese phone duration modeling. In

each training of the cross-validation, we divided the set into two groups, that is, a vowel
group and a consonant group, to assess the effect for each group. The regression trees
were independently built for each group of each speaker. We also evaluated a conventional
approach using regression trees as a baseline model.

Tables 1 and 2 show the results for the Japanese female and male speakers, respectively.
In these tables, (a) shows the results of vowel duration, and (b) shows those of consonant
duration. From the tables, we can firstly see that the conventional method using the

5http://www.cs.waikato.ac.nz/ml/weka/
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Table 1
Objective evaluation results for a Japanese female speaker.

(a) Vowel (b) Consonant

Model R2 RMSE (ms)

Regression Tree 0.55 14.94
GTB 0.61 13.87

Model R2 RMSE (ms)

Regression Tree 0.80 13.85
GTB 0.85 12.08

Table 2
Objective evaluation results for a Japanese male speaker.

(a) Vowel (b) Consonant

Model R2 RMSE (ms)

Regression Tree 0.69 17.16
GTB 0.73 16.12

Model R2 RMSE (ms)

Regression Tree 0.73 14.24
GTB 0.78 12.77

regression trees has good R2 values in both vowel and consonant duration as reported in
the previous studies. Furthermore, we can see that the GTB algorithm improves the R2

values and RMSE for both vowel and consonant duration, compared to the regression tree,
that is, the baseline model of this method. Especially in consonant duration, we obtained
substantial improvements. For example, compared with the regression tree, it reduced
the RMSE of consonant duration for the female speaker from 13.85 [ms] to 12.08 [ms].
We attribute this to the ability of the GTB algorithm to capture the complex nonlinear
functions with a high degree of accuracy.

3.3. Discussion
In this subsection, we explore the reasons the GTB improved the objective measures in

detail. We inferred from several preliminary experiments that the following two advan-
tages of the GTB are pivotal elements: 1) When the GTB constructs a new regression
tree from the residuals of the current prediction function, this algorithm constructs it re-
gardless of the structures of previous regression trees. As a result, in the space defined by
the new tree, several errors that were calculated from different leaf nodes of the previous
tree are merged into a single node. In other words, a leaf node of the new regression tree
for the residuals effectively affects parts of several leaf nodes of the previous regression
tree. On the other hand, the node splits of the regression tree only divide the disjoint
regions into two smaller or more disjoint regions. 2) The shrinkage parameter ν in Eq. (6)
has an ability to improve the generalization capability.

To confirm this, we compared the GTB with regression trees having almost the same
number of leaf nodes. When the binary regression tree has (L−1) nodes and L leaf nodes,
the tree requires memory space for L − 1 questions and indexes from the nodes to their
child nodes, and requires model parameters of L constant values for the leaf nodes. On
the other hand, when the GTB has M regression trees and each tree has Lm leaf nodes,
it totally has

∑M
m−1 Lm − M nodes and

∑M
m−1 Lm leaf nodes. Since the weights βm for

the GTB are saved as γlm in the leaf nodes of the trees as shown in Eq. (6), the GTB
only requires memory space for

∑M
m−1 Lm −M questions and indexes to child nodes, and
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Table 3
Comparison of numbers of leaf nodes of the regression tree and gradient tree boosting.

Model
Number of leaf nodes of the m-th regression tree

R2 RMSE (ms)
1 2 3 4 5 6 7 8 9 10 Sum

Regression Tree 67 67 0.50 15.59
Regression Tree 166 166 0.52 15.21
Regression Tree 321 321 0.50 15.48
Regression Tree 498 498 0.49 15.66
GTB ν = 1.0 67 40 32 24 1 164 0.55 14.71
GTB ν = 0.5 67 71 59 33 34 22 17 20 1 324 0.58 14.18
GTB ν = 1.0 166 67 27 29 4 12 14 1 320 0.55 14.71
GTB ν = 0.5 166 93 59 58 32 32 21 17 18 1 497 0.59 14.03

model parameters of
∑M

m−1 Lm constant values. Therefore, when the GTB has the same
number of leaf nodes as that of the regression trees, i.e.,

∑M
m−1 Lm = L, we can consider

that both techniques have the same number of model parameters, and that the memory
space for the GTB is slightly smaller than that for the regression tree.

We also evaluated objective measures using the GTB between before and after adjust-
ment of the shrinkage parameter ν. We utilized a set of vowel duration of 400 sentences
uttered by a Japanese female speaker as training data, and the other 103 sentences uttered
by the same speaker as test data.

Table 3 shows the results of vowel duration. Furthermore, it shows the number of leaf
nodes of each regression tree in the GTB and its sum. It also shows the results of only
the first regression tree of the GTB and those of the regression trees having almost the
same numbers of leaf nodes as those of the GTB. When we compare the several results
of the regression trees, we can see that the regression tree having 166 nodes had the best
objective measures, and the results of the trees having more than 166 nodes became worse
because of overfitting. Then, from the comparison of the GTB using a total of 164 leaf
nodes with the regression trees having 67 and 166 leaf nodes, it can been seen that the
GTB using a total of 164 leaf nodes improved the objective measures to be better than the
regression tree using 166 leaf nodes. For example, it reduced the RMSE from 15.59 [ms]
to 14.71 [ms], whereas the regression tree only reduced it from 15.59 [ms] to 15.21 [ms].
Additionally, from the comparison of the GTB using a total of 320 leaf nodes with the
regression trees having 166 and 321 leaf nodes, we see that the GTB similarly improved
the objective measures, whereas the regression trees made them worse. Note that the
shrinkage parameter ν in this GTB was set to 1, and the regression trees for the GTB
were constructed directly from the residuals. Therefore, the only difference between these
regression trees and the GTB is the splitting method for the nodes described above, and
we can clearly see the effect from these results.

Moreover, from the comparison of the results using the experimentally adjusted shrink-
age parameter (ν = 0.5) with non-adjusted results (ν = 1), we can see that it improved
the objective measures further. The role of the shrinkage parameter is similar to a so-
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Table 4
Comparison results with other duration modeling techniques for the Japanese female
speaker.

(a) Vowel (b) Consonant

Model R2 RMSE (ms)

Linear Regression 0.58 14.32
Regression Tree 0.55 14.94
Model Tree 0.58 14.28
Bagging Tree 0.57 14.51
GTB 0.61 13.87

Model R2 RMSE (ms)

Linear Regression 0.76 15.37
Regression Tree 0.80 13.85
Model Tree 0.83 12.94
Bagging Tree 0.82 13.47
GTB 0.85 12.08

Table 5
Comparison results with other duration modeling techniques for the Japanese male
speaker.

(a) Vowel (b) Consonant

Model R2 RMSE (ms)

Linear Regression 0.71 16.57
Regression Tree 0.69 17.16
Model Tree 0.72 16.48
Bagging Tree 0.71 16.71
GTB 0.73 16.12

Model R2 RMSE (ms)

Linear Regression 0.70 14.88
Regression Tree 0.73 14.24
Model Tree 0.76 13.53
Bagging Tree 0.74 13.88
GTB 0.78 12.77

called “learning rate” or “step length” parameter in steepest/gradient descent methods
[12]. Then, from the comparison of the GTB (ν = 0.5, total leaf nodes: 324) with the
GTB (ν = 1, total leaf nodes: 320), we can guess their combination effects. We have thus
identified two reasons for which the GTB improved the objective measures to be better
than the regression trees.

3.4. Comparison with Other Techniques
Next, we compared the GTB technique with several conventional techniques for du-

ration modeling. Here we first selected the following three techniques related to the
regression trees: linear regression [1], model tree [13], which is an integrated technique of
the linear regression and the regression tree, and the bagging algorithm [14][15], which is
a different meta algorithm of the regression trees.

In the linear regression, explanatory variables having multicollinearity were removed in
advance. Then backward stepwise selection using the AIC criterion was used for eliminat-
ing unnecessary explanatory variables from the estimation of the regression coefficients.
In the model tree, each leaf node utilized a linear regression function instead of a constant
value. This approach is technically similar to [16]. Its training condictions used were the
same as those of the regression trees and the above linear regression. In the duration mod-
eling using the bagging algorithm [15], several pseudo sets of training data were created
by using random sampling with replacement. Then, a regression tree was constructed
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Figure 3. A scatter plot of the consonant duration for the Japanese female speaker.

for each set of training data. Finally, the average of the regression values of the several
regression trees was utilized for determining the phone duration. This technique aims
to obtain a more reliable predictive value than a single regression tree. For this bagging
algorithm, the same number of trees as the GTB algorithm was used. Other experimental
conditions are the same as in Section 3.2.

Tables 4 and 5 show the comparison results for the Japanese female and male speakers,
respectively. In these tables, (a) shows the results of vowel duration, and (b) shows those
of consonant duration. Comparing the results of the linear regression in these tables and
those of the regression tree, we can see that the linear regression has better objective
measures in vowel duration, whereas the regression tree has better objective measures in
consonant duration. Thus, it can be seen that for both vowel and consonant duration,
the model tree is slightly better than either the linear regression or regression tree. This
is because the model tree can utilize the advantages of both the regression tree and linear
regression. Furthermore, we can also see that the bagging algorithm has some effects
on the objective measures compared to the regression tree. However, they were slight
improvements. In addition to this, we can finally see that the GTB algorithm is better
than these techniques in all the objective measures of both vowel and consonant duration.

Figure 3 shows the scatter plot of the real and predicted consonant duration for the
Japanese female speaker. We can see that the plotted data of each technique diagonally
distributes in this figure. Then, we can confirm that the conventional method using even
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Table 6
Ratio of samples having allowable margin of errors and outliers of each technique. The
consonant duration for the Japanese female speaker is used for evaluation. Standardized
residuals ϵ of consonant duration are compared at several normal distribution percent
points.

Model Ratio of Acceptable Samples (%) Ratio of Outliers(%)
|ϵ| < 0.03 |ϵ| <0.13 |ϵ| <0.32 |ϵ| >1.96 |ϵ| >2.58 |ϵ| >3.29

N (0, 1) 2.0 10.0 25.0 5.0 1.0 0.1

Linear Regression 3.0 11.8 30.5 5.4 2.3 0.9
Regression Tree 2.8 13.5 29.5 5.3 1.5 0.7
Model Tree 2.8 13.3 32.7 5.6 2.0 0.8
Bagging Tree 2.8 13.4 30.2 5.3 1.5 0.7
GTB 3.5 13.3 31.8 5.4 1.6 0.7

Table 7
Comparison results with multilayer perceptrons for the Japanese male speaker.

(a) Vowel (b) Consonant

Model R2 RMSE (ms)

MLP 0.54 22.65
GTB 0.73 16.12

Model R2 RMSE (ms)

MLP 0.55 20.22
GTB 0.78 12.77

the linear regression or regression trees can predict good duration to a certain degree.
Moreover, we can also see that the GTB algorithm reduces the prediction errors and fits
the data much better, since the distribution at the diagonal line has narrower breadth
and higher density than other techniques.

Table 6 shows ratio of the samples having allowable margin of errors and outliers of
each technique. The same consonant duration for the Japanese female speaker is used
for the evaluation. Standardized residuals of the consonant duration are compared at
several normal distribution percent points. For the samples having allowable margin of
errors, the number of samples having standardized residuals under 0.03, 0,13 and 0.32 are
counted. They correspond to 2%, 10%, and 25% points of the normal distribution. For
the outliers, the number of samples having standardized residuals over 1.96, 2.58 and 3.29
are counted. They correspond to 5%, 1%, and 0.1% points of the normal distribution.
From this table, we can confirm that the GTB algorithm reduces the prediction errors and
generally increases the ratio of the samples having allowable margin of errors compared to
the regression tree, and that linear regression have more outliers than other techniques.
Unfortunately, the GTB algorithm does not seem to have an ability to reduce the outliers
compared to the regression tree.

For reference, we compared the GTB algorithm with a neural-network-based method.
As a feedforward neural network, we selected multilayer perceptrons (MLP). The MLP
consisted of an input layer, a hidden layer having several units with sigmoid output
functions, and an output layer which outputs weighted sum of the sigmoid functions. Its
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Table 8
Objective evaluation results in different domains for a Japanese male speaker.

(a) Newspaper (b) Travel conversation

Model R2 RMSE (ms)

Linear Regression 0.71 16.02
Regression Tree 0.73 15.47
Model Tree 0.75 14.83
Bagging Tree 0.74 15.11
GTB 0.77 14.38

Model R2 RMSE (ms)

Linear Regression 0.74 16.31
Regression Tree 0.74 15.78
Model Tree 0.75 15.33
Bagging Tree 0.75 15.27
GTB 0.78 14.61

Table 9
Objective evaluation results of a Mandarin female speaker.

(a) Final (b) Initial

Model R2 RMSE (ms)

Linear Regression 0.56 51.46
Regression Tree 0.56 51.40
Model Tree 0.56 51.44
Bagging Tree 0.59 49.26
GTB 0.64 46.19

Model R2 RMSE (ms)

Linear Regression 0.76 18.75
Regression Tree 0.77 18.48
Model Tree 0.77 18.17
Bagging Tree 0.78 17.96
GTB 0.79 17.29

training algorithm used was the back-propagation. The number of epochs was 500. We
first adjusted the number of the units in the hidden layer and then adjusted learning rate
manually.

Table 7 shows the results of MLP and GTB. From the table, we can see that the
MLP-based method has significantly worse results than those of the GTB algorithm.
Considering even the simple linear regression or regression trees work well to a certain
degree, this would be due to “Occam’s razor,” i.e., entities should not be multiplied beyond
necessity.

3.5. Evaluation of Domain Dependency
Next, we investigated the prediction accuracy of the GTB algorithm and other related

modeling techniques in different domains. The selected domains were newspapers and
travel conversation. Texts used for the domains were selected from the Mainichi news-
paper corpus6 and the ATR Basic Travel Expression Corpus (BTEC) [17]. We utilized a
speech database which contains 832 sentences for the newspapers domain and 1398 sen-
tences for the travel conversation domain. These sentences were uttered by the Japanese
male speaker in reading style, and phone duration and 47 explanatory variables of the
utterances were manually labeled as heretofore. We utilized the same 5-fold cross valida-
tion method and evaluated all the sentences included in the database. In this experiment,
we constructed the regression trees for each domain regardless of vowel and consonant.

6http://www.nichigai.co.jp/sales/mainichi/mainichi-data.html
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Figure 4. Comparison of vowel and finals duration of Japanese, Mandarin, and English.

Table 10. Ratio of samples having allowable margin of errors and outliers of each tech-
nique. The final duration for the Mandarin female speaker is used for evaluation. Stan-
dardized residuals ϵ of final duration are compared at several normal distribution percent
points.

Model Ratio of Acceptable Samples (%) Ratio of Outliers(%)
|ϵ| < 0.03 |ϵ| <0.13 |ϵ| <0.32 |ϵ| >1.96 |ϵ| >2.58 |ϵ| >3.29

N (0, 1) 2.0 10.0 25.0 5.0 1.0 0.1

Linear Regression 2.5 11.0 26.9 5.4 1.8 0.5
Regression Tree 3.1 12.1 28.4 6.0 1.9 0.4
Model Tree 2.4 10.0 25.6 5.7 1.7 0.4
Bagging Tree 2.8 12.8 28.7 5.6 1.8 0.5
GTB 3.2 12.2 29.7 6.0 1.9 0.5

Other conditions are the same as subsection 3.4.
Table 8 shows the results in these domains. In the table, (a) shows the result in

the newspapers domain and (b) shows that in the travel conversation domain. These
results indicate the same tendency of Table 5 and confirm again that the GTB algorithm
outperforms all the other methods as well as previous experiments. It is also important
to remember that the GTB algorithm is a robust meta algorithm which works well even
in these different domains or conditions.

3.6. Evaluation of Language Dependency
Next, we evaluated the prediction accuracy on Mandarin phone duration modeling. In

each training of the cross-validation, we divided the set into two groups, that is, an initial
group and a final group. Other conditions are the same as in Section 3.2.

Table 9 shows the results of the Mandarin phone duration modeling. In the table, (a)
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Figure 5. Scatter plot of the final duration for the Mandarin female speaker.

shows the results of final duration, and (b) shows those of initial duration. It can be
seen that the GTB algorithm outperforms the conventional method using regression trees
in both the final and initial parts. Contrary to the results for Japanese duration, we
obtained substantial improvements in the final part. For example, it reduced the RMSE
in the final part from 51.40 [ms] to 46.19 [ms]. In addition to this, we see that there seem
to be differences between the characteristics of Mandarin phone duration in the final part
and that of Japanese phone duration in the vowel part. For example, the RMSE is higher
than that observed for Japanese phone duration. However, this is because the duration
of each final in the Mandarin speech originally had larger variance than in Japanese
or English speech as shown in Fig. 4. The figure shows the distributions of vowel and
final duration used. The box-plots in the figure represents the shortest duration, lower
quartile, median, upper quartile, and longest duration. From this figure, we can see that
the finals originally have more than twice as long duration as the Japanese vowels. The
same natural tendency of the much larger variation of the final duration can be seen in
[18]. In fact, when we compare the accuracy of Mandarin and Japanese phone duration
modeling in the R2 where mean squared error is normalized by the variance, the accuracy
of the Mandarin duration modeling is comparable to that of Japanese duration modeling.

Figure 5 and table 10 show the scatter plot of the real and predicted final duration,
and ratio of the samples having allowable margin of errors and outliers of each technique
in the final duration. From these results, we can confirm that the GTB algorithm reduces
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Figure 6. Scatter plot of the final “e” for the Mandarin female speaker.

Table 11
Objective evaluation results of an U.S. English male speaker.

(a) Vowel (b) Consonant

Model R2 RMSE (ms)

Linear Regression 0.58 25.16
Regression Tree 0.54 26.41
Model Tree 0.58 25.35
Bagging Tree 0.56 25.82
GTB 0.61 24.51

Model R2 RMSE (ms)

Linear Regression 0.53 21.43
Regression Tree 0.53 21.51
Model Tree 0.55 21.06
Bagging Tree 0.55 20.94
GTB 0.58 20.18

the prediction errors and generally increases the ratio of the samples having allowable
margin of errors even in the Mandarin speech data as well as the Japanese speech data.
The differences between the GTB algorithm and regression tree in the figure and table
seem smaller than those in the Japanese vowel duration. However, there are still crucial
differences between the GTB algorithm and regression tree. Figure 6 show the scatter
plot of the real and predicted duration of the final “e” for the female speaker. We can
clearly see that the distribution of the predicted duration by the regression tree is very
discrete and limited, since the outputs of the regression tree are restricted to the constants
which leaf nodes have. On the other hand, we can see that the GTB algorithm overcomes
the drawback of the regression tree and the distribution of the predicted duration by the
GTB algorithm becomes continuous and varied, although the GTB algorithm is simple
weighted sum of the multiple regression trees.

Finally, we evaluated the prediction accuracy on English phone duration modeling.
Experimental conditions are the same as in Section 3.2. Table 11 shows the results of the
English phone duration modeling. In this table, (a) shows the results of vowel duration,
and (b) shows those of consonant duration. As in the previous experiments using Japanese
and Mandarin speech data, we can see that the GTB algorithm substantially improves
the objective measures of both vowel and consonant duration, compared to the regression
tree. From these results, we can conclude that language dependency of the GTB algorithm
is low and this algorithm would have similar effects in other languages.
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4. Concluding Remarks

In this study, we incorporated the GTB algorithm into phone duration modeling as
an alternative to the regression tree approach, and objectively evaluated the prediction
accuracy of Japanese, Mandarin, and English phone duration. The GTB algorithm is
a meta algorithm of regression trees: it iteratively builds the regression tree from the
residuals and outputs weighting sum of the regression trees. Since it utilizes multiple re-
gression trees, it increases the number of parameters compared to a single regression tree.
However, the algorithm can robustly improve the prediction accuracy of the regression
tree with ease, whereas increasing the number of the number of leaf nodes for the single
regression tree put the accuracy at risk. As the same time, it solves a crucial problem
of discrete outputs of the regression trees. In our experiments, it reduced the RMSE of
consonant duration for the Japanese female speaker from 13.85 [ms] to 12.08 [ms] and the
final duration for the Mandarin female speaker from 51.40 [ms] to 46.19 [ms]. Consider-
ing the building algorithms or criterion of each regression tree in the GTB algorithm are
the same as those of the original regression tree, the amazing improvement rates of the
GTB algorithm would be more than one expected. Then, it was constantly better than
several techniques related to the regression trees and nonlinear regression techniques for
duration modeling. Moreover, our evaluation results have confirmed that the GTB algo-
rithm can substantially improve the predictive accuracy of the phone duration regardless
of languages, speakers, or domains which we used. Since the information required for the
GTB algorithm is the same as that for the conventional regression trees, the algorithm
would be especially beneficial in a situation where automatically constructing the dura-
tion models is preferable to individually analyzing and determining the structure of the
duration models, as in multilingual text-to-speech synthesis. Our future work will focus
on F0 modeling using ensemble learning.
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