
HAL Id: hal-00499210
https://hal.science/hal-00499210

Submitted on 9 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ASR Post-Correction for Spoken Dialogue Systems
Based on Semantic, Syntactic, Lexical and Contextual

Information
Ramón López-Cózar, Zoraida Callejas

To cite this version:
Ramón López-Cózar, Zoraida Callejas. ASR Post-Correction for Spoken Dialogue Systems Based on
Semantic, Syntactic, Lexical and Contextual Information. Speech Communication, 2008, 50 (8-9),
pp.745. �10.1016/j.specom.2008.03.008�. �hal-00499210�

https://hal.science/hal-00499210
https://hal.archives-ouvertes.fr

Accepted Manuscript

tactic, Lexical and Contextual Information

Ramón López-Cózar, Zoraida Callejas

PII: S0167-6393(08)00036-8

DOI: 10.1016/j.specom.2008.03.008

Reference: SPECOM 1695

To appear in: Speech Communication

Received Date: 31 August 2007

Revised Date: 9 January 2008

Accepted Date: 14 March 2008

Please cite this article as: López-Cózar, R., Callejas, Z., ASR Post-Correction for Spoken Dialogue Systems Based

on Semantic, Syntactic, Lexical and Contextual Information, Speech Communication (2008), doi: 10.1016/j.specom.

2008.03.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ASR Post-Correction for Spoken Dialogue Systems Based on Semantic, Syn

http://dx.doi.org/10.1016/j.specom.2008.03.008
http://dx.doi.org/10.1016/j.specom.2008.03.008
http://dx.doi.org/10.1016/j.specom.2008.03.008

ACCEPTED MANUSCRIPT

ASR Post-Correction for Spoken Dialogue Systems Based on

Semantic, Syntactic, Lexical and Contextual Information

Ramón López-Cózar, Zoraida Callejas
Dept. of Languages and Computer Systems, Computer Science Faculty

18071 Granada University, Spain, Tel.: +34 958 240579, FAX: +34 958 243179
E-mail: {rlopezc, zoraida}@ugr.es

 Abstract

This paper proposes a technique to correct speech recognition errors in spoken dialogue

systems that presents two main novel contributions. On the one hand, it considers

several contexts where a speech recognition result can be corrected. A threshold learnt

in the training is used to decide whether the correction must be carried out in the context

associated with the current prompt type of a dialogue system, or in another context. On

the other hand, the technique deals with the confidence scores of the words employed in

the corrections. The correction is carried out at two levels: statistical and linguistic. At

the first level the technique employs syntactic-semantic and lexical models, both

contextual, to decide whether a recognition result is correct. According to this decision

the recognition result may be changed. At the second level the technique employs basic

linguistic knowledge to decide about the grammatical correctness of the outcome of the

first level. According to this decision the outcome may be changed as well.

Experimental results indicate that the technique enhances a dialogue system’s word

accuracy, speech understanding, implicit recovery and task completion rates by 8.5%,

16.54%, 4% and 44.17%, respectively.

Keywords: Spoken dialogue systems, speech recognition, speech understanding, natural

language processing, speech-based human-computer interaction.

ACCEPTED MANUSCRIPT

1. Introduction

As an effort to improve automatic information services making them available 24 hours

a day, 365 days a year, many companies and official institutions have recently started to

employ spoken dialogue systems (McTear, 2004; López-Cózar and Araki, 2005; Kraiss,

2006; Wahlster, 2006). These systems are computer programs developed to provide

specific services using speech, for example airplane travel information (Seneff and

Polifroni, 2000), train travel information (Billi et al. 1997), weather forecasts (Zue et al.

2000; Nakano et al. 2001), fast food ordering (Seto et al. 1994; López-Cózar et al.

1997), call routing (Lee et al. 2000) or directory assistance (Kellner et al. 1997).

In despite of their advantages, spoken dialogue systems are rejected by many

users because the interaction they allow is not very natural sometimes. This is caused by

several reason, but perhaps it is mainly a consequence of the current limitations of the

state-of-the-art automatic speech recognition (ASR) for real-word applications (Rabiner

and Juang, 1993; Huang et al. 2001; Skantze, 2005). Hence, to make dialogue systems

more widely accepted, it is very important to develop techniques to increase the

robustness of the speech recogniser employed by these systems. In order to make these

techniques more easily employable by the research community, we believe that the

techniques will require a small effort in corpus development, they must be easily

applicable to different tasks, they will require small amounts of training data, and they

must be easily implemented without too much programming cost.

Many studies can be found in the literature that aim to increase the robustness of

a speech recogniser, for example, Levow (1998), Swerts et al. (2000), Mangu and

Padmanabhan (2001), Suhm et at. (2001), Levow (2002), Kakutani et al. (2002), Lo and

Soong (2005), Ogata and Goto (2005), Shi and Zhou (2006), Denda et al. (2007) and

ACCEPTED MANUSCRIPT

Morales et al. (2007). ASR post-correction techniques aim to find incorrect words in the

recognition result provided by the speech recogniser, and replace them with the correct

ones, i.e. those uttered by the speaker. The techniques available so far in the literature,

briefly discussed in Section 2, present several limitations. One is that many of them take

into account lexical information only, and thus require large amounts of training data.

Another drawback is that they not take into account the contextual information available

in spoken dialogues. For example, if a spoken dialogue system prompts for a telephone

number, it is likely that the user will utter specific kinds of words (digits) but not others

(e.g. city names) to answer the prompt. Moreover, in a spoken dialogue the context in

which words are uttered may change as the interaction proceeds. This kind of contextual

information is missing in existing techniques, but according to our experiments, it can

be very useful for the success of the ASR post-correction.

Another limitation of existing ASR post-correction techniques is that they

consider the recogniser output just as a sequence of words, but do not take into account

the confidence scores that may be attached to the words. However, many spoken

dialogue systems employ these scores to decide whether to accept, reject or confirm

(either implicitly or implicitly) the words in the speech recognition results (Hazen et al.

2002). The techniques available so far propose methods to replace a word w in a

recognition result with another word w‘ in order to make a correction, but an open

question is what should be the confidence score for the word w‘: should it be that of w

or a different one? The technique we present in this paper addresses the drawbacks of

the existing techniques discussed above.

The remainder of the paper is organised as follows. Section 2 presents previous

work related to ASR post-correction, including differences and similarities with the

ACCEPTED MANUSCRIPT

proposed technique. Section 3 focuses on this technique. It firstly discusses the required

elements: word-classes, grammatical rules, syntactic-semantic models and lexical

models. Secondly, it explains algorithmically how to implement the technique. Thirdly,

it analyses the performance of the technique in dealing with word insertions,

substitutions and deletions, and then discusses the main advantages of the technique.

Section 4 presents the experiments. Firstly, it shows the interaction between the Saplen

system and the user simulator, and comments on the speech database and the scenarios

for the simulator. Then it comments on experiments to decide the requirements on

training data. Thirdly, the section compares results obtained with the baseline system

and the proposed technique, and shows the advantages of using syntactic-semantic and

lexical models, both contextual. Section 5 discusses limitations of the technique.

Finally, section 6 presents the conclusions and describes possibilities for future work.

2. Previous related work

Most previous studies on ASR post-correction are based on statistical methods that use

probabilistic information about words uttered and words in the recognition results. For

example, following this approach Ringger and Allen (1996) proposed a post-processor

to correct speech recognition errors based on two parts. A channel model represented

errors made by a speech recogniser, whereas a language model represented the

likelihood of a sequence of words uttered by the speaker. They trained both models with

transcriptions of dialogues obtained with the TRAINS-95 dialogue system. Their

experimental results showed that the post-processor output contained fewer errors than

that of the speech recogniser. Also following this approach, Zhou and Meng (2004)

proposed a two-level schema for detecting speech recognition errors. The first level

applied an utterance classifier to decide whether the speech recognition result was

ACCEPTED MANUSCRIPT

erroneous. If it was determined to be incorrect, it was passed to the second level where a

word classifier decided which words were misrecognitions.

 Other methods employ co-occurrence information extracted from the words and

their neighbouring words. For example, Zhou et al. (2006) proposed a method for error

detection based on three steps. The first step was to detect whether the input utterance

was correct. The second step was to detect incorrect words, and the third step was to

detect erroneous characters. The error correction first created candidate lists of errors,

and then re-ranked the candidates with a model that combines mutual information and a

word trigram.

The methods discussed so far present several drawbacks. One is that they require

large amounts of training data. Another is that their success depends on the size and

quality of the speech recognition results or on the database of collected error strings,

since they are directly dependent on the lexical entries. To address these drawbacks,

researchers have employed additional knowledge sources. For example, Jeong et al.

(1996) combined lexical information with semantic knowledge and carried out error

correction at two levels: semantic and lexical. The input utterance was firstly

transformed to obtain a lexico-semantic pattern. A database of pre-collected semantic

patterns was used at the semantic level to find similar patterns to the obtained pattern.

The error correction was made by replacing erroneous syntactic or semantic items in the

obtained pattern, taking into account the pre-collected similar patterns. At the lexical

correction level, the obtained and the recovered patterns were aligned, some candidate

words in a domain dictionary or ontology dictionary were selected as the most similar to

the original input words, and these words were used for correction.

ACCEPTED MANUSCRIPT

 Employing a different approach, Jeong et al. (2004) combined lexical

information with higher level knowledge sources via a maximum entropy language

model (MELM). Error correction was arranged on two levels, using a different language

model at each level. At the first level, a word n-gram was employed to capture local

dependencies and to speed up the processing. The MELM was used at the second level

to capture long-distance dependencies and higher linguistic phenomena, and to re-score

the N-best hypotheses produced by the first level. Their experiments showed that this

approach had superior performance than previous lexical-oriented approaches. The

problem was that the training of the MELM required a lot of time and was sometimes

infeasible.

2.1. Differences and similarities between the proposed technique and

previous studies

The technique we propose is inspired by previous studies based on semantic

information (Jeong et al. 1996), pattern matching (Kaki et al. 1998) and statistical

information (Zhou and Meng, 2004). One similarity between our technique and that of

Jeong et al. (1996) is in the use of two correction levels. In both techniques the speech

recognition result is transformed into one pattern. At the first level, this pattern is

compared with a corpus of patterns learnt in the training, and as a result of the

comparison the input pattern may be changed. The outcome of this level is passed on to

the second level where both techniques can replace some words with other words.

 One difference between both techniques is in the method employed to select the

pattern to be used for making corrections at the first level. According to the technique of

Jeong et al. (1996), this pattern is the one with minimum distance to the input pattern.

One problem of this method is that the selected pattern may not be optimal. To

ACCEPTED MANUSCRIPT

overcome this problem, our method employs several corpora of previously learnt

patterns, and a similarity threshold t ∈ [0.0 – 1.0] to decide whether one pattern is good

enough for error correction. If it is, our method works similarly to that of Jeong et al.

(1996); otherwise it searches for a better pattern in the whole set of patterns available. If

the appropriate pattern is found in the whole set, the correction proceeds as in the

method of Jeong et al. (1996); otherwise our technique does not make any correction at

the first level. Another difference is that Jeong et al. (1996) carry out the lexical

correction at the second level, whereas our method carries this correction both at the

first and second levels. In the former level it considers statistical information, while in

the latter it takes into account linguistic knowledge.

Our technique also has similarities with the proposal of Zhou and Meng (2004),

as both employ a two-level schema for detecting recognition errors. The first level

decides whether the speech recognition result is erroneous. If it is, the technique of

Zhou and Meng (2004) passes on the result to the second level, where a word classifier

decides which words are incorrect. One difference between the two techniques is that

ours always passes on the result of the first level to the second level, regardless of the

decision made by the first level.

Another difference between our technique and previous studies is that, as

discussed in Section 1, existing studies focus just on the words in the speech recognition

result, without considering the confidence scores that the words may have attached. Our

technique not only deals with the word strings, but also with the confidence scores. As

far as we know, this is an issue not addressed in previous studies.

ACCEPTED MANUSCRIPT

3. The proposed technique

We propose a new ASR post-correction technique for spoken dialogue systems that can

be useful when the speech recognition rate is very low. This is typically the case when

such a system employs just one prompt-independent language model (e.g. word bigram)

to recognise, in theory, any kind of sentence uttered by the user within the application

domain, regardless of the current prompt generated by the system. Hence, our goal is to

move forward from the typical solution employed by commercial systems, i.e. prompt-

dependent language models mostly, to a more ambitious and less restricted interaction

by means of just one prompt-independent language model, which enables the user to

say anything within the application domain at anytime. We assume that the technique

must be applicable to any dialogue system, regardless of the speech recogniser

employed. Hence, we consider the recogniser as a black box that for each input

utterance produces a recognition result. This result is a sequence of words with

confidence scores1 attached, e.g. “I (0.7590) would (0.6982) like (0.9268) to (0.4285) have

(0.6929) six (0.3974) green (0.7059) salads (0.8182)”. If the recogniser does not produce

these scores but only the word sequence, our technique is applicable as well by simply

discarding all the decisions about the scores.

The technique employs semantic, syntactic, lexical and contextual information.

The semantic and syntactic information is implemented by means of sets of patterns

constructed from the analysis of a dialogue corpus. Each set is mapped to a prompt type

of a spoken dialogue system designed for a given application. The prompt type

represents the contextual information of the technique, as it determines the kinds of

1 We assume in this paper that the confidence scores are real numbers in the range [0.0 – 1.0].

ACCEPTED MANUSCRIPT

sentence likely to be uttered by the user at a particular dialogue state. The lexical

information is implemented by means of word confusion statistics and linguistic

knowledge. The statistics are computed from the analysis of the dialogue corpus, by

aligning utterance transcriptions and speech recognition results. The linguistic

knowledge must be provided by the system designers and is employed to ensure

grammatical restrictions (e.g. number correspondences) between specific words, in case

these restrictions affect the semantics of the sentences. The reason for using this

knowledge is to compensate for problems arising from sparse training data.

3.1. Elements to be created for applying the technique

If we want to apply the technique to a spoken dialogue system, we must create the

following elements: word-classes, grammatical rules, syntactic-semantic models and

lexical models. The creation of these elements requires a corpus of system-user

dialogues2 that contains user utterances (voice samples files), transcriptions of the

utterances (text sentences), and speech recognition results (text sentences) obtained by

the speech recogniser of the dialogue system as it analyses the utterances.

 We must assign a type (T) to each prompt the dialogue system can generate,

taking into account the kind of data expected when the user answers the prompt. Note

that a system may generate a prompt in different ways to avoid redundancy and increase

the naturalness in the dialogue. For example, in the fast food domain a system can

generate prompts such as “Would you like to have anything to eat?”, “Anything to eat?” or “Are

you ordering anything to eat?”, but regardless of the wording, what is expected from the

2 This dialogue corpus can also be obtained by employing a user simulator that interacts with the dialogue

system, as we have done in the experiments.

ACCEPTED MANUSCRIPT

user is either a confirmation or a food order. Table 1 shows some assignments of types

to prompts generated by the Saplen system used in the experiments.

Table 1. Assignment of types to prompts generated by the Saplen system.

3.1.1. Word-classes

The word-classes Ki are created using the set of utterance transcriptions in the dialogue

corpus. Each word-class contains words of a given type that are really useful for the

semantic analyser of the dialogue system to get the meaning of the sentences uttered by

the user. These words are usually called keywords. The word-classes to be created can

be decided by observing the transcriptions and using the system designers’ knowledge

about the performance of the semantic analyser. We call � the set of word-classes: � =

{K1, K2, K3, …, Kr}. Table 2 shows some possible word-classes in the fast food domain.

Table 2. Examples of word-classes in the fast food domain.

Usually a keyword belongs to just one word-class, e.g. ‘want’ belongs to the DESIRE

class only. There may be keywords that belong to several word-classes, e.g. ‘orange’

could belong to the FOOD and TASTE classes. The technique requires the creation of

Prompt Type (T)
Please say your telephone number.
I’m sorry, I didn’t understand. Please say your telephone number again.
What would you like to have?
How many ham sandwiches did you say?
Which size would you like for the beer?
Did you say two?
Please say the taste for the milkshake.
Do you want to remove the green salad?
Did you say large?

TELEPHONE_NUMBER
TELEPHONE_NUMBER
PRODUCT_ORDER
FOOD_NUMBER
DRINK_SIZE
NUMBER_CONFIRMATION
DRINK_TASTE
REMOVE_CONFIRMATION
SIZE_CONFIRMATION

Word-class Word examples
CONFIRMATION
DESIRE
DRINK
FOOD
INGREDIENT
NUMBER
SIZE
TASTE

yes, no, OK, correct, incorrect, alright, …
want, need, gimme, …
water, beer, coke, wine, fanta, …
sandwich, cake, ice-cream, burger, …
cheese, ham, bacon, …
one, two, three, four, five, six, …
small, large, big, …
orange, lemon, apple, …

ACCEPTED MANUSCRIPT

word-classes for keywords only. Hence, word-classes are not required for meaningless

words (e.g. articles or prepositions) if these words are not relevant for the semantic

analyser of the dialogue system.

The word-classes are task-dependent. For example, in the ATIS (Air Travel

Information Service) domain we could create the word-classes shown in Table 3.

Table 3. Examples of word-classes in the ATIS domain.

The effort of determining the required word-classes for a given application may be

relatively small using the designers’ knowledge of the system, but filling the classes

with all the required words can be costly if this is done manually, i.e. inserting the

keywords one by one. However, if the semantic analyser of the dialogue system already

uses word-classes to extract the meaning of the sentences uttered by the users, the

technique can use these classes and there is no need to create them manually. This is the

case for the Saplen system used in the experiments, where the semantic analyser uses

word-classes stored in text files (one file per word-class). If the dialogue system does

not use word-classes but uses finite-state grammars, which is the case for many

commercial systems based on VoiceXML, it is possible to save time in creating the

word-classes by re-using the vocabulary in the grammars, which is usually arranged in

word categories. For example, Fig. 1 shows a JSGF grammar employed in a VoiceXML

system that provides travel information. City names or week days can be easily copied

and pasted to create the word-classes CITY and WEEK_DAY.

Word-class Word examples
DESIRE
CITY
WEEK _DAY
MONTH_DAY
MONTH_NAME
NUMBER
ACTION
DEPARTURE
ARRIVAL

want, need, …
Boston, Chicago, Rome, Madrid, Tokyo, …
Monday, Tuesday, Wednesday, …
first, second, third, fourth, …
January, February, March, April, …
one, two, three, four, five, six, …
book, cancel, confirm, question, …
from, departure, departs, …
arrive, arrives, arrival, …

ACCEPTED MANUSCRIPT

#JSGF V1.0;

grammar from_to;

public <from_to> = [greeting] <desire> <travel> <city> {this.cityDestination=$city} <from_mark>
<city> {this.cityDeparture=$city} <moment> {this.weekDay=$moment} ;

<greeting> = hello | hi | good morning | good evening ;
<desire> = (I | we) | (want | desire | need | must) ;
<travel> = go to | travel to | get to ;
<city> = New York | Boston | Chicago | London | Madrid | Paris | Rome ;
<from_mark> = from | leaving from | departing from ;
<moment> = (this | next) (Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday) ;

Fig. 1. A sample JSGF grammar.

3.1.2. Grammatical rules

The grammatical rules are used to correct grammatical errors that affect the semantics

of sentences. We call R the set of basic grammatical rules ri: R = {r1, r2, …, rn}. The

rules are of the form: ri : sspi � restrictioni, where sspi is a syntactic-semantic pattern

and restrictioni is a condition that must be satisfied by the words represented by the

word-classes in sspi. For example, one rule used in our experiments in the fast food

domain is the following:

r1: ssp1 � number(NUMBER) = number(DRINK) and
 number(DRINK) = number(SIZE) and
 number(NUMBER) = number(SIZE)

where number is a function that returns either ‘singular’ or ‘plural’ for each word in the

word-class, and ssp1 = NUMBER DRINK SIZE.

One drawback of this method is that the rules are task-dependent. Hence, if the

application domain is changed, the rules must be adapted accordingly to consider the

necessary grammatical restrictions among the word-classes in the new domain. One

alternative is to use statistical information, which has the advantage of automatic

training without manual effort to create grammatical rules. To study the differences

between both methods, we followed the study by Zhou et al. (2006) and used one n-

ACCEPTED MANUSCRIPT

gram language model, i.e. the word bigram employed by the speech recogniser of the

Saplen system. We found that in some cases the statistical method worked well in

correcting errors in speech recognition results, e.g. in “uno cervezas grandes” (one large

beers), where ‘uno’ (one) was a misrecognition of ‘dos’ (two). The probability of this

speech recognition can be expressed as follows:

P(uno cervezas grandes) = P(uno) x P(cervezas|uno) x P(grandes|cervezas)

Using the bigram we found that the probabilities P(uno) and P(grandes|cervezas) were

large as the word sequences ‘uno’ and ‘cervezas grandes’ were observed quite frequently

in the training corpus. On the contrary, the probability P(cervezas|uno) was very small

as the word sequence ‘uno cervezas’ was not observed. Thus we assumed that ‘uno’ was

an incorrect word. We searched for an appropriate word in the trained lexical model (as

will be explained in Section 3.1.4) and found the perfect candidate: ‘dos’ (two). Hence,

we replaced ‘uno’ with ‘dos’ and had the misrecognition correctly corrected: ”dos cervezas

grandes” (two large beers).

The problem with this method is that because of sparse training data, there were

cases where the method transformed correct recognition results into incorrect results,

which is a known problem of for purely statistical methods as observed in previous

studies, e.g. Kaki et al. (1998) and Zhou et al. (2006). For example, in our application

domain this happened with the recognition result “diez cervezas grandes” (ten large

beers), which was not erroneous. For this result we found in the word bigram that the

probabilities P(diez) and P(grandes|cervezas) were large, as the word sequences ‘diez’

and ‘cervezas grandes’ were observed, whereas the probability P(cervezas|diez) was very

small as the word sequence ‘diez cervezas’ was not observed. Then we assumed, as in the

above example, that ‘diez’ was an incorrect word. Hence, we searched for an appropriate

ACCEPTED MANUSCRIPT

substitution in the lexical model and found the candidate: ‘tres’. Therefore, we replaced

‘diez’ with ‘tres’ and had the recognition result incorrectly corrected: “tres cervezas

grandes” (three large beers).

Employing a large training corpus, we could have implemented this statistical

method for making the correction at the lexical level, instead of the one based on

grammatical rules. We decided to use the latter as it works better in cases of sparse data,

given that the rules apply to all the words in the word-classes, regardless of whether the

words have been observed in the training. Using the rule-based approach, the word ‘diez’

(ten) in the example above would not have been considered an incorrect word as long as

it is in the word-class NUMBER.

3.1.3. Syntactic-semantic models

The syntactic-semantic models are representations of the conceptual structure of the

sentences in the application domain. To create these models we consider each prompt

type T and take into account the transcriptions of all the sentences uttered by the users

to answer system prompts of type T. For example, for the prompt type T =

TELEPHONE_NUMBER we could find transcriptions such as: “My telephone number is nine

five eight one two three four five six”, “nine five eight one two three four five six” or ”nine five

eight twelve thirty-four fifty-six”.

Each transcription must be transformed into what we call a syntactic-semantic

pattern (ssp), which represents the sequence of word-class names in the transcription.

We say that this kind of pattern is syntactic as it provides information about the order of

the word-classes in the sequence. For example, the two ssp’s: ssp1 = DESIRE NUMBER

INGREDIENT and ssp2 = NUMBER DESIRE INGREDIENT are syntactically different as

they differ in the order of the word-classes. We say that this kind of pattern is also

ACCEPTED MANUSCRIPT

semantic as it provides information about the concepts (represented as word-classes)

employed to convey some semantic content. For example, the two ssp’s: ssp1 = DESIRE

NUMBER FOOD and ssp2 = DESIRE NUMBER DRINK are semantically different as they

differ in the concepts involved (ssp1 is a conceptual representation of a food order,

whereas ssp2 is a conceptual representation of a drink order).

To create a ssp from a transcription, each keyword in the transcription must be

replaced with the name of the word-class the keyword belongs to. For example, taking

into account the word-classes shown in Table 2 (Section 3.1.1), the ssp for the

transcription: “I want one ham sandwich and one green salad please”, would be as follows:

ssp = DESIRE NUMBER INGREDIENT NUMBER SIZE DRINK

If a keyword belongs to several word-classes, we include the names of the word-

classes within brackets and separate them with the optional marker ‘|’. For example, if

the keyword ‘orange’ belongs to the classes FOOD and TASTE, the ssp for the

transcription “I want one orange Fanta” would be:

ssp = DESIRE NUMBER (FOOD | TASTE) DRINK

Transforming all the utterance transcriptions associated with a prompt type T

into ssp’s, we obtain a set of ssp’s associated with T. The next step is to analyse this set

to remove repeated ssp’s, associating with each different ssp its relative frequency

within the set. We call the result of this process a syntactic-semantic model associated

with the prompt type T (SSMT). This model is as follows:

SSMT = { ssp1 f1, ssp2 f2, ssp3 f3, … , sspm fm }

where the sspi‘s are syntactic-semantic patterns, and the fi’s are their relative

frequencies within SSMT. For example, the SSMT associated with the prompt type T =

TELEPHONE_NUMBER in our experiment is as follows:

ACCEPTED MANUSCRIPT

SSMTELEPHONE_NUMBER =
 { NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER 0.1430,
 NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER 0.1430,
 NUMBER SIZE TASTE DRINK 0.0173,
 MISTAKE 0.0098,
 NUMBER INGREDIENT FOOD 0.0098,
 … }

If a dialogue system generates u different prompt types T, we must create u different

syntactic-semantic models SSMT, one per prompt type. We call � set of all the SSMT’s

for a given dialogue system:

� = {SSMTi}, i = 1 … u

Note that a SSMT is created from sentences uttered by users to answer a prompt type T.

Hence, it is expected that the model contains syntactic-semantic patterns obtained from

sentences actually related to the prompt type T, for example, patterns obtained from

telephone numbers if the system prompted for a telephone number. However, a SSMT

can also contain ssp’s not directly related to the prompt type, which happens if the users

uttered other types of sentence. For example, the SSMTELEPHONE_NUMBER shown above

contains a ssp obtained from food orders (������� ��	��
����� �
� � ������), another

obtained from drink orders (������� � �� �� �� � ���
���� � ���� � �) and another obtained from

user corrections to system misunderstandings (��� �� � ����������).

3.1.4. Lexical models

The lexical models contain information about the performance of the dialogue system’s

speech recogniser at each specific dialogue state. This state is represented by the prompt

type T of the system. We must create a lexical model (LMT) for each prompt type. The

general form of this model is as follows:

LMT = { wi wj pij } i, j = 1 … s

where wi is a word uttered by the speaker, wj is the recognition result, and pij is the

posterior probability of obtaining wj when the speaker uttered wi. To create a LMT we

ACCEPTED MANUSCRIPT

employ the set of utterance transcriptions and the set of recognition results associated

with the prompt type T. Both sets are available from the analysis of the dialogue corpus.

We align each transcription c with its corresponding recognition result h following the

study of Fisher and Fiscus (1993), and add (wi , wj) pairs to LMT, wi ∈ c, wj ∈ h. When

all the transcriptions have been aligned, LMT is analysed to remove repeated entries and

to compute the probabilities pij. For example, let us suppose that the dialogue system

prompted for the user’s telephone number, i.e. T = TELEPHONE_NUMBER, and that to

answer this prompt the user uttered the sentence: “nine five eight one two three four five six”.

Let us assume that the recognition result from this utterance is: “mine (0.3841) five

(0.7867) eight (0.9345) one (0.7810) two (0.6721) three (0.8945) four (0.7832) five (0.7903) six

(0.3981)”. Then, following the procedure discussed above, the word pairs: (‘nine’ , ‘mine’),

(‘five’ , ‘five’), (‘eight’ , ‘eight’), (‘one’ , ‘one’), (‘two’ , ‘two’), (‘three’ , ‘three’), (‘four’ , ‘four’),

(‘five’ , ‘five’) and (‘six’ , ‘six’) are added to LMT. Hence, LMT contains statistical

information about the recognition of each word uttered by the user in response to the

prompt type. After the removal of repeated entries and the computation of the word

recognition probabilities, LMTELEPHONE_NUMBER may be as follows:

LMTELEPHONE_NUMBER = { nine nine 0.3679,
 nine mine 0.3530,

nine night 0.1457,
 nine five 0.1334,
 six six 0.8397
 six three 0.1603,
 salad salad 0.7582
 salad salads 0.2418
 …}

If a dialogue system generates u different prompt types T, we must create u different

lexical models LMT, one per prompt type. We call � the set of all the LMT’s for a given

dialogue system:

� = {LMTi}, i = 1 ... u

ACCEPTED MANUSCRIPT

As discussed for the syntactic-semantic models in the previous section, a LMT is created

from sentences uttered by users in the answering of system prompts of type T. Hence, it

is expected that the model contains word recognition probabilities obtained from

utterances actually related to the prompt type T, for example, recognition probabilities

of digits if the system prompted for a telephone number. However, LMT can also

contain word recognition probabilities obtained from utterances not directly related to

the prompt type, which happens if the users uttered other types of sentence. For

example, the LMTELEPHONE_NUMBER shown above contains recognition probabilities for

the word ‘salad’, which in principle is not expected when the system prompted for the

user’s telephone number.

3.2. Algorithms to implement the technique

The ASR post-correction technique proposed in this paper is carried out firstly at the

statistical level, and then at the linguistic level. The correction at the former level deals

with the confidence scores if these scores are observed in the input utterance, otherwise

the decision about these scores is skipped.

3.2.1. Correction at the statistical level

The goal of the correction at the statistical level is to take the result of the speech

recogniser and employ statistical information to find words that belong to incorrect

concepts, replace these concepts with correct concepts, and select the appropriate words

for the correct concepts. If the algorithm finds that a word w belongs to an incorrect

concept J and decides to replace it with another word w’ that belongs to another concept

K, it must decide the confidence score for the correction word w’: C(w’). To do this we

propose a simple method that takes into account the number of words uj ∈ K that are in

the lexical model employed (either LMT or �), i.e. words with which the word w is

ACCEPTED MANUSCRIPT

confused. These words form a set U = {u1 , u2 , u3 , …, up}. The method to determine

C(w’) is as follows: if there is just one word uj in U, then w’ = uj and C(w’) = 1.0. If

there are several words uj‘s in U, then w’ is the word with the highest confusion

probability: p, and C(w’) = p. This method assigns to w’ the highest confidence score

(1.0) if there is just one candidate word to make the word replacement, and assigns a

smaller value if there are several candidates. We do not claim that his method is

optimal, and in future work we will study other methods.

To implement the correction, the algorithm receives the speech recognition

result and builds what we call an input enriched syntactic-semantic pattern (esspINPUT),

which is a sequence of information containers Ci as shown in Fig. 2:

w1
cs1

w1
cs1

Name1

. . .w2
cs2

w2
cs2

Name2

w3
cs3

w3
cs3

Name3

wm
csm

wm
csm

Namem

C1 C2 C3 Cm

Fig. 2. General format of an input enriched syntactic-semantic pattern (esspINPUT).

Each container has an optional name which is the name of the word-class that contains

the word wi in the container. If this word is not in any word-class, the container has no

name. If a container has a name, we say it is a conceptual container. The wi’s are the

words in the speech recognition result, whereas the csi’s are the confidence scores of the

words. For example, using the word-classes shown in Table 2 (Section 3.1.1), the

esspINPUT obtained from the recognition result: “I (0.5735) want (0.7387) one (0.6307) ham

(0.3982) sandwich (0.6307) and (0.4530) one (0.6854) small (0.6590) beer (0.7861)” would be

as shown in Fig. 3. Note that all the containers are conceptual, except the first and the

sixth.

ACCEPTED MANUSCRIPT

want
0.7387

want
0.7387

DESIRE

one
0.6307

one
0.6307

NUMBER

ham
0.3982

ham
0.3982

INGREDIENT

sandwich
0.6307

sandwich
0.6307

FOOD

one
0.6854

one
0.6854

NUMBER

small
0.6590

small
0.6590

SIZE

beer
0.7861

beer
0.7861

DRINK

I
0.5735

I
0.5735

and
0.4530

and
0.4530

C1 C2 C3 C4 C5 C6 C7 C8 C9

Fig. 3. Example of input enriched syntactic-semantic pattern (esspINPUT).

The algorithm now carries out two steps: pattern matching and pattern alignment, which

are discussed below.

Step 1. Pattern matching

The goal of this task is to create an enriched syntactic-semantic pattern that we call

esspBEST. To do this we firstly define sspINPUT as the sequence of word-class names Ni in

esspINPUT. For example, sspINPUT for the esspINPUT shown in Fig. 3 would be:

sspINPUT =
�� �������������	��
������������� �� ��
����

We decide whether sspINPUT matches any of the ssp’s in the syntactic-semantic

model associated with the prompt type T (SSMT). If it does, we set esspBEST = esspINPUT

and proceed to the correction at the linguistic level. In this case Step 2 is not necessary

as no changes have been made in the sequence of concepts (i.e. word-class names) in

sspINPUT. If sspINPUT does not match any pattern in SSMT, we search for similar patterns

to sspINPUT in SSMT. To do this we compare sspINPUT with all the ssp’s in SSMT

employing the minimum edit-distance dynamic search3 (Crestani, 2000), and select

3 The minimum edit distance between two syntactic-semantic patterns is defined as the number of

deletions, insertions and substitutions of word-class names required for transforming one pattern into the

other.

ACCEPTED MANUSCRIPT

those with similarity value greater than a threshold4 t ∈ [0.0 – 1.0]. We compute the

similarity of one pattern ssp1 with respect to the other pattern ssp2 as follows:

similarity (ssp1, ssp2) = (n – med) / n

where n is the number of word-class names in ssp1, and med is the minimum edit

distance between both patterns. Note that if ssp1 and ssp2 are exactly the same, their

similarity is 1.0 given that med = 0. If they are completely different, their similarity is

0.0 because med = n. We call sspSIMILAR each ssp in SSMT such that similarity (sspINPUT,

ssp) > t, and consider three cases:

Case 1. There is just one sspSIMILAR in SSMT. In this case the correction is made by

setting sspBEST = sspSIMILAR and proceeding to Step 2, which is now necessary as the

sequence of concepts (i.e. word-class names) in sspBEST is different from that in

sspINPUT.

Case 2. There are no sspSIMILAR’s in SSMT. This means that the ssp obtained from the

recognition result is very different from all the ssp’s in SSMT. Then, we follow a

fallback strategy and try to find sspSIMILAR‘s in the � set (see Section 3.1.3). If no

sspSIMILAR‘s are found in �, this means that the obtained ssp is very different from all the

ssp’s observed in the training, regardless of the system prompt type T. In this case we

do not make any correction and proceed to the correction at the linguistic level. If just

one sspSIMILAR is found in �, the correction is made as in Case 1, i.e. setting sspBEST =

sspSIMILAR and proceeding to Step 2. If several sspSIMILAR‘s are found in �, we proceed

as in Case 3.

4 The optimal value of the similarity threshold must be determined experimentally, employing the

technique over a small set of the test database, and selecting as optimal the value that provides the best

performance.

ACCEPTED MANUSCRIPT

Case 3. There are several sspSIMILAR‘s in SSMT or �. The question now is to decide

the best sspSIMILAR to make the correction. To do this we start by selecting all the

sspSIMILAR‘s with the greatest similarity value. If there is just one, we set sspBEST =

sspSIMILAR and proceed to Step 2. If there are several, we select among them those with

the highest relative frequency fi in SSMT or �. If there is just one, we set sspBEST =

sspSIMILAR and proceed to Step 2. If there are several, we do not make any correction at

the statistical level and proceed to the correction at the linguistic level.

Step 2. Pattern alignment

Up to this point we haven taken sspINPUT and have created sspBEST. The former is of the

form: sspINPUT = N1 N2 … Nm, for example: sspINPUT =�
�� �������	��
������� �� ���
���� ,

whereas the latter is of the form: sspBEST = M1 M2 … Mr, for example: sspBEST =�

�� �������������� �� ���
���� . The goal of Step 2 is to create an enriched syntactic-semantic

pattern that we call esspBEST, which is considered to be initially empty. We align

sspINPUT and sspBEST and focussing on each container Ci in esspINPUT, we study two

cases:

Case A. Ci is not conceptual. In this case the word wi in Ci does not affect the

semantics of the sentence, for example ‘I’ in container C1 or ‘and’ in container C6 of Fig.

3. Hence, we do not try to correct wi. We simply set Di = Ci and add Di to esspBEST as

observed in Fig. 4:

w1
cs1

w1
cs1

Name1

w2
cs2

w2
cs2

Name2

w3
cs3

w3
cs3

Name3

wi
csi

wi
csi

Namei

D1 D2 D3 Di

. . .

Fig. 4. esspBEST with a new container Di added.

ACCEPTED MANUSCRIPT

Case B. Ci is conceptual. In this case the word wi in Ci affects the semantics of the

sentence, for example ‘one’ in container C3 of Fig. 3. Hence, we study whether this word

must be changed considering the ssp’s observed in the training. Let us say that this

container is Na, a ∈ 1…m, e.g. INGREDIENT in the sspINPUT shown above. We try to find

the concept aligned with Na in sspBEST. Let us say that it is Mb, b ∈ 1…r, e.g. NUMBER

in the sample sspBEST shown above. We must consider three cases:

Case B.1. Na � Mb. This is the case when a concept obtained from the speech

recognition result (Na) is considered to be incorrect and then must be replaced

with another concept (Mb). We must decide the word wi’ ∈ Mb and the

confidence score sci’ for the new container Di to be added to esspBEST. To find

this word we use the lexical model associated with the prompt type T (LMT) and

create a set U = {u1 , u2 , u3 , …, up}, uj ∈ Mb, where the uj‘s are words that are

confused with the word w in Na due to speech recognition errors. Again, three

cases must be distinguished:

Case B.1.1. There is just one word uj in U. Let us call this word u1. We

make5: Di.Name = Mb, Di.wi = u1, Di.csi = 1.0, and add Di to esspBEST.

Case B.1.2. U is empty. We follow a fallback strategy to find in the � set

(see Section 3.1.4) the U set. If there is just one word uj in U, we proceed

as in Case B.1.1. If there are several words uj’s in U, we proceed as in

Case B.1.3. If U is empty we do not make any correction, i.e. we make Di

= Ci and add Di to esspBEST.

5 We use the notation ‘Di.Name’, ‘Di.wi‘ and ‘Di.csi‘ to refer to the fields Name, wi and csi of the container

Di, respectively.

ACCEPTED MANUSCRIPT

Case B.1.3. There are several words uj in U. We select the uj with the

highest confusion probability p, which we call it uhigh. We make Di.Name

= Mb, Di.wi = uhigh and Di.csi = p, and add Di to esspBEST.

Case B.2. Na = Mb. This is the case when the concept obtained from the speech

recognition result is assumed to be correct. Hence, we do not change it. We

simply make Di = Ci and add Di to esspBEST.

Case B.3. Na cannot be aligned. This is the case when the concept obtained

from the speech recognition result is a consequence of an inserted word. To

correct the error we discard Ci, i.e. we do not add it to esspBEST.

3.2.2. Correction at the linguistic level

Up to this point we have created esspBEST. The correction now aims to correct errors not

detected at the statistical level that affect the semantics of the sentences. For example,

we have observed in the experiments that when the system prompts to enter product

orders, the utterance “una cerveza grande” (one large beer) is sometimes recognised as

“dos cerveza grande” (two large beer), which causes the system to incorrectly understand

the order as “two large beers”. This kind of problem is not detected at the statistical

level as the ssp obtained from the incorrect recognition result:

sspINPUT =���������� �� ���
����

matches one of the ssp’s in SSMT. Hence, sspINPUT is not corrected at the statistical

level, which results in the esspBEST obtained so far being incorrect. To solve this

problem we use the set of grammatical rules R discussed in Section 3.1.2. We place in a

window each syntactic-semantic pattern sspi in a rule ri. The window slides over

esspBEST from left to right. For example, Fig. 5 shows a sample window for the rule r1

discussed in Section 3.1.2.

ACCEPTED MANUSCRIPT

want
0.7387

want
0.7387

DESIRE

one
0.6307

one
0.6307

NUMBER

ham
0.3982

ham
0.3982

INGREDIENT

sandwich
0.6307

sandwich
0.6307

FOOD

two
0.6854

two
0.6854

NUMBER

small
0.7861

small
0.7861

SIZE

beer
0.6590

beer
0.6590

DRINK

and
0.4530

and
0.4530

C2 C3 C4 C5 C6 C7 C8 C9

NUMBER SIZE DRINK

Sliding window: ssp1

I
0.5735

I
0.5735

C1

Fig. 5. Window sliding over esspBEST.

If the sequence of concepts in the window is found in esspBEST, restrictioni applies to the

words in the containers. For example, in Fig. 5 the sequence of concepts is found in the

sequence of containers C7-C9. Therefore, restriction1 applies to the words: ‘two’, ‘small’

and ‘beer’. If the conditions in restriction1 are satisfied we do not make any correction,

otherwise we try to find the reason for the incongruity by searching for an incorrect

word. This is the case in the example given that number(NUMBER) � number(DRINK).

To find an incorrect word we use the linguistic information available by means of the

grammatical rules. In our experiments this is information about the number feature of

some Spanish words, for example: number(‘dos’) = plural, number(‘cerveza’) = singular,

and number(‘pequeña’) = singular (dos = two, cerveza = beer, pequeña = small). By

comparing the number features of these words, we assume that the word ‘dos’ (two) in

container C7 is incorrect, as the number correspondence between ‘dos’ (two) and

‘cerveza’ (beer) is incorrect. Hence we define IncorrectContainer = C7 and proceed

similarly as explained in Section 3.2.1, Step 2, Case B.1. However, now the goal is not

to replace a concept with another concept, but a word within a concept with another

word within the same concept. To do this replacement we use the lexical model LMT

and define the set U = {u1 , u2 , u3 , …, up}, where all the words uj‘s belong to the same

word-class as the word to be replaced (i.e. NUMBER in the example), are confused with

ACCEPTED MANUSCRIPT

this word and satisfy restrictioni. We finally consider the three cases distinguished in

Section 3.2.1, Step 2, Case B.1, and proceed as discussed there.

3.2.3. Analysis of the performance of the technique for word insertions,

substitutions and deletions

Regarding word insertions, the correction is successful if the technique discards the

concepts that appear in sspINPUT due to inserted words if these words are keywords. The

correction can be observed in the following example taken from our experiments, where

T = the prompt type of the dialogue system, U = the sentence uttered by the user, h = the

speech recognition result, and h’ = the result of the ASRPC module:

T = FOOD_ORDER_CONFIRMATION
U = one curry salad
h = one (0.8982) error (0.6950) curry (0.5982) salad (0.8059)
h’ = one (0.8982) curry (0.5982) salad (0.8059)

The inserted word ‘error’ caused the concept ERROR to be in the obtained syntactic-

semantic pattern: sspINPUT = NUMBER ERROR INGREDIENT FOOD. The technique selects

the learnt pattern: NUMBER INGREDIENT FOOD as the most similar pattern to sspINPUT,

and uses it for correction, discarding the concept ERROR at the pattern alignment step.

 Regarding word substitutions, the correction requires on the one hand that the

technique correctly replaces the incorrect concepts that appear in sspINPUT because of the

substituted words (assuming that the words are keywords). The replacement can be

observed in the following example:

T = TELEPHONE_NUMBER
U = nine one two three four five six seven eight
h = gimme (0.4982) one (0.6950) two (0.5982) three (0.6059) four (0.8691) five (0.6892) six
(0.5723) seven (0.5211) eight (0.8561)
h’ = nine (1.0000) one (0.6950) two (0.5982) three (0.6059) four (0.8691) five (0.6892) six
(0.5723) seven (0.5211) eight (0.8561)

We can see that the uttered word ‘nine’ was substituted by the word ‘gimme’. Hence,

sspINPUT = DESIRE NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER

ACCEPTED MANUSCRIPT

NUMBER. The technique selects the learnt pattern: NUMBER NUMBER NUMBER NUMBER

NUMBER NUMBER NUMBER NUMBER NUMBER as the most similar learnt pattern to

sspINPUT. At the pattern matching step it replaces the concept DESIRE with the concept

NUMBER, thus correcting the incorrect concept. On the other hand, the correction

requires that the technique finds the appropriate candidate word to replace the incorrect

word. This is the case in the example, as the technique searches in the word-class

NUMBER for a candidate for the word ‘gimme’ and finds the word ‘nine’, which is the

word uttered by the user.

 If the error substitutes a word with another word and both words are keywords in

the same word-class, there is no conceptual correction. This is the case, for example, if

the user utters the sentence “two ham sandwiches” and it is recognised as “one ham

sandwiches”, where ‘two’ and ‘one’ are keywords in the word-class NUMBER. In this case

the correction is successful only if it is successful at the linguistic level.

 There is no conceptual correction if the error substitutes a non-keyword with

another non-keyword. This happens, for example, if the utterance “please two ham

sandwiches and two beers” is recognised as “uhm two ham sandwiches uhm two beers”. The

conceptual correction fails as there is no change in the sequence of concepts obtained

from the utterance.

 The technique cannot correct word deletion errors. By carrying out a comparison

with the learnt patterns, it can detect that one or more concepts are missing in sspINPUT

because of the deletion, but it cannot decide the words to fill in the gaps because there

are no words that can be used as candidates for the search (given that these words have

been deleted). This problem can be observed in the following example:

T = TELEPHONE_NUMBER
U = nine five eight three two zero three one seven

ACCEPTED MANUSCRIPT

h = nine (0.6450) five (0.7941) eight (0.6019) three (0.4002) zero (0.4735) three (0.8998) one
(0.8647) seven (0.6953)
h’ = nine (0.6450) five (0.7941) eight (0.6019) three (0.4002) zero (0.4735) three (0.8998) one
(0.8647) seven (0.6953)

We can see that the uttered word ‘two’ was deleted. Hence, sspINPUT = NUMBER NUMBER

NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER. The technique selects the

pattern: NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER

NUMBER as the most similar learnt pattern to sspINPUT. At the pattern matching step, the

technique aligns all the concepts in sspINPUT with those in the most similar pattern. The

missing concept in sspINPUT because of the deleted word has no effect on the matching,

and thus there is no correction.

3.2.4. Advantages of the technique

The technique requires only a small effort in corpus development if the dialogue corpus

needed for training can be easily collected. This is the case when the dialogue system is

running in a commercial application or in a research environment, as in these settings it

is usually possible to automatically collect a corpus. If the system is not running in any

of these settings, we must collect the corpus from the start, or use a corpus that is

already available for the same application domain, perhaps collected using another

dialogue system. Hence, this satisfies only partly one of our initial goals when

developing the technique, i.e. minimal initial effort in corpus development.

The effort for assigning types (T) to the prompts generated by a dialogue system

is very small, which satisfies one of our initial goals when developing the technique:

easy application to different tasks. Using grammatical rules instead of statistical

information for the correction at the linguistic level, satisfies another of our initial goals:

minimal requirements for training data. The simple algorithms discussed in Section 3.2

ACCEPTED MANUSCRIPT

make it easy to set up the technique, which satisfies another initial goal: easy

implementation.

The technique learns very rapidly from the training data. This happens because

the syntactic-semantic structure of the sentences used for training is represented by

means of patterns comprised of word-classes. This kind of pattern allows us to

generalise knowledge obtained from the training, and to apply it to cases not observed

in the training (Ward and Issar, 1996).

 The technique is robust against some spontaneous speech phenomena. For

example, it can handle hesitations (e.g. ‘uhm’) typically uttered by users when they are

thinking what to say next in the dialogue. This happens because hesitations are not

keywords, and thus they do not affect the sequence of concepts obtained from the

analysis of the sentence. For example, if the user utters either “uhm … one ham sandwich”

or “one ham sandwich”, sspINPUT is: NUMBER INGREDIENT FOOD.

 The technique is also robust against repeated words typically uttered in

spontaneous speech, provided that this phenomenon is observed in the training dialogue

corpus. For example, if the sentence “one … uhm … one … ham sandwich” is in this

corpus, the technique learns the syntactic-semantic pattern: ssp = NUMBER NUMBER

INGREDIENT FOOD. In this way, if a user utters the sentence “two … uhm … two

vegetarian salads please”, sspINPUT is: NUMBER NUMBER INGREDIENT FOOD, and thus

the technique does not make any correction at the pattern matching step. Note that this

pattern is also useful for the changes of mind typical of spontaneous speech, where the

user corrects data as he speaks. This phenomenon can be observed in the following

example: “one … uhm … well … uhm … two ham sandwiches please”. For this sentence,

ACCEPTED MANUSCRIPT

sspINPUT is also: NUMBER NUMBER INGREDIENT FOOD, and thus the technique does not

make any correction at the pattern matching step.

The effect of partially uttered words, also typical of spontaneous speech,

depends on the kind of speech recognition error they cause. If by chance these words

cause a kind of error observed in the training, the error may be corrected. For example,

let us suppose that the user utters the sentence “I would like one sm … small beer please”,

where he partially utters the word ‘small’. If the recognition result is e.g. “I would like one

is small beer please” the error can be corrected as sspINPUT would be: DESIRE NUMBER

SIZE DRINK, which is observed in the training. The technique would discard the word ‘is’

as it is not a keyword. The technique would also be successful if the recognition result

was: “I would like one s small beer please”. For this input sspINPUT would be: DESIRE

NUMBER LETTER SIZE DRINK, given that the word ‘s’ is the LETTER word-class. As the

most similar learnt pattern to the input pattern would be: DESIRE NUMBER SIZE DRINK,

the result of the pattern alignment would be the removal of the LETTER concept, and

thus the error would be corrected as the word ‘s’ would be discarded.

It is possible to think of cases where the technique would fail when dealing with

partially uttered words. For example, the user could utter the sentence “one ve … uhm

one green salad please” where he changes his mind, leaving the word ‘vegetarian’ partially

uttered. The recognition result for this utterance could be e.g. “one beer and one green

salad please” and thus sspINPUT would be: NUMBER DRINK NUMBER INGREDIENT FOOD.

As this pattern is observed in the training, there would be no correction at the pattern

matching step and the error would remain uncorrected.

ACCEPTED MANUSCRIPT

4. Experiments

The goal of the experiments was to test the effect of the proposed technique on the

performance of the Saplen system. To do this we compared evaluation results obtained

with two speech recognition front-ends:

i) The standard HTK-based speech recogniser of the Saplen system (baseline).

ii) The enhanced speech recogniser shown in Fig. 6, which employs the ASRPC

(ASR Post-Correction) module that implements the proposed technique.

HTK-based ASRHTK-based ASR ASRPCASRPC
h

User
utterance h’

Vocabulary TT ��Acoustic and
language models

��RR �� tt

Log filesLog filesTag of speech
understanding

Fig. 6. Enhanced speech recogniser used in the experiments.

In the figure T denotes the current prompt type of the dialogue system, � represents the

set of word-classes, R is the set of grammatical rules, � is the set of syntactic-semantic

models, � is the set of lexical models, and t is the similarity threshold. The input to the

ASRPC module was a recognition result provided by the speech recogniser: h = w1 cs1

w2 cs2 … wn csn, where the wi’s represent words and the csi’s confidence scores. The

output of the module was another speech recognition result: h’ = w’1 cs’1 w’2 cs’2 … w’m

cs’m, where some words and confidence scores may be changed.

The performance of the HTK-based recogniser and the ASRPC module was

saved in log files for evaluation purposes. Each entry in these files contained the

ACCEPTED MANUSCRIPT

transcription of each utterance, the speech recognition result (h), the result of the

ASRPC module6 (h’), and a tag indicating whether the speech recognition result was

correctly understood by the Saplen system.

4.1. Evaluation measures

Experimental results were obtained in terms of word accuracy (WA), speech

understanding (SU), implicit recovery (IR) and task completion (TC) (Danieli and

Gerbino, 1995). WA is the proportion of correctly recognised words. It was computed

as the percentage WA = (wt – wi – ws – wd) x 100 / wt, where wt is the total number of

words in the analysed sentences, and wi, ws and wd are the numbers of words inserted,

substituted and deleted by the speech recogniser of the Saplen system, respectively.

Sentence understanding (SU) is the proportion of sentences correctly understood

by the Saplen system as it interacted with the user simulator. It was computed as the

percentage SU = Su x 100 / St, where Su is the number of analysed sentences where the

obtained semantic representation was completely correct (i.e. it was exactly the same as

the correct semantic representation) and St is the total number of sentences analysed.

The semantic analyser of the Saplen system is robust against some kinds of

recognition error, which enabled it to correctly understand some sentences even though

some words were misrecognised. Implicit recovery (IR) is the proportion of incorrectly

recognised sentences that were correctly understood by the dialogue system. It was

computed as the percentage IR = Su x 100 / Se, where Su is the number of analysed

sentences in which the obtained semantic representation was completely correct, and Se

is the number of incorrectly recognised sentences.

6 This data was stored only when the ASRPC module was used.

ACCEPTED MANUSCRIPT

Task completion (TC) is the proportion of successful dialogues, i.e. the

percentage of dialogues that ended with all the scenario goals achieved. It was

computed as the percentage TC = Dc x 100 / Dt, where Dc is the number of successful

dialogues and Dt is the total number of dialogues. As will be discussed in the following

section, the user simulator cancelled the interaction with the dialogue system if the

dialogue became too long due to system malfunction. Cancelled dialogues were not

considered successful and thus decreased the TC rate.

4.2. Interaction between the Saplen system and the user simulator

The Saplen system was developed in a previous study to answer Spanish telephone-

based orders and queries by clients of fast food restaurants (López-Cózar et al. 1997).

To develop the system we collected a dialogue corpus in a fast food restaurant that

contains about 800 recorded dialogues in Spanish involving conversations between

clients and restaurant assistants (López-Cózar et al. 1998). These dialogues contain

product orders, telephone numbers, postal codes, addresses, queries, confirmations,

greetings and other types of sentence. The dialogues were transcribed, labelled and

analysed to include tags regarding the speakers (clients and restaurant assistants),

sentence types, semantic information of sentences and other kinds of information. From

this corpus we created the Saplen corpus which contains 5,500 client utterances and

about 2,000 different words, as well as the transcriptions and semantic representations

of the utterances stored as frames (Allen, 1995). We have used this corpus for previous

studies (e.g. López-Cózar et al. 2003; López-Cózar and Callejas, 2005).

In a previous study we developed a user simulator the purpose of which is to

interact automatically with a dialogue system to obtain a dialogue corpus suitable for

testing purposes (López-Cózar et al. 2003). The most recent version of the simulator

ACCEPTED MANUSCRIPT

supports three different types of user: very cooperative, cooperative and not very

cooperative, in order to simulate a wider variety of user inputs (López-Cózar et al.

2007). When simulating a very cooperative user, the simulator always provides the type

of data the system asks for, and when the system prompts to confirm data, it always

answers an appropriate affirmative or a negative confirmation. When simulating a

cooperative user, the simulator always provides the type of data the system asks for, and

when the system prompts to confirm data, it sometimes answers an appropriate

affirmative or a negative confirmation, and in other cases it repeats the data being

confirmed. When simulating a not very cooperative user, the simulator selects randomly

the type of data it provides when the dialogue system asks for a particular data, and

when the system prompts to confirm data it behaves as a cooperative user. Fig. 7 shows

the connection between the user simulator and the Saplen system.

Se
m

an
tic

 a
na

ly
se

r

D
ia

lo
gu

e
m

an
ag

er
D

ia
lo

gu
e

m
an

ag
er

R
es

po
ns

e
ge

ne
ra

to
r

R
es

po
ns

e
ge

ne
ra

to
r

Utterance
(voice samples file)

DatabaseDatabase

Information storageInformation storage

Database managerDatabase manager

DictionaryDictionary

H
T

K
-b

as
ed

 A
SR

H
T

K
-b

as
ed

 A
SR

Scenario
corpus

Scenario
corpus

Semantic representation
Information storageInformation storage

R
es

po
ns

e
ge

ne
ra

to
r

R
es

po
ns

e
ge

ne
ra

to
r

D
ia

lo
gu

e
m

an
ag

er
D

ia
lo

gu
e

m
an

ag
er

Dialogue system’s prompt

Utterance
corpus

Utterance
corpus

Dialogue
corpus

Dialogue
corpus Acoustic and

language models

Acoustic and
language models

Fig. 7. The user simulator (on the left) interacting with the Saplen system (on the right).

ACCEPTED MANUSCRIPT

The user simulator receives the current prompt generated by the dialogue system as well

as the semantic representation obtained by the system from the analysis of the previous

simulator’s response. Therefore, the semantic representation can be affected by

recognition and understanding errors similarly as if the simulator response had been

uttered by a real user. To interact with the dialogue system the user simulator employs a

set of scenarios that indicate the goals it must try to achieve during the interaction. For

example, the scenario shown in Fig. 8 indicates that the simulator must order initially

“one large cola” and “one ham sandwich”. When the system prompts for additions to the

order, it must order “one green salad”. The scenario goals are semantic representations

(frames) of utterances in the corpus.

the user telephone number

[<TELEPHONE_NUMBER> = ”958122345”]

the user postal code

[<POSTAL_CODE> = ”18001”]

the user address

[<ADDR_TYPE> = ”STREET”,
<ADDR_NAME> = ”ACERA DE CANASTEROS”,
<ADDR_NUMBER> = ”1”,
<ADDR_FLOOR> = ”THIRD”,
<ADDR_LETTER> = ”E”]

the user wants to order one large cola and one
ham sandwich

[<AMOUNT> = ”1”,
<DRINK> = ”COLA”,
<SIZE> = ”LARGE”
<AMOUNT> = ”1”,
<FOOD> = ”SANDWICH”,
<INGREDIENTS> = ”HAM”]

the user wants to order a green salad

[<AMOUNT> = ”1”,
<FOOD> = ”SALAD”,
<INGREDIENTS> = ”GREEN”]

the user telephone number

[<TELEPHONE_NUMBER> = ”958122345”]

the user postal code

[<POSTAL_CODE> = ”18001”]

the user address

[<ADDR_TYPE> = ”STREET”,
<ADDR_NAME> = ”ACERA DE CANASTEROS”,
<ADDR_NUMBER> = ”1”,
<ADDR_FLOOR> = ”THIRD”,
<ADDR_LETTER> = ”E”]

the user wants to order one large cola and one
ham sandwich

[<AMOUNT> = ”1”,
<DRINK> = ”COLA”,
<SIZE> = ”LARGE”
<AMOUNT> = ”1”,
<FOOD> = ”SANDWICH”,
<INGREDIENTS> = ”HAM”]

the user wants to order a green salad

[<AMOUNT> = ”1”,
<FOOD> = ”SALAD”,
<INGREDIENTS> = ”GREEN”]

Fig. 8. A sample scenario for the user simulator.

When the system prompts for the user’s telephone number, postal code or address, the

user simulator employs the telephone number, postal code and address in the scenario.

When the appropriate scenario goal, e.g. <POSTAL_CODE> = “18001”, is selected to

ACCEPTED MANUSCRIPT

answer a system prompt, the simulator selects at random7 any utterance in the corpus

(voice samples file) the semantic representation of which matches the selected goal, for

example “my postal code is 18001”. This utterance is the input for the dialogue system’s

HTK-based speech recogniser, as can be observed in Fig. 7. The dialogues generated in

the system-simulator interaction are stored in log files for evaluation purposes,

including the system prompt, the prompt type (T), the user simulator’s response

(utterance transcription) and the speech recognition result. The simulator employs an

interactionLimit parameter to cancel the dialogue with the dialogue system if the total

number of interactions (i.e. of system plus user simulator) exceeds a threshold set to 30

interactions. The value of this parameter was decided considering the complexity of the

scenarios employed for the interaction. Below is a sample dialogue between the system

and the user simulator behaving as a not very cooperative user.

(1) Saplen: Good evening, welcome to our restaurant. This is our automatic telephone service
system. We inform you that the minimum price for the home delivery service is six euros.
Please speak after the tone. What would you like to have?
T = ANYTHING_TO_ORDER

(2) User simulator: Acera de Canasteros Street, number one, third floor, letter e [Recognition
result: cherry (1.0000) make (0.5997) an (0.0718) order (0.718) of (0.6070) elm (0.4084)]

(3) Saplen: I’m sorry, I didn’t understand. You can order products or ask for information. How
may I help you?
T = ORDER_OR_INFORMATION

(4) User simulator: one large cola and one ham sandwich [Recognition result: one (0.7991)
large (0.9785) cola (0.4997) and (0.4871) one (0.4942) ham (0.6591) sandwich (0.6781)]

(5) Saplen: OK. One large cola and one ham sandwich. Would you like anything else?
T = ANYTHING_TO_ORDER

(6) User simulator: one green salad [Recognition result: one (0.8564) green (0.8564) salad
(0.5864)]

(7) Saplen: OK. Please say your telephone number.
 T = TELEPHONE_NUMBER
(8) User simulator: 9 5 8 12 23 45 [Recognition result: eighteen (1.0000) zero (0.8354) zero

(0.6923) seven (0.4999) forty-five (0.3870)]
(9) Saplen: I need to confirm your telephone number. Did you say 18, 0, 0, 7, 45?
 T = TELEPHONE_CONFIRMATION

7 To employ all the utterances available in the corpus, the simulator first selects utterances that have not

been used. When all have been used, it selects those least used, which helps to employ all the possible

utterances approximately the same number of times.

ACCEPTED MANUSCRIPT

(10) User simulator: 9 5 8 12 23 45 [Recognition result: seventy-eight (0.5025) twelve (0.7002)

seventy-five (0.6698)]
(11) Saplen: OK. Telephone number 78, 12, 75. Please say your postal code
 T = POSTAL_CODE
(12) User simulator: This is incorrect [Recognition result: this (0.4048) is (0.6992) incorrect

(1.0000)]
(13) Saplen: OK. Please say your telephone number again.
 T = TELEPHONE_NUMBER
(14) User simulator: 9 5 8 12 23 45 [Recognition result: nine (0.9390) five (0.9581) eight

(0.3919) twelve (0.6750) twenty-three (0.7848) forty-five (0.9816)]
(15) Saplen: I must confirm your telephone number again. Did you say 9, 5, 8, 12, 23, 45?
 T = TELEPHONE_CONFIRMATION
(16) User simulator: 9 5 8 12 23 45 [Recognition result: nine (0.7835) five (0.8273) eight

(0.8471) twelve (0.9849) twenty-three (0.6084) forty-five (0.8481)]
(17) Saplen: OK. Telephone number 9, 5, 8, 12, 23, 45. Please say your postal code.
 T = POSTAL_CODE
(18) User simulator: 18 0 0 1 [Recognition result: eighteen (0.7984) zero (1.0000) zero (1.0000)

one (0.5048)]
(19) Saplen: OK. Postal code number 18, 0, 0, 1. Please say your address, for example, Elm

street, number 13, first floor, letter e.
 T = ADDRESS
(20) User simulator: Acera de Canasteros street, number one, third floor, letter e [Recognition

result: acera-de-canasteros (1.0000) street (1.000) ice (0.3046) error (0.3046) twelve
(1.0000) beer (0.1862)]

(21) Saplen: I have to confirm the building number. I think you said 12. Is this correct?
 T = BUILDING_NUMBER
(22) User simulator: one [Recognition result: two (0.4223)]
(23) Saplen: I have to confirm the building number again. Did you say 2?
 T = BUILDING_NUMBER_CONFIRMATION
(24) User simulator: one [Recognition result: one (0.5891)]
(25) Saplen: OK. Number one. Please say the floor of the apartment.
 T = APARTMENT_FLOOR
(26) User simulator: third [Recognition result: first (0.8012)]
(27) Saplen: OK. First floor. Please say the apartment letter.
 T = APARTMENT_LETTER
(28) User simulator: This is incorrect [Recognition result: this (0.5091) is (0.9892) incorrect

(0.7432]
(29) Saplen: OK. Please say floor again.
 T = APARTMENT_FLOOR
*** INTERACTION LIMIT (30) REACHED, DIALOGUE CANCELLED BY USER SIMULATOR ***

Employing this kind of dialogue we aim to simulate real dialogues in which the users

sometimes utter sentences that do not match the current prompt of the dialogue system,

as can be observed in the following interaction:

(1) Human operator: Good evening, welcome to our restaurant. What would you like to
have?

(2) User: one ham sandwich and one large beer please
(3) Human operator: Anything else?
(4) User: no, thanks.
(5) Human operator: What is your telephone number?
(6) User: well, uhm … I think I’d better have one small beer instead of one large beer
(7) Human operator: OK, small beer. Telephone number, please?

ACCEPTED MANUSCRIPT

Turn (6) of this example would not be recognised if at this dialogue state the system

used a prompt-dependent language model trained from telephone numbers only. Hence,

it is important to use wide coverage grammars that allow the system, in principle, to

recognise any kind of sentence permitted in the application domain, regardless of the

current prompt of the dialogue system. The problem is that these grammars are more

complex, and the vocabulary active at each dialogue state is much larger, which tends to

markedly increase speech recognition errors.

4.3. The speech database and test scenarios for the user simulator

We used two separate utterance corpora, one for training and the other for testing, that

we employed in a previous study (López-Cózar et al. 2003). Both disjunct corpora were

created using the Saplen corpus discussed in the previous section, selecting utterances at

random among the 18 types shown in Table 4. Each corpus included the transcriptions

of the utterances as well as their corresponding semantic representations.

Table 4. Utterance corpora used for training and testing.

Sentence type No. training utterances No. test utterances
Product order 250 250
Telephone number 250 250
Postal code 250 250
Address 250 250
Query 125 125
Confirmation 125 125
Number 125 125
Food name 125 125
Ingredient 125 125
Drink name 125 125
Size 125 125
Taste 125 125
Temperature 125 125
Street name 125 125
Building number 125 125
Building floor 125 125
Apartment letter 125 125
Error indication 125 125
 Total: 2,750 Total: 2,750

ACCEPTED MANUSCRIPT

We compiled one prompt-independent language model (word bigram) from the 2,750

training sentences to enable the recognition of the 18 sentence types set out in Table 4.

In theory, this language model would provide users with a more natural interaction as

they could utter any of the 18 sentence types at any moment in the dialogue, regardless

of the current prompt generated by the system. However, we observed in previous

experiments that using such a grammar degraded the word accuracy given that the

vocabulary was large and there were many possible sentences to be considered during

the analysis of each utterance. This problem motivated the proposed technique, which is

intended to increase word accuracy when such a language model is used.

Employing the test utterance corpus we automatically created 400 different

scenarios similar to that shown in Fig. 8. To do this we used the semantic

representations of the 250 product orders, telephone numbers, postal codes and

addresses in this corpus. Each scenario contained one product order, which was created

by means of the random combination of 1 – 3 semantic representations of product

orders. The scenario also contained the semantic representation of one telephone

number, one postal code and one address, also selected at random. To carry out the

experiments the scenario corpus was divided into two separate scenario corpora, which

we called ScenariosA (300 scenarios) and ScenariosB (100 scenarios).

4.4. Experiments to decide the requirements on training corpus

We initially carried out additional experiments to decide the appropriate number of

dialogues that enabled the syntactic-semantic and lexical models to obtain the maximum

amount of information from the training. We employed the Saplen system and the user

simulator and increased the number of automatically generated dialogues until we did

not observe any change in the amount of learnt information, nor in terms of syntactic-

ACCEPTED MANUSCRIPT

semantic patterns in the � set, nor in terms of lexical confusions in the � set. Table 5

shows the results obtained.

Table 5. Progress of learnt information as the size of training corpus increases.

Number of dialogues Number of patterns in � Number of lexical confusions in �
150 146 408
300 161 551
450 167 684
600 172 763
750 175 908
900 175 1,042

1050 175 1,042

It can be observed that the number of syntactic-semantic patterns and lexical confusions

increased with the number of generated dialogues until it reached a threshold. The

maximum number of patterns (175) was obtained for 750 generated dialogues, whereas

the highest number of lexical confusions (1,042) was achieved for 900 dialogues.

Hence, we assumed that 900 was the optimum number of dialogues that needed to be

generated.

4.5. Experiments with the baseline system

In these experiments we employed the original HTK-based speech recogniser of the

Saplen system only. Hence, the recognition results that were the input to the semantic

analyser of the system were not corrected by the ASRPC module. Employing

ScenariosA and the user simulator we generated a corpus of 900 dialogues that we

called DialoguesA1. To create these dialogues the simulator used each scenario 3 times,

behaving as a very cooperative user, a cooperative user, and a not very cooperative user.

Table 6 sets out the average results obtained from the analysis of this dialogue corpus.

Table 6. Average evaluation results (in %) of the baseline system.

Dialogue corpus WA SU IR TC
DialoguesA1 76.12 54.71 9.19 24.51

ACCEPTED MANUSCRIPT

The low WA rate shows the problems of the speech recogniser in correctly analysing

the utterances. These problems affected the other evaluation measures, which were very

low. Observing the log files created (see Fig. 6) we found that in some cases the

recognition results were incorrect but similar to the input utterances. For example, “una

cerveza grande” (one large beer) was recognised as: “una cerveza grandes”, which was

correctly understood by the system because of its implicit recovery ability. We found

that 9.19% of the incorrectly recognised sentences were correctly understood by the

system due to this reason. In other cases, the recognition results were completely

different to the utterances and it was impossible for the system to implicitly recover the

errors. For example, the address: “calle Acera de Canasteros numero uno, tercero, letra e”

(Acerca de Canasteros Street, number one, third foor, letter e) was recognised as: “e de

cereza hacer un pedido necesito de bazan” (e of cherry order I need of bazan).

4.6. Experiments with the proposed technique

4.6.1. Creation of the elements for applying the technique

In accordance with Section 3.1.1, we created a set of word-classes � = {K1, K2, …,

K21} by re-using the 21 word-classes available from a previous study (López-Cózar and

Callejas, 2005). These classes were the same word-classes used by the semantic

analyser of the Saplen system. According to Section 3.1.2, we created a set of

grammatical rules that contained 3 rules to check number correspondences in food and

drink orders uttered in Spanish. To create the sets of syntactic-semantic and lexical

models, as discussed in Sections 3.1.3 and 3.1.4, we used DialoguesA1 and obtained � =

{SSMTi} and � = {LMTi}, i = 1 ... 43 (43 is the number of prompt types generated by the

Saplen system).

ACCEPTED MANUSCRIPT

4.6.2. Decision on the optimal value for the similarity threshold

To decide the best value for the similarity threshold t, we carried out side experiments

testing 6 different values: 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8. We used ScenariosB (100

dialogues) and employing the user simulator we generated 6 dialogue corpora, one per

value of t. The user simulator employed each scenario 3 times, simulating very

cooperative, cooperative and not very cooperative users. Hence, each corpus contained

300 dialogues. The Saplen system used the ASRPC module during this corpora

generation, employing the � and � sets created in the previous section. Analysis of the 6

corpora showed that the best performance of the system was achieved when t = 0.5.

4.6.3. Using the proposed technique with the optimal value of the

similarity threshold

In these experiments the output of the HTK-based speech recogniser was processed by

the ASRPC module (see Fig. 6). The similarity threshold was set to the optimal value: t

= 0.5. We used again ScenariosA (300 scenarios) and employing the user simulator we

generated 900 dialogues, which we called DialoguesA2. As in the previous experiments,

each scenario was used three times, one per user type. Table 7 shows the average results

obtained from the analysis of this dialogue corpus.

Table 7. Average evaluation results (in %) employing the proposed technique.

Dialogue corpus WA SU IR TC
DialoguesA1 84.62 71.25 13.20 68.32

Analysis of the log files showed that the ASRPC module was successful in correcting

some erroneous recognition results. Table 8 shows some examples of these corrections,

where T = prompt type of the Saplen system, U = user utterance, h = speech recognition

ACCEPTED MANUSCRIPT

result, and h’ = result of the ASRPC module. The corrections were carried out by

replacing or discarding words in h.

Table 8. Examples of successful corrections of speech recognition errors (in Spanish).

T = PRODUCT_ORDER
U = dos fantas grandes de limon
h = uno (0.5954) fantas (1.0000) grandes (0.8987) de (0.9011) limon (1.0000)
h’ = dos (1.0000) fantas (1.0000) grandes (0.8987) de (0.9011) limon (1.0000)
T = POSTAL_CODE
U = dieciocho cero cero uno
h = dieciocho (1.0000) cero (1.0000) cero (1.000) pavo (0.3000)
h’ = dieciocho (1.0000) cero (1.0000) cero (1.000) uno (1.0000)
T = TELEPHONE_NUMBER
U = plaza alonso cano numero dieciocho cuarto letra a
h = plaza (0.8000) alonso (1.0000) cano (1.0000) normal (0.4000) dieciocho (1.0000) cuarto (0.5000) letra
 (0.6358) a (0.64320)
h’ = plaza (0.8000) alonso (1.0000) cano (1.0000) numero (0.4000) dieciocho (1.0000) cuarto (0.5000) letra
 (0.6358) a (0.64320)
T = ANYTHING_TO_DRINK
U = no
h = dos (0.4233)
h’ = no (1.0000)
T = TELEPHONE_CONFIRMATION
U = nueve cinco ocho sesenta setenta ochentinueve
h = nueve (0.3999) cinco (1.0000) kas (1.0000) sesenta (1.0000) setenta (1.0000) ochentinueve (1.0000)
h’ = nueve (0.3999) cinco (1.0000) ocho (1.0000) sesenta (1.0000) setenta (1.0000) ochentinueve (1.0000)
T = FOOD_ORDER_CONFIRMATION
U = una ensalada de curry
h = un (0.8982) error (0.6950) ensalada (0.5982) de (0.5969) curry (0.8059)
h’ = un (0.8982) ensalada (0.5982) de (0.5969) curry (0.8059)
T = TELEPHONE_CONFIRMATION
U = si
h = seis (0.8623)
h’ = si (1.0000)
T = TELEPHONE_CONFIRMATION
U = nueve cinco ocho veintiuno catorce dieciocho
h = dame (0.8562) cinco (0.9632) ocho (.0856) veintiuno (0.1000) catorce (0.1000) dieciocho (0.9854)
h’ = nueve (1.0000) cinco (0.9632) ocho (.0856) veintiuno (0.1000) catorce (0.1000) dieciocho (0.9854)
T = ADDRESS
U = calle almona del boquerón numero cinco segundo letra h
h = calle (1.0000) almona (1.0000) del (1.0000) boqueron (1.0000) error (0.5003) cinco (0.9000) segundo
 (0.6002) cero (0.7995)
h’ = calle (1.0000) almona (1.0000) del (1.0000) boqueron (1.0000) numero (1.0000) cinco (0.9000) segundo
 (0.6002) h (1.0000)
T = ADDRESS
U = calle arandas numero ocho primero letra c
h = calle (0.4014) arandas (1.0000) normal (1.0000) ocho (1.0000) primera (0.6998) letra (0.7145) c (0.8510)
h’ = calle (0.4014) arandas (1.0000) numero (1.0000) ocho (1.0000) primera (0.6998) letra (0.7145) c (0.8510)

The technique worked very well for correcting errors in affirmative or negative

confirmations. This happened because the speech recogniser usually substituted the

ACCEPTED MANUSCRIPT

word ‘si’ (yes) employed in many affirmative confirmations by the word ‘seis’ (six),

especially when ‘si’ was uttered by speakers with strong southern Spanish accents. These

users generally omitted the final ‘s’ of words, thus making ‘seis’ to be acoustically very

similar to ‘si’. Also because of these accents, the recogniser usually substituted the word

‘no’ by the word ‘dos’. The ASRPC module corrected both kinds of error by replacing the

concept NUMBER with the concept CONFIRMATION, and then selecting the most likely

word in the latter concept given the word ‘seis’ (in affirmative confirmations) or ‘dos’

(in negative confirmations).

The technique also corrected many incorrectly recognised product orders. For

example, “dos fantas grandes de limon” (two large lemon fantas) was recognised as “uno

fantas grandes de limon” (one large lemon fantas) because of the acoustic similarity

between ‘dos’ en ‘uno’ when uttered by strongly accented speakers. The ASRPC module

repaired the error doing no corrections at the statistical level, and replacing ‘uno’ with

‘dos’ at the linguistic level. In other cases the correction was carried out at the statistical

level. For example, “una ensalada de curry” (one curry salad) was recognised as “un error

ensalada de curry” (one mistake curry salad). The error correction was carried out by

discarding the word in the concept ERROR (‘error’). The outcome of the ASRPC (“un

ensalada de curry”) contained one gender discordance in Spanish as ‘un’ is male whereas

‘ensalada’ is female, but the sentence was correctly understood by the Saplen system as

the discordance did not affect the semantic content of the sentence.

The technique was also able to correct some misrecognised telephone numbers.

For example, “nueve cinco ocho veintiuno catorce dieciocho” (nine five eight twenty-one

fourteen eighteen) was recognised as “dame cinco ocho veintiuno catorce dieciocho”

(gimme five eight twenty-one fourteen eighteen) because of the acoustic similarity

ACCEPTED MANUSCRIPT

between ‘nueve’ and ‘dame’. The ASRPC module corrected the error by replacing the

concept DESIRE with the concept NUMBER, and selecting the most likely word in the

latter concept (‘nueve’) given the word ‘dame’.

The technique was also useful in repairing some misrecognised postal codes. For

example, “dieciocho cero cero uno” (eighteen zero zero one) was recognised as “dieciocho

cero cero pavo” (eighteen zero zero turkey). This error was corrected by replacing the

concept INGREDIENT with the concept NUMBER, and selecting the most likely word in

the latter concept (‘uno’) given the word ‘pavo’.

The ASRPC module was also successful in correcting some incorrectly

recognised addresses. For example, “calle almona del boquerón numero cinco segundo letra

h” (almona del boqueron street number five second8 letter h) was recognised as “calle

almona del boqueron error cinco segundo cero” (almona del boqueron street error five

second zero). The error was corrected by making a double repair. First, replacing the

concept ERROR with the concept NUMBER_ID, and selecting the most likely word in the

latter concept (‘numero’) given the word ‘error’. Second, replacing the concept NUMBER

with the concept LETTER, and selecting the most likely word in the latter concept (‘h’)

given the word ‘zero’.

4.6.4. Advantage of using contextual syntactic-semantic models

(SSMT’s)

The goal of this experiment was to check whether using different SSMT’s, and if needed

� = {SSMTi} as a fallback strategy, as discussed in Section 3.2.1, was preferable to the

two following alternative strategies:

8 In this sentence in Spanish, the word ‘floor’ was implicit after the word ‘second’, i.e. the data for the

system was ‘second floor’.

ACCEPTED MANUSCRIPT

 i) use � only, without first checking the prompt-dependent SSMT’s.

ii) use SSMT, and if the pattern is not found there use � as a fallback strategy,

but without considering9 the similarity threshold t.

The � set was that created with DialoguesA1 in Section 4.6.3, and the similarity

threshold was set to the optimal value, t = 0.5. We first changed slightly the behaviour

of the ASRPC module so that it worked in accordance with the procedure described in

i). We used again ScenariosA (300 scenarios) and the user simulator to generate a

corpus of 900 dialogues, which we called DialoguesA3 (each scenario was used three

times, one per user type). Next we changed again the behaviour of the ASRPC module

so that it now worked in accordance with the procedure described in ii). We used again

ScenariosA and the user simulator and generated another corpus of 900 dialogues,

which we called DialoguesA4 (each scenario was used three times, one per user type).

Therefore, DialoguesA1, DialoguesA3 and DialoguesA4 were created using the same

scenarios and were comprised of the same number of dialogues, the only difference

being in the strategy for selecting the syntactic-semantic model to be used. Table 9

shows the average results obtained from the analysis of DialoguesA3 and DialoguesA4.

Table 9. Average evaluation results (in %) obtained by changing the strategy to select
the syntactic-semantic model.

Dialogue corpus WA SU IR TC
DialoguesA3 (using � only) 80.15 61.67 9.57 39.78
DialoguesA4 (using SSMT if possible, otherwise use �) 82.26 66.84 12.15 55.35

9 Note that the proposed strategy takes into account the similarity threshold t. The fallback strategy, i.e.

use of the � set, is employed only if no patterns are found in SSMT similar to the input pattern with

similarity value greater than t.

ACCEPTED MANUSCRIPT

Analysis of the log files showed that the error correction in confirmations was very

much affected by the strategy employed to select the correction model (either SSMT or

�). This selection had a considerable effect on dialogue success because correctly

recognising confirmations is critical for the dialogue. If we always used SSMT to correct

errors in confirmations, the correction was in many cases successful. On the other hand,

if we always used � the correction was mostly incorrect. This happened because the

pattern comprised of just of the concept NUMBER (i.e. ssp = NUMBER) was in �.

Therefore, if the answer to a confirmation prompt was ‘si’ (yes) and it was incorrectly

recognised as ‘seis’ (six), the input pattern obtained from the recognition result was: ssp

= NUMBER, which matched one pattern in �. Hence, the algorithm for error correction

did not make any correction at the pattern matching step and the recognition result

remained uncorrected. If we compare Table 9 and Table 7 (Section 4.6.3) it follows that

the best strategy for selecting the model for the conceptual correction (either SSMT or �)

is the one proposed in this paper, which makes the decision considering the similarity

threshold.

4.6.5. Advantage of using contextual lexical models (LMT’s)

Analogously to the previous section, the goal of this experiment was to check whether

using different LMT’s and if needed � = {LMTi} as a fallback strategy, as discussed in

Section 3.2.2, was preferable to using � only. To carry out the experiment we used the �

set created with DialoguesA1 in Section 4.6.3. Similarly as we did in the previous

section, we changed slightly the behaviour of the ASRPC module in accordance with

the new strategy, i.e. use � always instead of different LMT’s. We employed again

ScenariosA (300 scenarios) and the user simulator and generated a corpus of 900

dialogues, which we called DialoguesA5 (each scenario was used three times, one per

ACCEPTED MANUSCRIPT

user type). Therefore, DialoguesA1 and DialoguesA5 were obtained using the same

scenarios and were comprised of the same number of dialogues, the only difference

being in the use of �. Table 10 shows the average results obtained from the analysis of

DialoguesA5.

Table 10. Average evaluation results (in %) obtained by changing the strategy to select
the lexical model.

Dialogue corpus WA SU IR TC
DialoguesA5 (using � only) 81.40 65.61 11.43 60.89

These results are lower than those shown in Table 7 (Section 4.6.3), which indicates that

using the lexical information (word confusions) associated with each prompt type T

(LMT) for correction is better than using all the lexical information in the application

domain regardless of the prompt type. This happens because the confusion probabilities

of words are not the same in the LMT‘s and in �, and these differences are in some cases

deterministic in making the proper correction. For example, in accordance with the � set

used in the experiments, the highest probability of confusing the word ‘error’ with a word

in the NUMBER concept is 0.0370, and this word is ‘dieciseis’ (sixteen). However, in

accordance with LMT=PRODUCT_ORDER, the highest probability of confusing the word

‘error’ with a word in the same concept is 0.0090, and this word is ‘una’ (one). Therefore,

if in the correction of a recognition result we assume that the word ‘error’ is incorrect,

and we look for a word in the NUMBER concept, the selected candidate is ‘dieciseis’ if we

consider �, and ‘dos’ if we take into account LMT=PRODUCT_ORDER. This shows that the

lexical model employed affects the outcome of the correction process. It we compare

Table 10 and Table 7 (Section 4.6.3) it follows that the best strategy to select the model

for the lexical correction (either LMT or �) is the one proposed in this paper, which uses

different models to take into account word confusion information in different contexts.

ACCEPTED MANUSCRIPT

5. Limitations of the proposed technique

The technique has several limitations. One is that the system designers must provide

semantic information about the application domain in the form of word-classes, and

linguistic information in the form of grammatical rules. This is not the case for purely

statistical methods, which learn from the provided training data without requiring

additional effort on the part of the system designers. Another limitation is that there are

cases where the technique fails in correcting erroneous recognition results, as observed

in Table 11. One failing case is when the words in the input utterance are substituted by

others and the recognition result is valid in the application domain. For example, the

product order “quiero una ensalada de gambas” (I want one prawn salad) was recognised

as “quiero una ensalada de manzana” (I want an apple salad). In this case the ASRPC

module did not made any correction because the recognition result was conceptually

valid although it was incorrect. Another example is the telephone number “nueve cinco

ocho setenticuatro setenticinco veintiuno” (nine five eight seventy-four seventy-five twenty-

one), which was recognised as “nueve cinco ocho setenticuatro sesenticinco veintiuno”

(nine five eight seventy-four sixty-five twenty-one) because of the substitution of

‘setenticinco’ by ‘sesenticinco’. Again, the ASRPC module did not make any correction

because the obtained telephone number was conceptually valid although it was

misrecognised.

 Another failing case is when the sequence of words in the input utterance is so

distorted by speech recognition errors that the obtained syntactic-semantic pattern

cannot be corrected. In this case the technique either fails in the correction or does not

make any correction. For example, the product order “ponme una fanta de naranja grande”

(I want one large orange fanta) was recognised as “queso de bazan tercera” (cheese of

ACCEPTED MANUSCRIPT

bazan third). For this very incorrectly recognised sentence the ASRPC did not make any

correction, as it did not find any similar pattern learnt in the training to make concept

replacements.

Table 11. Examples of unsuccessful corrections of speech recognition errors (in
Spanish).

T = TELEPHONE_NUMBER
U = nueve cinco ocho setenticuatro setenticinco veintiuno
h = nueve (0.5999) cinco (1.0000) ocho (1.0000) setenticuatro (0.8000) sesenticinco (0.4000)
 veintidos (1.0000)
h’ = nueve (0.5999) cinco (1.0000) ocho (1.0000) setenticuatro (0.8000) sesenticinco (0.4000)
 veintidos (1.0000)
T = CONFIRM_TELEPHONE_NUMBER
U = nueve cinco ocho setenticuatro setenticinco veintiuno
h = dame (0.6006) cinco (1.0000) ocho (1.0000) setenticuatro (0.5000) veinticinco (0.1999)
 veintiuno (1.0000)
h’ = nueve (1.0000) cinco (1.0000) ocho (1.0000) setenticuatro (0.5000) veinticinco (0.1999)
 veintiuno (1.0000)
T = ADDRESS
U = calle acera del triunfo número dos segundo letra a
h = c (0.7983) diez (0.2010) noveno (0.2013) segundo (0.6038) letra (0.6188) a (0.6038)
h’ = c (0.7983) diez (0.2010) noveno (0.2013) segundo (0.6038) letra (0.6188) a (0.6038)
T = FOOD_ORDER
U = ponme una fanta de naranja grande
h = queso (0.1010) de (0.9005) bazan (0.7013) tercera (0.7013)
h’ = queso (0.1010) de (0.9005) bazan (0.7013) tercera (0.7013)
T = TELEPHONE_NUMBER
U = nueve cinco ocho tres dos cero tres uno siete
h = nueve (0.6450) cinco (0.7941) ocho (0.6019) queso (0.4002) cero (1.000) tres (0.8998) uno (1.0000) siete
 (1.0000)
h’ = nueve (0.6450) cinco (0.7941) ocho (0.6019) cero (0.5392) tres (0.8998) uno (1.0000)
T = TELEPHONE_NUMBER
U = nueve cinco ocho uno tres cinco uno cinco seis
h = nueve (0.7002) cinco (0.9000) chocolate (0.5995) curry (0.6994) trece (0.5995)
h’ = nueve (0.7002) cinco (0.9000) trece (0.5995)
T = ARDES
U = calle alhóndiga número cuatro
h = queremos (0.5013) de (0.8056) lomo (0.4063) con (0.4063) queso (0.4063)
h’ = queremos (0.5013) de (0.8056) lomo (0.4063) con (0.4063) queso (0.4063)
T = PRODUCT_ORDER
U = quiero una ensalada de gambas
h = quiero (0.5056) una (1.0000) ensalada (0.9012) de (0.9005) manzana (0.6924)
h’ = quiero (0.5056) una (1.0000) ensalada (0.9012) de (0.9005) manzana (0.6924)
T = PRODUCT_ORDER
U = quiero una ensalada de gambas
h = de (1.0000) manzana (1.0000) manzana (0.5008)
h’ = de (1.0000) manzana (1.0000) manzana (0.5008)

ACCEPTED MANUSCRIPT

Another limitation is the well-known problem of out-of-vocabulary words (OOV),

which exists whenever a speech recogniser is used. All the words uttered by the

speakers who recorded the speech database were included in the dictionary of the

Saplen system employed in the experiments. Hence, there were no OOV problems in

the testing of the technique. However, in a real interaction there may be OOV words.

The effect of these words in the proposed technique depends on whether these words are

keywords or not, and on the speech recognition errors that they cause.

If the OOV words are not keywords it is not important for the dialogue system to

recognise the words, as they do not affect the semantics of the sentences. However, the

uttering of these words may cause in-vocabulary words to be inserted, substituted or

deleted in the recognition results. In terms of speech understanding, there is no problem

if these in-vocabulary words are not keywords as the concepts in the utterances are not

changed. The problem is when the words are keywords. The performance of the

technique in dealing with in-vocabulary keyword recognition errors has been discussed

in Section 3.2.3.

 If the OOV words are keywords it would be important for the dialogue system to

recognise the words, given that they affect the semantics of the sentences. However,

these words cannot be recognised as they are unknown for the recogniser, and thus the

speech recognition errors they cause cannot be corrected. This happens because the

syntactic-semantic and lexical models obtained from the training cannot learn any

information about these words. Hence, it is not possible to make either concept or word

replacements to correct the errors. It is impossible as well to make corrections at the

linguistic level given that words do not appear in the recognition results, and thus the

grammatical rules are not applicable for them.

ACCEPTED MANUSCRIPT

 If we wanted to check the effect of OOV words on the proposed technique

employing our experimental setting, we could remove some words from the Saplen

system’s dictionary, which would now be OOV words. Another method would be to

record new utterances which include OOV words, and create new scenarios for the user

simulator that include as goals the frames associated with these new utterances. The

dialogue system would analyse the new utterances when the simulator employs the new

scenarios. In both cases the speech recogniser would face the problem of unknown

words, which would enable recognition errors to be handled by the technique.

6. Conclusions and future work

This paper has presented a novel technique for ASR post-correction in spoken dialogue

systems that employs semantic, syntactic, lexical and contextual information. The

semantic and syntactic information is implemented by means of sets of patterns, which

are created from the analysis of a dialogue corpus. Each set of patterns is mapped to a

prompt type of a spoken dialogue system. The prompt type represents the contextual

information of the technique, as it determines the kinds of sentence likely to be uttered

by the user at a particular dialogue state. The lexical information is implemented by

means of word confusion probabilities and basic grammatical rules. The confusion

probabilities are computed from the analysis of the dialogue corpus, by aligning

utterance transcriptions and speech recognition results. The grammatical rules are

provided by the system designers and are used to ensure grammatical restrictions

between specific words. These rules are necessary to compensate for problems arising

from sparse training data.

The technique presents two main novel contributions to research. On the one

hand, it considers several contexts where a speech recognition result can be corrected. A

ACCEPTED MANUSCRIPT

similarity threshold is used to decide whether the correction must be carried out in the

context associated with the current prompt type generated by the dialogue system, or in

another context. The optimal value of this threshold must be determined experimentally.

On the other hand, the technique deals with the confidence scores of the words

employed for the corrections. We have proposed a simple method to compute these

scores that worked well in the experiments, but we do not claim that it is optimal.

 Experiments to test the technique have been carried out employing a dialogue

system and a user simulator, both developed in previous studies. The dialogue system

used one prompt-independent language model (word bigram) for speech recognition,

which enabled, in theory, the recognition of any kind of sentence permitted in the

application domain, regardless of the current prompt of the dialogue system. We

observed in previous experiments that this language model caused many erroneous

recognition results. Hence, we used the proposed technique to try to correct some of

these errors. We compared two speech recognition front-ends: i) the HTK-based speech

recogniser of the dialogue system (baseline), and ii) the HTK-based recogniser and the

ASRPC module, which implements the proposed technique. The results obtained,

shown in Table 6 (baseline) and Table 7 (proposed technique), indicate that the

technique was very useful in correcting speech recognition errors, as the system’s word

accuracy, speech understanding, implicit recovery and task completion rates increased

by 8.5%, 16.54%, 4%, and 44.17%, respectively.

 We also carried out experiments to check the effect on the correction process of

using the contextual information provided by the system prompt in terms of syntactic-

semantic models (SSMT’s) and lexical models (LMT’s). Regarding the former models,

comparison of Table 7 and Table 9 shows that using SSMT’s with a similarity threshold

ACCEPTED MANUSCRIPT

t provides better results than: i) using the set of these models (�) only, and ii) using the

SSMT’s if the patterns are found there, otherwise using the � set as a fallback strategy

without considering the similarity threshold. Regarding the lexical models, comparison

of Table 7 and Table 10 shows that using LMT’s if possible, and otherwise the set of

these models (�) as a fallback strategy, is also preferable to using � only.

Future work includes testing the proposed technique with dialogue systems

developed for other application domains, for example the Viajero system that we

developed in a previous study to provide bus travel information (López-Cózar et al.

2000). Another line of research is concerned with studying other methods to decide the

confidence score for the correction word. For example, one alternative strategy might be

to consider the score proportional to the number of words in the concept that contains

the word with which the correction word is confused. Another method would be to

consider it proportional to the number of phonemes in common between the corrected

word and the correction word.

Acknowledgements

The authors with to thank the reviewers for their valuable comments that have enhanced

this paper.

7. References

Allen J. 1995. Natural Language Understanding. The Benjamin/Cummings Publishing
Company Inc.

Billi, R., Castagneri, G., Danielli, M. 1997. Field trial evaluations of two different
information inquiry systems. Speech Communication, vol. 23, no. 1–2, pp. 83–93

Crestani, F. 2000. Word recognition errors and relevance feedback in spoken query
processing. Proc. of Conf. Flexible Query Answering Systems, pp. 267-281

Danieli, M., Gerbino, E. 1995. Metrics for evaluating dialogue strategies in a spoken
language system. AAAI Spring Symposium on Empirical Methods in Discourse
Interpretation and Generation, pp. 34-39

ACCEPTED MANUSCRIPT

Denda, Y., Tanaka, T., Nakayama, M., Nishiura, T., Yamashita, Y. 2007. Noise-robust

hands-free voice activity detection with adaptive zero crossing detection using talker
direction estimation. Proc. of ICSLP, pp. 222-225

Fisher, W. M., Fiscus, J. G. 1993. Better alignment procedures for speech recognition
evaluation. Proc. of ICASSP, pp. 59-62

Hazen, T. J., Seneff, S., Polifroni, J. 2002. Recognition confidence scoring and its use in
speech understanding systems. Computer Speech and Language, vol. 16, pp. 49-67

Huang, X., Acero, A., Hon, H. 2001. Spoken Language Processing: A Guide to Theory,
Algorithm and System Development. Prentice-Hall, 2001

Jeong, M., Kim., B., Lee, G. G. 1996. Semantic-oriented error correction for spoken
query processing. Proc. of ICSLP, pp. 897-900

Jeong, M., Jung, S., Lee, G. G. 2004. Speech recognition error correction using
maximum entropy language model. Proc. of Interspeech, pp. 2137-2140

Kaki, S., Sumita, E., Iida, H. 1998. A method for correcting speech recognitions using
the statistical features of character co-occurrences. Proc. of COLING-ACL, pp. 653-
657

Kakutani, N., Kitaoka, N., Nakagawa, S. 2002. Detection and recognition of repaired
speech on misrecognized utterances for speech input of car navigation system. Proc.
of ICSLP, pp.833-836

Kellner, A., Rueber, B., Seide, F., Tran, B.-H. 1997. PADIS – An automatic telephone
switchboard and directory information system. Speech Communication, vol. 23, pp.
95–111

Kraiss, K. F. (Ed.). 2006. Advanced Man-Machine Interaction: Fundamentals and
Implementation. Springer

Lee, C.-H., Carpenter, B., Chou, W., Chu-Carroll, J., Reichl, W., Saad, A., Zhou, Q.
2000. On natural language call routing. Speech Communication, vol. 31, pp. 309-
320

Levow, G. A. 1998. Characterizing and recognizing spoken corrections in human-
computer dialogue. Proc. of COLING-ACL, pp.736-742

Levow, G.-A. 2002. Adaptation in spoken corrections: Implications for models of
conversational speech. Speech Communication, vol.36, pp.147-163

Lo, W. K., Soong, F. K. 2005. Generalized posterior probability for minimum error
verification of recognized sentences. Proc. of ICASSP, pp. 85-88

López-Cózar, R., García, P., Díaz, J., Rubio, A. J. 1997. A voice activated dialogue
system for fast-food restaurant applications. Proc. of Eurospeech, pp. 1783-1786

López-Cózar, R., Rubio, A. J., García, P., Segura, J. C. 1998. A spoken dialogue system
based on a dialogue corpus analysis. Proc. of LREC, pp. 55-58

López-Cózar, R., Rubio, A. J., García, P., Díaz-Verdejo, J. E., López-Soler, J. M. 2000.
Sistema de diálogo oral para proporcionar información sobre viajes en autobús
(Spoken dialogue system to provide bus information). Proc. of First Spanish
Workshop on Speech Technologies, Seville, Spain

ACCEPTED MANUSCRIPT

López-Cózar, R., De la Torre, A., Segura, J. C., Rubio, A. J., Sánchez, V. 2003.

Assessment of dialogue systems by means of a new simulation technique. Speech
Communication, 40(3), pp. 387-407

López-Cózar, R., Araki, M. 2005. Spoken, Multilingual and Multimodal Dialogue
Systems. Development and Assessment. John Wiley & Sons Publishers

López-Cózar, R., Callejas, Z. 2005. Combining Language Models in the Input Interface
of a Spoken Dialogue System. Computer Speech and Language, vol. 20, pp. 420-
440

López-Cózar, R., Callejas, Z., McTear, M. F. 2007. Testing the performance of spoken
dialogue systems by means of a new artificially-simulated user. Accepted in
Artificial Intelligence Review, forthcoming

Mangu, L., Padmanabhan, M. 2001. Error corrective mechanisms for speech
recognition. Proc. of ICASSP, pp. 29-32

Morales, N., Gu, L., Gao, Y. 2007. Adding noise to improve noise robustness in speech
recognition. Proc. of ICSLP, pp. 930-933

McTear, M. F. Spoken dialogue technology. Toward the conversational user interface.
Springer, 2004

Nakano, N., Minami, Y., Seneff, S., Hazen, T. J., Cyphers, D. S., Glass, J., Polifroni, J.,
Zue, V. 2001. Mokusei: A telephone-based Japanese conversational system in the
weather domain. Proc. of Eurospeech, pp. 1331-1334

Ogata, J., Goto, M. 2005. Speech repair: Quick error correction just by using selection
operation for speech input interfaces. Proc. of Interspeech, pp. 133-136

Rabiner, L., Juang, B.H. 1993. Fundamentals of Speech Recognition. Prentice-Hall

Ringger, E. K., Allen, J. F. 1996. A fertility model for post correction of continuous
speech recognition. Proc. of ICSLP, pp. 897-900

Seneff S., Polifroni J. 2000. Dialogue management in the Mercury flight reservation
system. Proc. of ANLP-NAACL Satellite Workshop, pp. 1-6

Seto, S., Kanazawa, H., Shinchi, H., Takebayashi, Y. 1994. Spontaneous speech
dialogue system TOSBURG II and its evaluation. Speech Communication, vol. 15,
pp. 341-353

Shi, Y., Zhou, L. 2006. Examining knowledge sources for human error correction. Proc.
of Interspeech, pp. 1089-1092

Skantze, G. 2005. Exploring human error recovery strategies: Implications for Spoken
Dialogue systems. Speech Communication, vol. 45, pp. 325-341

Suhm, B., Myers, B., Waibel, A. 2001. Multimodal error correction for speech user
interfaces. ACM Transactions on Computer-Human Interaction, vol. 8(1), pp. 60-98

Swerts, M., Litman, D., Hirschberg, J. 2000. Correction in spoken dialogue system,
Proc. of ICSLP, pp. 615-618

Wahlster, W. (Ed.) 2006. SmartKom: Foundations of Multimodal Dialogue Systems.
Springer

ACCEPTED MANUSCRIPT

Ward, W., Issar, S. 1996. A class based model for speech recognition. Proc. of ICASSP,

pp. 416-418

Zhou, Z., Meng, H. 2004. A two-level schemata for detecting recognition errors. Proc.
of ICSLP 2004, pp. 449-452

Zhou, Z., Meng, H., Lo, W. K. 2006. A multi-pass error detection and correction
framework for Mandarin LVCSR. Proc. of ICSLP, pp. 1646-1649

Zue, V., Seneff, S., Glass, J., Polifroni, J., Pao, C., Hazen, T., Hetherington, L. 2000.
Jupiter: A telephone-based conversational interface for weather information. IEEE
Trans. on Speech and Audio Proc., vol. 8(1), pp. 85-96

