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Directed Decision Trees for
Generating Complementary Systems

C. Breslin *', M.J.F. Gales *

Engineering Department, Cambridge University, Trumpington Street, Cambridge CB2 1PZ, United Kingdom

Abstract

Many large vocabulary continuous speech recognition systems use a combination of multiple systems to obtain the
final hypothesis. These complementary systems are typically found in an ad-hoc manner, by testing combinations of
diverse systems and selecting the best. This paper presents a new algorithm for generating complementary systems
by altering the decision tree generation, and a divergence measure for comparing decision trees. In this paper, the
decision tree is biased against clustering states which have previously led to confusions. This leads to a system which
concentrates states in contexts that were previously confusable. Thus these systems tend to make different errors.
Results are presented on two Broadcast News tasks - Mandarin and Arabic. The results show that combining multiple
systems built from directed decision trees give gains in performance when confusion network combination is used
as the method of combination. The results also show that the gains achieved using the directed tree algorithm are

additive to the gains achieved using other techniques that have been empirically shown as complementary.

Key words: Speech recognition, Complementary Systems, System Combination

1. Introduction

State of the art large vocabulary continuous
speech recognition (LVCSR) systems often use a
multipass decoding strategy (e.g. Nguyen et al.
(2002); Gauvain et al. (2002); Gales et al. (2006)).
Such a framework may have many different passes,
depending on the task at hand, but typically will
include an initial transcription stage to obtain an
approximate hypothesis, speaker adaptation and
normalisation using this approximate hypothesis,
then lattice generation and rescoring using more
complex systems. Often, the final pass makes use
of multiple systems, and schemes such as ROVER
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(Fiscus (1997)) and Confusion Network Combina-
tion (CNC) (Evermann and Woodland (2000)) are
used to combine the outputs and obtain a final
hypothesis.

It is only useful to use a combination of multiple
systems if they are complementary. That is, the sys-
tems must make different errors before their com-
bination can improve the final hypothesis. An ad-
hoc approach to generating complementary systems
is to independently train a number of different sys-
tems and select the ones which combine to give the
best results. It is not possible to predict which sys-
tems are complementary based on individual per-
formance alone, so all possible combinations must
be performed to find the best. Also, it is not guar-
anteed that any independently trained systems will
in fact be complementary and, as the number of in-
dividual systems increases, it becomes increasingly
time-consuming to perform all the different combi-
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nations.

In previous work, examples of this ad-hoc ap-
proach have used individual systems with different
segmentations (Gales et al. (2006)), frontends (Hain
et al. (2007); Hwang et al. (2007)), phoneme sets
(Stuker et al. (2006)) or dictionaries (Gales et al.
(2006)). It has often been seen that the combina-
tion of independent systems with very different er-
ror rates yields no gain, and so it is desirable to
combine independent systems with comparable er-
ror rates (Gales et al. (2006); Stuker et al. (2006)).
It is difficult to build independent systems which si-
multaneously have comparable performance and yet
make different errors, which limits the types of in-
dependently trained system that can be combined
in practice.

Ensembles of complementary classifiers have suc-
cessfully been used for machine learning problems
as, for both theoretical and practical reasons, they
often outperform the individual constituent classi-
fiers. This is particularly true in situations where
simply building a more complex model would lead
to overtraining, yet ensembles of models can yield
improvements in performance (Dietterich (2000)).

For these reasons, recent work has begun to look
at algorithms for explicitly training complementary
systems for ASR. Generic algorithms, such as boost-
ing (Freund and Schapire (1996)) exist to build com-
plementary classifiers for static data with a finite
number of classes. However, they require a number
of approximations before they can be used with dy-
namic speech data. Algorithms for explicitly gener-
ating complementary ASR systems have either op-
erated in a boosting-like manner where later sys-
tems focus on portions of the training data which
are harder to recognise (Zhang and Rudnicky (2004,
2003); Meyer (2002)), or have altered the decision
tree generation scheme (Siohan et al. (2005); Breslin
and Gales (2007b,a)). These approaches no longer
attempt to train individual systems with optimal
performance, but rather to train an ensemble of sys-
tems which have optimal performance when com-
bined together.

This paper describes an approach to generating
complementary systems for automatic speech recog-
nition by altering the decision tree generation, pre-
viously presented in (Breslin and Gales (2007b,a)).
The decision tree is directed so as to bias against
tying states which cause confusions. A system built
with a directed tree will hopefully resolve confusions,
but may introduce new errors, and so will be com-
plementary to the original system. In contrast to

other work on decision trees, for example (Nock et al.
(1997); Hu and Zhao (2007); Xue and Zhao (2007)),
this approach is not concerned with improved deci-
sion tree generation, but with generating a sequence
of decision trees that can be used to build systems
that are complementary.

This paper is organised as follows. First, sections
2 and 3 review system combination methods and
previous algorithms for generating complementary
systems. Next, sections 4, 5 and 6 describe deci-
sion trees, random decision trees and directed deci-
sion trees. Section 7 then presents a divergence mea-
sure for the comparison of decision trees. Section 8
presents experimental results and discussion on two
large vocabulary tasks, Broadcast News transcrip-
tion in Mandarin and Arabic, and finally section 9
draws conclusions.

2. System Combination

If multiple systems are to be used for decoding,
a method for combining them is needed. The most
popular methods for this purpose are hypothesis
combination schemes where each system indepen-
dently decodes the data and the resulting hypothe-
ses are combined. Two examples of this type of
scheme are ROVER (Fiscus (1997)) and Confu-
sion Network Combination (CNC) (Evermann and
Woodland (2000)). Both take the outputs from
multiple systems, align them, and then perform a
voting at the word level to give the final hypothesis.
The two schemes differ in both the form of system
output used and the voting scheme.

ROVER begins with 1-best outputs from each of
the systems, and aligns these to give a word transi-
tion network (WTN). Voting for each slot, or set of
competing words, in the WTN is based on the fre-
quency of occurrence N (W) and, if available, word
confidence C (W), typically the word posterior prob-
ability.

Rather than use the 1-best hypotheses, CNC be-
gins with lattice outputs and first converts these to
confusion networks. A confusion network is a lin-
ear graph such that each arc represents a word, and
aligned arcs represent competing words from the lat-
tice. They are obtained from lattices by clustering
arcs that overlap in time (Mangu et al. (1999)). Con-
fusion network arcs are annotated with word poste-
rior probabilities of the word, W, given the model,
M) ie. P(W|M®). The confusion networks for
all systems are aligned, and the best word for each
segment is chosen using a weighted voting scheme



and the posteriors from each confusion network.

The order in which systems are combined is im-
portant for both ROVER and CNC, and previous
experiments have suggested that systems should
be combined in increasing order of word error rate
(Hoffmeister et al. (2006)).

ROVER combination for two systems reduces to
picking the word with the highest confidence where
there is a confusion. Hence, if the recogniser confi-
dence scores are not reliable, then ROVER between
two systems often does not perform well. As more
systems are combined, ROVER, becomes more ro-
bust to the confidence scores. This issue is not as
important with CNC as many more words are used,
S0 it is more robust to the exact values of confidence
score. For this reason, and as many of the exper-
imental results in section 8 combine just two sys-
tems, CNC is used as the method of combination in
this paper, for both the training algorithm and in
decoding.

Another, more indirect, approach to system com-
bination is cross-adaptation (Gales et al. (2006);
Stuker et al. (2006)). This is a scheme which nat-
urally arises in a multipass adaptive framework,
where the output transcriptions from one system
are used in the subsequent pass as the input hy-
pothesis to perform speaker adaptation of a second
system. In practice, this form of system combina-
tion has led to improvements in performance. The
experimental results in section 8 make use of both
CNC and cross-adaptation.

3. Complementary System Generation

As described in section 1, an ad-hoc approach
to generating complementary systems for ASR is
to train a variety of diverse systems, evaluate their
performance in combination, and select those which
perform well together. An alternative way to build
multiple diverse systems is to introduce random-
ness into the training algorithm (Dietterich (2000)).
This can be done, for example, by adding random
noise onto the training data, initialising the param-
eters randomly, or by bagging (Breiman (1996)) -
selecting random subsets of the training data. These
methods can be used regardless of the classifier, the
task, and the training algorithm. If the specific clas-
sifier in question is a decision tree, then it is possi-
ble to grow the trees in a random manner and hence
build a random forest (Breiman (2001)). This ap-
proach is considered in more detail for ASR in sec-
tion 5.

Building diverse systems, either through different
training algorithms or by injecting randomness, does
not guarantee that the multiple systems are com-
plementary. Hence, approaches have been proposed
that aim to explicitly generate complementary sys-
tems. These typically operate in an iterative frame-
work to build multiple systems, where each new sys-
tem focuses on errors made by previous systems.

Boosting is one example of such an approach, and
AdaBoost (Freund and Schapire (1996)) is the most
commonly used boosting algorithm. It is an algo-
rithm which operates on a binary classification task,
using any form of classifier. A multi-class variant of
AdaBoost, called AdaBoost.M2, was developed for
a classification task with a finite, ideally small, num-
ber of output classes. Both algorithms build a se-
ries of classifiers which can then be combined. Typ-
ically the classifier is a weak learner, i.e. it performs
slightly better than random, but by combining many
weak learners it is possible to achieve the perfor-
mance of a strong classifier.

AdaBoost maintains a distribution over all the
training data, where harder examples are allocated
greater weight. A new classifier is trained by taking
this distribution into account, and so the algorithm
begins to focus on harder training data. After each
classifier has been built, the distribution over the
training data is updated. As part of the training al-
gorithm, a classifier importance is calculated, and
this is used as a weight to combine all the classifiers
using a voting scheme and obtain the final hypoth-
esis.

Where there is low classification noise on the
training set, i.e. the training labels are accurate,
boosting outperforms randomisation as a method
for generating complementary systems. In high
classification noise however, the reverse is true as
the later classifiers built by the boosting algorithm
begin to focus on errors rather than on data which
is truly hard to classify. In contrast, bagging and
randomisation work much better in this situation
because the randomness overcomes the classifica-
tion noise (Dietterich (1999)).

There are a number of issues with applying boost-
ing, or boosting-like, algorithms to speech recogni-
tion. Speech is not a binary classification task, there
are a large number of output classes, the forms of
classifier used are highly complex, the training data
labels may not be accurate, the data is dynamic and,
finally, the simple weighted voting scheme is not
directly applicable for system combination. Hence
some previous work on boosting for speech recog-



nition has recast the problem as a phone classifica-
tion one, and avoided some of these problems. For
example, (Zweig and Padmanabhan (2000)) builds
GMMs for each phone and performs boosting for
phone classification at the frame level, (Schwenk
(1999)) applies boosting to the Neural Network part
of a hybrid HMM/NN system, and (Dimitrakakis
and Bengio (2004)) applies boosting to whole-phone
HMMs.

Boosting-like algorithms for continuous speech
recognition have been implemented at the utterance
level (Zhang and Rudnicky (2003); Meyer (2002)),
at the word level (Breslin and Gales (2006)), and at
the frame level (Zhang and Rudnicky (2004)). As
these schemes depend on reweighting the training
data, they have some similarities to discriminative
(Povey (2005)) and active training (Kamm and
Meyer (2003)), while aiming to build an ensemble
of classifiers rather than a single best.

Other approaches to building complementary sys-
tems for ASR have focused on the decision tree, and
these are described in the following sections.

4. Decision Trees for ASR

A typical ASR system uses parameter tying to
share parameters over a number of HMM compo-
nents. In this work, parameter tying is done at the
state output distribution level, using a binary deci-
sion tree so multiple states share an output distri-
bution (Odell (1995)). Decision trees contain ques-
tions at their nodes, and states are clustered at their
leaves.

Decision tree clustering is a top-down cluster-
ing algorithm which maximises the likelihood of
the data. As the decision tree is grown, the states
clustered at each node are split according to the
question which gives the best local increase in data
likelihood. This is continued recursively until the
total data likelihood falls below a threshold. A
forward-backward pass over the data is performed
to obtain an initial alignment of states to frames and
hence obtain the statistics required for decision tree
clustering. There are three stages in the algorithm:

(i) Statistics

— Obtain statistics for all seen triphone con-
texts (i.e. those that appear in the training
data) using the forward-backward algorithm

(ii) Question Selection

— Recursively build the tree by selecting the
question which gives the highest change in
data likelihood at each node

(iii) Stopping criterion
— Stop construction of the tree when the data
likelihood falls below a threshold

The effect of the algorithm is to cluster states
which are close in acoustic space, as these are likely
to be well modelled by a shared distribution. A dis-
advantage of parameter sharing is that only contex-
tual and linguistic information is available to dis-
tinguish clustered states, as they share an output
distribution. This is not ideal if clustered states are
confusable and lead to errors.

As the decision tree algorithm is only locally op-
timal, slightly altering any stage of the process can
lead to very different decision trees being built. For
this reason, the decision tree algorithm is a good
stage to focus on for complementary system gener-
ation. A further advantage of altering the decision
tree algorithm is that no changes need to be made
to the training algorithm. However, the decision tree
generation stage typically occurs early in the pro-
cess of building a speech recognition system, and
S0 it is time-consuming to build and evaluate many
systems with different decision trees.

5. Random Decision Trees

Randomness can be introduced to build diverse
ASR systems via the decision tree generation. A ran-
dom decision tree is built by altering the question
selection stage of the tree generation. Instead of se-
lecting the best question when splitting the data at
each node, a random choice from the top NV is made
(Breiman (2001); Siohan et al. (2005)). Thus the de-
cision tree algorithm becomes:

(i) Statistics

— Obtain statistics for all seen triphone con-
texts using the forward-backward algorithm
(ii) Question Selection
— Recursively build the tree by randomly se-
lecting from the top N questions which give
the highest change in data likelihood
(iii) Stopping criterion
— Stop construction of the tree when the data
likelihood falls below a threshold

An example of the random tree generation is
shown in figure 1. Rather than select the question
‘Left front fricative?’ which is the optimal in stan-
dard decision tree generation, a random question
from the top five is selected instead.

Introducing randomness does not guarantee to
build complementary systems, but using multiple
random systems can lead to an average performance



Question Likelihood
BEST * Left front fricative? [70.1]
Right nasal? [69.5] (N=5)
Left vowel central? [68.8]
__Rightliquid? 6751 .
Left nasal? [65.4]
Left unvoiced fricative? 164.31

Fig. 1. Random decision tree question selection

that is better than the individual systems (Diet-
terich (1999)). In the case of random decision trees
for ASR, using multiple systems built on random
trees makes it more likely that confusable states will
be separated in at least some of the trees. Hence, it
is expected that a combination of outputs from sys-
tems built on random trees will give improvements.
The problem that systems should have comparable
error rates to combine well is no longer an issue as
altering the value of N provides some control over
individual system performances. A larger value of N
will tend to lead to trees being very different from
the original tree, and it is likely that system perfor-
mance will degrade.

Injecting randomness has the advantage that any
number of diverse systems can be built, although
the process isn’t deterministic and hence not repeat-
able. Also, as there is no guarantee of obtaining com-
plementary systems, random decision tree systems
suffer from the problem that the optimal number
of systems and order of combination cannot be pre-
dicted, hence all system combinations must be per-
formed in order to find the best. This is typically
addressed by building many systems based on ran-
dom trees and combining them all together (Huang
et al. (2007); Ramabhadran et al. (2006)).

6. Directed Decision Trees

It is desirable to build decision trees in such a way
that confusable states are explicitly separated. In
this way, previous errors may be resolved, though
new errors may be introduced by clustering states
which were previously separate. However, if the two
systems make different errors they will be comple-
mentary, and hence should lead to improved perfor-
mance when combined.

Directed decision trees (Breslin and Gales
(2007a,b)) aim to separate confusable states by us-
ing a second set of statistics when selecting the best

question in decision tree generation. This second set
of statistics is weighted so as to reflect confusions
in the training set, so states which often lead to
confusions are allocated a higher weight than those
which don’t. These weighted statistics are used in
the question selection stage of the decision tree
generation, so that states with high weights are not
clustered together. The original statistics are used
for the stopping criterion, to ensure that the trees
are of a similar size and to avoid having to tune
a new stopping criterion threshold. The directed
decision tree algorithm is:
(i) Statistics
— Obtain original statistics for seen triphone
contexts
— Obtain weighted statistics for seen triphone
contexts statistics
(ii) Question Selection
— Recursively build the tree by selecting the
question which gives the highest change
in likelihood with respect to the weighted
statistics
(iii) Stopping criterion
— Stop construction of the tree when the data
likelihood falls below a threshold, with re-
spect to the original statistics
An example of this question selection is shown in
figure 2. The question ‘Right liquid?’ is chosen as
this gives the largest data likelihood with respect
to the weighted statistics, rather than the question
‘Left front fricative?’ which is optimal with respect
to the original statistics.

Question Original Weighted

Right liquid? [67.5] [37.4] = DIRECTED
Right nasal? [69.5] [37.2]

Left nasal? [65.4] [36.7]

Left vowel central? [68.8] [36.3]

Left front fricative? [70.1] [35.8] = ORIGINAL
Left unvoiced fricative? [64.3] [35.3]

Right back fricative? [69.6] [34.2]

Fig. 2. Directed decision tree question selection

This algorithm does not explicitly generate com-
plementary systems. However, it is hoped that by
giving a higher weight to states associated with
confusions during the decision tree clustering, these
states will be separated and the system built using
the directed tree will make different errors to the
baseline system.



A suitable method for weighting the training
data is needed. There are many existing applica-
tions which make use of a weighted training data
set, typically as part of the HMM training algo-
rithm. Active training weights the available data
for use in maximum likelihood training. For exam-
ple, by emphasising certain portions of the training
set, task dependent models can be built (Cincarek
et al. (2006)), or else it is possible to reduce the
amount of training data needed while still retaining
good performance (Kamm and Meyer (2003)). Dis-
criminative training also weights the training data
to improve performance, such as in MPE training
(Povey (2005)) where a higher weight is allocated to
areas with high phone error. Boosting (Zhang and
Rudnicky (2004); Meyer (2002)) and MBRL (Bres-
lin and Gales (2006)) both make use of a weighting
to focus on hard portions of the training data for
building complementary models. These methods
apply a weight at different levels, including the ut-
terance level (Meyer (2002)), the word level (Breslin
and Gales (2006)), the phone level (Povey (2005))
or the frame level (Zhang and Rudnicky (2004)).

For the purpose of building a directed decision
tree, the weighting function should reflect how well
the training data is modelled. One possibility is
to use a confidence measure as a weighting, for
example the hypothesised word posterior probabil-
ity (Jiang (2005)) or likelihood-ratio (Arslan and
Hansen (1999)) to identify correctly recognised por-
tions of the training data. The drawback of this
approach is that confidence measures are not always
reliable. An alternative is to directly use the refer-
ence transcription to identify errors and to base the
weighting function around, for example, reference
word posteriors, as in (Breslin and Gales (2006)).

The final consideration is how to apply the weight-
ing during the forward-backward pass for obtaining
the statistics. Applying a weighting at the utter-
ance level is straightforward as utterances are seg-
mented either manually or automatically and thus
are clearly defined. Applying the weight at a finer
granularity, such as the word or phone level, requires
some further processing. One option is to force-align
the training data to obtain boundaries for words,
phones or states, and hence directly weight the ob-
servations, e.g. (Zhang and Rudnicky (2004)). How-
ever, this provides a hard assignment of frames to
lexical units, and may lead to errors at the bound-
aries. In contrast, it is possible to directly weight the
states, as in (Breslin and Gales (2006)), by applying
the weight directly to the state occupation statistics.

INULL BUT IT DIDN'T  ELABORATE
A BUT
P=0.6 P=0.5

DIDN'T  ELABORATE
P=1.0 P=1.0

S0
INULL INULL T
P=0.1 P=0.2 P=0.4
I
P=0.7
DIDN'T  ELABORATE
P=1.0 P=0.9
S1
TO INULL INULL INULL
P=0.1 P-0.2 P=0.1 P=0.1

Fig. 3. Calculating the loss function with multiple previous
systems

Reference Word‘Weight‘

BUT 0.35
IT 0.45
DIDN’T 0.00

ELABORATE | 0.05

Table 1
Weights for words in figure 3 using equation 1, o =1

This latter approach has the advantage that it links
more closely with CNC as words are weighted rather
than frames. It also allows for more flexibility as the
effective weight for each frame may change as train-
ing progresses and the alignment of states to frames
is altered. Furthermore, weighting at the state level
easily allows the application of a weight obtained
with one system to multiple different systems with-
out the need to recompute the state alignment.

In this paper, the weighting is done as follows.
Weights are calculated for each reference word by
obtaining confusion networks for each training set
utterance and aligning these with the reference tran-
scription, as in figure 3. This makes it straightfor-
ward to see whether a word is correctly modelled
or not. A weighting function based on average word
posteriors is used, so each reference word W,y is
assigned a weight [(Wrey):

S @
[Wrer) = (1 - %ZP(WTGHO,MG))) (1)

The second term in the weighting function,
LY PWyes|O,M®), is the average posterior
of the reference word given S previous systems
M® ... M(5) and the training data O, and is taken
directly from the reference word posterior probabil-



ities of arcs in the aligned confusion networks. The
weighting is then applied in the forward-backward
pass by multiplying each state occupancy count,
v;(t), by the weight of the word it belongs to. When
0; is the observation at time ¢, the accumulated
statistics change from ), v;(t)os to >, 1;(t)y; (t)oy.
The state level loss /;(t) comes from the word level
loss [(Wrey), where state j forms part of word Wi.y.
There are many options for the loss function, the
form in equation 1 is just one variant.

Using this weighting function with o = 1, the
weights of the words in figure 3 are given in table 1. A
higher weighting is assigned to reference words with
low posterior ("BUT’ and 'IT’), and vice versa for
words with high posterior ("DIDN’T’ and "ELAB-
ORATE’). The effect of increasing « is to reduce
the proportional influence of well modelled words
and increase the influence of poorly modelled words.
This in turn leads the algorithm to focus more and
more on the very poorly modelled training data. If
a particular model leads to a large number of refer-
ence words with posterior close to 1, it may be useful
to increase a and so decrease the influence of these
words.

Now, a boosting-like framework for generating
multiple complementary systems can be used, as
shown in figure 4 for building three complementary
systems. A baseline system, SO, is first trained in
the usual way using unweighted statistics for the
decision tree generation. Then, SO is used to ob-
tain confusion networks for the training data, these
are aligned with the reference and used to generate
the weighted statistics for building a second deci-
sion tree. Next, system D1 is built from this deci-
sion tree, and so will be complementary to SO. Using
confusion networks from both SO and D1 allows a
second set of weighted statistics to be obtained and
a third decision tree to be generated. This decision
tree is then used to build D2, which is complemen-
tary to both SO and D1. This iterative method for
building complementary systems has the advantage
that the final order of combination is simply deter-
mined by the order in which systems were trained.
The method of training and the system design for
S0, D1 and D2 does not need to be the same, and
further diversity can be obtained by varying, for ex-
ample, the training approach, frontend or topology
for each of the three systems.

Generate Decision /\ HMM
statistics %’ tree O H‘ training ‘H S0
CNs
OO
Statistics
ﬁ ~oeo
Decision /\ HMM
tree A H‘ training ‘H D1
CNs
=SS
Statistics
OO
RS
Decision /\ VA HMM -, D2
tree \ training

Fig. 4. Framework for building multiple directed decision trees

7. Decision Tree Divergence Measure

When combining systems that use different deci-
sion trees, it is important to generate trees that are
different. In this work, decision trees cluster states
of triphones, and so they are built as a first step in
training a triphone system. It is computationally ex-
pensive then to evaluate multiple decision trees by
training the multiple triphone systems and evaluat-
ing their performance. Hence, it is useful to have a
method for comparing decision trees without having
to fully train the corresponding system. This sec-
tion describes a divergence measure for this purpose,
which evaluates the similarity between two decision
trees.

Figure 5 shows an example of two decision trees
with different clusterings. It is possible to compare
these clusterings directly using, for example, a clus-
ter similarity measure like that in (Rand (1971)).
However, these use many pairwise comparisons be-
tween clustered elements and prove expensive in
practice, so it is therefore useful to have a scheme
that makes use of the properties of decision trees for
ASR.

The decision tree can be viewed as a mapping
from unclustered to clustered states. That is, for
each unclustered state 6, the decision tree mapping
for the st" tree, f, (.), yields the clustered state 6:



Right context Left context

nasal? fricative?
f—i+m Left liquid? Right consonant?  a—i+p
/\ it
g-i+p f-i+p f=i+p  f_j4m
a—i+p

ln

Fig. 5. Comparing Decision Trees

0s = fs (0) (2)

Each clustered state 6, has an associated Gaus-
sian distribution, which depends on the clustering.
Thus, the output distribution associated with state
6, will differ from 62 due to the different tree clus-
tering in trees 1 and 2. For example, see the triphone
a-i+p in figure 5.

Rather than directly measure cluster similarity,
the divergence measure proposed here makes use
of the fact that if two trees have similar cluster-
ings then, for each state, the corresponding clustered
state output distributions from the two trees will
also be similar. Similarly, if the clustering is very
different, then it is expected that the state output
distributions from the two trees will differ too. The
tree divergence D is calculated as an average, over all
observed unclustered states, of divergences between
Gaussian distributions from the two trees, weighted
by the state occupation count -y

D= 7KLy (61,65) (3)
(4

where
1
KLgy(61,02) = 3 (KL(61,02) + KL(6:,0)) (4)

and 6, and 6> are the clustered states from trees 1
and 2, corresponding to the unclustered state §. The
Kullback-Leibler divergence KL (6, ) (Kullback and
Leibler (1951)) is used as a measure of divergence
between the state output distributions from the two
trees, but any suitable distance metric could be em-
ployed.

In equation 3, the sum is over all states of the
unclustered triphones that were seen in the training
data. The symmetric KL divergence is then between
the distributions associated with that state in the
two decision trees. Thus, if there are 10,000 seen
triphones in the training set, each with three states,

the symmetric KL divergence is calculated 30,000
times and a weighted summation performed.

This divergence measure is not expected to corre-
late directly with performance, nor to be an indica-
tor of whether two trees are complementary or not.
For example, it is possible to build an arbitrary deci-
sion tree with very different clustering from the op-
timal tree. These two trees would have a high diver-
gence, but the arbitrary tree would not be expected
to perform well either by itself, or in combination
with the optimum tree. Rather, the divergence mea-
sure is useful in this work to determine whether two
trees are close together. If two trees are very simi-
lar then it is unlikely that the resulting systems will
differ enough for gains to be seen when combining
them, and so it is not worthwhile to build the sys-
tem.

As an example, this divergence measure was eval-
uated on the two Broadcast News tasks described
below in section 8. A baseline system SO was first
built. Next, D1 was built to be complementary to
S0 using a directed decision tree, and D2 was then
built to be complementary to both D1 and S0. D1
and D2 were built in exactly the same way as S0, the
only difference being in the decision tree generation.
The weighting for reference words in the statistics
generation was previously given in equation 1. The
effect of a on the decision tree generation is interest-
ing, so to avoid the computational cost of building
and decoding with many systems, the effect of a on
decision tree divergence measure is examined rather
than its effect on final word error rate.

The tree divergence was measured for both Man-
darin and Arabic broadcast news tasks, and figure 6
shows how the tree divergence varies with « in the
loss function calculation. D1 was compared to just
the baseline, S0, while D2 was compared both to SO
and to D1. The divergence tends to increase with
a, as more emphasis is placed on harder to recog-
nise training data. Both D1 and D2 are a similar
distance from SO0, but D1 and D2 are much closer
together. For the Mandarin system the absolute val-
ues of the divergence are smaller. This could be be-
cause the Mandarin system includes tonal questions,
hence there are many more similar questions for the
Mandarin task than there are for Arabic.

The tree divergence was measured for ten random
decision trees on the Mandarin task as well as for the
directed trees. The divergences between SO and the
random trees are {182.1, 170.5, 188.7, 168.0, 167.7}
for N = 10 and {102.2, 96.8, 105.5, 103.3, 109.5}
for N = 5. This is greater than the divergences be-
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Fig. 6. Decision Tree Divergence with a when comparing
S0+D1 (dotted line), S0+D2 (solid), and D1+D2 (dashed)

tween the baseline and the directed tree in figure
6(a), which is to be expected as the random tree al-
gorithm is far less restrained.

For the directed tree results in the following sec-
tion, D1 was built with a = 1 and D2 was built with
a = 16, to avoid D1 and D2 being too similar to
each other and not giving gains when the systems
are combined.

8. Experimental Results

8.1. Broadcast News Mandarin Ezxperimental Setup

Broadcast news Mandarin transcription was cho-
sen as the initial task for development. For prelimi-
nary results, a simple baseline ML model was built
using a 39 dimensional feature vector including 12
PLP coefficients and energy, plus the first and sec-
ond derivatives. This system used a standard deci-
sion tree for state clustering, where the state output
distributions were 16 component GMMs and there
were 6070 distinct states. To take account of the
tonal nature of Mandarin, tonal questions were used

in the decision tree.

A more complex MPE trained system was built
using the same decision tree but with a 42 dimen-
sional feature vector. 12 PLP coefficients and energy
were used, plus first, second and third derivatives.
An HLDA transform projected back to 39 dimen-
sions, before pitch and its first and second deriva-
tives were added. The number of states per compo-
nent was reordered to be proportional to the state
occupancy count, keeping an average of 16 compo-
nents per state. MPE training was performed with
a dynamic MMI prior for I-smoothing. This system
is more fully described in (Sinha et al. (2006)).

The baseline acoustic models for the Mandarin
task were trained using 148 hours of data; 28 hours of
Hub-4 data released by the Linguistic Data Consor-
tium (LDC) with accurate transcriptions, and 120
hours of TDT4 data with only closed-caption ref-
erences provided. Light supervision techniques were
used on the latter portion (Lamel (2002)).

A trigram language model with a 50k wordlist was
used for decoding in a singlepass unadapted frame-
work. Trigram lattices were converted to confusion
networks in order to perform confusion network
decoding for the individual system results (Mangu
et al. (1999)). This allows the gains achieved by
combination to be seen easily. Results are given on
the bnm-dev06 test set, which is a combination of
dev04f (0.5 hours of CCTV data from shows broad-
cast in November 2003), evalO4 (1 hour of data
from CCTV, RFA and NTDTV broadcast in April
2004), eval0O3m (0.6 hours of mainland shows from
February 2001) and yl1ql (3 hours of data from
October 2005). Statistical significance tests were
performed using the matched pairs test (Gillick and
Cox (1989)).

8.2. Broadcast News Mandarin Results

First, the performance of random decision trees
was considered. Ten random decision trees were
built: five with N=10 and five with N=5. These
systems were built in the same way as the baseline,
except for the decision tree. The individual system
results, and their performance in combination, are
given in table 2.

The performance of the random tree systems is
similar to that seen previously in (Siohan et al.
(2005)). The results show that the random trees in-
dividually perform worse than the baseline, and as
N is increased the individual system performance
gets worse. The average result for N=10 is 23.8%



CER, compared to 23.6% for when N=5, and 23.4%
for the baseline. Yet when these random systems
were combined with the baseline the performance
improved, dropping from an error rate of 23.4%
baseline to an average of 22.9% for combination with
the baseline when N=5, and 23.0% when N=10.
Thus, both values of N yield gains in combination,
with N=5 performing slightly better than N=10.

Statistical significance tests were performed using
a significance level of 95%. For the individual system
results, when N=5 the random tree systems do not
differ from the baseline system, while for N=10 the
differences are statistically significant. For the com-
bination of the baseline and the random tree sys-
tems, all results are significant with the exception of
S0+R5 for the case when N=5.

It is also worth noting that the best individual
system does not necessarily give the best results in
combination, and there is some variation between
best and worst performance, both for the individual
systems and for their combination with the baseline.

Decision Tree bnm-dev06 (CER %)
Individual| CNC with SO
BASELINE S0 23.4 -
R1 23.5 22.9
R2 23.5 22.9
RANDOM: R3 23.6 22.8
N=5 R4 23.6 22.9
R5 23.7 23.1
AVG 23.6 22.9
R1 23.6 22.9
R2 23.9 22.9
RANDOM: R3 23.9 23.1
N=10 R4 23.9 23.0
R5 23.8 22.8
AVG 23.8 23.0

Table 2
Random Tree Mandarin performance for ML trained systems
(CER %)

Table 3 shows a comparison of the average random
and the directed tree performance. For the random
systems, the average performance for the case N=5
is given, as this allows for easy comparison. Thus, R
refers to the average of the random system results,
S0+R refers to the average performance when com-
bining one random system with the baseline, and
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SO0+R+R refers to the average performance when
combining two random systems with the baseline.

It can be seen that the individual directed deci-
sion tree systems perform slightly better than the
baseline while the random trees perform worse. In
combination with the baseline system however, the
directed trees perform as well as the average random
tree. For example, S0+D1+D2 gave an error rate
of 22.7%, which a 0.7% absolute improvement over
the baseline performance, while the average combi-
nation of SO and two random trees gave a compa-
rable error rate of 22.8%. Significance tests showed
that the individual systems D1 and D2 did not differ
from the baseline, but the combinations S0+D1 and
S0+D1+D2 are statistically significant when com-
pared with the baseline system, SO.

The majority of the gain with both the random
and directed tree systems is seen when combining
just two systems, with a much smaller gain achieved
by the third. For the random trees, this contrasts
with (Siohan et al. (2005)) where two random tree
systems gave good improvements before slowing as
more systems were added. This difference could be
due to the different languages, or the different task
used in this paper. For the directed tree systems,
this pattern is similar to that seen in the divergence
measure in the previous section, and suggests that
further gains could be obtained from a second com-
plementary system if the diversity of the tree could
somehow be increased. Additionally, it might be ex-
pected from the divergence measurements of the pre-
vious sections that the random tree systems perform
better as they diverge more from the baseline tree.
However, the results show this not to be the case, re-
inforcing the intuition that high divergence does not
necessarily correlate with an improved performance.

The directed decision tree algorithm makes use of
a data weighting, and thus has some implicit dis-
criminative effect in training. This could account
for the improvements seen in the individual directed
tree results over the baseline ML trained system.

It is expected that if many random trees are built,
then the best of these would outperform the sub-
optimal directed tree systems. Thus, it is not ex-
pected that the directed tree systems outperform
the best random tree system. However, these re-
sults show that, for a small number of random trees,
the directed tree performance is close to that of the
best random tree, without the uncertainty associ-
ated with randomness. Furthermore, the computa-
tional cost of building multiple systems based on
random trees is reduced with the directed tree ap-



Complementary|System CER (%)
bnm-dev06
BASELINE - S0 23.4
S0 D1 23.3
DIRECTED
S0+D1 D2 23.2
RANDOM - R 23.6
S0+D1 22.9
S0+D1+D2 22.7
CNC
S0+R 22.9
S0+R+R 22.8
Table 3

Comparison of Directed and Random Tree Mandarin results
for ML trained systems (CER %)

proach.

Next, the effect of directed decision trees on an
MPE trained system was considered. It is computa-
tionally expensive to generate lattices for discrimi-
native training, so MPE training was only performed
for the baseline and for one directed tree system. Ta-
ble 4 shows the results obtained. First, the individ-
ual results for the baseline and the directed tree are
shown. In contrast to the ML system, the individ-
ual directed decision tree system no longer outper-
forms the baseline. This suggests that any implicit
discriminative effect from the data weighting is sub-
sumed by the explicit discriminative training. When
the two systems are combined, improvements in er-
ror rate are still seen. The improvement from the
baseline to the combined performance was 0.4% ab-
solute, a drop in error from 18.4% to 18.0%. Again,
statistical significance tests showed that the combi-
nation SO0+D1 is statistically different from the base-
line system SO at a significance level of 95%.

System ‘Decision Tree Complementa,ryanmdeVOG

S0 BASELINE - 18.4

D1 DIRECTED S0 18.5

SO0 + DI‘CNC H 18.0
Table 4

Directed tree performance for Mandarin with MPE trained
systems (CER %)

8.3. Broadcast News Arabic Ezperimental Setup

For decoding in a multipass adaptive framework,
the task of broadcast news transcription in Arabic
was chosen. This task allows for faster development
than with the Mandarin task due to the lack of tonal
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information, and also avoids the mismatch between
a word level weighting in training and the charac-
ter level error metric used to evaluate the Mandarin
system performance. Additionally, Arabic has the
interesting property that short vowels are not nor-
mally transcribed, so word pronunciations are gen-
erated using a set of rules (Buckwalter (2004)). This
leads to a large number of pronunciations per word
- on average 4.3 compared to 1.1 for English. Tech-
niques for addressing the large number of pronuncia-
tions have yielded systems with similar performance
yet which perform well in combination.

One example of such a technique is to consider
how the large number of pronunciations affects the
MPE training criterion, which makes use of the pho-
netic transcription in training (Gales et al. (2007)).
The MPE training criterion with training data O
and model parameters M is

Fupe(M) = P(H|O, M)L(H, Hoe) (5)
H

The loss function £L(H,Hres) between a hypoth-
esis H and the reference H,.; can be calculated in
several ways when there are many reference pronun-
ciations. Multiple pronunciation MPE training in-
volves taking the minimum phone loss between the
hypothesis and all possible reference pronunciations.
An alternative is to take the best single pronuncia-
tion of the reference given the current model param-
eters, and use this one pronunciation as the refer-
ence. This is the single pronunciation training used
in this work. These two forms of training lead to
systems which perform similarly, but give improve-
ments upon combination, and thus can be used in
addition to the directed tree approach to incorpo-
rate extra diversity.

The baseline phonetic system for the Arabic task
was trained using 102 hours of data. A PLP frontend
was used; 12 PLP coefficients and energy, plus first,
second and third derivatives, with an HLDA trans-
form projecting down to 39 dimensions. The number
of components per state is proportional to the state
occupancy, and an average of 16 components per
state is maintained. MPE training was performed
using an MMI prior, and gender dependent models
were built. Two directed tree systems, D1 and D2,
were built. The first is complementary to the base-
line SO, and the second complementary to SO+D1.
Three random trees were built with N=5, and were
trained in the same way as the directed tree sys-
tems. The random tree results below give the aver-



age performance over the three random systems for
easy comparison.

Results are given on the average of four test sets,
each around 3 hours long: bnat06 and bnad06 are
broadcast news data while bcat06 and bcad06 con-
sist of broadcast conversation shows, and hence are
less closely matched to the training data.

Initial
transcription transcription

transcription

f f f

Normalisation Normalisation Normalisation
Adaptation Adaptation Adaptation

f f f

Lattice Lattice Lattice

generation generation generation
[ so |« px | | so || bx |

Fig. 7. Multipass framework with (a) common lattice gener-
ation, (b) separate lattice generation passes

Decoding was performed in two multipass frame-
works both shown in figure 7. In these frameworks,
an initial transcription was generated using gen-
der independent models so that normalisation and
adaptation could be performed, before lattices were
generated. These lattices were then rescored using
the various gender dependent models, and their out-
puts combined using confusion network combina-
tion. Both MLLR mean and variance adaptation
were used, along with lattice-based adaptation, as
in (Gales et al. (2006)). The first framework in fig-
ure 7(a) uses a common adaptation and lattice gen-
eration stage, using the SO model, while the second
in 7(b) uses separate passes for each of the systems.
In decoding, the large number of pronunciations are
handled using pronunciation probabilities.

8.4. Broadcast News Arabic Results

The initial baseline system, S0, was trained using
the single pronunciation MPE criterion described
above. The results obtained using a multipass de-
coding framework with a common lattice genera-
tion pass are shown in table 5. These results show
a similar pattern to the previous unadapted sin-
glepass results on the Mandarin task (table 4). The
average baseline error rate over the four testsets is
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System Complementary toHWER (%)
BASELINE S0 - 36.6
RANDOM R - 36.7
DIRECTED D1 SO 36.6
S0+D1 36.3
CNC
S0+R 36.3
Initial Initial Table 5

Arabic results using a common adaptation and lattice gen-
eration pass with single pronunciation MPFE trained systems

36.6%, the directed tree system has an average er-
ror rate of 36.6% and the random tree systems have
a performance of 36.7%. The combination of the di-
rected tree systems and the baseline leads to a im-
proved error rate of 36.3% WER, which is statisti-
cally significant when compared to the baseline sys-
tem alone. The average performance of the random
tree systems in combination with the baseline is the
same as for the directed tree systems. These results
show that the behaviour seen previously when us-
ing an unadapted singlepass decoding strategy carry
through to the multi-pass decoding framework.

MO is a second baseline system trained using the
multiple pronunciation MPE criterion described
above. The only difference between M0 and S0 is the
loss function used in the MPE training stage. DM1
and DM2 are both built using directed decision
trees in the same way as M0, yet are complemen-
tary to SO. Hence they should retain the gains seen
previously, but also include extra diversity from the
difference in training. The average performance of
the three random tree systems (RM), also trained
using the multiple pronunciation MPE training, are
given.

Table 6 shows the results obtained using these
systems in the two multipass frameworks previously
described in figure 7. Gains can be seen when com-
bining the single and multiple pronunciation MPE
systems. For example, the baseline performances are
36.6% and 36.1% for SO and MO respectively with
a common lattice generation pass, and combining
them gives a performance of 35.7%. In the shared lat-
tice pass framework, MO has an error rate of 36.3%
and S0+MO yields 35.9%. This difference between
the two frameworks is the result of cross-adaptation.

The directed tree systems DM1 and DM2 per-
form similarly to the baseline system MO, while
the random tree systems perform slightly worse.
Again, the cross-adaptation effect is noticeable as
the individual system results obtained using the



common lattice generation pass are better than
those obtained using the separate lattice genera-
tion passes. However, the performance of SO+DM1
improves over that of SO+MO0. For example, when
using a separate lattice generation pass, SO+DM1
gives an error rate of 35.5%, compared to 35.9%
obtained from combining SO and MO. Further small
gains can be obtained from introducing a second
directed tree system, DM2. This system was built
to be complementary to SO+DM1. Comparing ta-
ble 6 to table 5 where both D1 and D2 were single
pronunciation systems, the effect of introducing
the additional form of complementary training is
to further improve performance. The error rate of
S0+D1 is 36.3% in table 5, while in table 6 the error
rate of SO+DM1 is 35.6%, an absolute gain of 0.7%,
implying that the directed tree gains are additional
to those obtained from the multi-pronunciation
training. Again, the directed tree systems perform
slightly better in combination than the random tree
systems.

The results in table 6 show clearly the cross adap-
tation effect that can be achieved when using one
system to perform adaptation and generate lattices,
and another to rescore them. The effect is demon-
strated by the improved individual system perfor-
mances when using a shared adaptation and lat-
tice generation pass over using independent passes.
It is interesting then that these gains don’t follow
through when system combination is performed. It is
the framework with no cross-adaptation effect that
gives the best results when combining the systems
based on different decision trees. Again this shows
that individual system error rate is not necessarily a
good indicator of whether two systems are comple-
mentary or not, and, as such, simply aiming to opti-
mise individual system performances may not lead
to optimal performance in combination. The first
framework is more efficient for decoding, and it may
be the case that relaxing the pruning on the first
passes to give more diverse lattices for rescoring will
combine the efficiency benefits of the first framework
with the performance gains of the second.

A second observation concerns the relative gains
obtained when combining the baseline with either
one or two complementary systems. The largest
gains over the baseline are obtained by combin-
ing two complementary systems and the baseline,
though the contribution from adding the second
complementary system is small compared to that
of just the first. Although the directed decision tree
algorithm is not a boosting approach, it does try
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and focus the statistics generation on harder parts
of the training set. Also, the broadcast news task
makes use of lightly supervised training so there are
likely to be some transcription errors in the training
data. However, unlike in (Dietterich (1999)), the
observation that random trees perform better in
classification noise is unlikely to apply here. Firstly,
only a small number of decision trees are built,
too few for the effect to be noticed, and secondly
the weighting is only done at a state level so the
influence of poor transcriptions is expected to be
minimal. It is likely that the two directed decision
trees are not diverse enough, as seen with the tree
divergence measure in figure 6(b). The fact that D1
and D2 are close together in both divergence and
error rate, suggest a need to somehow increase di-
versity between these two trees in order to see gains
from a second complementary system.

While the gains seen from the directed decision
trees aren’t as large as those from combining SO and
MO, they consistently add to the the gains from com-
bining the single and multiple pronunciation MPE
systems, while performing slightly better than the
average random tree systems.

9. Conclusions

This paper has presented an algorithm for gener-
ating complementary decision trees, along with a di-
vergence measure for quantifying the similarity be-
tween decision trees without having to build and
evaluate entire systems.

Experimental results were presented on two
Broadcast News tasks - Mandarin and Arabic. The
divergence measure was first evaluated on these two
tasks. There appears not to be a strong correlation
between divergence and word error rate, as seen by
the high divergences between the random trees and
the baseline on the Mandarin task, which in fact
have similar performances to the directed trees.
The divergence was instead used to evaluate the
similarity of the trees and hence determine suitable
parameters for building the directed decision trees.

Preliminary results on the Mandarin task show
that systems built using directed trees perform as
well, or slightly better, than the average of those
built using random trees, without the individual
fluctuations in performance seen when using multi-
ple random trees. Compared to the random tree sys-
tems, the directed tree is a deterministic algorithm
allowing more control over the tree generation pro-
cess, and also has the advantage that the order of



Lattice generation
System Complementary to||(a) common|(b) separate
SO - 36.6 36.6
BASELINE
MO - 36.1 36.3
RANDOM RM - 36.3 36.6
DM1 SO 36.0 36.4
DIRECTED
DM2 S0+DM1 36.1 36.4
S0+MO 35.7 35.9
CNC S0+DM1 35.6 35.5
S0+RM 35.8 35.6
S0+DM1+DM2 35.5 35.4
S0+RM+RM 35.7 35.5

Table 6

Arabic results using (a) a common, and (b) a separate adaptation and lattice generation pass and both single/multiple
pronunciation MPE training, averaged over all four testsets (WER %)

combination in decoding is the same as that in train-
ing.

Next, results presented on the two tasks show that
the combination of complementary directed tree sys-
tems and the baseline give consistent performance
gains in a range of conditions - using both ML and
MPE trained models, and performing unadapted
singlepass decoding or using a more complex mul-
tipass decoding scheme. Typically, the largest gains
are obtained from the combination of one directed
tree system with the baseline, but further small gains
are seen from the addition of a second directed tree
system.

Directed decision trees were then used in addition
to a different form of MPE training for the Arabic
task. This multiple pronunciation training criterion
has previously been shown to be complementary to
the single pronunciation training, and the combina-
tion of a directed tree with this form of training has
shown gains additional to those obtained from the
training criterion and the tree separately. Again, the
largest gains are seen from the addition of one com-
plementary system, with further small gains from a
second, and the directed trees typically perform as
well as or better than the average random tree.

Finally, the results show that individual system
performance is not a good indicator of whether two
systems are complementary. While cross-adaptation
improves individual system results, the gains do not
add to those from CNC. Hence, care must be taken
when combining multiple systems to ensure that
performance is optimal.
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