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Abstract

In this paper, we propose a whole recovery scheme designed to improve robustness
against packet losses in distributed speech recognition systems. This scheme inte-
grates two sender-driven techniques, namely, media-specific forward error correction
(FEC) and frame interleaving, along with a receiver-based error concealment (EC)
technique, the Weighted Viterbi algorithm (WVA). Although these techniques have
been already tested separately, providing a significant increase of performance in
clean acoustic environments, in this paper they are jointly applied and their per-
formance in adverse acoustic conditions is evaluated. In particular, a noisy speech
database and the ETSI Advanced Front-end are used, while the dynamic features,
which play an important role in adverse acoustic environments, and their confi-
dences for the WVA algorithm are examined. In order to solve the issue of mixing
two sender-driven techniques (both causing a delay) whose direct composition causes
an increase of the global latency, we propose a double stream scheme which limits
the latency to the maximum delay of both techniques. As a result, with very few
overhead bits and a very limited delay, the integrated scheme achieves a significant
improvement in the performance of a DSR system over a degraded transmission
channel, both in clean and noisy acoustic conditions.
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1 Introduction

Distributed speech recognition (DSR) turns out to be a very attractive ap-
proach for speech-enabled services over packet-switched networks. As with
many other network services, it is based on a client-server architecture where
the user device just analyzes, quantizes and sends the speech data to a remote
server (back-end) which performs the speech recognition itself. This enables
low power/complexity devices to perform speech recognition and allows speech
applications to be modeled under a service-oriented approach, in which exter-
nal information sources can also be linked thanks to the great interoperability
of packet-switched networks.

However, when transmitting real-time data over a packet switched network,
one of the most common problems encountered is that of packet loss. Packet
losses are caused by the inability of IP networks to offer a reliable, high-quality
packet delivery service. In fact, in congestion, routers will discard packets if
their input flow exceeds their output flow for a given data route. In addition,
most portable devices access to the network through a wireless link which is
subject to errors. These errors can also be reflected at the back-end as packet
losses. In these scenarios, packet losses usually occur in bursts, where multiple
consecutive packets are lost (Bolot, 1993).

Consecutive packet losses can have a serious effect on recognition performance
(Milner and Semnani, 2000). Although the receiving end could request the re-
transmission of lost packets, this is not affordable in DSR applications since,
as in other real-time applications, it could lead to a worsening of the chan-
nel (Xie et al., 2002). Instead, error recovery techniques can be applied to
counteract the effects of loss bursts, offering an acceptable performance.

The most extended recovery technique is based on the repetition of the nearest
received vector. This simple procedure is included as a mitigation algorithm
in the ETSI DSR standards (ETSI-ES201-108, 2000; ETSI-ES202-050, 2002;
ETSI-ES202-211, 2003; ETSI-ES202-212, 2005). Other simple error conceal-
ment (EC) techniques have also been proposed, such as splicing (Milner and
Semnani, 2000) or replacing lost vectors by the mean of training data, but
they have been shown ineffective (Endo et al., 2003). Only more complex
techniques, such as MMSE and MAP estimation (Gómez et al., 2003, 2004),
which use a statistical speech model to estimate replacements, provide better
results.

An alternative approach is to deal with packet losses, either fully or partially,
inside the recognition engine. In order to do so, reliability information about
speech features is taken into account by means of a modified decoding al-
gorithm, as in the weighted Viterbi algorithm (Potamianos and Weerackody,
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2001). The main advantage is that a powerful model of the speech, the one
present within the recognizer, can be exploited.

On the other hand, the recognition performance can also be improved by
shaping the losses into a less damaging distribution. The local stationarity of
speech has an important effect on the performance of the mitigation algorithm:
short bursts are better reconstructed. Milner and James (2006) have shown
that the ETSI DSR error concealment technique makes the recognizer tolerant
to channel conditions with very high loss ratios but with short bursts. In clean
acoustic conditions, isolated losses can have a negligible effect on recognition
performance even at a 50% loss ratio (James and Milner, 2004).

The perceived burst length can be reduced by means of sender-driven tech-
niques such as interleaving (James et al., 2004), but also by forward error
correction (FEC) codes, particularly media-specific ones. As we showed in a
previous work (Peinado et al., 2005), when packets contain replicas of rela-
tively distant packets (in time), these can be used not only to recover some lost
frames, but also to break bursts of losses into shorter bursts. As disadvantage,
these sender-driven techniques increase the required bandwidth (FEC) and
latency (both, FEC and interleaving). In real-time voice communication, an
increase of latency becomes a hurdle. However, in remote speech recognition
an immediate response from the recognizer, although desirable, is not strictly
required. Thus, an additional delay of a couple of hundred milliseconds may
not be too significant to the overall quality of service.

In this work we propose a whole scheme which integrates media-specific FEC
codes, frame interleaving and the weighted Viterbi algorithm (WVA) in order
to improve speech recognition robustness against packet losses. These tech-
niques have been already tested separately, providing a significant increase of
performance in clean environments. In this paper we jointly apply them and,
although we are mainly focused on packet losses, their performance in adverse
acoustic environments is also tested.

As a starting point we will take a scheme previously proposed in (Gómez et al.,
2006) which combines WVA with vector quantized (VQ) replicas (i.e. media-
specific FECs). In that work VQ codebooks were trained and tested with the
same clean database (although on different training and testing subsets). Here,
task-independent VQ replicas (i.e. replicas trained on a different database)
have been considered and evaluated while feature confidences used inside the
WVA algorithm have been refined for noisy environments, where the dynamic
features acquired a special relevance. Then, we tackle the issue of mixing two
sender-driven techniques, FEC codes and interleaving (both causing a delay),
whose direct composition causes an increase of the global latency. As a result,
we propose an integrated scheme which achieves a significant improvement
in the performance of a DSR system over a degraded channel with very few
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overhead bits and a very limited delay, both under clean and noisy acoustic
conditions.

The paper is organized as follows. First, the experimental framework is de-
scribed in section 2. Section 3 is focused on the modification of the Viterbi
algorithm (VA), the calculation of FEC codes and the changes required to
treat them in the WVA algorithm. In addition, in this section we also ex-
amine the effect of noise over the confidence of delta features. Section 4 is
devoted to the interleaving process. In particular, we will provide an intuitive
explanation of (2, t) Ramsey interleavers, which have shown very effective in
DSR, and test their performance under noisy conditions. Then, in section 5
we tackle the problem of increasing latency and solve it by means of a dou-
ble stream strategy. In addition, we consider the issue of overlapped replicas
and describe a lossy frame interleaver which exploits the redundant nature of
replicas. Finally, section 6 summarizes this paper.

2 Experimental Framework

Since it will be useful for the rest of the paper, we will describe here the
experimental setup. It is based on the framework provided by the ETSI STQ-
Aurora Project Database 3.0. Although the rest of subsets have been used
for FEC codebook training (see section 3.3), only the Spanish SDC-Aurora
subset has been considered to evaluate our techniques. This database contains
4914 utterances obtained from more than 160 speakers, containing a total of
15924 word realizations. The vocabulary consists of 10 digits between 0 and 9
(zero has one description only) while the recognition task is connected digits.
Two different acoustic channels, including recordings from close-talking and
hands-free microphones, are considered. Like in other SDC-Aurora databases,
recordings are divided into three noisy conditions, namely, quiet, low noisy and
high noisy, which provide three different experiments: well-matched (WM),
medium-mismatch (MM) and high-mismatch (HM). Each experiment is per-
formed by considering different recording channels and acoustic conditions for
training and testing sets (details can be found in (Macho, 2000)). The recog-
nizer is the one included within the database and uses eleven 16-state contin-
uous HMM word models, (plus silence and pause, which have 3 and 1 states,
respectively), with 3 gaussians per state (except silence, with 6 gaussians per
state).

The ETSI advanced front-end (ETSI-ES202-050, 2002) is used as feature ex-
tractor. This front-end performs the usual cepstral analysis scheme with an
additional processing for reducing the influence of background noise. This
processing can be roughly divided into three parts: a noise reduction mod-
ule consisting of a two-stage mel-warped Wiener filter algorithm, a waveform

4



 

 

 

ACCEPTED MANUSCRIPT 

 

Fig. 1. Three state packet loss model. State 1 and 3 represent no loss while state 2
causes packet loss.

Cond. Rloss Lloss Lrec p q r s

1 10 % 2 4 0.017 0.125 0.250 0.375

2 20 % 4 4 0.018 0.059 0.250 0.191

3 30 % 6 3 0.020 0.039 0.333 0.128

4 40 % 8 3 0.020 0.023 0.333 0.101

5 50 % 10 2 0.020 0.017 0.500 0.083

Table 1
Loss ratio (Rloss), average consecutive loss (Lloss) and reception lengths (Lrec) to-
gether with channel model parameters for tested conditions.

processing module and a blind equalization module. The resulting feature vec-
tors include MFCCs 0-12 plus the log energy. These 14 features are grouped
into pairs and quantized by means of seven split vector quantizers (SVQ).
All codebooks have a 64-center size (6 bits), except the one for MFCC-0 and
log-Energy, which has 256 centers (8 bits).

IP packets are generated according to the recommendations of the RTP pay-
load format for DSR (Xie et al., 2002). This document recommends that, at
least, two frames (one frame pair) must be transmitted per packet in order to
avoid a too high network overhead due to headers. Nevertheless, the transmis-
sion of more frame pairs per packet is not encouraged since longer consecutive
frame losses occur when a packet is lost. In this work, only one frame pair is
sent per packet.

The channel burstiness exhibited by IP communications is modeled by a 3-
state Markov model (Milner and James, 2004). This model is divided into two
distinct parts which represent low and high traffic loads on the network (figure
1). Thus, state 1 models non-congestion periods, where packets are steadily
received, while states 2 and 3 model congested ones where consecutive bursty
losses may appear. As can be observed, burst length is given by the autoloop
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probability of state 2 (1 − q − s) while the distance between bursts or Inter
Loss Period Length (ILPL) (Koodli and Ravikanth, 1999) is obtained through
the autoloop probability of state 3 (1− r). ILPL is a relevant measure to take
into account when sender-driven techniques are evaluated since the behavior
of these techniques not only depends on burst length but also on the time
distribution of the receptions. The 3-state Markov model allows to control the
average ILPL (Lrec) along with the loss ratio (Rloss) and the average burst
length (Lloss).

The recovery methods presented in this paper are tested under the channel
conditions listed in Table 1. It can be observed that some conditions show
very high amounts of packet loss. However, it should be considered that, at
the same loss rate, a fewer number of bursts appear when Lloss increases, as
the fact that longer bursts imply a greater number of losses. In order to prove
the adequacy of the proposed techniques under adverse conditions with long
bursts, high amounts of packet loss need to be considered in order to provide
a significant number of long burst losses. As a reference, word accuracies for a
clean transmission are 80.78%, 87.56% and 93.77% for the HM, MM and WM
experiments, respectively.

3 Weighted Viterbi Algorithm with Media-Specific FEC Codes

Weighted Viterbi algorithm (WVA) (Potamianos and Weerackody, 2001) is
based on a modification of the Viterbi algorithm (VA) whereby the confidence
in the received features can be taken into account. The main idea of WVA is
to keep the natural sequence of states in the decoder, conserving the timing
information, but applying a weighting coefficient to reduce the effect of unre-
liable vectors. In order to do so, a time-varying reliability γt is incorporated in
the VA, obtaining the following state metrics update equation (Yoma et al.,
1998):

φt(j) = max
i

[φt−1(i)aij ][bj(xt)]
γt (1)

where φt(j) is the maximum likelihood of observing the feature vector xt in
state j at time instant t. When the feature vector is fully reliable, γt is set
to 1 and equation (1) becomes the original state metrics of the VA update
equation. On the other hand, when a feature vector is unreliable, γt is set to
0. In such a case, the output probability [bj(xt)]

γt becomes 1 for every state
and the feature vector has no influence in the selection of the best path.

This technique, usually known as marginalization (Peinado and Segura, 2006),
is easy to apply to lossy packet channels: feature vectors can be considered
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as fully reliable or completely unreliable depending on whether they have
been received or lost. In general, this approach provides good results in the
presence of long lost bursts. However, for short bursts, the simple repetition
of the nearest received vector clearly outperforms it (Cardenal-Lopez et al.,
2006).

3.1 Static feature confidence

The problem in the previous binary approach (full/null reliability) is that it is
implicitly assumed that, when a vector is lost, no knowledge can be inferred
about its value. However, this is not the case due to the high short-term
correlation of the speech signal. Thus, some authors (Bernard and Alwan,
2002; Cardenal-Lopez et al., 2004) have refined the previous scheme by using
a time-varying continuous reliability (γt ∈ [0, 1]) along with a reconstruction
technique for lost vectors. Since a speech model is included in the recognizer,
complex model-based estimation techniques turn out unnecessary. In their
papers, a repetition-based concealment technique is applied and the reliability
value is independently assigned to each repeated feature. In order to do so,
the hypothesis of a diagonal covariance matrix can be assumed so that the
overall weighted probability can be computed as,

bj(xt) =
M
∑

m=1

Cj,m

K
∏

k=1

N
(

x(k); µj,m(k), σ2
j,m(k)

)γk,t

(2)

where M is the number of mixture components, Cj,m is the mixture weight

and N
(

x(k); µj,m(k), σ2
j,m(k)

)

represents a univariate Gaussian distribution

function for the kth feature with mean µj,m(k) and variance σ2
j,m(k). Exponent

γk,t is a weighting factor applied to each feature k at time instant t. Thus, the
resulting technique is usually known as exponential feature weighting.

Now, the key problem is how to determine the reliability function. It is clear
that it is beneficial to decrease the weighting factor γk,t as the feature is
consecutively repeated, since the speech signal may have evolved to another
sound and the repetition of the received features would no longer be valid. The
problem is how to measure this variation. Bernard and Alwan (2002) proposed
an empirical reliability function based on the normalized auto-correlation of
each feature, ρk(t). The validity of this measure has been tested by other
authors (James and Milner, 2005; Cardenal-Lopez et al., 2006), concluding
that it allowed WVA to achieve an excellent performance with either long or
short bursts. Thus, we will assume its use at the moment although, as we will
see further, it will be extended in order to be used in our scheme.
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3.2 Dynamic feature confidence

An issue frequently forgotten is how to assign a confidence measure to dy-
namic features. However, dynamic (or delta) features play an important role
to obtain a speech representation more robust against acoustic noise. The
delta features are obtained as the first and second order derivatives of the
static features (MFCCs and Log Energy) usually employing a sliding-window
as follows (Furui, 1986; ETSI-ES201-108, 2000):

∆xt =

∑W∆

w=−W∆
w · xt+w

∑W∆

w=−W∆
w2

and ∆∆xt =

∑W∆∆

w=−W∆∆
w · ∆xt+w

∑W∆∆

w=−W∆∆
w2

(3)

where W∆, W∆∆ are respectively the radius of the first and second deriva-
tive windows (usually W∆ = 3, W∆∆ = 2). Since dynamic features can be
computed at the back end from the static features received, these are not
transmitted in DSR systems.

As each temporal derivative is calculated from a window, it is expected that
our confidence in it or its reliability is related to the reliability of all the
static features within the window. There are some recognizer-based techniques
whose mathematical framework allows some kind of estimation of the delta
feature reliability (as in (Ion and Haeb-Umbach, 2006)). Otherwise, as in the
case of exponential feature weighting, only an heuristic can be proposed as a
delta reliability function. James and Milner (2005) proposed and tested several
approaches, including the following (from more to less severe):

• Hard decoding. In the computation of the temporal derivatives, if any static
feature is lost in the sliding window, the dynamic feature is considered
unreliable, that is,

γ∆
t =











1 when {xt−W∆
, . . . , xt+W∆

} are received

0 otherwise
(4)

where γ∆
t is the confidence on the first feature derivative at time t. A similar

expression can be written for the confidence γ∆∆
t on the second derivative.

• Product of confidences. The confidence on the temporal derivative is the
product of confidences on the static features in the sliding window,

γ∆
t =

W∆
∏

w=−W∆

γt+w and γ∆∆
t =

W∆∆
∏

w=−W∆∆

γ∆
t+w (5)

where γt, is the confidence on the static feature at time t.
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Fig. 2. Performance results obtained with WVA and several delta reliability heuris-
tics for WM, MM and HM experiments under different channel conditions.

• Binary approach. Proposed by Bernard and Alwan (2002), a dynamic fea-
ture is considered unreliable (γ∆

t = γ∆∆
t = 0) if the static feature at the

same time instant is lost, and fully reliable (γ∆
t = γ∆∆

t = 1) otherwise.
• Regression-based confidences. The confidence on the temporal derivative is

obtained through a regression formulation inspired on the equations applied
during dynamic features computation (equation (3)). These expressions are
given as,

γ∆
t =

∑W∆

w=1 wγt−wγt+w
∑W∆

w=1 w
and γ∆∆

t =

∑W∆∆

w=1 wγ∆
t−wγ∆

t+w
∑W∆∆

w=1 w
. (6)

• Minimum of confidences. The confidence on the temporal derivative is the
minimum of confidences on the static features in the sliding window,

γ∆
t = min

w=−W∆,...,W∆

{γt+w} and γ∆∆
t = min

w=−W∆∆,...,W∆∆

{

γ∆
t+w

}

. (7)

In terms of computational complexity, the fastest method is the binary ap-
proach, as the dynamic feature reliability is directly given by the pattern of
losses. Hard decoding, minimun and product of confidences have almost the
same complexity while regression-based confidences requires more computa-
tions (similar to computing a dynamic feature).

Previous works (James and Milner, 2005; Bernard and Alwan, 2002) have
shown no significant differences among the previous methods in acoustically
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Fig. 3. Comparison between Binary, Regression and our delta reliability heuristic
for WM, MM and HM experiments under different channel conditions.

favorable environments (except hard decoding which provides poor results).
However, we have found that in noisy conditions, where delta features have a
relevant role, the differences become significant. In general, it can be said that
restrictive methods perform better in medium mismatch and well-matched
conditions whilst less severe approaches achieve better results in high mis-
match ones. Figure 2 shows the results obtained considering the product
and the minimum of confidences, whilst figure 3 those from the regression
method proposed by James and Milner (2005) and from the binary strategy
proposed by Bernard and Alwan (2002), both under transmission channel con-
ditions from section 2. As observed, the product of confidences performs better
than the minimun (a less restrictive method) in medium mismatch and well-
matched conditions, with differences up to 2.46%, but worse in high mismatch
ones. The same can be said about the binary strategy which performs slightly
better than regression in medium mismatch and well-matched conditions but
falls in high mismatch ones (between 1.12% and 1.54%).

A combination of the minimum and product approaches can properly perform
in well-matched, medium mismatch and high mismatch conditions. In our
proposal the confidence on the first derivative is obtained as the minimum of
confidences on the static features but as the product of them for the second

10



 

 

 

ACCEPTED MANUSCRIPT 

 

Fig. 4. Each frame pair is sent along with a FEC code containing information about
distant frames.

derivative, that is,

γ∆
t = min

w=−W∆,...,W∆

{γt+w} and γ∆∆
t =

W∆∆
∏

w=−W∆∆

γ∆
t+w (8)

This approach turns out simpler than regression-based confidences and, in
comparison, provides better results (up to 2.31% in MM experiment). Fig-
ures 2 and 3 also include the results obtained with this approach (Min. &
Prod.). In general, the proposed heuristic does not provide statistically signif-
icant differences in well-matched conditions. However, in medium mismatch
conditions it approximates or slightly improves the results from restrictive
methods (product and binary), whilst in high mismatch conditions, maintains
the performance as the less severe ones (minimum and regression).

3.3 Introduction of FEC codes

Weighted Viterbi algorithm is a particularly attractive solution to be used
with media-specific FEC. By means of the reliability values it is now possible
to inform the recognizer that we have some information about lost frames,
the FEC codes. However, our confidence in them is lower, as they have been
degraded by a (possibly) strong quantization process.

In our FEC scheme each packet includes the feature vectors corresponding to
the current frame pair, as well as replicas (FEC codes) of other vectors. Ini-
tially, we can use the same distribution presented in previous papers (Peinado
et al., 2005; Gómez et al., 2006), where vectors (replicas) corresponding to the
frames located Tfec time units before and after the current frame pair are also
included within the packet. Figure 4 depicts an example of this scheme. As
can be observed, the goal is to insert replicas (marked in light) into bursts,
breaking them into shorter bursts.

The replicas are coded with a secondary encoding which requires fewer bits.
This keeps the bandwidth increment into a reasonable size and avoids imposing
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too much overhead to the network. In our case, each replica, containing the
14 features (13 MFCCs plus log-Energy) is vector quantized (VQ) using a
codebook with 2N codewords (N bits). In our previous works (Peinado et al.,
2005; Gómez et al., 2006), VQ codebooks were trained using the k-means
algorithm over the speech recognizer training database. Although different
sets were used for training and testing, replicas could be over-adapted to the
database and, in particular to its vocabulary. In this paper we intentionally
check this issue by using different training and testing databases. Thus, VQ
codebooks are trained over the Finnish, English, Italian and German SDC-
Aurora database subsets, whilst tests are performed over the Spanish subset.
In addition, noisy recordings are also considered in both cases.

In our work we are interested in very short replicas of 4 or 8 bits (the reasons
will be clear along this paper). However, if such replicas are considered as
original vectors, i.e. without any post-processing, a reduction in performance
can be observed (Peinado et al., 2005). Therefore these replicas must be treated
in a different way by the recognizer. To do so, we can take advantage of the
WVA algorithm.

The problem is now that when VQ replicas are used, the autocorrelation-based
estimate for reliability mentioned in section 3 is no longer valid. Now, during
reconstruction, some lost vectors are recovered through VQ replicas whilst
vectors that are definitively lost are replaced by the nearest vector received
(either an SVQ vector or a VQ replica) 1 . To tackle the problem of confi-
dence assignment, the normalized auto-correlation function is generalized to
the normalized cross-covariance between the original lost feature, xt(k), and
its replacement, x̃t(k). Given the aforementioned recovery for lost frames, reli-
abilities for the replaced features can be obtained as a function of the temporal
difference, τ , between the original feature and the repeated one. When SVQ
vectors are repeated, the normalized cross-covariance for the repeated feature
k, C̄SV Q(τ ; k), is used. When VQ replicas are repeated, the normalized cross-
covariance for the repeated and VQ quantized feature k, C̄V Q(τ ; k), is applied
instead. Details about the normalized cross-covariance as reliability function
can be found in (Gómez et al., 2006).

Table 2 shows the average word accuracies (among WM, MM and HM exper-
iments) obtained by this technique for different codebook sizes and channel
conditions (dynamic feature confidences were calculated following the com-
bined Min-Prod strategy described in section 3.1). Results offered by the Au-
rora standard (repetition) and a plain WVA scheme (without replicas) are

1 A more elaborated mitigation algorithm could be used, for example, the FB-
MMSE estimation with VQ replicas proposed in (Gómez et al., 2006), which can
also provide a confidence measure for estimated features (Peinado et al., 2006).
However, preliminary results showed no accuracy improvements in comparison with
the approach reviewed here.
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4-bit VQ replicas 8-bit VQ replicas

Delay (ms) Delay (ms)

Ch. Aur WVA 60 120 200 300 60 120 200 300

1 85.89 85.97 86.27 86.33 86.24 86.50 86.67 86.62 86.77 86.76

2 78.95 81.47 82.46 82.86 83.28 83.65 84.17 85.00 85.31 85.54

3 71.54 75.44 77.43 77.83 78.83 79.38 80.96 82.25 82.56 83.20

4 63.48 69.43 71.52 73.07 73.33 74.20 76.09 78.41 79.02 79.62

5 54.10 60.62 63.45 65.08 65.43 66.49 68.43 71.85 71.91 73.32

Table 2
Average word accuracies obtained by WVA with 4 and 8-bit VQ replicas for different
allowed delays in comparison with Aurora and plain WVA technique.

also included as reference. As can be seen, WVA with VQ replicas provides
a significant improvement even with coarse replicas of 4 bits. By increasing
the latency we obtain better results. In such a case, replicas are more dis-
tant in time so longer bursts can be broken and, therefore, WVA performance
improves. On the other hand, as expected, increasing the VQ codebook size
from 4 bits per replica to 8 bits also improves the results. However, it must
be noted that 4 bit replicas could be inserted within the stream at no band-
width cost. According to the DSR payload recommendation for RTP protocol
(Schulzrinne et al., 1996), 4 bits are devoted to the CRC code while 4 padding
bits are filled with zeros to ensure datagram word alignment. Since the 16 bit
checksum of the User Datagram Protocol (UDP) (Postel, 1980), along with
the codes usually applied at the physical layer and the coherency test per-
formed at the back end, seem sufficient to ensure data integrity, these 8 bits
(CRC and padding) could be reused to include two 4-bit replicas.

Finally, as we mentioned before, VQ codebooks have been trained over all
the SDC-Aurora databases except the testing one (Spanish SDC-Aurora). We
have observed only a slight increase of performance when the same database
is used for training and testing (with different sets). These task-adapted FEC
codebooks could be also used assuming some mechanism for FEC codebook
update prior to transmission. However, we have preferred the first option for
the sake generality.

4 Low-latency Frame-level Interleaving

Interleaving is a technique commonly applied at the bit level to disperse the
appearance of errors, thus reducing the effect of error bursts. Unfortunately,
bit-level interleaving turns out useless when complete packets of information
are lost, as in packet-switched networks. In these networks, complete frames
can be interleaved instead (Perkins et al., 1998; James and Milner, 2004) by
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permuting the order in which these are encapsulated into packets. In such a
way, consecutive packet losses are perceived as isolated frame erasures or, at
least, as shorter bursts at the receiver. We will refer to these interleavers as
frame-level interleavers.

Frame interleavers disperse frame losses relying in the fact that EC is much
more effective for short loss bursts. This ability to disperse consecutive losses
(or errors) is related to the interleaver spread, which is better understood
under the point of view of the de-interleaver. Thus, an interleaver has spread
(s, t) if (and only if) its de-interleaver has spread (t, s) (Ramsey, 1970), that
is,

|π−1(i) − π−1(j)| ≥ s whenever, |i − j| < t. (9)

where π−1(i) represents the original order of the frame received at time instant
i. From equation (9) it can be concluded that an interleaver with spread (s, t)
will disperse any burst of frame losses with length less than t into isolated
frame losses separated by at least s − 1 frames (Gómez et al., 2007).

The main drawback of interleaving is the latency involved and, as expected,
interest is focused on finding those interleavers which provide the maximum
spread causing the shortest possible latency. Thus, very common ones are
the minimal latency block interleavers (MLBI), proposed by Andrews et al.
(1997), whose latency, given by 2s2 − 2s, is minimal among block interleavers
of spread (s, s).

MLBI interleavers have been tested by Milner and James (2006, 2003) showing
improvements on DSR robustness against bursty losses. These interleavers are
easily obtained by a simple rotation of a block of s × s elements either 90o

clockwise or 90o anticlockwise. However, they present an important hurdle:
the separation the interleaver introduces between two consecutive losses is
equal to the length of the bursts it can counteract. In DSR, such a long
distance could be excessive, as we previously showed in (Gómez et al., 2007).
For example, let us consider the ETSI DSR mitigation algorithm in which lost
frames are simply replaced by the nearest received one. The presence of more
than one frame between isolated losses will not provide better replacements,
since the EC technique can not take advantage of the additional frames. Then,
an interleaver with spread (2, t) would offer a similar EC performance than
one of spread (s, t) with s > 2, but causing a shorter latency. In general, we
showed that assuming s = 2 is suitable even when applying more advanced
EC techniques that make use of two or more received frames to obtain the
replacements (Gómez et al., 2007).

Ramsey (1970) described several convolutional interleavers with arbitrary spread
(s, t) and minimum latency. One of them, the type III (s, t) interleaver assures
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Resulting sequence after optimal block interleaving (s=t=4)

Resulting sequence after Ramsey interleaving (s=2, t=11)

Fig. 5. Example comparing burst spreading achieved by MLBI and Ramsey-derived
interleavers. Lost packets are represented in gray.

a minimum latency, given by (s − 1)(t + 1), whenever s and t are relatively
prime and t > s. In our previous work (Gómez et al., 2007) we showed that
an invertible pair of interleavers with spread (s = 2, t = 2B +1) (with B ≥ 1)
could be derived from the graphical descriptions offered by Ramsey. This in-
vertible pair is given by the following expressions:

π(i) = i + (i mod 2) · 2(B + 1) (10)

π−1(i) = (i div 2) · 2 − (i mod 2) · (2B + 1) (11)

In such a case s and t are always relatively prime and t > s. Therefore, the
interleaver has minimal latency given by 2(B + 1).

Since the mathematical analysis of this interleaver is detailed in (Gómez et al.,
2007), here we will focus on practical considerations. Once a burst appears,
the Ramsey interleaver spreads it into two one-received-one-lost sequences as
shown in figure 5. This interleaving structure is quite robust since it grants
that bursts are scattered in completely isolated losses provided their length is
less or equal to t (t = 11 frames in the figure). In contrast, this dispersion is
only granted for burst lengths of s or less frames when a block interleaver is
applied (4 frames in the figure, at the same latency).

The distance between isolated losses is just one frame, but this does not involve
a performance degradation when the concealment technique only requires one
received frame to compute replacements for lost frames (as in the case of
the mitigation algorithm proposed in the ETSI DSR standard). Instead, the
main drawback of this short distance appears when two consecutive burst
are considered: if these are too close an artificial burst can appear, as figure
6 shows. Fortunately, it can be proved that the artificial burst is shorter or
equal to the shortest original burst implicated. We will tackle this effect in the
next section.

Table 3 shows the average word accuracies (WM, MM and HM experiments)
obtained by the MLBI interleaver and the proposed Ramsey-derived (2, t) in-
terleaver for the different channel conditions at several allowed delays. Plain
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MLBI Interleaving Ramsey-derived Interleaving

Delay (ms) Delay (ms)

Ch. Aur WVA 60 120 200 300 60 120 200 300

1 85.89 85.97 86.79 86.85 86.83 86.89 86.98 86.79 87.08 87.18

2 78.95 81.47 84.06 84.72 85.54 86.05 84.95 85.44 86.01 86.09

3 71.54 75.44 79.56 80.75 82.25 83.44 81.48 82.35 83.21 83.93

4 63.48 69.43 74.38 76.67 78.02 79.45 76.85 77.95 78.59 79.64

5 54.10 60.62 65.82 68.59 70.32 73.02 68.00 70.59 72.58 73.14

Table 3
Average word accuracies obtained by WVA after MLBI and Ramsey-derived inter-
leaving for different allowed delays in comparison with Aurora and WVA without
interleaving.

WVA (nearest received repetition with no replicas) was used as EC technique
whilst dynamic feature confidences were calculated by the Min-Prod strategy
described in section 3. Results obtained through WVA without interleaving
and Aurora standard mitigation are also included as reference. It can be ob-
served that recognition performance can be significantly improved by means
of both interleavers (also when acoustical adverse conditions are considered).
However, in comparison, Ramsey-derived interleaving provides better results,
particularly at low latencies, which are those we are interested in. Only when
allowing a delay of 300 ms MLBI interleavers provide comparable results, but
such a delay would lead to a latency of 600 ms which is possibly unsuitable
for speech recognition applications.

5 VQ Replicas and Interleaving: Double Stream Scheme.

As independent techniques, there is no reason why interleaving and FEC-
based schemes can not be jointly applied to achieve better results. The most
immediate way to combine both techniques is to apply one technique after the
other, i.e. packets can be interleaved after FEC codes have been obtained or
viceversa. However, since both schemes cause a delay, this direct composition
of FEC and interleaving processes would result in a sum of their corresponding
delay (and latency).

This sum of delays can be prevented by a double stream (DS) scheme (Gomez
et al., 2007). In this scheme, two independent sequences of feature vectors
are considered: a primary stream which consists of feature vectors that are
quantized by SVQ as in the DSR standard, and a secondary stream composed
of the same vectors but VQ quantized. This second flow is just a redundant
stream inserted within the packets by means of VQ replicas. Different inter-
leaving functions are applied to different streams so that the total latency
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... 10 11 12 13 14 15 17 18 19 20 21 2316

VQ (replicas)

25 27 28

... 6 16 8 17 10 19 12 21 14 23 16 18 20 29

22 24 26 29 30 31 32 33 34 35 ...

22 31 24 33 26 35 28 37 30 39 ...

SVQ

Final received sequence Artificial burst fragmented

not interleaved - only odd frames

(2,t) interleaving

25 27

Fig. 6. Example of the proposed DS scheme where an artificial burst (from vector 21
to 24) caused by the interleaving over two different bursts (gray frames) is re-frag-
mented thanks to the replicas. Each packet is composed of two (2, t) interleaved
SVQ vectors and one VQ replica (only odd vector, no interleaving).

caused in the transmission is equal to the maximum of both interleavers.

This DS scheme opens a number of possibilities since now two interleavers must
be chosen in order to jointly maximize the spreading of losses considering both
SVQ and VQ vectors. A relevant hurdle to be considered is the appearance
of overlapped replicas. There exist combinations of interleavers which cause
that some replicas are sent in the same packet that the vector to be protected.
Those replicas are useless, since both the vector and its replica will be lost if
the packet is not received.

Due to its complexity, we tackle this problem in two steps: first by selecting
a suitable SVQ interleaver and then a VQ one which, at least, avoids the
presence of overlapped replicas. Since it has provided the best results, the
(2, t) interleaver described in section 4 and defined by equations (10) and
(11), is applied as primary interleaver (i.e. to reorder the SVQ vectors). This
interleaver will define the total latency of the scheme, so its parameter t is
set according to the maximum allowed delay. For the secondary interleaving,
previously described re-orderings could be considered but, unfortunately, both
the MLBI interleavers and the ordering initially proposed for VQ replicas
(section 3.3) lead to overlapped replicas. A detailed analysis of the first ones
reveals the appearance of overlapped replicas at some time instants, while the
second ones can be considered as a particular case of the DS scheme where
SVQ vectors are not interleaved and VQ replicas are reordered using a (2, t)
interleaver with t = Tfec and then inserted within the packets. Thus, this
reordering would also lead to overlapped replicas.

Curiously, not to interleave any replica at all can also be a good solution.
Interleaving, as well as it can spread bursts, can also build up artificial bursts
from near losses or bursts (due to the reordering). In the case of the Ramsey-
derived interleaver, it is possible that two close bursts can be spread in such
a way that an artificial consecutive loss appears as a consequence of these
(figure 6). By not interleaving the replicas or by interleaving them with a
short spread, these artificial bursts can be fragmented.

In our proposal, we take advantage of this along with the redundant nature
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DS scheme (wo. discard) DS scheme (w. discard)

2 x 4bit replica, delay (ms) 1 x 8bit replica, delay (ms)

Ch. Aur WVA 60 120 200 300 60 120 200 300

1 85.89 85.97 87.00 86.84 87.12 87.20 87.08 87.09 87.18 87.24

2 78.95 81.47 85.14 85.74 86.17 86.19 85.37 85.82 86.45 86.42

3 71.54 75.44 81.82 83.09 83.79 84.47 82.16 83.53 84.37 84.84

4 63.48 69.43 77.12 79.18 80.14 80.86 77.98 79.66 80.85 81.90

5 54.10 60.62 68.69 72.48 74.64 74.21 70.21 73.16 75.32 76.18

Table 4
Average word accuracies obtained by the Double Stream scheme (with and without
discarded replicas) for different allowed delays in comparison with Aurora and the
plain WVA technique.

of replicas. This last feature allows that the interleaving function applied over
replicas does not need to be a permutation any longer, so that some replicas
could be discarded allowing others to be better represented. Thus, we send the
VQ replicas in their original order (no interleaving) but only half of them (one
replica per packet). That is, all redundancy bits available (n) are devoted to
odd replicas while even replicas are not transmitted (viceversa is also valid).
Given the high time correlation between vectors, the results are almost the
same as transmitting all the replicas at a double bit-rate (n + n).

This scheme, depicted in figure 6, has shown the best results in compari-
son with other lossless interleavers tested, i.e. two replicas per packet with
(n/2 + n/2) bits. Table 4 shows the average results, over the WM, MM and
HM experiments, achieved by our proposed scheme with and without discard-
ing replicas under different channel conditions. As can be observed, the addi-
tional information contained in the secondary stream (or VQ replicas) allows
an improvement on word accuracy in comparison with WVA schemes with
interleaving (table 3). It can be noted that this performance increase (from
WVA to WVA with VQ) is not so high as when there was no interleaving (ta-
ble 2). The reason is that bursts have been already broken by Ramsey-derived
interleaving, so that the only goal of replicas is now to recover lost informa-
tion and re-fragment artificial bursts. Figure 7 details the performance of our
proposal (WVA plus interleaving and only one VQ replica per packet) in the
WM, MM and HM experiments in comparison with the previous techniques
described in this paper. For all of them, a maximum delay of 120 ms has been
allowed, as well as a possible bandwidth overhead of 8 bits (that can be intro-
duced within the payload at no effective cost). As it is observed, our scheme
significantly increases the robustness against packet losses both in mismatch
and well-matched conditions.
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Fig. 7. Comparison between WVA with no sender-driven technique (WVA), WVA
with VQ replicas (WVA & VQ) or Ramsey-derived interleaving (WVA & Ramsey)
and the proposed DS scheme (WVA & Ramsey & VQ) for WM, MM and HM
experiments under different channel conditions. Same allowed delay (120 ms) and
bandwidth overhead (8 bits) have been considered for all techniques.

6 Conclusions

In this paper, we propose a whole recovery scheme designed to improve the
robustness against packet losses on distributed speech recognition systems. In
this scheme, two sender-driven techniques, namely, media-specific FEC codes
and frame interleaving, are jointly applied along with a receiver-based EC
technique, the Weighted Viterbi algorithm. The sum of the delays caused by
the use of distant replicas and interleaving is avoided by means of a double
stream scheme. In this scheme, two different flows, one consisting of SVQ
vectors and the other composed of VQ vectors or replicas are considered.
Before replicas are inserted within the packets as FEC codes, both streams
are independently interleaved, so that the latency is limited by the maximum
delay of both interleavers.

As primary interleaver, we propose a (2, t) convolutional interleaver. We have
shown that, at the same latency, this Ramsey-derived interleaver can disperse
into isolated losses longer bursts than the classical MLBI interleaving. This is
possible since the distance between the scattered losses is just one frame (t = 2
instead of t = s), which is long enough for the usual reconstruction techniques
applied in DSR and, in particular, for those considered in this paper (i.e. near-
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est vector repetition). As secondary interleaver, we apply a lossy reordering
function. That is, taking advantage of the redundant nature of replicas and
the high correlation between consecutive frames, not all VQ vectors are trans-
mitted. In each packet, all available bits are devoted to representing only the
odd frame (or, alternatively, the even one) which is sent in its correspond-
ing time-instant (no reordering). In addition to the introduction of additional
information, these replicas allow to re-fragment the possible artificial bursts
caused by the primary interleaver.

At the receiver, received and lost vectors and replicas are differently treated by
the recognizer by means of the WVA algorithm. A reliability function based
on the normalized cross covariance is used as static feature confidence esti-
mate. This reliability function can offer a confidence estimate for a recovered
lost feature given the reconstruction method, including those based on VQ
replicas. Thus, the recognizer can be informed that we have some informa-
tion about lost frames, the VQ replicas, but that our confidence in them is
lower, as they have been degraded by a strong quantization process. Confi-
dence values for dynamic features are calculated from the reliabilities of the
static features within the sliding window from which those are calculated. Al-
though frequently forgotten in the WVA algorithm, delta features provide a
speech representation more robust against acoustic noise. Confidences for first
derivatives are obtained as the minimum of the static ones, while for second
derivatives are obtained as their product. It has been shown that this ap-
proach, which mixes minimum and product strategies, achieves good results
in both well-matched and mismatched acoustic conditions.

The proposed scheme and techniques have been tested under different chan-
nel conditions and considering several levels of acoustic mismatch between
training and testing sets (high, medium and no mismatch). In all cases our
proposal provides a considerable improvement on recognition accuracy. Thus,
assuming a reasonable delay of 120 ms and reusing the zero padding and CRC
bits (8 bits in total), up to a 44.3% of relative reduction on the average word
error rate can be achieved in comparison with the Aurora standard, and 25.7%
and 33.5% in comparison with a WVA system with and without replicas, re-
spectively. In general, the improvements achieved have shown a high degree
of independence from the acoustic environment. In this sense, the techniques
described in this paper provide comparable performance improvements under
high and medium acoustic mismatch and well-matched experiments.
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