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Abstract
Assessment of prosody is important for diagnosis and remediation of speech and language disorders,
for diagnosis of neurological conditions, and for foreign language instruction. Current assessment is
largely auditory-perceptual, which has obvious drawbacks; however, automation of assessment faces
numerous obstacles. We propose methods for automatically assessing production of lexical stress,
focus, phrasing, pragmatic style, and vocal affect. Speech was analyzed from children in six tasks
designed to elicit specific prosodic contrasts. The methods involve dynamic and global features,
using spectral, fundamental frequency, and temporal information. The automatically computed
scores were validated against mean scores from judges who, in all but one task, listened to “prosodic
minimal pairs” of recordings, each pair containing two utterances from the same child with
approximately the same phonemic material but differing on a specific prosodic dimension, such as
stress. The judges identified the prosodic categories of the two utterances and rated the strength of
their contrast. For almost all tasks, we found that the automated scores correlated with the mean
scores approximately as well as the judges' individual scores. Real-time scores assigned during
examination – as is fairly typical in speech assessment – correlated substantially less than the
automated scores with the mean scores.

1. Introduction
Assessment of prosody is important for diagnosis and remediation of speech and language
disorders, for diagnosis of certain neurological conditions, as well as for foreign language
instruction. This importance stems from the role prosody plays in speech intelligibility and
comprehensibility (e.g., Wingfield, 1984; Silverman et al., 1993) and in social acceptance (e.g.,
McCann & Peppé, 2003; Peppé et al., 2006, 2007), and from prosodic deficits in certain
neurological conditions (e.g., stroke; House, Rowe, & Standen, 1987 or Parkinson's Disease;
Darley, Aronson, & Brown, 1969a, b; Le Dorze et al., 1998).

Current assessment of speech, including that of prosody, is largely auditory-perceptual. As
noted by Kent (1996; also see Kreiman & Gerratt, 1997), the reliability and validity of auditory-
perceptual methods is often lower than desirable as the result of multiple factors, such as the
difficulty of judging one aspect of speech without interference from other aspects (e.g., nasality
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judgments in the presence of varying degrees of hoarseness); the intrinsic multidimensional
nature of certain judgment categories that require judges to weigh these dimensions (e.g.,
naturalness); the paucity of reference standards; and the difficulty of setting up truly “blind”
judgment situations. Many of these issues are not specific to perceptual judgment of speech;
in fact, there is an extensive body of literature on biases and inconsistencies in perceptual
judgment going back several decades (e.g., Tversky, 1969).

Presumably, these issues would not be faced by automated (“instrumental”) speech assessment
methods. Nevertheless, automated methods have largely been confined to analysis of voice
features that are only marginally relevant for prosody (e.g., the Multi-Dimensional Voice
Program™, or MDVP; Elemetrics, 1993). What obstacles are standing in the way of developing
reliable automated prosody assessment methods?

An obstacle for any method, whether automated or auditory-perceptual, consists of the multiple
“levels” of prosodic variability; for each level, one must distinguish between which deviations
from some – generally ill-defined – norm are acceptable (e.g., due to speaking style) and which
deviations are not (e.g., due to disease). One level of variability involves dialect. Work by
Grabe and colleagues (Grabe, Post, Nolan, and Farrar, 2000; Grabe and Post, 2002), for
example, has shown that prosodic differences between dialects of British English can be as
large as prosodic differences between languages. Not surprisingly, dialect differences have
been shown to create problems for auditory-perceptual assessment (e.g., assessment of speech
naturalness; Mackey, Finn, & Ingham, 1997). Another level of variability involves differences
between speakers that are not obviously due to dialect. These differences are sufficiently
systematic to provide useful cues for speaker identification (e.g., Sönmez et al., 1998; Adami
et al., 2003), and may involve several speaker characteristics, the most obvious of which are
gender, age, and social class (e.g., Milroy & Milroy, 1978). At a third level, there is systematic
within-speaker variability due to task demands (e.g., Hirschberg, 1995, 2000), social context
(e.g., Ofuka et al., 1994, 2000), and to emotional state (e.g., Scherer, 2003).

In addition to these forms of variability that are due to systematic factors, there is also variability
that is apparently random. For example, in data reported by van Santen and Hirschberg
(1994), in a highly confined task in which the speaker had to utter sentences of the type “Now
I know <target word>” in a prosodically consistent – and carefully monitored – manner, the
initial boundary tone was found to have a range of 30 Hz while the final boundary tone had a
range of only 3 Hz; the typical pitch range of these utterances was less than 100 Hz. This form
of variability may be less of a challenge for auditory-perceptual methods because these methods
may benefit from the human speech perception system's ability to ignore communicatively
irrelevant features of speech, but it clearly presents a challenge for automated methods.

There are additional aspects of prosody that pose complications and that are unrelated to
variability. One is the intrinsically relative nature of many prosodic cues. For example,
durational cues for the lexical stress status of a syllable are not in the form of some absolute
duration but of how long or short the duration is compared to what can be expected based on
the speaking rate, the segmental makeup of the syllable, and the location of the syllable in the
word and phrase (van Santen, 1992; van Santen & Shih, 2000). A second aspect of prosody
that poses complications for automated methods is that prosodic contrasts typically involve
multiple acoustic features. To continue with the same example, lexical stress is expressed by
a combination of duration, pitch, energy, spectral balance (e.g., Klatt, 1976; van Santen,
1992; Sluijter & van Heuven, 1996; van Santen & Niu, 2002, Miao et al., 2006), and additional
features due to effects at the glottal level that are not fully captured by these basic acoustic
features (e.g., glottal closing and opening slope; Marasek, 1996). Thus, there could be speaker-
dependent trade-offs in terms of the relative strengths of these features, necessitating a
fundamentally multidimensional approach to automated prosody assessment.
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Both the intrinsic relativity of individual prosodic features and the trade-offs between them
pose challenges for automated prosody assessment methods. These challenges seem to be
fundamentally different from those posed by, for example, vowel production assessment. In a
given phonemic context, vowel formant frequencies must lie within fairly narrow ranges in
order for the vowel to be perceived as intended. While prosodic categories cannot even
remotely be characterized by “point templates” in some conventional acoustic space, point
template approaches for phonemic categories used by typical speech recognition systems
clearly work rather well, via vector-based acoustic models in conjunction with some initial
normalization step (e.g., cepstral normalization, vocal tract length normalization) and making
basic allowances for coarticulation (e.g., by using phonemic-context dependent acoustic
models).

Despite these obstacles for automated methods, there are obvious drawbacks to relying on
auditory-perceptual methods and important advantages to using automated methods. First, we
already mentioned validity and reliability issues of auditory-perceptual methods. Second, given
the poor access many individuals have to services from speech-language pathologists or foreign
language teachers, reliance on computerized prosody remediation or instruction is likely to
increase. To be truly useful, such computerized systems should have the capability to provide
accurate feedback; this, in turn, requires accurate automated assessment. Third, despite the
exquisite sensitivity of human hearing, it is plausible that diagnostically relevant acoustic
markers exist whose detection exceeds human capabilities. Detection of some promising
markers, such as statistical features of pause durations in the course of a 5-minute speech
recording (e.g., Roark et al., 2007), might be cognitively too demanding. Others could have
too low an SNR to be humanly detectable. The acoustic feature of jitter, for example, has
potential for early detection of certain vocal fold anomalies (e.g., Zhang & Jiang, 2008; Murry
& Doherty, 1980) but has fairly high perceptual thresholds, certainly with non-stationary pitch
(e.g., Cardozo & Ritsma, 1968). In other words, exclusive reliance on auditory-perceptual
procedures is not good for discovery of new diagnostic markers.

We thus conclude that automated measures of assessment of prosody production are much
needed, but that constructing such measures faces specific challenges. In our approach, we use
a combination of the following design principles that help us address these challenges. (i)
Highly constraining elicitation methods (e.g., repeating a particular word with a specific stress
pattern) to reduce unwanted prosodic variability due to, for example, contextual effects on
speaking style. (ii) A “prosodic minimal pairs” design for all but one task, in which the list of
items used to elicit speech consists of randomized pairs that are identical except for the prosodic
contrast (e.g., the third item on the list is tauveeb and the seventh tauveeb, with underlining
indicating word stress). This serves to reduce the impact of confounding speaker
characteristics, such as pitch range or vocal tract length; each speaker is his or her own control.
(iii) Robust acoustic features that can handle, for example, mispronunciations and pitch
tracking errors. (iv) Measures that consist of weighted combinations of multiple, maximally
independent acoustic features, thereby allowing speakers to differ in the relative degrees to
which they use these features. (v) Measures that include both global and dynamic features.
Prosodic contrasts such as word stress are marked by pitch dynamics, while contrasts such as
vocal affect can perhaps be characterized by global statistics. (vi) Parameter-poor (and even
–free) techniques in which the algorithms themselves either are based on established facts about
prosody (e.g., the phrase-final lengthening phenomenon) or are developed in exploratory
analyses of a separate data set whose characteristics are quite different from the main data in
terms of speakers (e.g., adults and children ages 11-65 vs. children 4-7). In conjunction with
(ii) and (iii), this serves to maximize the portability of the measures in order to minimize the
influences of recording conditions, SNR, sample characteristics, and other factors that may be
difficult to control across laboratories or clinics. Parameter-rich systems may lack such
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portability, since the parameter estimates may depend on the idiosyncrasies of the acoustic
recording conditions and the training samples.

The goal of this paper is to describe the construction and validation of a number of prosody
measures based on these design principles. The speech data were collected as part of an ongoing
study of the production and interpretation of prosody in autism, whose aim is to detail prosodic
difficulties in autism spectrum disorder, developmental language disorder, and typical
development, in the age range of 4-8 years. The current paper focuses on methodology.
Elsewhere we have presented preliminary findings on between-group differences on the suite
of measures (Tucker Prud'hommeaux et al, 2008; van Santen, Tucker Prud'hommeaux, et al.,
2007, 2008).

2. Data Collection
2.1 Speech Elicitation Methods

The tasks used for elicitation include variants and modifications of tasks in the PEPS-C
(“Profiling Elements of Prosodic Systems - Children”; Peppé & McCann, 2003) paradigm, as
well as of two tasks developed by Paul et al. (2005). In our study of prosody in autism, children
complete tasks designed to test both their interpretation and their production of prosody. The
present paper considers, in detail, the results of only the tasks related to the production of
prosody. Findings are reviewed in four categories: Stress Related Tasks, Phrasing Task, Affect
Task, and Pragmatic Style Task.

(i) Stress Related Tasks (Lexical Stress Task, Emphatic Stress Task, and Focus Task). In the
Lexical Stress Task (based on Paul et al., 2005; also see Dollaghan & Campbell, 1998), the
computer plays a recording of a two-syllable nonsense word2 such as tauveeb, playfully
accompanied by a picture of a thus-named “Martian” life-form. The child's task is to repeat
after the recorded voice with the same stress pattern. In the Emphatic Stress Task (Plant &
Öster, 1986; Shriberg et al., 2001; Shriberg et al., 2006) the child has to repeat an utterance in
which one word is emphasized (“Bob may go home”, “Bob may go home”, etc.). (Note that in
Plant & Öster's procedure, the subject does not repeat an utterance but reads appropriately
annotated text aloud.) Finally, in the Focus Task (adapted from the PEPS-C), a recorded voice
incorrectly describes a picture of a brightly colored animal with a soccer ball, using the wrong
word either for the animal or for the color. The child must correct the computer by putting
contrastive stress on the incorrect label. For example, if the voice describes a picture of a black
cow as a blue cow, the child responds “No, the black cow has the ball”. (ii) In the Phrasing
Task, also adapted from the PEPS-C, the child has to indicate with an appropriate phrase break
whether a picture represents three objects (e.g., fruit, salad, and milk) or two objects (e.g., fruit-
salad and milk). (iii) In the Affect Task, the child has to say a fixed phrase (“It doesn't matter”)
using the emotion (happiness, sadness, anger, or fear) that corresponds to the affect expressed
by a picture of a stylized face. These pictures were obtained by digitally modifying Ekman
faces (Ekman and Friesen, 1976) into line drawings that only retain features relevant for facial
affect. This task is loosely based on a receptive vocal affect task (Berk, Doehring, & Bryans,
1983). (iv) In the Pragmatic Style Task (based on Paul et al., 2005), the child views a photo of
either a baby or an adult and must speak to that person using the appropriate prosody.

These tasks were administered as follows. Each task started with four training trials during
which the examiner corrected and, if necessary, modeled the response. In addition, each task

2We use nonsense words rather than attested trochaic/iambic pairs (e.g., contest-N vs. contest-V) because such pairs are not identical
phonetically and are not generally part of a typical child's vocabulary. We do recognize, as one reviewer pointed out, that inherent
properties of the component phonemes may trigger the perception of stress in the absence of meaning. The minimal-pair presentation
should reduce the likelihood of this phenomenon.
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was immediately preceded by the corresponding receptive task, thereby providing some degree
of additional, “implicit” training. Thus, significant efforts were made to ensure that the child
understood the task requirements. During the administration of a task, the child and the
examiner were seated at adjacent sides of a low, child-appropriate, rectangular table. The
examiner interacted with a laptop computer to control the experiment; the screen of the laptop
was not visible to the child. A software package (based on the CSLU Toolkit; Sutton et al.,
1998) presented the auditory stimuli via high-quality loudspeakers and visual stimuli on a touch
screen, processed the child's touch screen responses, and enabled to examiner to control the
sequence of stimuli (specifically, to repeat up to two times items missed due to the child's
attention drifting) and to indicate whether the child's response was correct or incorrect. The
binary (i.e., correct vs. incorrect) scores obtained in this manner will be called real-time
scores. The software also recorded the child's vocal responses and stored these in a data
structure containing all events and speech recordings, appropriately synchronized and time-
stamped. This data structure, including the recorded speech, can be re-accessed by the examiner
after completion of a task to verify the scoring judgments made during the task. We call these
scores verified real-time scores. The only real-time scores we will consider in this study are
these verified real-time scores.

2.2 Speakers
Participants were 15 children who met criteria for Autism Spectrum Disorder (ASD); 13
children who were considered “typical” in terms of several criteria, discussed below (Typical
Development, or TD group); and 15 children who met some but not all criteria for inclusion
in the ASD group. There are two reasons for using this heterogeneous sample. First, for the
purpose of developing and validating the automated measures, a wide range of performance
levels are needed; restriction of the study to the TD group could have created serious restriction
of range problems because most children in the TD group perform well on these tasks. Second,
it is important to establish that the experimental procedures can be applied to, and generate
meaningful scores for, children with neurodevelopmental disorders.

All participants were verbal and had a mean length of utterance of at least 4. The ASD group
was “high functioning.” (HFA), with full scale IQ of at least 70 (Gilberg & Ehlers, 1998;
Siegel, Minshew & Goldstein, 1996), as well as “verbally fluent.” Diagnoses made use of
DSM-IV-TR criteria (DSM-IV-TR, 2000) in conjunction with results of the “revised
algorithm.” derived from the ADOS (Lord et al., 2000; Gotham, et al., 2007, 2008),
administered and scored by trained, certified clinicians, and results of the Social
Communication Questionnaire (SCQ; Berument et al., 1999).

Exclusion criteria for all groups were the presence of any known brain lesion or neurological
condition, including cerebral palsy, tuberous sclerosis, intraventricular hemorrhage in
prematurity, the presence of any “hard” neurological sign (e.g., ataxia); orofacial abnormalities
(e.g., cleft palate); bilinguality; severe intelligibility impairment; gross sensory or motor
impairments; and identified mental retardation. For the TD group, exclusion criteria include,
in addition, a history of psychiatric disturbance (e.g., ADHD, Anxiety Disorder), or any family
member with ASD or Developmental Language Disorder.

In addition to the child speakers, we also obtained recordings of a superset of the items in the
above six tasks from 36 professional and amateur actors, both male and female, ranging in age
from 11 to 65. We have used these recordings as a development set for exploratory purposes.
Results for one of these individuals, for the affect task, were reported by Klabbers et al.
(2007).
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2.3 Listeners
Two sets of human listener-judged scores were collected: (1) verified real-time scores,
produced by clinicians during examination and later verified; and (2) listener judgments,
collected using a web-based randomized perceptual experiment, produced by six naïve, non-
clinical individuals.

2.3.1 Clinical Examination—The four individuals generating the verified real-time scores
had clinical or research experience with neurodevelopmental disorders and were extensively
trained in administering and scoring the speech elicitation tasks (section 2.1). Their
backgrounds were in speech language pathology, phonetics, and clinical child psychology. All
were native speakers of American English. Since they tested different subsets of children, no
mean examiner scores could be computed. Each of these individuals verified his or her own
scores, off-line.

2.3.2 Listening Experiment—Six individuals participated in the listening experiment
portion of the study. They reported normal or corrected-to-normal hearing, were native
speakers of American English, and had no clinical or research experience with
neurodevelopmental disorders. They were unfamiliar with the study goals and did not know
the children. They were paid for their participation. They processed the same sets of stimuli,
thus enabling us to compute mean listener scores.

2.4 Listening Experiment Tasks
All listener tasks were computer controlled and took place in quiet offices using headsets. In
the Affect Task, a listener heard a recording of a child response, decided which of four
alternative emotions (happy, sad, angry, or fearful) best described it, and indicated a certainty
level on a 0-2 scale (0=possibly, 1=probably, 2=certainly). The four alternatives were indicated
using the same set of stylized faces that was used in the task performed by the children, with
descriptive verbal labels added. The locations of the four alternatives remained constant
throughout the experiment. Listeners also had the option to indicate “I don't know” without
selecting a degree of certainty. This option was included in response to listener requests for
such an option during a pilot study.

In the remaining five tasks, a listener heard a recording of two child responses forming a
prosodic minimal pair (e.g., tauveeb and tauveeb, from the same child), decided which member
of the pair corresponded to which response alternative, and indicated one of two degrees of
certainty (“probably”, “certainly”). Listeners also had the option to indicate “I don't know”.
Scores generated by these procedures will be called minimal pairs based scores. While the
certainty ratings add to task complexity, listeners expressed the need to be able express the
sharp differences in confidence they experienced.

2.5 Task Scoring
2.5.1 Listening Experiment Scores
Affect Task: The listeners had substantial difficulty reliably distinguishing between angry and
happy and between sad and fearful. Based on this, we scored the listener responses as follows.
We scored a response (to an individual utterance) as positive when the listener chose happy or
angry, with full confidence scored as 1, some confidence as 0.66, and a little confidence as
0.33; sad or fearful responses were scored likewise but with corresponding negative values. A
response of “I don't know” was scored as 0. We note that this scoring scheme does not take
into account what the utterances' intended affects are. Thus, correlations between judges based
on these per-utterance scores do not reflect agreement about the appropriateness of the
utterances. Recall that each speaker produced 4 versions of a single sentence: happy, sad, angry,
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and fearful. To obtain per-speaker scores, we combined the scores assigned to that speaker's
utterances by adding the mean listener scores for the utterances whose targets were angry or
happy and subtracting from this sum the sum of the scores for the utterances whose targets
were sad or fearful. This difference score, in contrast to the per-utterance score, does reflect
whether a child makes an appropriate contrast between the affects.

Remaining five tasks: In these tasks, in which the listener judged minimal pairs of utterances,
we assign a positive score to a listener response if the listener's choice indicates that a child
made the correct contrast between the two utterances and a negative score otherwise. A score
of zero indicates that neither utterance was produced with convincingly appropriate prosody.
Thus, scores could have the values of 1, 0.5, 0, -0.5, and -1. Per-speaker scores were computed
by averaging these scores.

2.5.2 Verified Real-Time Scores—During an examination, the clinician – who always
knew the target prosody – decided whether each response was correct or incorrect, without a
certainty rating (correct = 1, incorrect = 0). During verification, the clinician listened to each
response and decided whether to accept or reject the decision made during the examination.
To make these scores comparable to the minimal pairs based scores, we collected for each
minimal pair the two corresponding verified real-time scores, and mapped these onto 1.0, 0,
and -1.0 depending on whether both were positive, one was positive, or neither was positive.

3. Listening Task Results
For each task, the listener data can be represented as an N × 6 table, where the N rows
correspond to the utterances collected across all speakers, the 6 columns to the listeners, and
the cells to the listener ratings. This per-utterance table can be condensed into a per-speaker
table, by combining for each speaker the ratings of the k utterances as discussed in section 2.5.
We extend these tables by adding additional columns for mean listener scores (see below) and
verified real-time scores (see Section 2.1).

Two types of mean listener scores were computed. The first type of mean listener score was
obtained simply by averaging the six listener columns in the data tables. The second score was
obtained by applying Principal Components Analysis to the covariance matrix of the six listener
columns, and multiplying these columns with the Eigen vector associated with the first
principal component. This score is thus a weighted mean of the listener scores, with lower
weights for listeners whose scores are less correlated with other listeners (van Santen, 1993).
Since we found only minimal differences between the results obtained by these two methods,
we only report results obtained with the simple average. Consistent with these minimal
differences is the fact that, across the six tasks, the first component explained between 63 and
78% of the variance for the per-utterance data and between 76 and 90% of the variance of the
per-subject data. There were no systematic differences between listeners in terms of their
loadings on the first principal component. In combination with the similarity of the results
obtained between weighted mean listener scores and the simple mean listener scores, we
conclude that there were no systematically distinct (“bad”) subgroups of listeners or individual
outliers and that we can use the simple mean listener scores.

Figures 3-8, left panels, show the (product-moment) correlations between the scores of the per-
utterance listener scores, mean listener scores, and verified real-time scores. The figures show
the ranges of the between-listener correlations and of the correlations between the listeners and
the mean listener scores; for the latter, we always excluded the individual listener's data when
the mean listener score was computed to avoid the obvious inflation that would otherwise
result. Figures 3-8, right panels, present the same analyses for per-speaker data. One could
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propose that from a practical perspective, it would be these per-subject scores that matter and
not the per-utterance scores.

These results show, first, that all scores have significantly positive correlations with each other
(p=0.01, one-tailed). Second, the listener scores correlate more with each other (on average,
0.64 for the per-utterance data and 0.73 for the per-speaker data) and with the mean listener
scores (0.75 and 0.83, respectively) than the verified real-time scores (0.48 and 0.56,
respectively).

Several factors could be responsible for the latter, including: frame-of-reference effects due to
different subgroups of children being scored by different examiners; the examiners being
biased by awareness of the broad capabilities of the child they were scoring; and judgments of
individual responses being intrinsically more difficult than judgments of minimal pairs.

Except for the affect task, all correlations were larger for the per-speaker scores than for the
per-utterance scores. This was most likely due to the reduction in variance by computing per-
speaker averages. In the case of the affect scores, the per-utterance and the per-speaker scores
are not strictly comparable because the former do not take into account the appropriateness of
the utterance whereas the latter do.

A finding not depicted in the figures is that mean listener scores on the tasks other than the
affect task were overwhelmingly positive (i.e., indicating that the child made the correct
distinction), whether based on per-utterance data or on per-speaker data. Averaged over these
tasks, the percentages of positive responses were 88% and 95%, respectively. This makes an
important point: even in cases where the listeners were quite uncertain, as a group they were
still able to accurately determine the child's intention. This supports the sensitivity of the
prosodic minimal pairs-based methods. The verified real-time scores were less often positive
(78% and 89% for the per-utterance and per-speaker data, respectively; using a chi-square test,
these percentages are significantly smaller at p<0.01 than the corresponding percentages for
the minimal pairs based methods). A methodological consequence of the strong positive bias
is that the percentage agreement between judges (i.e., agreement measured in terms of the sign
of the scores, ignoring the magnitude) is not meaningful, and that the standard measure for
interjudge agreement (Cohen's Kappa; Cohen, 1960) is also not meaningful because this
measure becomes unstable as the number of cases in the negative/negative cell approaches
zero.

In summary, the data support the claim that the mean listener scores can serve as a gold standard
for validating the automated scores because of the good agreement of the individual listeners'
scores with each other and with the mean listener scores, and because of the sensitivity of these
scores to the children's intended prosodic contrasts. The data show that the verified real-time
scores are less reliable, and hence should not be used to evaluate the automated scores.

4. Description of Automated Measures
4.1 Pre-processing

Pre-processing consisted of the following steps: locating and extracting the child responses
from the recordings; determining certain syllable, word, or phonetic segment boundaries
(depending on the task and measure used; discussed in detail below); and extracting acoustic
features, including (i) fundamental frequency, or F0, using the Snack Sound Toolkit (2006),
and (ii) amplitude (in dB) in four formant range based passbands (B1(t): 60-1200 Hz, B2(t):
1200-3100 Hz, B3(t): 3100-4000 Hz, B4(t): 4000-8000 Hz). These passbands are based on Lee
et al. (1999, Table III), using formant ranges for 5-year olds. The amplitude trajectories
B1(t), …, B4(t) are transformed into two new measures: B(t), the amplitude averaged over the
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four passbands, defined as 0.25*[B1(t)+ …+ B4(t)]; and a spectral balance vector consisting
of bj(t), the mean-corrected energies, defined as bj(t)=Bj(t)-B(t), for j=1,…,4.

Spectral balance, thus defined, has a number of useful properties. (i) It is gain invariant, i.e.,
multiplication of the input signal by a constant has no effect. To a first order of approximation,
this makes these features robust with respect to factors such as the gain setting of the hardware
and the proximity of the speaker to the microphone. The same is obviously not true for B(t).
However, the prosodic minimal pairs approach can be expected to reduce the effects of these
factors since they do not vary substantially within a session and hence approximately have the
same values in the two utterances making up a prosodic minimal pair. (ii) Spectral balance
should not be confused with spectral tilt defined as, e.g., the slope of a line fitted to the log
power spectrum. As we shall see in the analysis of affect in Section 4.8, certain affects are
associated with high values of b1 and b4 and low values of b2 and b3, while other affects have
the opposite pattern. This difference cannot be captured by spectral tilt. (iii) The advantage of
using formant frequency-based passbands is that it reduces effects on these measures of
articulatory variability. If nominally the same vowel is pronounced differently in the two
utterances making up a prosodic minimal pair, resulting in different formant frequencies, this
will have limited effects on the spectral balance vector because of the way we selected the
passbands.

4.2 Stress Related Tasks (Lexical Stress Task, Emphatic Stress Task, Focus Task): “Dynamic
Difference” Based Measures

Broadly speaking, in stress related tasks the expected contrast involves a change in the
alignment of an acoustic trajectory relative to syllables or words. For example, the F0 peaks
in tauveeb and tauveeb might be expected to occur in the first and second syllable, respectively.
Alignment, however, is not nearly as simple. A method that considers which syllable contains
a pitch peak will not work because F0 peaks can occur in the stressed or post-stressed syllable
depending on the segmental make-up of the syllables and the number of syllables in the (left-
headed) foot with which the pitch accent is associated (van Santen & Möbius, 2000; van Santen,
Klabbers, & Mishra, 2006). An additional problem is the difficulty of determining in which
syllable the F0 peak is located, due to the existence of a flat region in the F0 curve, to the
presence of small amounts of jitter, and to the “true” F0 peak being located inside an obstruent
where pitch cannot be measured. Our method, instead, uses a “soft” alignment approach in
which we (i) compute a difference curve between the two curves extracted from the utterances
making up a prosodic minimal pair and (ii) use a one-dimensional ordinal pattern
recognition method based on isotonic regression (Barlow et al., 1972) to determine whether
the difference curve is closer to the ordinal pattern consistent with a correct response pair than
to the ordinal pattern associated with an incorrect response pair. The straightforward intuition
behind this concept is that even under considerable variability in alignment, this difference
curve has an up-down-up shape (see Figure 1).

We first explain the ordinal pattern detection method in general form. Consider a sequence of
values, x=<x1, …, xn>, and associated weights, w=<w1, …, wn>. The x's, for example, may
denote fundamental frequency values sampled at 5 ms frame intervals and the w's per-frame
products of amplitude and voicing probability. An ordinal pattern is defined in terms of
sequences of substrings <1,…,i1>, <i1+1,…,i2>, …, <im-1+1,n> of the string <1,…,n> together
with directions denoted u (for up) or d (for down) associated with these substrings. We define
the fit to an ordinal pattern udu… as follows.
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1

Similarly for a pattern dud…, with appropriate changes in the inequalities. For the special case
of Fit(x,w,u), this equation reduces to the standard isotonic regression (Barlow et al., 1972),
given by:

(2)

Thus, the measure of fit in Eq. (1) alternatingly applies isotonic regression and antitonic
regression (in which the ≤ signs are replaced by ≥ signs) for any selection of turning points,
i1,…,im-1, and jointly optimizes the isotonic and antitonic fits over all selections of these turning
points.

The Dynamic Difference method comprises the following steps. Below, sL(t) and sR(t) are the
trajectories that, if the correct prosodic contrast is made, are associated with the left aligned
item (e.g., tauveeb) and right aligned item (e.g., tauveeb), respectively:

1. Time-warp sL(t) such that the phonetic segment boundaries coincide with those
associated with sR(t).

2. Compute the difference curve, sL(d[t]) - sR(d[t]), where d[] is the time-warp.

3. Using Eq. (1), compute the fits of fdud…= Fit[sL(d[t])- sR(d[t]), w, udu…] and the fit
to the converse of udu…, fdud…=Fit[sL(d[t])-sR(d[t]), w, dud…]. For weights, wj, we
use the product of per frame amplitude and voicing probability, as computed by
ESPS's get_fo program (Entropic, 1996), implemented in the Snack package (The
Snack Sound Toolkit, 2006), in the case of pitch analysis, and voicing probability-
only in the case of the energy based acoustic features, bj(t) and B(t).

4. Compute (fdud…-fudu…) / (fdud… +fudu…). This measure has a value of +1 (-1) when
the fit to udu… (dud…) is perfect, and has values in between -1 and +1 depending on
which fit is better. We call this measure the dynamic difference between sL and sR.

We computed two dynamic difference measures in the case of the Lexical Stress Task (dud/
udu and d/u based), but only the d/u based measure for the Emphatic Stress Task and the Focus
Task (in which cases we analyzed the inter-vowel-center intervals); the key reason is that the
pitch movement is confined to the critical word in the first task but also includes utterance parts
subsequent to the critical word pair in the latter tasks; these parts are generally not well-
controlled by the child and hence introduce severe phonemic variability (e.g., the insertion of
entire words) that undermines the comparability of the utterances making up a prosodic
minimal pair. For consistency, we only report results from the d/u based analyses. (For the
Lexical Stress Task, results were essentially the same for the dud/udu and d/u based analyses.)
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4.3 Stress Related Tasks (Lexical Stress Task, Emphatic Stress Task, Focus Task): Duration
based measure

It is well-known that word stress and sentence stress are associated with an increase in duration
of the stressed syllable or word (Klatt, 1976). We propose to use a simple measure, given by
(L1R2-L2R1,)/(L1R2+L2R1), where Li and Ri denote the duration of the i-th syllable or word in
the left (L) and right (R) aligned items, respectively.

4.4 Stress Related Tasks (Lexical Stress Task, Emphatic Stress Task, Focus Task): Lexical
Stress Ratio based measure

The Lexical Stress Ratio (LSR; Shriberg et al., 2003) was designed in the context of assessing
the ability to convey lexical stress in trochaic words in children with childhood apraxia of
speech. This measure is computed as follows (see Shriberg et al., 2003, for details). For a two-
syllable word, w, with stress on the first syllable, the vowel regions are determined in each
syllable, and pitch (in Hz) and amplitude are computed. Next, for each of the two syllables
(i=1,2) the quantities DwiAwi (amplitude area), DwiF0wi (pitch area), and Dwi are computed,
where, for the i-th syllable, Dwi is the duration of the vowel (in ms), Awi the average vowel
amplitude (in dB), and F0wi the average fundamental frequency (in Hz) in the vowel region.
In the next step, the ratios Dw1Aw1/Dw2Aw2, Dw1F0w1/Dw2F0w2, and Dw1/Dw2 are formed.
Finally, these three ratios are combined via

(3)

where α, β, and γ were determined by Shriberg et al. (2003) by computing the weights of the
factor explaining the largest amount of variance, as produced by factor analysis (applied to a
data matrix with speakers as rows, the three ratios as columns, and the per-speaker averages
of these rows in the cells). The values of the weights were 0.507, 0.490, and 0.303, respectively.
To apply this measure to the prosodic minimal pairs setup, we compute for each word pair
(L, R), where L (R) denotes the left (right) aligned item, the measure (LSRL-LSRR)/
(LSRL+LSRR).

4.5 Stress Related Tasks: Non-minimal pairs analysis
To illustrate the value of a minimal pairs based analysis for reducing the impact of confounding
speaker variables, we correlated the verified real-time scores with pitch, amplitude, and
duration measures applied to individual utterances. These analyses were performed for the
lexical stress task.

For pitch and amplitude, we applied the d/u based dynamic difference measure, assuming that
when the pitch peak is on the first (second) syllable or word the overall trend in the two-syllable
sequence is downward (upward). We also measured the ratio of the durations of the first and
second syllable, assuming again that stress causes lengthening. A fundamental problem with
these measures is, of course, that they are affected not only by speaker variables (e.g., some
children with language disorders are very insecure about the correctness of their answer and
express this with a rising intonation, a trend that is partialed out in the minimal pairs analysis
but not in the current analysis) but also by the segmental structure of the syllables and words.
For example, the second syllable in shinaig contains an intrinsically long diphthong; in
addition, because this non-word is spoken in isolation, one may expect utterance final
lengthening of the second syllable. These and other factors may conspire to make the proposed,
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individual-utterance based measures unreliable as a way of assessing the correctness and
strengths of prosodic contrasts.

We computed two types of correlations. First, we correlated the measures with the prosodic
targets, scoring utterances with target stress on the first (second) syllable as -1 (+1). The
correlations with the pitch, amplitude, and duration-based measures were 0.642, 0.527, and
0.235, respectively; the multiple regression correlation was 0.688. (Since the dependent
variable was binary, this analysis is equivalent to linear discriminant analysis.) These
correlations were similar to those between the mean listener scores and the corresponding
minimal pairs based measures, although the multiple regression correlation was substantially
higher in the latter case (0.79). These results show that, as noted before in Section 3 based on
the real-time scores and on the listener scores, the children generally made appropriate prosodic
contrasts. The results also show that the proposed features may be more useful for prosody
recognition identification purposes than anticipated.

Second, we correlated the measures with the verified real-time scores. For this purpose, we
first separated the utterances into two groups in accordance with the stress location of the target
prosody. We then reversed the signs of the measures for the group with target stress on the
second syllable. We now correlated these measures with the correct (1) vs. incorrect (o) verified
real-time scores. For the first syllable stress group the correlations with the three measures
were 0.125, 0.145, and 0.235, while for the second syllable stress group they were 0.338, 0.342,
and 0.210. When the two groups we combined, the correlations were 0.291, 0.212, and 0.195.
These results suggest that the correct/incorrect decisions correlated rather poorly with the
proposed measures.

In summary, the proposed measures were moderately accurate in identifying the target prosody
of an utterance. We hypothesize that this is because the children generally conveyed the target
prosody clearly and correctly. However, the measures were not able to predict when an
examiner would judge an utterance as being correct or incorrect.

4.6 Phrase Boundary Task: Duration based measure
A measure mathematically similar to the duration based measure in Section 4.3 was used,
comparing the duration of the first word (e.g., “chocolate”) and the duration of the remainder
(“cookies and jam”), with the boundary drawn at the start of the second word (“cookies”). In
the case of “chocolate, cookies, and jam”, P1 (the duration of the first word in the phrase
boundary condition) is relatively long because it includes the full word “chocolate”, with the
final syllable being lengthened by the phrase boundary (e.g., Klatt, 1976), and any pause; in
the case of “chocolate-cookies and jam”, N1 (the duration of the first word in the no-phrase
boundary condition) is relatively short because the word “chocolate” is often contracted (e.g.,
to “chocl”) and there is neither phrase-final lengthening nor a pause. Since there is no reason
why there would be substantial effects of the phrase boundary on the duration of the remainder
(“cookies and jam”), P2 and N2 can be expected to be approximately equal and hence P1/
P2 to be larger than N1/N2. A measure confined to the [-1,1] interval is given by (P1N2-P2N1)/
(P1N2+P2N1).

We spent substantial time exploring effects on pitch, but no consistent patterns were found.
We surmise that this may be related to the fact that, while each of the prosodic minimal pairs
in this task indeed involves the presence or absence of a phrase boundary, the linguistic nature
of the boundary varies significantly across the items. In the two-item list context, each of the
initial items (“chocolate cookies,” “chocolate ice cream,” and “fruit salad”) has a different
sequence of grammatical components (ADJ-N, ADJ-N-N, N-N), each of which is associated
with one or more default stress patterns. We also observed that some children emphasized
“chocolate” and “fruit” in the two-item list context, perhaps to distinguish the pictured cookies,
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ice cream, and salad from the sugar cookies, vanilla ice cream, and vegetable salad that they
remembered from previous pictures depicting three items. We speculate that these somewhat
subtle distinctions between items may further add to individual differences and hence to the
lack of consistent pitch patterns for this task, because some children in this age range (and
populations studied) may be able to understand and prosodically express these subtler
differences and others do not.

4.7 Pragmatic Style Task: Global measures
Based on analyses of the actor data, we compute the following features. First, the average over
the utterance of the fourth amplitude band, B4(t). We surmise that this band captures the
“breathiness” of baby-directed speech which we informally observed in the actor data. Second,
we compute a robust maximum value of F0 by ordering all frames in the utterance in terms of
the weight function defined by the product of amplitude and voicing probability, and finding
the frame that has the largest F0 value among the top 10% of the weight-ordered frames.
Duration was not a reliable predictor of Style in the actor data and was not included in the
evaluation.

4.8 Affect Task: Global measures
Based on the analysis of the actor data, we decided to include the (b2+b3)-(b1+b4) contrast
(see Figure 2), which captures a striking pattern whereby the angry and happy affects have an
inverted-U-shaped pattern in terms of the four bands while the sad and fearful affects have the
inverse pattern. We also included the same robust F0 maximum as well as the mean amplitude
(via B1+B2+B3+B4).

5. Evaluation of Automated Measures
The key evaluation criterion is the degree to which the objective measures, separately and in
combination, can predict the mean listener scores, as measured by the product-moment
correlation. There are many ways in which, for a given task, the multiple acoustic measures
can be combined, including neural nets, support vector machines, and other linear or non-linear
methods. We have decided to use simple linear regression because of its robustness and its
small number of parameters, which may benefit portability. To avoid the positive bias in
estimating the multiple regression's R-squared statistic, we use a training/test procedure in
which we estimate the regression weights on a subset of the data (training set) and evaluate the
multiple correlations on the remaining data (test set). At the same time, in order to reduce
restriction-of-range artifacts that could lead to underestimates of the true correlations between
observed and predicted mean listener scores, we select training and tests sets with a sub-
sampling procedure whose aim is to minimize differences in variance between training set, test
set, and the overall set. Toward this end, we construct the test and training subsets by rank-
ordering the data on the mean listener scores, and creating n pairs of tests sets and training sets,
(Tei,Tri), where the i-th test set, Tei, contains items i, n+i, 2n+i, …, and the corresponding
training set, Tri, the remaining items. Typically, we use n=10. This results in the test sets and
training sets having approximately the same variances as the entire data sample. We report
correlations between automated scores and mean listener scores by computing the median of
these correlations over multiple selections of test sets.

Results are shown in Figures 3-8, with the left panels for the per-utterance scores and the right
panels for the per-speaker scores. We note the following:

i. As measured by the correlations with the mean listener scores, the proposed measures
based on multiple regression (called “combined” in the figures) outperform the
verified real-time scores, and, except for the per-utterance affect data and the per-
speaker EST data, are within the range of correlations between individual listeners
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and the mean listener scores. In several cases, even single measures perform at this
level (e.g., the dynamic difference based F0 measure in the Lexical Stress Task).

Thus, we have demonstrated the fundamental feasibility of developing automated
measures whose reliability is comparable to and perhaps superior to manual scores.

ii. The LSR- based measure (Figure 4) performs less well than the dynamic difference
based measure. We conjecture that this is related to two features of the LSR. First,
weights produced by factor analysis do not optimize the ability to discriminate
between words with strong vs. weak stress on the first syllable relative to the second
syllable. Instead, factor analysis maximizes the variance of the children on the LSR
measure. It is theoretically possible that the children vary on a dimension orthogonal
to stress, such as the degree to which some children use duration while others use
pitch to convey stress; under certain conditions, this pattern could result in the first
factor being unrelated to stress. Second, when we inspect the predictive values of the
area-based measures that are combined into the LSR, we see that these measures are
outperformed by the dynamic difference-based measures. This may be due to the fact
that using area-based – and hence average-value-times-duration-based – measures
puts too much emphasis on duration (the three measures correlate in excess of 0.90),
while we see in all stress-related tasks that duration is generally a weaker predictor
than F0.

iii. The Focus and EST tasks (Figures 3 and 5) showed similar patterns of results, in which
F0 is generally the strongest cue and amplitude the weakest. This similarity could
suggest that the output demands of these two tasks are similar.

iv. It is of interest to revisit the issue of trade-offs between acoustic cues in the expression
of stress. We note that correlations between the three measures used to predict the
mean listener scores are low, yet their combined correlation with the mean listener
scores are high; in addition, duration adds significant predictive power to the F0-based
dynamic difference measure. This shows that these two measures quasi-independently
contribute to stress. This is further anecdotally illustrated in Figure 9, which shows
data from three children that received near-identical mean listener scores in the Focus
task. As the figure indicates, they differ substantially in terms of the degrees to which
they use the three acoustic features. We note that the listeners were asked only to
determine which utterance belonged to which category and rate their certainty. It is
thus possible that, while these three children expressed the focus contrast with equal
discriminability, as reflected by the near-equal mean listener scores, they might have
differed in atypicality. For example, the minimal reliance on the duration feature of
two of the three children (who happened to be in the autism group) may be associated
with peculiarly sounding speech. Thus, while these data points are intriguing, the issue
of whether communicatively effective and typical prosodic contrasts can be expressed
with a wide range of balances between the three features, or rather must have a specific
balance, needs to be looked at in more detail. Additionally, it is possible that
atypicality of prosodic contrasts may reside in these contrasts being expressed too
strongly, even when the balance of the features is typical.3

v. Despite the good results in the Phrasing Task (Figure 6), we are not satisfied with the
usage of a single feature – duration. As pointed out earlier, intonational cues
appropriate for the various linguistic structures need to be explored for this task.

vi. For the Pragmatic Style Task (Figure 7), the robust F0 maximum is a powerful
predictor, with B4 adding a non-significant amount of predictive power. Informal

3We thank one of the reviewers for making this point.
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listening reveals a clear difference in voice quality between the two conditions, and
we suspect that B4 does not adequately capture this aspect. Exploratory analyses have
not made us confident that we will find reliable, robust dynamic measures (such as
those based on temporal structure or on dynamic differences) that can discriminate
between the two styles.

vii. The data from the affect task (Figure 8) confirm the predictive power of the (b2+b3)-
(b1+b4) contrast discovered in the actor data. Also worth noting is the fact that while
the correlations between the listeners are much weaker for the per-speaker data than
for the per-utterance data, the performance of the automated measures is about the
same. It is unknown whether this is due to the per-speaker scoring, in contrast to the
per-utterance scoring, taking into account the appropriateness of the responses, or to
some other difference between the two types of scores.

6. Conclusions
The automated methods proposed in this paper succeeded in approximating human ratings in
reliability, as assessed via correlations with auditory-perceptual mean listener ratings. In
addition, the objective measures were superior to the conventional method of assessment in
which the examiner makes real-time judgments and verifies these offline. These automated
methods could be of immediate practical value in terms of substantial labor savings and
enhanced reliability.

More important, however, are the principles that underlie the methods and that were spelled
out in the Introduction, including the usage of highly specific elicitation methods; a prosodic
minimal pairs design; robust acoustic features; capturing both global and dynamic features;
and weighted combinations of multiple, maximally independent acoustic features. We are
currently developing additional methods based on these same principles for other tasks in our
protocol.

Several issues need to be addressed as we move forward. First, we would like to develop
methods based on this first generation that detect new markers of neurological disorders –
markers that are not audible to the human ear. Such markers include both acoustic features that
have a too low SNR to be humanly detectable or are too complex, such as those based on
statistical properties of relatively long speech fragments. Second, our methods, while not
requiring human judgment, are not fully automatic because they require human labeling and
segmentation, some at the word level and others at the phonetic segment level. In theory,
automatic segmentation methods may make similar mistakes in segmenting the two utterances
making up a prosodic minimal pair (e.g., locating the vowel-nasal boundary too early in both
shinaig and shinaig), thereby possibly canceling the effects of the error, but this needs to be
demonstrated with actual automatic segmentation systems. Third, the methods need to be
extended to unrestricted speech. Key for preserving the prosodic minimal pairs feature of our
methods will be the creation of algorithms that detect quasi prosodic minimal pairs in broadly
elicited speech samples. Quasi prosodic minimal pairs are pairs of prosodically contrastive
words or phrases that are phonemically similar but not identical. Finally, we need to develop
methods that not only assess whether a speaker can consistently express a certain prosodic
contrast but also whether the speaker expresses this contrast with an appropriate balance of
prosodic features.
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Figure 1.
Preparatory steps for Dynamic Difference measures. Horizontal axes: Time. Vertical axes:
Frequency (or frequency difference), in Hz. (Top) Original contours of “noytauf” (solid lines)
and “noytauf” (dotted line). (Center) Contours after time warping. (Bottom) Difference curve,
exhibiting the up-down-up (udu) pattern.
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Figure 2.
Average values of the four affects on amplitude bands b1-b4 (actor data).
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Figure 3.
Focus Task. Except for J-J, which indicates the range of inter-judge correlations, all data points
indicate correlations with the mean listener scores. J-M indicates the range of judge-mean
listener correlations. Combined-DD is the correlation between the mean listener scores and the
best prediction of mean listener scores generated by application of (cross-validated) multiple
regression to F0-DD (fundamental frequency based dynamic difference [DD] measure), Amp-
DD (amplitude based dynamic difference measure), and Dur (duration based measure). Finally,
RealTime indicated the correlation of the verified real-time scores with the mean listener
scores.
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Figure 4.
Lexical Stress Task. Conventions are similar to those in Figure 3, with these exceptions.
Combined-area is the correlation between the mean listener scores and the best prediction of
mean listener scores generated by application of (cross-validated) multiple regression to F0-
area (based on fundamental frequency area, i.e., the product of average F0 and vowel duration),
Amp-area (based on amplitude area), and Dur (duration based measure). LSR is the Lexical
Stress Ratio based measure, using the same weights as in Shriberg et al. (2001).
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Figure 5.
Emphatic Stress Task (EST). Conventions are the same as those in Figure 1.
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Figure 6.
Phrasing Task. Conventions are similar to those in Figure 1. Since only one predictor is used,
Dur, the Combined score's correlation with the mean listener scores is the same as that of this
predictor.
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Figure 7.
Pragmatic Style Task. Conventions are similar to those in Figure 1. Predictors used are a robust
measure of the maximal F0 value and the fourth frequency band, which covers primarily
fricative or breathy energy.
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Figure 8.
Affect Task. Conventions are the same as in earlier figures, with these exceptions. Amp-mean
is the average amplitude of the utterance. Balance is the quantity (B2+B3)-(B1+B4), averaged
over the utterance. See text for an explanation of the per-speaker analyses.
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Figure 9.
Mean values (with standard errors, based on 8 utterances per child) of F0 dynamic difference,
amplitude dynamic difference, and duration based measures for three children having
approximately the same mean listener scores (in the 0.80 – 0.83 range) in the Focus Task. The
children are identified by the shading of the error bars. The Figure illustrates the compensatory
aspect of prosody, with each of the children expressing stress with a different balance between
the three prosodic features.
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