
HAL Id: hal-00575232
https://hal.science/hal-00575232

Submitted on 10 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of a New Simulation Approach to Dialog
System Evaluation

Klaus-Peter Engelbrecht, Michael Quade, Sebastian Möller

To cite this version:
Klaus-Peter Engelbrecht, Michael Quade, Sebastian Möller. Analysis of a New Simulation
Approach to Dialog System Evaluation. Speech Communication, 2009, 51 (12), pp.1234.
�10.1016/j.specom.2009.06.007�. �hal-00575232�

https://hal.science/hal-00575232
https://hal.archives-ouvertes.fr

Accepted Manuscript

Analysis of a New Simulation Approach to Dialog System Evaluation

Klaus-Peter Engelbrecht, Michael Quade, Sebastian Möller

PII: S0167-6393(09)00101-0

DOI: 10.1016/j.specom.2009.06.007

Reference: SPECOM 1820

To appear in: Speech Communication

Received Date: 17 December 2008

Revised Date: 18 June 2009

Accepted Date: 24 June 2009

Please cite this article as: Engelbrecht, K-P., Quade, M., Möller, S., Analysis of a New Simulation Approach to

Dialog System Evaluation, Speech Communication (2009), doi: 10.1016/j.specom.2009.06.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.specom.2009.06.007
http://dx.doi.org/10.1016/j.specom.2009.06.007

ACCEPTED MANUSCRIPT
- 1 -

Analysis of a New Simulation Approach to Dialog System Evaluation

Klaus-Peter Engelbrecht1, Michael Quade2, Sebastian Möller1

1Quality and Usability Lab
Deutsche Telekom Laboratories

2DAI-Labor

TU Berlin
Ernst-Reuter-Platz 7
D-10587 Berlin
Germany
E-Mails: klaus-peter.engelbrecht@telekom.de; sebastian.moeller@telekom.de;
michael.quade@dai-labor.de

Corresponding author:

Klaus-Peter Engelbrecht
Quality and Usability Lab
Deutsche Telekom Laboratories
TU Berlin
Ernst-Reuter-Platz 7
D-10587 Berlin
Germany
Tel.: +49 30 8353 58486
Fax: +49 30 8353 58409
E-Mail: klaus-peter.engelbrecht@telekom.de

mailto:klaus-peter.engelbrecht@telekom.de
mailto:sebastian.moeller@telekom.de
mailto:michael.quade@dai-labor.de
mailto:sebastian.moeller@telekom.de
http://ees.elsevier.com/specom/viewRCResults.aspx?pdf=1&docID=1478&rev=1&fileID=26791&msid={D1071451-45AD-4D8A-8FA2-2691466A337A}

ACCEPTED MANUSCRIPT
- 2 -

Abstract

The evaluation of spoken dialog systems still relies on subjective interaction experiments for
quantifying interaction behavior and user-perceived quality. In this paper, we present a
simulation approach replacing subjective tests in early system design and evaluation phases.
The simulation is based on a model of the system, and a probabilistic model of user behavior.
Probabilities for the next user action vary in dependence of system features and user
characteristics, as defined by rules. This way, simulations can be conducted before data have
been acquired. In order to evaluate the simulation approach, characteristics of simulated
interactions are compared to interaction corpora obtained in subjective experiments. As was
previously proposed in the literature, we compare interaction parameters for both corpora and
calculate recall and precision of user utterances. The results are compared to those from a
comparison of real user corpora. While the real corpora are not equal, they are more similar
than the simulation is to the real data. However, the simulations can predict differences
between system versions and user groups quite well on a relative level. In order to derive
further requirements for the model, we conclude with a detailed analysis of utterances missing
in the simulated corpus and consider the believability of entire dialogs.

Keywords

Evaluation, user simulation, spoken dialog system, usability, prediction model, optimization.

ACCEPTED MANUSCRIPT
- 3 -

1. Introduction

Spoken dialog systems (SDSs) are expected to replace simple menu-based interactive voice
response systems in the short or medium term. They allow for a natural speech-based human-
machine interaction in well-defined domains such as tourist information or control of
domestic devices. However, the increasing complexity of such systems also demands for a
detailed and economic assessment of system components, and an early evaluation of user-
perceived quality already during the system design process. So far, mainly expert evaluation
procedures such as Cognitive Walkthrough (e.g. Nielsen, 1993) or Wizard-of-Oz experiments
(Fraser and Gilbert, 1991) are applied prior to building a spoken dialog system. Such
procedures require usability experts and test users to be available, and result in a specific set
of concrete steps to improve the design. In the next iteration of the design, a new evaluation
has to be performed, if possible by a second expert who is unbiased by the decisions from the
previous iteration.

As Kieras (2003) pointed out, the design workflow can be largely improved by formalizing
the requirements of a design in a model of the user, which can be used to test the system
design for conformity with the model. The design can then be improved until it satisfies all
requirements of the user model, and user- or expert-based testing could be kept for the pre-
tested design. In contrast to experts or users, who should not be primed by prior versions of
the system or design decisions and therefore have to be exchanged during the iterative design
process, a user model can be kept unchanged over several design iterations.

Obviously, the main advantage of automating usability tests is the reduction of effort, money
and time involved in evaluations of interactive systems, which eventually leads to a praxis of
conducting more studies in their development. According to Nielsen (1993), usability
evaluation at early development stages clearly reduces the effort in building a successful
interface, as design errors can be eliminated before their effortful implementation.
Unfortunately, the effort of such evaluations increases with the complexity of the addressed
systems. Tests have to consider more tasks, more different ways to carry out these tasks, and
possibly also more user groups. The sheer impossibility of controlling all relevant issues with
reasonable resources can lead to deficiencies in user or expert testing, and consequently to
unsatisfying interfaces. Automatic usability testing can reduce such effort significantly, and
will finally render interfaces more user-friendly and acceptable.

The psychological and the human-computer-interaction (HCI) literature has spawned a
number of approaches to model the interaction between users and dialog systems on the level
of actions or on the level of cognitive processes involved in operating the interface, e.g. ACT-
R (Anderson et al., 2004), SOAR (Newell, 1990), and GOMS (Card et al., 1983). These
methods allow HCI experts to specify task features (e.g. user knowledge, interaction steps),
while the modeling method itself provides general knowledge about human cognition and
behavior. Results from analyses with SOAR, ACT-R or GOMS are typically focused on either
execution times or cognitive load, and do not address the generation of higher-level
interaction behavior and user-perceived quality.

Though recommended by HCI experts, cognitive models are rarely found in practical
application to usability evaluation. Still, a large number of other automated usability methods
exists. Ivory and Hearst (2000) categorized 132 such methods according to a taxonomy and
showed that these approaches typically automate only some part of the evaluation process
(capture, analysis or critique), and are often specific to a narrow class of systems (such as web
pages). Speech-based interfaces are not mentioned in their review, however, in recent years,
several publications have appeared concerning user simulation techniques for SDSs.

ACCEPTED MANUSCRIPT
- 4 -

1.1 User Simulation for Spoken Dialog Systems

To our knowledge, this topic was introduced by Araki and Doshita (1997), who propose that
instead of testing isolated subsystems (e.g. language understanding), the behavior of the entire
system should be evaluated. While this could be done with real user tests, they claim that
cheaper, quicker, and more objective methods are needed especially during the early
development states. In the same year, Eckert et al. (1997) proposed a statistical approach to
model the interaction between users and a spoken dialog system. In their model, user and
system actions are modeled on the intentional level, and user actions are dependent on the
previous system action and the current user state. Possible user actions and their probability
are learned from real user data. In addition, parameters describing the users’ initiative or
patience can be set. Stereotypic user groups can thus be specified by providing distributions of
each parameter for the group. This way, various behaviors could be generated, revealing
(relatively simple) design errors.

Interactions generated this way could easily be inconsistent, as the user could change its goal
during the dialog. Therefore, Scheffler and Young (2001) enhanced this approach by
introducing a user goal, specified in the form of attribute-value-pairs (AVPs) and their status
(e.g. “specified”). As in the model by Eckert et al., utterances are modeled on the intentional
level, however, the selection of an intention is based on a lattice derived from the system
grammar. As a consequence, the model is task-dependent.

Pietquin (2006; 2009) describes a new modeling approach which can be formalized as a
Bayesian Network. As in Scheffler and Young’s model, consistency is ensured by a
description of the user’s goal as a list of AVPs. Pietquin’s concept of user knowledge extends
their status description by counting the number of times the system asked for an AVP. In
addition, the priority of each AVP can be specified in the goal model. The user actions depend
probabilistically on the user goal (incl. priorities), user knowledge, previous system utterance,
system speech act, the current state and a model of environmental noise. Thus, the users’
behavior can be modeled independent of the task. The model parameters can be learned from
a data set or specified by hand by an expert.

While Pietquin’s model requires many parameters to be set, Schatzmann (2007a) introduces a
simpler model, in which the behavior is elicited according to a stack-like agenda. In the
beginning, the agenda is populated with actions derived from the user’s goal. The goal (and
the agenda) may comprise inform actions and request actions, in which the semantic content
is described in the form of AVPs. At each user turn, a number N of actions is popped from the
top of the agenda, while a system turn might cause the insertion of a new action, e.g. if a
misunderstood AVP is confirmed by the system. The agenda allows the user model to act with
initiative, e.g. if the system does not ask for a particular constraint. Schatzmann also proposes
a method to learn the model parameters from a set of real user data (Schatzmann 2007b).
Schatzman (2007b) compared interaction parameters (dialog length and task success) of the
model with either handcrafted parameters or parameters learned from data, and could show
that both models lead to similar results, the learned parameters performing slightly better than
the handcrafted ones. A similar model was used by Ai and Weng (2008) to evaluate an SDS
in the restaurant selection domain.

While these approaches are named “statistical”, there are also a few rule-based approaches
which have been used for the purpose of evaluating dialog systems. López-Cózar et al. (2003)
develop a user model for a dialog system in the domain of fastfood ordering. Actions are
selected by a number of rules describing expected behavior for each system question, given a
goal and the correctness of the information confirmed by the system. While the
aforementioned approaches simulate user behavior on the intention level, López-Cózar
collects a corpus of possible utterances for each semantic representation, which is input to the

ACCEPTED MANUSCRIPT
- 5 -

automatic speech recognition (ASR) during the simulation. This way, evaluation of the
integrated system (ASR, language understanding, dialog manager) is possible. Two
recognition front-ends and two confirmation strategies are compared in a simulated user test,
which informed further decisions in the system design process.

Chung (2004) utilizes user simulation to instantiate a system from web content. The simulator
mainly serves the purpose of debugging state transitions, enhancing the system’s speech and
language understanding capabilities, and debugging the automatically generated prompts. To
do this, the system makes use of the Genesis speech generator (Seneff, 2002), and an optional
text-to-speech (TTS) synthesis. User intentions are simulated by starting with a user query
and choosing the next user action at random from the system reply frame, which contains the
possible inputs to this prompt and their frequencies. A dialog history is kept to avoid
inconsistent behavior. In addition, the user simulation asks for help or repetition with a
predefined probability. This way, many different dialogs can be generated. However, the
approach focuses on the task of narrowing down search results. The initiative of the user
model relies on the information contained in the system reply frame.

As a step towards a general system, Ito et al. (2006) propose a user simulator based on
VoiceXML. However, their simulation mechanism only works for a restricted set of systems,
where one slot is filled at a time and each slot is explicitly confirmed. Intentions are simulated
by choosing a goal at random, considering the VoiceXML description of the system. The user
model replies with the AVP which the system asks for, and checks for correct understanding
when the slot is confirmed. Corresponding utterances are sampled from the grammar
associated with each slot and can be output via TTS. Ito et al. asses the recognizer
performance for in-grammar utterances, as well as the stability of the system in case of many
parallel calls.

In our previous work (Engelbrecht et al., 2008; Möller et al., 2006), we introduced the MeMo
workbench for semi-automatic usability testing. It aims at the development and
implementation of a general user simulation framework, applicable to different kinds and
classes of systems, such as SDSs and Graphical User Interfaces (GUIs). The aim of the
simulation is an analysis of a system’s usability from early prototypes to the stage where the
system is fully implemented. Thus, like CogTool (John and Salvucci, 2005), it is embedded in
a workbench which allows building a model of the interface which is then tested for usability.
To our knowledge, in SDS research, such an approach has not been taken so far.

1.2 Requirements to User Simulations

As the evaluation should start before test users are confronted with the system for the first
time, the simulation should be independent of interaction data as far as possible. Instead the
user model should be derived from the system description, as well as from general knowledge
about the users and the task. The user model should produce behavior based on a task
description which might differ from the task description of the system, reflecting the notion of
a so-called “Mental Model” the user develops when interacting with a system (Norman,
1983). Finally, the behavior of the user model should be interpretable to guarantee the control
and understanding of its behavior. Only then the designer can derive the steps to be taken for
the improvement of the system.

A general user model, automatically generated and applicable to all kinds of systems, is far
out of reach. The system designer needs to provide information about the users’ knowledge,
their goals, and about their interaction behavior. While intuitively this procedure seems to be
logically circular (the designer will always build the system to fit the way she thinks about the
users), Kieras (2003) pointed out that a model of the interaction summarizes the design and

ACCEPTED MANUSCRIPT
- 6 -

therefore can be inspected to understand how the design supports the user in performing the
task. Furthermore, today’s systems’ interaction complexity easily exceed the tracing
capabilities of designers. This is especially true for SDSs, where the system has to cope with
quasi-random speech recognition or understanding errors. In addition, not all requirements for
a design can be fulfilled in all cases, and the designer needs to carefully choose which
guidelines to prioritize. In such a scenario, sample dialogs generated by a user simulator can
provide valuable hints for design decisions. At a later stage, as first user tests have been
carried out, simulation can be useful to re-use corpora in the fine-tuning of the system. Still,
simulation will not replace user tests completely, but serve as a tool to get the most out of the
information available at each design stage.

Still, the more complete the user model is, the more accurate the prediction of usability
problems will be from the first draft to later development cycles. Therefore, as a step towards
an improved simulator, a major aim of this paper is to describe the weaknesses of our current
simulator by analyzing in detail which behavioral traits our user model is capable of, and
which are still missing. In previous work on user simulation, as cited above, approaches have
been evaluated focusing on the believability of the simulation (in particular, see Schatzmann,
2005; Rieser and Lemon, 2006; Ai and Litman, 2008). In other words, human-likeness of the
simulation was assessed. This paper proposes a different path to evaluation, in that the type of
behavior observed in the real user experiment is classified and compared to the simulated
behavior. In order to draw on rich benchmarking data, we compare simulation results to a
corpus of human-machine dialogs, in which the machine – a TV controller in a smart home
system – provokes a wide range of user behavior. The task is to choose a TV show, using
natural language input, and this is approached by the users in many different ways.

1.3 Outline of the Paper

The paper is structured as follows: In Section 2, we report our progress in building the MeMo
workbench, and present the approach for modeling the system and the user. In Section 3, we
show how a system can be represented as a model in the workbench, and in Section 4 we
present results of our simulation in comparison to those from a real user test with the system.
In Section 5, we discuss the results in the light of variance found in real user corpora and
identify the features of the simulation which still need improvement. Finally, in Section 6
conclusions are drawn for the further development of the workbench.

ACCEPTED MANUSCRIPT
- 7 -

2. User Simulation in the MeMo Workbench

The simulation approach followed in MeMo is similar to the agenda-based approach proposed
by Schatzmann et al. (2007a), in that utterances are generated from the description of the task
from the user’s perspective. Like in the previous approaches to dialog modeling described
above, it assumes that the interaction (with any user interface) can be described as a sequence
of states in which the system presents an interface and the user uses this interface to perform
an action to proceed towards the task goal. However, unlike previous approaches, we assume
that the user behavior might be altered by usability problems. If the interface is usable, the
user will proceed through the state sequence on a direct path, as intended by the designer.
However, if there is a usability problem, the user might choose a wrong action with some
probability. Additionally, probabilities for alternative or incorrect actions might be influenced
by specific user characteristics.

Deviations from the direct path are sometimes called “user error” despite a clear ambition to
improve the interface and not the user to minimize these errors (Bohus and Rudnicky, 2005;
Möller et al., 2006; Norman, 1981). Such behavior is taken into account by the simulation in
terms of rules. These vary the probabilities for each possible action in a state depending on
interface and user features. As another type of error which is special to SDSs, the system may
incorrectly understand the users’ commands due to restricted capabilities of the automatic
speech recognition (ASR) unit and the language understanding unit of the system.

Interactions are simulated with a model of the system, which can be specified by the system
designer before the actual implementation of the system using a graphical user interface
provided by the MeMo workbench. To enable realistic interactions, the system model has to
be annotated with the features which are relevant for user behavior. These features are
assigned to the elements of the interface, which we call User Interface (UI) objects. This
could be a prompt of an SDS or a widget of a GUI.

Features of UI objects can be distinguished according to their role in the interaction between
the user and the system. On the one hand, input interactions determine which information the
user model can provide through a UI object, e.g. a slot to be filled in reply to a prompt. On the
other hand, output interactions describe the meaning of labels or texts associated with the UI
object, e.g. the meaning of a system prompt. Output interactions can further be distinguished
into requests and informs. While requests describe what the system requests through this UI
object, informs provide the user model with knowledge it might need for the task. For
example, they can be used to annotate confirmation prompts with the slots that are confirmed.
This way, output interactions can determine non-optimal behavior of the user model due to
semantic misinterpretations. Finally, features describing the appearance of the UI object can
be defined. Some of these are calculated automatically, e.g. the length of the system prompt is
calculated from a text string. Further features can be freely defined and annotated by hand.
These features can determine user behavior due to form and arrangement of the UI objects, if
there are respective rules.

Performing an input interaction on a UI object leads to a new system state. This is modeled
by a transition from the UI object to the successive state. The entirety of states (represented by
an interface with several UI objects) and transitions is called system interaction model. Apart
from this, a system task model needs to be defined, which specifies the tasks supported by the
system.

Such a system task is determined by the information which is conveyed from the user to the
system in order to accomplish the task goal. As in previous work on user simulation and
dialog management (e.g. Schatzmann, 2007b), the information is specified as a set of

ACCEPTED MANUSCRIPT
- 8 -

semantic concepts, which have the form of an attribute and one of several values that can be
assigned to it (attribute-value-pairs, AVPs). This description is not identical with the task
goal, as the user might be able to circumvent some input (e.g. by using a shortcut or macro) or
neglect a constraint. Therefore, the task goal is specified as a further set of AVPs which are
obligatory to be communicated to the system for task fulfillment.

A set of attributes and values consistent with those of the system task model is used to
describe the user task model. That is, if the user has the correct task knowledge, the user task
model equals the system task model. However, the user’s task knowledge can differ from the
one of the system (Möller et al., 2007a), which can result in usability problems and should
therefore be resolved by the interface.

During the interaction, the AVPs conveyed to the system are tracked in the system interaction
model. The user interaction model can specify AVPs through the input interactions of the UI
objects of the current state. For example, if the user replies to a system prompt with a
semantic concept understandable to the system, the respective AVP will be stored in the
system interaction model.

In order to reduce the number of state transitions necessary to describe the system behavior,
these can be annotated with conditions and consequences. Both concern the state of AVPs
stored in the system. For example, a transition could be conditional on the value for a specific
attribute, or as a consequence of a transition a value could be assigned to a particular attribute.
A mixed-initiative dialog can then be modeled by conditioning the target state of a transition
on the AVPs the user has filled so far. This way, fewer transitions are needed than in a plain
state-machine modeling approach.

User Group Editor

Simulations can be run for different groups of users, as was previously done by Eckert et al.
(1997). These authors define four very distinct user groups with extreme behavior patterns
(e.g. “patient” user hanging up the phone after 99 turns), each group reflecting a single
psychological trait. Janarthanam and Lemon (2008) simulate the behavior of users with
different domain knowledge in a troubleshooting system. The groups are basically
distinguished by asking for extended help messages more or less often.

The user group editor of MeMo tries to go beyond this by allowing the definition of more
realistic user groups. Each user group is described by a set of characteristics which are
considered to be relevant for user interaction behavior. The user characteristics considered in
MeMo have been derived from previous work on the classification of users (Hermann et al.,
2007). The cited paper aimed at a user classification scheme which is based on interaction
behavior, thus allowing to recruit a comprehensive set of users for usability tests. To do this,
the most differentiating characteristics of users were collected at first. Examples are affinity to
technology, anxiety, problem solving strategy or domain expertise. In the user group editor,
also the user’s age and deficits like hearing impairment can be specified.

A user group is defined by assigning a value to each characteristic given in a GUI editor
(Figure 1). All characteristics can have a neutral value (or range), which means that this
characteristic is not considered in the calculation of the probabilities for the user actions. Like
this, the knowledge about users can be formalized in a user group, while not all characteristics
have to be known to the person defining the user group.

To generate differentiated user behavior, in addition to the user groups rules need to be
defined which describe the relation between the user characteristics and the user behavior.
Note that rules are not specified for the groups, but for the characteristics and their values.
E.g., a rule might state that users with high anxiety more often fail to utter their request in

ACCEPTED MANUSCRIPT
- 9 -

time. Such relations are much easier to estimate than the behavior of a complex user with
many characteristics.

To instantiate a user for an iteration of the simulation, it is sampled from the user group by
assigning corresponding values for each characteristic. If a range of values is specified for a
group, a concrete value out of that range is selected randomly.

Figure 1. User group editor of the Memo workbench.

Rule Engine

The rule engine evaluates the features of the current system state and the user characteristics,
selects the rules which apply, and calculates the resulting probabilities for each possible input
interaction. Changes in probabilities are specified only approximately, as rules should be as
general as possible. A rule can increase or decrease the probability for a specific input
interaction to one of five fixed levels. Concrete values for each level are specified in a

ACCEPTED MANUSCRIPT
- 10 -

configuration file. This way, by changing the configuration file, the effect of all rules can be
adjusted to reflect user behavior as close as possible.

While one could possibly think of finding general rules applicable to all interfaces, or to all
interfaces of one class, a designer can also custom-tailor rules for the current simulation in
order to modify the behavior of the modeled users. This way, simulations can be run under
specified assumptions, such as expected user errors.

A further module integrated into the MeMo workbench simulates speech recognition and
understanding errors to be encountered in real-life systems. A number of approaches to
modeling such errors have been proposed in recent years. To cite just a few, a simple model
by Pietquin and Renals (2002) estimates the error probabilities from the type of recognition
task, while a more complex model might take into account acoustic confusability of potential
user utterances, as in Schatzmann et al. (2007c). We chose a simple approach, in which
deletions, substitutions and insertions of semantic concepts are generated at random to an
amount specified in a configuration file. The amount of such errors may also depend on
system and user characteristics, such as prompt openness or domain expertise, and can
therefore be adapted according to the current situational context and user type during the
interaction. In early development phases, before the ASR and language understanding units
are fully developed, such an approach can model the knowledge which the developer has
about the system and its potential users reasonably well. For later phases, a more complex
error model could be integrated into the simulation process.

ACCEPTED MANUSCRIPT
- 11 -

3. Conducting an Experiment with MeMo

In order to evaluate our simulation approach, we conducted an experiment with the MeMo
workbench and compared the results to those of the same experiment with real users. Figure 2
gives an overview of the procedure, which will be explained in detail in the following
sections.

Figure 2. Overview of the Evaluation simulation procedure

3.1 Modeling the INSPIRE Smart-Home System

The smart-home system has been developed in the frame of the EU-funded IST project
INSPIRE (INfotainment management with SPeech Interaction via REmote microphones and
telephone interfaces; IST 2001-32746). It was designed to control the following domestic
devices via speech: 3 lamps, an electronic program guide (EPG), a TV, a video recorder, a
fan, and an answering machine.

INSPIRE leads a mixed-initiative dialog with the user to successively fill the necessary slots
for a task. The dialog starts with the system question “How may I help you?” The user can
reply to this with any set of concepts. In the course of the dialog various errors can occur,
which the system can cope with. If it does not understand any concept, a no-match prompt is
played back. If only part of the user utterance was understood, the system will re-ask the
concerned concept at the appropriate point of the dialog. As a further error, the system can
misunderstand a concept, which can result in two values specified for the same concept, e.g.,
{Device=lamp,TV}. In this case, the system will enter a special state where it informs the user
about this conflict, and restricts the reply options to one of these concepts. Also, the system

ACCEPTED MANUSCRIPT
- 12 -

performs an implicit confirmation whenever it has understood a concept. By this, the user
knows when she needs to restate a concept.

All these features have been implemented in the system model with the help of states,
transitions and their conditions. The original system also features some strategies to cope with
the situation that a set of concepts has been acquired for which no solution exists in the
database. As the system model does not work on a database, this would have to be hard-coded
in the interaction logic of the system. In addition, these system features took effect only in
rare cases, so we decided to disregard these features for the model of the system.

We tested our simulation by considering a task with the EPG which our test participants had
performed in the experiment. We chose this task because it provoked a wide variety of user
behavior including different types of errors. The task was given to the users in the following
form:

Have a look into the electronic program guide to get an overview of the evening
program. Choose from the offers the system proposes on the screen. As soon as you
find an interesting movie, ask the INSPIRE system to remind you when it starts.

The system’s internal description of this task contains 8 concepts to choose the device, restrict
the movie database and perform an action on the movie.

 TV, program_info, today, evening, movie, channel_id, number, reminder

Not all of these concepts are necessary for a successful task accomplishment. Once a slot has
been specified, the system (model) searches a database of possible task solutions and the
corresponding constraints. It then requests the next slot for which more than one value is still
possible. If the user for example starts with “remind me on a movie”, {reminder} and
{movie} will be added as constraints for the database search. As all possible entries contain
the constraints {TV} and {program_info}, the system will ask for the day the movie is
broadcasted next. The channel concept is left out by the system, because it is redundant,
however, when the user names a channel, the system can find a solution for the task.

3.2 Modeling the experiment

In this section we describe the experiment modeled with the workbench. In this test, which
was conducted recently with INSPIRE, two conditions - user age and help style - were varied.
32 participants were recruited from an “old” (older than 60 years) and a “young” (20-30
years) population. Both groups interacted with two versions of INSPIRE: The first one
provided help only when required (dynamic help), while the second version provided help
whenever the user entered a state for the first time (fixed help). By this, the user could always
know the reply options and possible wordings, with the cost of longer system prompts. Each
user performed two scenarios in this experiment, covering all devices which can be operated
with the system. Each scenario consisted of seven tasks. Speech recognition was bypassed
with a human transcriber, however, the natural language understanding component of the
system was used, so understanding errors could occur.

From the logged dialogs, interaction parameters have been calculated according to ITU-T
Supplement 24 (2005). Not all parameters defined in this standard have been used for the
evaluation of our simulation. Definitions for the parameters selected by us are given in Table
1. After each scenario, users filled out a questionnaire similar to the one proposed in ITU-T
Rec. P.851 (2003), to rate the quality of the system. The questionnaire included a user
judgment of the overall impression of the interaction. This judgment was stated on a scale

ACCEPTED MANUSCRIPT
- 13 -

with five points connected by a ruler to suggest equidistance of the points. The points were
labeled with words expressing the overall quality from “excellent” to “bad” (Figure 3). This
item was collected also for individual tasks during the scenarios, and could thus be used for
this study, where only one task of the scenarios was considered.

Abbr. Name Definition
CER concept error rate Percentage of incorrectly understood semantic units,

per dialogue. Concepts are defined as attribute-value
pairs (AVPs), with nAVP the total number of AVPs,
and sAVP, iAVP and dAVP the number of substituted,
inserted and deleted AVPs. The concept error rate
can then be determined as follows:

AVP

AVPAVPAVP

n

dis
CER




#AVPs Number of attribute
value pairs

Average number of semantic concepts (AVPs) per
user utterance

UserTurns

n
AVPs AVP

#


WPST words per system
turn

Average number of words per system turn in a
dialogue.

#UserTurns number of user
turns

Overall number of user turns uttered in a dialogue.

#NoMatch number of ASR
rejections

Overall number of ASR rejections in a dialogue. An
ASR rejection is defined as a system prompt
indicating that the system was unable to “hear” or to
“understand” the user, i.e. that the system was unable
to extract any meaning from a user utterance.

Table 1. Definitions of parameters used in this study according to ITU-T Supplement 24 (2005).

Figure 3. Rating scale for collecting user judgments (“How do you rate the dialog with the system for this
task? – bad / poor / fair / good / excellent”, see ITU-T Rec. P.851, 2003)

Like Ai and Weng (2008), we trained a PARADISE model (Walker et al., 1997) to predict
these user judgments for the simulated dialogs from the interaction parameters. The
PARADISE framework assumes that user satisfaction can be modeled as a function of task
success and dialog costs in terms of efficiency and dialog quality. Task success and dialog
costs can be measured in the form of interaction parameters, as they were described above.
The prediction model for the user’s satisfaction is obtained by training a linear regression
equation on empirical data, using interaction parameters as predictors and subjective
judgments of the corresponding dialogs as the dependent variable. We used the task-wise
data, which provided 14 vectors of predictors and ratings for each of the 32 users. From the
parameters offered to the stepwise inclusion algorithm, three were taken into the model,
namely the number of user turns (#UserTurns), the average number of words per system turn
(WPST), and the concept error rate (CER).

ACCEPTED MANUSCRIPT
- 14 -

CERWPSTUserTurnsrateTask  16.020.0#37.0_

(R2
adj=0.34; all parameters were normalized to zero mean and unity variance prior to the

regression)

Rules for the simulation

Analysis of the experimental data showed that both system version and user group impacted
the user behavior. The CER was significantly impacted by the help condition (t(60)=-3.387,
p=0.001), and to some degree by the users’ age (t(60)=-1.829, p=0.072). For the help
condition, the effect is very clear as in the fixed-help condition the possible replies were
explicitly mentioned each time the user encountered a system question. Principally, these
effects should be modeled with the rule engine, however, it currently lacks some features
necessary for doing so. Therefore, as a quicker, intermediate-term solution, this functionality
was added independent of the rule engine. This allowed us to enter the target number of
insertions, deletions and substitutions directly for each combination of user age and the
presence of help in the current dialog state, as exemplified in Figure 4. Note, that also in the
dynamic help condition help is given sometimes, e.g. embedded in the no-match prompts.

initial error probabilities
DELETE_RATE=0.28
SUBST_RATE=0.010
INSERT_RATE=0.023
young user group without preceding help prompt
YOUNG_NO_HELP_DELETE_RATE=-0.37
YOUNG_NO_HELP_ SUBST_RATE=-0.37
YOUNG_NO_HELP_INSERT_RATE=-0.37
old user group after help prompt
OLD_HELP_DELETE_RATE=-0.68
OLD_HELP_ SUBST_RATE=-0.68
OLD_HELP_INSERT_RATE=-0.68

Figure 4. Exemplary rules determining the default rates of deletions, substitutions and insertions, and
their variation depending on user group and help state.

The other characteristic of the user utterances which shows considerable variance is the
number of concepts provided. It significantly depends on the users’ age (t(60)=-3.400,
p=0.001). We also expected that the number of concepts would vary with the prompt type
(free/open/closed). This was quantified by calculating the average number of concepts for
each user group and prompt type. The effects could be described with nine MeMo rules. For
each prompt type, one rule sets the average likelihood for a specific number of AVPs
provided in a user utterance. Two other rules per prompt type modify these probabilities
according to the user group.

For the rules to take effect, the system prompts had to be annotated with the respective
attributes (prompt-openness and presence of help). The prompts had been specified
independent of the dialog states and then been assigned to them. Like this the system
configuration with fixed help could be derived rapidly from the original system model by
adding the respective help prompt to each state. Then, we custom-tailored two user groups
which differed in their age range. In the experiment, age had an effect on the user behavior
mainly due to it’s correlation with technical affinity and the cognitive abilities. However, we
chose to design the simulation according to the experimental design, so we could take
advantage of the clear division between the groups with equal participant numbers and bi-
polar distribution of the age variable.

ACCEPTED MANUSCRIPT
- 15 -

3.3 Example dialog

In order to illustrate the simulation process we consider an example dialog between the user
model and the system model, see Table 2.1

The interaction starts with the system asking a free question to the user in step 1. The column
“State Features” shows how the prompt is communicated to the user model in the form of
features. These comprise the openness of the prompt (free), and an output interaction of type
request (non = the system does not ask for a specific attribute). In addition, the information
accepted as a response in this state (all AVPs) is given. As for the feature “prompt_open” the
value is “free”, a rule with this condition is triggered. The rule engine determines that it is
most likely for the user to provide 2 or 3 AVPs in the next utterance, instead of one single
AVP which might be the typical answer for a prompt asking for one particular attribute.

Now a random number is generated to determine the number of AVPs to be 3. As no
particular AVP is asked for by the system, the three AVPs are randomly selected from the
user task knowledge.

In step 2, the system first gives an implicit confirmation, modeled as a set of AVPs in an
inform-type output interaction. The number of AVPs in the next utterance is determined to be
1, which is likely because the prompt is now open and not completely free. As the system asks
for a specific attribute, the user replies with the value for this attribute. If a second AVP
would be specified by the user, this would be selected randomly from the remaining AVPs in
the task knowledge which the user still needs to convey. After the utterance has been selected,
a speech understanding error is generated by the respective module, resulting in the system
understanding “afternoon” instead of “evening”.

In the third step, the system again gives an implicit confirmation of what it understood in the
previous turn. Thus, the user model can recognize a mismatch between its task knowledge and
the presented information. As a consequence, repetition of the misunderstood AVP is set as a
priority action. In this turn, the random number generator and the rule engine decided for two
AVPs to be uttered by the user. Therefore, the attribute the system has asked for in that turn
(TVShowType) is provided by the user as well.

In the subsequent step the system presents the user a program listing for the next evening and
requests the number of the entry the user wants to choose. The user replies with the number 4
and asks the system to remind him of this particular show. In this state, the grammar is
restricted to recognize only numbers, consequently the AVP {TVAction=reminder} is not
recognized.

Finally, in step 5 the user is asked which action she wants to perform on the chosen show,
where she transfers {TVAction=reminder} once more because the system explicitly asked for
this attribute. After successfully transmitting this AVP, the simulator notices that the system
task goal conditions have been met and terminates this simulation run.

1 The entire simulated dialog corpus can be downloaded from <web address>

ACCEPTED MANUSCRIPT
- 16 -

Surface Form
State Features/ User
Utterance AVPs Rules/Remarks

S1:
Welcome to the INSPIRE smart
home system. How may I help
you?

Prompt_open=free
OutputInfo=none
InputInfo=
All AVPs

If prompt is completely free, the
user provides 2 or 3 AVPs rather
than 1 or more than 3.

U1:
I’d like to see the TV program
for tomorrow.

{device=TV}
{action= program_info}
{day=tomorrow}

S2:
I understood TV, program info
and tomorrow. For which time
would you like to search?

Prompt_open=open
OutputInfo=
Request(Time)
OutputInfo=
Inform({device=TV},
{action=program_info},
{day=tomorrow})
InputInfo=all AVPs

If prompt is open, the user
provides 1 or 2 AVPs rather than
3.

U2: In the evening. {Time=afternoon}
Substitution of concept due to a
speech recognition error.

S3:
I understood afternoon. What
type of program are you
interested in?

Prompt_open=open
OutputInfo=request
(TVShowType)
OutputInfo=inform
({time=afternoon})
InputInfo=all AVPs

If prompt is open, the user
provides 1 or 2 AVPs rather than
3.
Mismatch between inform and
user task knowledge leads to the
time being repeated.

U3:
Please show me shows, but in
the evening, please.

{time=evening}
{TVShowType=Show}

S4:
I understood evening and show.
Please select a show from the
list by saying a number.

Prompt_open=closed
OutputInfo=request
(TVShowName)
OutputInfo=inform
({time=evening},
{TVShowType=Show})
InputInfo=TVShowName

If prompt is closed, the user
provides 1 AVP rather than 2, and
never three or more.
Note: Only the TVShowName is a
possible input at this state.

U4: Remind me on number 4.
{TVShowName=4}
{TVAction=reminder}

S5:
I understood number 4. What
do you want to do with the
show?

Prompt_open=open
OutputInfo=request
(TVAction)
OutputInfo=inform
({TVShowName=4})
InputInfo=all AVPs

If prompt is open, the user
provides 1 or 2 AVPs rather than
3.

U5: Set a reminder. {TVAction=reminder}
Goal conditions met.
Simulation stopped.

Table 2. Example dialog illustrating the simulation process in the MeMo workbench.

ACCEPTED MANUSCRIPT
- 17 -

4 Analysis of Simulated Corpora

4.1 Evaluation Criteria

In our analysis of the quality of the simulation, we adhere to Schatzmann et al., (2005), who
assessed simulated corpora by comparing them to real user corpora.

On the one hand, Schatzmann et al. analyze “high-level-features”, i.e. interaction parameters
such as #Turns, the turn length quantified as the number of actions per turn, and the user
activity quantified as the ratio of system to user actions per dialog. In addition, the dialog
style, quantified as the number of speech acts, and the task success are regarded. In
Schatzmann’s analysis, these measures show a constant decrease with the sophistication of the
four user models tested, i.e. they are generally applicable to the assessment of simulations.
However, a good fit of these measures does not automatically imply that the simulation was
realistic. Like Schatzmann et al., we compare the distributions of the parameters, i.e. apart
from mean values the standard deviation (Std), maximum (Max) and minimum (Min), to
obtain more detailed results.

The interaction parameters used by us are those presented in Table 1. Our parameters
#UserTurns and #AVPs are basically the same as Schatzmann’s #Turns and turn length. In
addition, we calculated the parameters needed for the user judgment prediction model, WPST
and CER. #NoMatch was calculated because it has often shown a high correlation with user
judgments (e.g. Walker et al., 2000). We did not determine the task success, as it is done by
Schatzmann et al., because we assume that it cannot be reliably measured in usability
experiments, i.e. the “realistic” task success rate is unknown.

Schatzmann et al. furthermore analyze Recall and Precision of utterances generated by the
simulator. This is done on a turn-by-turn basis, feeding each system turn into the simulator,
together with the dialog history, and collecting the response of the simulated user. Utterances
are modeled in an abstract way as actions compound of a speech act and the information
conveyed. When compared to real user utterances of a corpus, Recall and Precision can be
calculated as

responsesimulatedinactionsAll

actionspredictedCorrectly
P

__
100

responserealinactionsAll

actionspredictedCorrectly
R

__
100

Again, the simulations can be distinguished by these measures. However, no value range is
presented that indicates that a corpus is realistic.

We adopted these two procedures for our evaluation. In reporting our results, we start with the
comparison of interaction parameters for complete corpora. We then proceed with the
comparison of individual utterances in the corpus. As the workbench does not allow to feed in
system states together with their history, we compared the utterances in the simulated corpus
with those in the real user corpus. This can be done under consideration of different amount of
context of the utterance, where the context is defined by the features of the current system
state and the dialog history. If no context is considered, utterances might be judged as correct
although they were uttered in a situation where they were inappropriate or did not make sense.
On the other hand, if too much context is considered, a great many experimental data are
needed to cover a significant number of replies in that situation.

ACCEPTED MANUSCRIPT
- 18 -

We chose to not consider context at first, i.e. we compared the utterances irrespective of the
situation they were uttered in (“context-free”). Then, we considered the utterances in the
context of the system prompt, i.e. an utterance was considered as equal to another one if the
same concepts were replied to the same system prompt (“state-dependent”). No information
about the dialog history was included in the context features.

Unlike Schatzmann’s approach, utterances in MeMo are represented as concepts, without the
addition of the speech act. We abandoned the speech acts as in our data they carry additional
information only in very few cases, when the user has to undo a concept. In all other cases,
the speech act is to provide information, or if the concept is “yes/no”, the speech act is to
confirm information.

4.2 Results

High-Level Features

We first discuss CER and #AVPs (Table 3), which we adapted for the simulation from the
experiments. The remaining parameters, discussed below, were not adjusted according to the
experimental data, but were derived from #AVPs and CER by means of our simulation.
Therefore, they are not just dependent on these two parameters, but also on characteristics
peculiar to our simulation approach, i.e. the hard-coded aspects of the user task and
interaction model. Note that CER and #AVPs were also produced by running multiple
iterations of the simulation with the rules describing their statistical distribution across the
groups, conditions and system attributes. Consequently, their consideration gives insight in
how well given facts can be modeled with the current workbench.

For CER, the modeling seems to be adequate. All four configurations were replicated
relatively accurately. Also, for #AVPs the values for each sub-group were replicated well
enough to clearly show the differences between the age groups as well as the equality of the
help conditions. Table 5 shows the significance of the effects for the experiment and the
simulation. While in the simulation the effect of help condition is significant, the effect size
(Partial η2) is negligible, as it is in the experiment. We want to note here that tweaking this
parameter is not as easy as just specifying the average numbers. The number of concepts as
output by the rule engine might be chopped if fewer concepts are required for the task. To
cope with this, we tuned the user to utter slightly more concepts than required, part of which
would be chopped in the dialogs. To model this more accurately, the time dependence of the
user behavior needs to be included in the rules.

We then turn to the parameters inferred by the simulation (Table 4). We look here at those
parameters which showed to have a significant relation to the perceived quality of the
INSPIRE system in the experiments described above. A quick look at the table shows that the
values achieved with the simulation differ considerably from those acquired in the
experiment, but the relation between the groups is replicated quite well.

We first have a look at the parameter #UserTurns. The mean turn number was much lower in
the simulation, because some errors with very problematic consequences did not occur. Such
errors concern the user’s conception of the task rather than utterance wording problems which
are modeled with the speech understanding error generator. For example, some users did not
understand that they had to provide a time for the system to find an appropriate program.
Instead they expected the system to present a schedule of programs including starting times to
choose from. Some of these users reset the dialog several times when the system asked for the
time. On the other hand, the shortest dialogs we simulated underestimated the number of steps

ACCEPTED MANUSCRIPT
- 19 -

it took even the quickest users to finish the task. However, the differences found between the
help conditions are replicated well by the simulation, while in both cases differences between
age groups are not significant (Table 5). Thus the simulation would lead to the correct
conclusions given this evaluation question.

The next parameter, WPST, mainly depends on the system prompts as they are specified in the
model. While generally the true system prompts were used, the system features some dynamic
prompt generation, which was not explicitly modeled in the workbench. In particular, the
system implicitly confirms the concepts it understood from the previous user utterance, by
inserting them into a template sentence. In the model, just the template was copied in, so that
the word number is always equal to the case of two concepts confirmed. In addition, in the
experiment the task occurred sometimes in the middle of the scenario, where the system uses
a shortened starting prompt (“What else?” instead of “Welcome to the INSPIRE smart home
system. How may I help you?”). Overall, the system model seems to be accurate enough, as in
the dynamic help condition the resulting word counts for both user groups are very similar to
those in the experiment. However, for the fixed help condition, the word counts are far too
high. This leads to a clearly higher effect size of the help condition in the simulation, whereas
the age groups do not differ significantly in both the experiment and the simulation.

To explain the overestimated word counts in the fixed help condition, we refer to the lower
number of turns in the simulated dialogs, which were attributed to a smoother dialog. The
straight path through the dialog also increased the WPST, because the users did not pass a
state more than once (as it happened in the experiment), so that all prompts are “seen for the
first time”. Therefore, all prompts are coupled with a help prompt, which clearly makes them
longer on average.

The last parameter examined, #NoMatch, is closely related to the CER, however, not all
concept errors result in a no-match. Also, a no-match normally has a different consequence
than a partial non-understanding or a substitution or insertion of a concept. Therefore, the
number of times where a concept error leads to each of these consequences would be

Table 3. Comparison of parameters controlled by rules.

Parameter
Age
group

Help
condition N Min Max Mean Std

CER

Exp
Young

Fix 16 0.00 0.25 0.11 0.10
Dyn 16 0.00 0.61 0.23 0.19

Old
Fix 15 0.00 0.33 0.17 0.09
Dyn 15 0.11 0.65 0.32 0.18

Sim
Young

Fix 1000 0.00 1.50 0.10 0.13
Dyn 1000 0.00 0.73 0.21 0.15

Old
Fix 1000 0.00 1.50 0.16 0.15
Dyn 1000 0.00 2.00 0.32 0.16

#AVPs

Exp
Young

Fix 16 1.00 1.67 1.20 0.18
Dyn 16 1.00 1.80 1.23 0.27

Old
Fix 15 1.00 2.00 1.44 0.31
Dyn 15 1.00 2.05 1.46 0.31

Sim
Young

Fix 1000 0.89 2.67 1.22 0.22
Dyn 1000 0.89 2.25 1.22 0.21

Old
Fix 1000 0.92 2.67 1.39 0.29
Dyn 1000 0.90 2.50 1.42 0.26

ACCEPTED MANUSCRIPT
- 20 -

interesting to know from the simulation. In our simulation, however, the number of no-
matches is underestimated, which becomes apparent in the mean and maximum values for
each configuration. As the average number of AVPs in the simulated utterances is as high as
in the real experiment, we conclude that the understanding errors occurred in clusters in
reality. In other words, in reality some utterances were associated with many errors, while
some where associated with fewer errors, while in the simulation the errors were equally
distributed among the utterances. However, also for this parameter the significant impact of
the help condition could be predicted with the simulation. For the user groups, no significant
difference was found in the experiment, while in the simulation the difference between age
groups was significant. In both cases, the size of the effect is underestimated by the
simulation, meaning that the higher significance of simulated results is due to the higher
number of cases mainly.

In summary, while the absolute values of the tested parameters differ between the
experimental data and the simulation, the relative results are replicated well. Thus, a
comparison between age groups or system variants via simulation, (e.g. with the aim of
deciding which system to employ for each group) would result in the same decision as the real
user experiment.

Parameter
Age
group

Help
condition N Min Max Mean Std

#UserTurns

Exp
Young

Fix 16 5 18 9.5 3.8
Dyn 16 5 30 12.8 7.7

Old
Fix 15 5 21 11.1 5.3
Dyn 15 6 35 15.7 8.2

Sim
Young

Fix 1000 2 12 5.6 1.2
Dyn 1000 3 13 6.5 1.6

Old
Fix 1000 2 13 5.6 1.4
Dyn 1000 1 15 6.7 1.8

WPST

Exp
Young

Fix 16 12.2 30.1 19.2 5.2
Dyn 16 10.1 17.6 13.7 1.9

Old
Fix 15 12.2 27.0 18.3 4.5
Dyn 15 10.1 19.1 13.6 2.7

Sim
Young

Fix 1000 20.8 40.0 32.1 2.2
Dyn 1000 9.6 23.2 15.0 1.7

Old
Fix 1000 19.0 40.5 31.8 2.8
Dyn 1000 9.0 25.5 15.3 2.1

#NoMatch

Exp
Young

Fix 16 0 4 0.8 1.1
Dyn 16 0 7 2.1 2.3

Old
Fix 15 0 3 1.1 1.1
Dyn 15 0 10 3.7 2.8

Sim
Young

Fix 1000 0 5 0.3 0.6
Dyn 1000 0 6 1.0 1.0

Old
Fix 1000 0 6 0.5 0.8
Dyn 1000 0 8 1.4 1.3

Table 4. Interaction parameters found by simulation compared to the same parameters in the real
experiment.

ACCEPTED MANUSCRIPT
- 21 -

Exp Sim

Effect F(1) p Partial η2 F(1) p Partial η2

CER

Help condition 11.9 0.001 0.170 818.2 0.000 0.170
Age group 3.9 0.053 0.063 316.6 0.000 0.073
Help condition*
Age group

0.1 0.729 0.002 34.4 0.000 0.009

#AVPs
Help condition 0.2 0.672 0.003 6.7 0.009 0.002
Age group 11.2 0.001 0.162 557.4 0.000 0.122
Help condition*
Age group

0.01 0.914 0.000 3.7 0.056 0.001

#UserTurns

Help condition 5.7 0.021 0.089 419.1 0.000 0.095
Age group 1.9 0.168 0.032 3.3 0.070 0.001
Help condition*
Age group

0.2 0.676 0.003 9.6 0.002 0.002

WPST

Help condition 28.1 0.000 0.326 57371.3 0.000 0.935
Age group 0.2 0.636 0.004 0.2 0.627 0.000
Help condition*
Age group

0.1 0.708 0.002 15.0 0.000 0.004

#NoMatch

Help condition 14.9 0.000 0.204 664.0 0.000 0.142
Age group 4.0 0.051 0.064 97.8 0.000 0.024
Help condition*
Age group

1.5 0.226 0.025 14.9 0.000 0.004

Ratings

Help condition 0.4 0.512 0.007 3.8 0.052 0.001
Age group 7.7 0.008 0.117 54.0 0.000 0.013
Help condition*
Age group

1.4 0.239 0.024 23.6 0.000 0.006

Table 5. Statistical significance of experimental results, compared to the significance of simulation results.

User Judgment Prediction

We then used the prediction model introduced in Section 3.2 to predict user judgments from
the simulated data for each configuration of the experiment. The results can be seen in Figure
5. The ratings have been normalized to zero mean and unity variance, as the model was
trained on normalized data. Displayed are mean and standard deviation for both user groups
(line-styles) and help conditions. Displayed on the left-hand side, young users judge the
system more positively than old users (p>0.01, see Table 5). In addition, old users judged the
dialogs with dynamic help worse than those with fixed help. The standard deviations overlap
largely in all conditions, and neither the effect of help condition, nor the interaction between
the two effects is significant, as can be seen in Table 5. On the right-hand side, the predictions
are displayed. As in the real data, young users are estimated to rate the dialogs higher than old
users (p>0.01), but the effect size is much lower. The difference between the help conditions
is underestimated for the old users, and not significant, as in the experiment.

ACCEPTED MANUSCRIPT
- 22 -

dynamic helpfixed help

1,5

1,0

0,5

0,0

-0,5

-1,0

-1,5

dynamic helpfixed help

1,5

1,0

0,5

0,0

-0,5

-1,0

-1,5

Figure 5. Comparison of user judgments as observed in the experiment or predicted from the simulation.
Compared are results for both system configurations, lines representing old (dotted) and young (solid)

users.

Context-
free

State-
dependent

correctly predicted turns
unique sim. replies
unique exp. replies
Precision
Recall

25
172
77

14.5
32.5

44
554
179
7.9
24.6

Table 6. Overlap between utterances in simulated corpus and the experimental corpus. Context-free
means that utterances are compared irrespective of the context they were uttered in. State-dependent

means that the previous system question is considered in the comparison.

Precision and Recall

We also compared the utterances in our simulation to those observed from real users (Table
6). We observe a very low Precision for both context-free utterances and state-dependent
replies. This means that the simulation produces many utterances which we did not observe in
the experiments. This is to some degree due to the higher number of unique utterances in the
simulation than in the experiment. An analysis of these utterances shows that the biggest part
of them is very plausible for the EPG task. However, they seem to be less likely than other
utterances, as they did not appear in the experiment.

The Recall of utterances from the experiment is also very low, considering the much higher
number of different utterances in the simulation than in the experiment. 69.1% of the
utterances found with real participants are not produced by the simulation and are thus not
available for the improvement of the system.

As expected, the results for utterances in the context of the state they were uttered in stay
behind those for context-free analysis. This can be explained by the higher number of possible
pairs of utterances and states.

ACCEPTED MANUSCRIPT
- 23 -

5 Discussion

Ai and Litman (2006) analyzed how results like those above are related to the realism of the
simulated corpora by comparing not only simulations to real corpora but applying the same
analysis also to different real corpora. By comparing interaction parameters and success
metrics, they showed that two real corpora (with only slight system changes) differ in the
evaluation parameters as well. On the other hand, only very poor simulations with completely
random user behavior showed remarkably lower values for the same parameters than did the
real corpora. Therefore, they concluded, the measures cannot be used to describe the “reality-
level” of simulations.

The task and interactions simulated here are complex enough to trigger a wide variety of
different user behavior. Therefore, in this section we benchmark the measures applied above
by comparing two real user corpora, the one cited above (called exp. 1 in the following), and a
new corpus described below (exp. 2). We then proceed to analyze the simulation in more
detail. Utterances which were not produced with the simulation are classified according to the
complexity that would have to be added to the simulation in order to produce them. Finally,
we look at entire dialogs to assess utterances in this context. By analyzing two examples
manually, we avoid the statistical problems arising from the small data set.

5.1. Results for the comparison of real corpora

Experiment 2 data

The second real user corpus stems from an experiment conducted in 2004 with the INSPIRE
system at Ruhr-Universität Bochum, Germany. This usability study was designed to explore
three different interface metaphors for the INSPIRE system. The experiment was conducted
with 24 users (10 f, 14 m) aged between 19 and 29 years (mean: 23.7 years), and recruited
from the university environment. Each user interacted with all three metaphors according to
three different task scenarios. Two of the interaction scenarios contained exactly the same
tasks with the EPG as the experiment described above. However, as a result of the experiment
the prompts had been shortened and some vocabulary had been entered into the natural
language understanding component. As no significant differences between the interface
metaphors were found, data could be merged for our analysis. More details on the experiment
are described in Möller et al. (2007b).

High-level features

We first compared the interaction parameters for the two experiments. Only those cases of
exp.1 have been considered which were comparable to those in exp. 2, i.e. young users
interacting with the dynamic help version of the system. Table 7 shows that the distributions
of the parameters differ considerably, although not all differences are significant, which
however might be due to the low number of remaining cases from exp. 2. In case of WPST
(t(58)=-6,31; p<0.001), this is due to the shortening of the prompts after exp. 2 had been
conducted. However, no such simple explanation can be given for the differences in
#UserTurns and #NoMatch (both not statistically significant). As we tried to improve the
NLU component, we would expect less no-matches in the more recent exp. 1. After all,
changes in the system vocabulary were minimal and cannot be the only reason for the mean
no-match rate to increase by nearly 50%.

The higher average number of turns in exp.1 interactions could be explained with the (still
unclear) increase in no-matches. However, looking at the maxima, an increase in dialog
length by ten turns cannot be due to the less than eight no-matches.

ACCEPTED MANUSCRIPT
- 24 -

Parameter N Min Max Mean Std

WPST
Exp.1 16 10.1 17.6 13.7 1.9

Exp.2 44 12.9 26.4 17.8 2.4

#UserTurns
Exp.1 16 5 30 12.8 7.7

Exp.2 44 4 20 9.4 4.2

#NoMatch
Exp.1 16 0 7 2.1 2.3

Exp.2 42 0 8 1.4 1.8

Table 7. Comparison of interaction parameters for two experiments with real users.

Precision and Recall

We also analyzed Precision and Recall of utterances in exp. 2 compared to exp. 1. As for the
simulations, all analyses were done once without the utterance context and once with the
context of the current state. We used all data of exp. 1 including both user groups and help
configurations, as we did not expect a considerable impact on what the users say (we only
expected an impact on how they said it). On the other hand, a corpus shrank to 16 dialogs
could not be expected to cover a sufficient amount of different utterances to serve as a
benchmark.

Table 8 shows that the Precision of utterances is considerably higher for a real user
experiment than for the simulation. This is mainly due to the lower number of unique
utterances in the real user corpus, as the number of utterances which are common between the
experimental corpora is not higher. That is, the number of recalled uterances in the simulation
is of the same size as in a real user experiment

Context-
free

State-
dependent

correctly predicted turns
unique exp.2 replies
unique exp.1 replies
Precision [%]
Recall [%]

25
64
79
40
32

41
143
182
29
23

Table 8. Precision and recall of utterances between two real user corpora.

This result shows a further potential advantage of user simulation, as it exemplifies that user
tests cannot capture all relevant user behavior within reasonable effort. Opposed to that,
simulation has the potential to generate a comprehensive set of dialogs and utterances
inexpensively. A good simulation can therefore not just save time and costs but even improve
the reliability of usability tests. However, as a precondition to this, the simulation has to be
able to generate all types of user behavior which might come up (cf. also Rieser and Lemon,
2006). We therefore analyzed in more depth the nature of the user behavior which is missing
in the simulation. This was done by grouping the utterances of real users which were not
generated in the simulation by the reasons underlying their absence. The classification
therefore hints at the improvements which are necessary to cover the full range of user
behavior observed in exp.1.

ACCEPTED MANUSCRIPT
- 25 -

5.2. Analysis of individual utterances

The following groups resulted from the classification of user utterances not generated in the
simulation.

"Mental Model" problem, incl. generation of new AVPs (Table 9)

This group comprises utterances which are caused by errors in the user’s understanding of the
task, i.e. her Mental Model. 32 % of uncovered utterances belong to this class. Such errors
have been discussed in HCI research, which shows their relevance for usability studies and
experiments. Therefore, these utterances are highly interesting. They comprise unnecessary
actions, mismatch of user intention and system task structure, and incorrect resolution of
ambiguities in the task description given to the users. Currently, such errors cannot be
simulated with the workbench. Mental Models are constantly developing, not always
consistent and difficult to track in experiments. Therefore, their representation is not
supported by the current architecture. A future challenge will be to derive knowledge about
the user’s Mental Model from the system model and general knowledge about the user.

System Turn
User Reply
(Concepts) Example wording Description

What else can I do for
you?

{switch_on},
{TV}

Switch the TV on. Unnecessary action

What else can I do for
you?

{film_title} Show James Bond.
Reference to titles only
by list-numbers

What else can I do for
you?

Not describable
Switch off the TV
after the film is
finished.

Unnecessary action

What do you want to
do with the program?

{program},
{show}

Please show it.
Correct action
“remind” available as
separate command

What type of program
are you searching for?

{documentary} A documentary film.

User interpreted “film”
as super-category of
“movie” and
“documentary”

Table 9. Examples for mental model problems not covered by our simulation.

Flexibility in user behavior (Table 10)

In 28% of the utterances not recalled by the simulation, the user deviated from the task, but
without the action being erroneous. One variant of this is to loosen a task constraint (e.g.
{movie}  {ANY}). In another case, the user would ask for help or repetition of the prompt.
The utterance {MORE} may occur when not all possible shows to select from can be
displayed on one screen. These utterances will be possible to predict with slight enhancements
of our user model.

ACCEPTED MANUSCRIPT
- 26 -

System turn
User reply
(concepts) Example wording Description

What type of program
are you searching for?

{ANY} Show me all. No generalization or
alternation of concepts

I could not understand
you. How may I help
you?

{HELP} What can I do? Help requests not
simulated

Please select a title
from the list by saying
the number.

{REPEAT} Please repeat that. Repetition requests not
simulated

Please select a title
from the list by saying
the number.

{MORE} Next programs. Film searched for
always on first page of
list

Table 10. Examples where users were more flexible than simulated users can be.

Lack of variety in simulated user behavior

These utterances are in accordance with the dialog model utilized in MeMo and are therefore
principally possible in the simulation. However, the simulated users did not encounter the
respective state or replied something different in case they did. A mere 15% of the utterances
not recalled belong to this group. If an infinite number of users would be simulated, these
utterances would occur in the simulation as well.

Example: What do you want to do with the TV? – Set a reminder. {reminder}

System feature not implemented in system model

As mentioned in Section 3.2, a few features of the system could not be implemented in the
model with reasonable effort. Therefore, some states the real users went through were not
present in the system model. However, this group makes only 3.5% of the utterances.

Experimental Artifacts (Table 11)

These utterances occurred in the experiment, but are not related to the actual task given to the
users. They make 21.5% of the utterances which were not recalled, and can be attributed to a
lack of control over the experimental subjects, who consequently not always acted as foreseen
in the experiment. For example, instead of having the start of a movie signaled by the system,
some users chose news or had the system record the program. This could lead to states which
cannot be reached when the users adhere to the task constraints. For example, selecting
{record} leads to an explicit confirmation of the query.

ACCEPTED MANUSCRIPT
- 27 -

System Turn
User Reply
(Concepts) Example wording Description

What type of program
are you searching for?

{news} News. Correct: movie

What else can I do for
you?

{record},
{movie}

Record a movie.
Correct: remind for a
movie

Table 11. Examples for experimental artifacts.

5.3. Analysis of entire dialogs

As was shown in the previous sections, useful knowledge about the simulation can be derived
from the comparison of simulated utterances to those from real users. However, to judge the
realism of an utterance it should also be considered in the broader context of the dialog.
Because of sparse data, this cannot be done statistically. Therefore, in this section two
examples of entire dialogs are presented which were generated with our user model. From
this, we derive further requirements for a more realistic simulation.

In the first example (Table 12), the user starts the dialog by naming a number, which makes
sense as the number describes a specific TV program. However, in the next two steps the user
remains in the start state because of a no-match, but changes her intention twice. A real user
would rather try to reformulate the sentence than changing her intention, and would be even
more unlikely to change her intention twice. Therefore, it seems necessary to take into
account previous utterances in the selection of the current utterance, at least in cases of no-
match.

System turn
User reply
(concepts) Example wording Description

How may I help you? {number} Number one.
Not entirely
plausible, but
possible.

I could not understand you.
How may I help you?

{today} Today.
User tried a different
concept.

I could not understand you.
How may I help you?

{program_info}
{TV}
{reminder}

I would like to
search for a film
and set a reminder.

Changing the
concept twice is
unlikely.

I understood TV, program
info and reminder. On
which day?

…

Table 12. Example dialog 1.

ACCEPTED MANUSCRIPT
- 28 -

System turn
User reply
(concepts) Example wording Description

How may I help you? {reminder} Set a reminder.

I could not understand you.
How may I help you?

{program_info}
Electronic program
guide, please.

I understood program info.
On which day?

{today} Today.

I understood today. At
which time?

{evening} After 6 pm

I understood evening. What
type of program are you
searching for?

{movie} Movies.

I understood movie. Please
select a title from the list by
saying the number.

{number} Number 1 please.

I understood number 1.
What do you want to do
with the program?

{channel_id}
{TV}
{reminder}

Set a reminder for
the TV, channel
one.

Stating channel name
and TV not
necessary after
program has been
selected.

Table 131. Example dialog 2.

In dialog 2 (Table 13), the user makes one rather long utterance after short utterances in the
previous states. This was never observed in our experiment. Rather, users would start with
longer utterances and from some point onwards stick to providing just the one concept the
system has asked for.

In the same dialog, as the TV show has been chosen already, it does not make sense to say the
channel in the last utterance. Here, the model is not aware that the bits of information may be
relevant to different sub-goals, and at this point the sub-goal of choosing a program has
already been accomplished.

Overall, random selection of concepts which are not directly requested by the system seems
insufficient for modeling realistic behavior. However, it is difficult to find a rule which
concepts make sense at each point in the conversation. E.g., “remind (me on a show)” makes
perfect sense as a start of a dialog, while “today” or “evening” does not. A simple, but
insufficient guideline would be that after a subtask has been finished, utterances containing
constraints for this subtask should not be produced. However, it is difficult even to just
describe this behavior formally for a range of systems or tasks, and even more difficult to
formulate general rules which generate such behavior automatically.

On the other hand, behavior observed in user tests can be unexpected, and therefore actions as
in the examples cannot be ruled out completely. For example, there are no principal
restrictions to how fast a user changes her goals after a no-match. This depends on multiple
aspects of the system and the user, and even on the interpretation of the observers to some
degree. Consequently, such rules are very difficult to acquire in experiments, if they aim at
generalizability.

ACCEPTED MANUSCRIPT
- 29 -

In this line, we could argue that over-generation of utterances in the simulation is acceptable
if the true interface problems can still be separated from the false ones (or if the false
problems can be eliminated without effort). In our simulation we could identify a usability
incident which was not observed in the experiment. Here, over-generation was beneficial. In
the described case, the user started the dialog by naming the channel. The system then asked
what to do with the TV, as the user could still switch the channel or use the program guide.
However, the user could also easily choose an incompatible action, like “switch on”, rather
than replying “program information” or something similar. Also, a user who has already
discovered that the system infers that the EPG is used when she states a time or day might be
irritated that after stating a channel name she has to provide this information.

To conclude, while some simulated dialogs are rather unlikely, these can help to identify
interface problems of relevance to some users. Therefore, dialogs as shown above should not
be eliminated from the simulation. However, an estimation of the probability for dialogs
would allow the designer to adjust her focus depending on the available resources.

ACCEPTED MANUSCRIPT
- 30 -

6. Conclusions and future work

In the previous sections we have introduced a new approach to simulate user behavior for the
sake of usability predictions. Simulations happen on an abstract level between models of the
system and the user, in order to facilitate their applicatin during system design. Models can be
constructed relatively easily with a graphical editor provided by our workbench environment.
A comparison was made between a simulated corpus and an experimental corpus, both
datasets covering two user groups and two system versions. The simulated task had shown a
wide variety of user behavior in the experiment, making it more difficult to simulate all
possible interactions. Despite that, with our simulation we could predict the rank order of the
four experimental conditions for different interaction parameters; that is, we were able to
predict which system version was rated better by which group of users. In the design lifecycle
of a system, such information can be valuable to decide about the interface approach pursued
in the future development.

We then looked at precision and recall of the simulated utterances. Many of the utterances in
the experiment were not generated by the simulation; however, a closer analysis revealed that
15% of them could be generated without extensions to our models if more users were
simulated. Another 28% of the unpredicted utterances could be generated with slight
enhancements of the simulation method, such as generating repetition or help requests.
Surprisingly, a good 21.5% of the utterances not covered by the simulation were classified as
experimental artifacts, where users did not act in accordance with the task description. Given
the poor predictability of user behavior, such errors may happen in subjective tests even when
they are neatly prepared. Still, in the simulation we prefer to avoid predicting such behavior,
as it negatively impacts the measurements. In real life, such problems do not occur of course,
as users do not select their task according to a scenario description. If these were removed
from the data and the slight enhancements were made to the user model, a Recall of almost
70% would be achieved. For a task or system involving less complex user errors, we expect
that the Recall would be even higher.

At the same time, over-generation of utterances, measured by the Precision, increases if more
dialogs are simulated and the models are given more flexibility. However, as the simulated
behavior is based on reasonable rules, most utterances are meaningful even if they do not
occur in the simulation. Furthermore, if the simulation aims at finding interface problems,
implausible user utterances do not harm as long as they do not cause costly system changes.
To prevent the latter, the system designer utilizing the simulation could just search for all
interaction problems and decide about system changes depending on their plausibility.

Despite the overall positive result, we are interested in improving the simulation to maximize
its benefits. We therefore outlined in the previous section which traits of user behavior are
still missing in the simulation. As a first issue, modeling all features of a dialog system still
demands more flexibility in the system model editing process. As the simulation itself is
concerned, the modeling of speech understanding errors should be more sophisticated. Some
related work incorporates the generation of user utterances (e.g. Chung, 2004). Integrating
this into our workbench would require the inclusion of system grammars in the system model.
In an earlier project, we have developed a tool which estimates the confusion probabilities
between semantic concepts of a grammar by comparing the respective entries phonetically
(Möller et al., 2007c). By integrating this tool we would avoid to generate acoustic
representations of utterances and, at the same time, incorporate a developed method to
analyze the grammars in depth. Unfortunately, the prediction of confusions has not been
tested extensively so far.

ACCEPTED MANUSCRIPT
- 31 -

Currently, we cannot derive knowledge about potential errors on the level of the Mental
Model from the system and user characteristics alone. We will have to find ways to employ
knowledge sources on the Internet or the designer’s knowledge to generate such errors in a
realistic and comprehensive way. Up to now, we have built a tool which calculates the
semantic similarity between output interactions and user task knowledge (keyword engine),
but it is not yet clear how this can be employed for the generation of all errors on the Mental
Model level. As such a model describes how tasks are planned, we will probably also have to
extend the representation of the user task knowledge with a more sophisticated structure.

Therefore, our next step will be to plug the keyword engine into the generation of task
knowledge, and if necessary adapt the representation of the user task knowledge in the model.
Furthermore, the user interaction model will be enriched in flexibility, so that generalization
of concepts or generic actions such as help requests can be integrated in the simulation. When
testing the resulting simulation, we can use a statistical model of understanding errors, e.g. an
AVP confusion matrix derived from a corpus. If we consider the user model to be ready for
evaluation tasks we will plug in a more complex mechanism to generate understanding error
probabilities from scratch.

In parallel to this, we currently develop a usability profile generated from the simulated
corpora. To do this we plan to utilize “dynamic user attributes”, in which variable user factors
(e.g. satisfaction, frustration) are tracked during the interaction. These attributes should be
changed according to events in the dialog and influence the actions of the user model. We are
currently conducting an experiment in which we measure user satisfaction throughout the
interactions of users with the INSPIRE system. In addition to this, we need to develop
methods for the detection and description of errors on the Mental Model level, which will
allow the designer to draw conclusions for the improvement of the interface.

Finally, for testing future developments in the simulation, we will have to define better
criteria to measure the quality of the simulation. As over-generation of utterances does not
seem to be problematic, richness of user behavior seems to be a better quality criterion than
similarity to a corpus. Recall of real user utterances can serve as an indicator here. By the
time, as more usability problems can be found with the simulation, the number of true
usability problems discovered will be a reasonable measure for the simulation quality.

Acknowledgement

The work presented in this paper was conducted in the frame of the MeMo project as a
collaboration of Deutsche Telekom Laboratories, DAI-Labor, DFKI and Fraunhofer FIT. The
authors gratefully acknowledge the implementations and inventions by Jens Haupert, Britta
Hofmann, Marc Hümmer, Maximilian Kern, Dorothea Kugelmeier, Michael Kruppa, Wai-
Lung Lee, Michael Quade, Mathias Runge, and Carsten Wirth, as well as the experimental
support by Florian Gödde. We would also like to thank the reviewers for their valuable
comments which greatly helped to improve this paper.

References

Ai, H., Litman, D., 2006. Comparing Real-Real, Simulated-Simulated, and Simulated-Real
Spoken Dialogue Corpora, in: Proc. of the AAAI Workshop on Statistical and
Empirical Approaches for Spoken Dialogue Systems, Boston, MA, USA.

ACCEPTED MANUSCRIPT
- 32 -

Ai, H., Weng, F., 2008. User Simulation as Testing for Spoken Dialog Systems, in: Proc. of
the 9th SIGdial Workshop on Discourse and Dialogue, Columbus, OH, USA.

Ai, H., Litman, D., 2008. Assessing Dialog System User Simulation Evaluation Measures
Using Human Judges, in: Proc. 46th Ann. Meeting of the Assoc. of Computational
Linguistics (ACL), Columbus, OH, USA.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., Qin, Y., 2004. An
integrated theory of the mind. Psychological Review 111(4), 1036-1060.

Araki, M. and Doshita, S., 1997. Automatic Evaluation Environment for Spoken Dialogue
Systems, in: ECAI '96: Workshop on Dialogue Processing in Spoken Language
Systems, Springer, London, UK, pp. 183-194.

Bohus, D., Rudnicky, A. I., 2005. Sorry, I Didn't Catch That! - An Investigation of Non-
understanding Errors and Recovery Strategies, in: Proc. of the 6th SIGdial Workshop
on Discourse and Dialogue, Lisbon, Portugal.

Card, S. K., Moran, T. P., Newell, A., 1983. The Psychology of Human-Computer
Interaction. Erlbaum, Hillsdale, NJ, USA.

Chung, G., 2004. Developing a flexible spoken dialog system using simulation. Proc. of the
42nd Annual Meeting on Association for Computational Linguistics, Barcelona,
Spain.

Eckert, W., Levin, E., Pieraccini, R., 1997. User Modeling for Spoken Dialogue System
Evaluation, in: Proc. of the IEEE Workshop on Automatic Speech Recognition and
Understanding, Santa Barbara, CA, USA.

Engelbrecht, K.-P., Kruppa, M., Möller, S., Quade, M., 2008. MeMo Workbench for Semi-
Automated Usability Testing, in: Proc. of Interspeech 2008, Brisbane, Australia.

Fraser, N. M., Gilbert, G. N., 1991. Simulating Speech Systems. Computer Speech and
Language 5, 81–99.

Griol, D., Hurtado, L. F., Segarra, E., Sanchis, E., 2008. Acquisition and Evaluation of a
Dialog Corpus through WOZ and Dialog Simulation Techniques, in: Proc. of the 6th
International Conference on Language Resources and Evaluation (LREC'08),
Marrakech, Morocco.

Hermann, F., Niedermann, I., Peissner, M., Henke, K., Naumann, A., 2007. Users Interact
Differently: Towards a Usability-Oriented Taxonomy, in: Proc. of HCI International
2007.

Ito, A., Shimada, K., Suzuki, M., Makino, S. 2006. A User Simulator Based on VoiceXML
for Evaluation of Spoken Dialog Systems, in: Proc. of Interspeech 2006, Pittsburgh,
PA, USA.

ITU-T Supplement 24 to P-Series Recommendations, 2005. Parameters Describing the
Interaction with Spoken Dialogue Systems. International Telecommunication Union,
Geneva, Switzerland.

ITU-T Recommendation P.851, 2003. Subjective Quality Evaluation of Telephone Services
Based on Spoken Dialogue Systems. International Telecommunication Union,
Geneva, Switzerland.

Ivory, M. Y., Hearst, M. A., 2000. The state of the art in automating usability evaluation of
user interfaces (Technical Report UCB/CSD-00-1105). EECS Department, University
of California, Berkeley, CA, USA.

Janarthanam, S., Lemon, O., 2008. User simulations for online adaptation and knowledge-
alignment in Troubleshooting dialogue systems, in: Proc of SEMDIAL 2008
(LONDIAL), London, UK.

John, B. E., Salvucci, D. D., 2005. Multipurpose Prototypes for Assessing User Interfaces in
Pervasive Computing Systems, IEEE Pervasive Computing 4(4), 27-34.

Kieras, D. E., 2003. Model-based Evaluation, in: Jacko, J., Sears, A. (Eds.), The Human-
Computer Interaction Handbook, Erlbaum, Mahwah, NJ, USA, pp. 1191-1208.

ACCEPTED MANUSCRIPT
- 33 -

López-Cózar, R., de la Torre, A., Segura, J. C., Rubio, A. J., 2003. Assessment of dialogue
systems by means of a new simulation technique. Speech Communication 40(3), 387-
407.

Möller, S., Englert, R., Engelbrecht, K.-P., Hafner, V., Jameson, A., Oulasvirta, A., et al.,
2006. MeMo: Towards Automatic Usability Evaluation of Spoken Dialogue Services
by User Error Simulations, in: Proc. of Interspeech 2006, Pittsburgh, PA, USA.

Möller, S., Engelbrecht, K.-P., Oulasvirta, A., 2007a. Analysis of Communication Failures for
Spoken Dialogue Systems, in: Proc. of Interspeech 2007, Antwerp, Belgium.

Möller, S., Smeele, P., Boland, H., Krebber, J., 2007b. Evaluating Spoken Dialogue Systems
According to De-Facto Standards: A Case Study. Computer Speech and Language 21,
26-53.

Möller, S., Engelbrecht, K.-P., Pucher, M., Fröhlich, P., Huo, L., Heute, U., et al., 2007c.
TIDE: A Testbed for Interactive Spoken Dialogue System Evaluation, in: Proc. 12th
International Conference “Speech and Computer” (SPECOM’2007), Moscow, Russia.

Newell, A. (1990). Unified Theories of Cognition. Harvard University Press, Cambridge,
MA, USA.

Nielsen, J., 1993. Usability Engineering. Academic Press, San Diego, CA, USA.
Norman, D. A., 1981. Categorization of Action Slips. Psychological Review 88, 1-15.
Norman, D. A., 1983. Some Observations on Mental Models, in: Gentner, D., Stevens, A. L.

(Eds.), Mental Models, Erlbaum, Hillsdale, NJ, USA, pp. 7-14.
Pietquin, O., Renals, S., 2002. ASR System Modeling for Automatic Evaluation and

Optimizatin of Dialogue Systems, in: Proc. of the IEEE Int. Conf. on Acoustics,
Speech and Signal Process. (ICASSP 2002), Orlando, FL, USA.

Pietquin, O., 2006. Consistent Goal-Directed User Model for Realisitc Man-Machine Task-
Oriented Spoken Dialogue, in: Proc. of the IEEE International Conference on
Multimedia and Expo (ICME), Toronto, ON, Canada.

Pietquin O., 2009. Machine Learning Methods for Spoken Dialog Simulation and
Optimization, in: Mellouk, A., Chebira, A. (Eds.), Machine Learning, In-Teh, 167-
184.

Rieser, V., Lemon, O., 2006. Cluster-based User Simulations for Learning Dialogue
Strategies, in: Proc. of Interspeech 2006, Pittsburgh, PA, USA.

Schatzmann, J., Georgila, K., Young, S., 2005. Quantitative Evaluation of User Simulation
Techniques for Spoken Dialogue Systems, in: Proc. of the 6th SIGdial Workshop on
Discourse and Dialogue, Lisbon, Portugal.

Schatzmann, J., Thomson, B., Weilhammer, K., Ye, H., Young, S., 2007a. Agenda-based
User Simulation for Bootstrapping a POMDP Dialogue System, in: Proc. of
HLT/NAACL, Rochester, NY, USA.

Schatzmann, J., Thomson, B., Young, S., 2007b. Statistical User Simulation with a Hidden
Agenda, in: Proc. of the 8th SIGDial Workshop on Discourse and Dialogue, Antwerp,
Belgium.

Schatzmann, J., Thomson, B., Young, Steve, 2007c. Error Simulation for Training Statistical
Dialogue Systems, in: Proc. of ASRU, Kyoto, Japan.

Scheffler, K., Young, S., 2001. Corpus-based Dialogue Simulation for Automatic Strategy
Learning and Evaluation, in: Proc of the NAACL-2001 Workshop on Adaptation in
Dialogue Systems, Pittsburgh, PA, USA.

Seneff, S., 2002. Response Planning and Generation in the MERCURY Flight Reservation
System, Computer Speech and Language 16, 283–312.

Walker, M. A., Litman, D. J., Kamm, C. A., Abella, A., 1997. PARADISE: A Framework for
Evaluating Spoken Dialogue Agents, in: Proc. of the ACL/EACL 35th Ann. Meeting
of the Assoc. for Computational Linguistics, Madrid, Spain.

ACCEPTED MANUSCRIPT
- 34 -

Walker, M., Kamm, C., Litmann, A., 2000. Towards developing general models of usability
with PARADISE, Natural Language Engineering 6(3-4), 363-377.

