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Abstract

The evaluation of spoken dialog systems still relies on subjective interaction experiments for 
quantifying interaction behavior and user-perceived quality. In this paper, we present a 
simulation approach replacing subjective tests in early system design and evaluation phases. 
The simulation is based on a model of the system, and a probabilistic model of user behavior. 
Probabilities for the next user action vary in dependence of system features and user 
characteristics, as defined by rules. This way, simulations can be conducted before data have 
been acquired. In order to evaluate the simulation approach, characteristics of simulated 
interactions are compared to interaction corpora obtained in subjective experiments. As was 
previously proposed in the literature, we compare interaction parameters for both corpora and 
calculate recall and precision of user utterances. The results are compared to those from a 
comparison of real user corpora. While the real corpora are not equal, they are more similar 
than the simulation is to the real data. However, the simulations can predict differences 
between system versions and user groups quite well on a relative level. In order to derive 
further requirements for the model, we conclude with a detailed analysis of utterances missing 
in the simulated corpus and consider the believability of entire dialogs.
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1. Introduction

Spoken dialog systems (SDSs) are expected to replace simple menu-based interactive voice 
response systems in the short or medium term. They allow for a natural speech-based human-
machine interaction in well-defined domains such as tourist information or control of 
domestic devices. However, the increasing complexity of such systems also demands for a 
detailed and economic assessment of system components, and an early evaluation of user-
perceived quality already during the system design process. So far, mainly expert evaluation 
procedures such as Cognitive Walkthrough (e.g. Nielsen, 1993) or Wizard-of-Oz experiments 
(Fraser and Gilbert, 1991) are applied prior to building a spoken dialog system. Such 
procedures require usability experts and test users to be available, and result in a specific set 
of concrete steps to improve the design. In the next iteration of the design, a new evaluation 
has to be performed, if possible by a second expert who is unbiased by the decisions from the 
previous iteration.

As Kieras (2003) pointed out, the design workflow can be largely improved by formalizing 
the requirements of a design in a model of the user, which can be used to test the system 
design for conformity with the model. The design can then be improved until it satisfies all 
requirements of the user model, and user- or expert-based testing could be kept for the pre-
tested design. In contrast to experts or users, who should not be primed by prior versions of 
the system or design decisions and therefore have to be exchanged during the iterative design 
process, a user model can be kept unchanged over several design iterations.

Obviously, the main advantage of automating usability tests is the reduction of effort, money 
and time involved in evaluations of interactive systems, which eventually leads to a praxis of 
conducting more studies in their development. According to Nielsen (1993), usability 
evaluation at early development stages clearly reduces the effort in building a successful 
interface, as design errors can be eliminated before their effortful implementation. 
Unfortunately, the effort of such evaluations increases with the complexity of the addressed 
systems. Tests have to consider more tasks, more different ways to carry out these tasks, and 
possibly also more user groups. The sheer impossibility of controlling all relevant issues with 
reasonable resources can lead to deficiencies in user or expert testing, and consequently to 
unsatisfying interfaces. Automatic usability testing can reduce such effort significantly, and 
will finally render interfaces more user-friendly and acceptable.

The psychological and the human-computer-interaction (HCI) literature has spawned a 
number of approaches to model the interaction between users and dialog systems on the level 
of actions or on the level of cognitive processes involved in operating the interface, e.g. ACT-
R (Anderson et al., 2004), SOAR (Newell, 1990), and GOMS (Card et al., 1983). These 
methods allow HCI experts to specify task features (e.g. user knowledge, interaction steps), 
while the modeling method itself provides general knowledge about human cognition and 
behavior. Results from analyses with SOAR, ACT-R or GOMS are typically focused on either 
execution times or cognitive load, and do not address the generation of higher-level 
interaction behavior and user-perceived quality. 

Though recommended by HCI experts, cognitive models are rarely found in practical 
application to usability evaluation. Still, a large number of other automated usability methods 
exists. Ivory and Hearst (2000) categorized 132 such methods according to a taxonomy and 
showed that these approaches typically automate only some part of the evaluation process 
(capture, analysis or critique), and are often specific to a narrow class of systems (such as web 
pages). Speech-based interfaces are not mentioned in their review, however, in recent years, 
several publications have appeared concerning user simulation techniques for SDSs.
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1.1 User Simulation for Spoken Dialog Systems

To our knowledge, this topic was introduced by Araki and Doshita (1997), who propose that 
instead of testing isolated subsystems (e.g. language understanding), the behavior of the entire 
system should be evaluated. While this could be done with real user tests, they claim that 
cheaper, quicker, and more objective methods are needed especially during the early 
development states. In the same year, Eckert et al. (1997) proposed a statistical approach to
model the interaction between users and a spoken dialog system. In their model, user and 
system actions are modeled on the intentional level, and user actions are dependent on the 
previous system action and the current user state. Possible user actions and their probability 
are learned from real user data. In addition, parameters describing the users’ initiative or 
patience can be set. Stereotypic user groups can thus be specified by providing distributions of 
each parameter for the group. This way, various behaviors could be generated, revealing 
(relatively simple) design errors.

Interactions generated this way could easily be inconsistent, as the user could change its goal 
during the dialog. Therefore, Scheffler and Young (2001) enhanced this approach by 
introducing a user goal, specified in the form of attribute-value-pairs (AVPs) and their status 
(e.g. “specified”). As in the model by Eckert et al., utterances are modeled on the intentional 
level, however, the selection of an intention is based on a lattice derived from the system 
grammar. As a consequence, the model is task-dependent.

Pietquin (2006; 2009) describes a new modeling approach which can be formalized as a 
Bayesian Network. As in Scheffler and Young’s model, consistency is ensured by a 
description of the user’s goal as a list of AVPs. Pietquin’s concept of user knowledge extends 
their status description by counting the number of times the system asked for an AVP. In 
addition, the priority of each AVP can be specified in the goal model. The user actions depend
probabilistically on the user goal (incl. priorities), user knowledge, previous system utterance, 
system speech act, the current state and a model of environmental noise. Thus, the users’
behavior can be modeled independent of the task. The model parameters can be learned from 
a data set or specified by hand by an expert.

While Pietquin’s model requires many parameters to be set, Schatzmann (2007a) introduces a 
simpler model, in which the behavior is elicited according to a stack-like agenda. In the 
beginning, the agenda is populated with actions derived from the user’s goal. The goal (and 
the agenda) may comprise inform actions and request actions, in which the semantic content 
is described in the form of AVPs. At each user turn, a number N of actions is popped from the 
top of the agenda, while a system turn might cause the insertion of a new action, e.g. if a 
misunderstood AVP is confirmed by the system. The agenda allows the user model to act with 
initiative, e.g. if the system does not ask for a particular constraint. Schatzmann also proposes 
a method to learn the model parameters from a set of real user data (Schatzmann 2007b).
Schatzman (2007b) compared interaction parameters (dialog length and task success) of the 
model with either handcrafted parameters or parameters learned from data, and could show 
that both models lead to similar results, the learned parameters performing slightly better than 
the handcrafted ones. A similar model was used by Ai and Weng (2008) to evaluate an SDS 
in the restaurant selection domain.

While these approaches are named “statistical”, there are also a few rule-based approaches
which have been used for the purpose of evaluating dialog systems. López-Cózar et al. (2003)
develop a user model for a dialog system in the domain of fastfood ordering. Actions are 
selected by a number of rules describing expected behavior for each system question, given a 
goal and the correctness of the information confirmed by the system. While the 
aforementioned approaches simulate user behavior on the intention level, López-Cózar 
collects a corpus of possible utterances for each semantic representation, which is input to the 
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automatic speech recognition (ASR) during the simulation. This way, evaluation of the 
integrated system (ASR, language understanding, dialog manager) is possible. Two
recognition front-ends and two confirmation strategies are compared in a simulated user test, 
which informed further decisions in the system design process. 

Chung (2004) utilizes user simulation to instantiate a system from web content. The simulator 
mainly serves the purpose of debugging state transitions, enhancing the system’s speech and 
language understanding capabilities, and debugging the automatically generated prompts. To 
do this, the system makes use of the Genesis speech generator (Seneff, 2002), and an optional
text-to-speech (TTS) synthesis. User intentions are simulated by starting with a user query 
and choosing the next user action at random from the system reply frame, which contains the 
possible inputs to this prompt and their frequencies. A dialog history is kept to avoid 
inconsistent behavior. In addition, the user simulation asks for help or repetition with a 
predefined probability. This way, many different dialogs can be generated. However, the 
approach focuses on the task of narrowing down search results. The initiative of the user 
model relies on the information contained in the system reply frame.

As a step towards a general system, Ito et al. (2006) propose a user simulator based on 
VoiceXML. However, their simulation mechanism only works for a restricted set of systems, 
where one slot is filled at a time and each slot is explicitly confirmed. Intentions are simulated 
by choosing a goal at random, considering the VoiceXML description of the system. The user 
model replies with the AVP which the system asks for, and checks for correct understanding 
when the slot is confirmed. Corresponding utterances are sampled from the grammar 
associated with each slot and can be output via TTS. Ito et al. asses the recognizer 
performance for in-grammar utterances, as well as the stability of the system in case of many 
parallel calls.

In our previous work (Engelbrecht et al., 2008; Möller et al., 2006), we introduced the MeMo 
workbench for semi-automatic usability testing. It aims at the development and 
implementation of a general user simulation framework, applicable to different kinds and 
classes of systems, such as SDSs and Graphical User Interfaces (GUIs). The aim of the 
simulation is an analysis of a system’s usability from early prototypes to the stage where the 
system is fully implemented. Thus, like CogTool (John and Salvucci, 2005), it is embedded in 
a workbench which allows building a model of the interface which is then tested for usability.
To our knowledge, in SDS research, such an approach has not been taken so far.

1.2 Requirements to User Simulations

As the evaluation should start before test users are confronted with the system for the first 
time, the simulation should be independent of interaction data as far as possible. Instead the 
user model should be derived from the system description, as well as from general knowledge 
about the users and the task. The user model should produce behavior based on a task 
description which might differ from the task description of the system, reflecting the notion of 
a so-called “Mental Model” the user develops when interacting with a system (Norman, 
1983). Finally, the behavior of the user model should be interpretable to guarantee the control 
and understanding of its behavior. Only then the designer can derive the steps to be taken for 
the improvement of the system.

A general user model, automatically generated and applicable to all kinds of systems, is far 
out of reach. The system designer needs to provide information about the users’ knowledge, 
their goals, and about their interaction behavior. While intuitively this procedure seems to be 
logically circular (the designer will always build the system to fit the way she thinks about the
users), Kieras (2003) pointed out that a model of the interaction summarizes the design and 
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therefore can be inspected to understand how the design supports the user in performing the 
task. Furthermore, today’s systems’ interaction complexity easily exceed the tracing
capabilities of designers. This is especially true for SDSs, where the system has to cope with 
quasi-random speech recognition or understanding errors. In addition, not all requirements for 
a design can be fulfilled in all cases, and the designer needs to carefully choose which 
guidelines to prioritize. In such a scenario, sample dialogs generated by a user simulator can 
provide valuable hints for design decisions. At a later stage, as first user tests have been 
carried out, simulation can be useful to re-use corpora in the fine-tuning of the system. Still, 
simulation will not replace user tests completely, but serve as a tool to get the most out of the 
information available at each design stage. 

Still, the more complete the user model is, the more accurate the prediction of usability 
problems will be from the first draft to later development cycles. Therefore, as a step towards 
an improved simulator, a major aim of this paper is to describe the weaknesses of our current 
simulator by analyzing in detail which behavioral traits our user model is capable of, and 
which are still missing. In previous work on user simulation, as cited above, approaches have 
been evaluated focusing on the believability of the simulation (in particular, see Schatzmann, 
2005; Rieser and Lemon, 2006; Ai and Litman, 2008). In other words, human-likeness of the 
simulation was assessed. This paper proposes a different path to evaluation, in that the type of 
behavior observed in the real user experiment is classified and compared to the simulated 
behavior. In order to draw on rich benchmarking data, we compare simulation results to a 
corpus of human-machine dialogs, in which the machine – a TV controller in a smart home 
system – provokes a wide range of user behavior. The task is to choose a TV show, using 
natural language input, and this is approached by the users in many different ways.

1.3 Outline of the Paper

The paper is structured as follows: In Section 2, we report our progress in building the MeMo 
workbench, and present the approach for modeling the system and the user. In Section 3, we
show how a system can be represented as a model in the workbench, and in Section 4 we 
present results of our simulation in comparison to those from a real user test with the system.
In Section 5, we discuss the results in the light of variance found in real user corpora and 
identify the features of the simulation which still need improvement. Finally, in Section 6 
conclusions are drawn for the further development of the workbench.
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2. User Simulation in the MeMo Workbench

The simulation approach followed in MeMo is similar to the agenda-based approach proposed 
by Schatzmann et al. (2007a), in that utterances are generated from the description of the task 
from the user’s perspective. Like in the previous approaches to dialog modeling described 
above, it assumes that the interaction (with any user interface) can be described as a sequence 
of states in which the system presents an interface and the user uses this interface to perform 
an action to proceed towards the task goal. However, unlike previous approaches, we assume 
that the user behavior might be altered by usability problems. If the interface is usable, the 
user will proceed through the state sequence on a direct path, as intended by the designer. 
However, if there is a usability problem, the user might choose a wrong action with some 
probability. Additionally, probabilities for alternative or incorrect actions might be influenced 
by specific user characteristics.

Deviations from the direct path are sometimes called “user error” despite a clear ambition to 
improve the interface and not the user to minimize these errors (Bohus and Rudnicky, 2005; 
Möller et al., 2006; Norman, 1981). Such behavior is taken into account by the simulation in 
terms of rules. These vary the probabilities for each possible action in a state depending on 
interface and user features. As another type of error which is special to SDSs, the system may
incorrectly understand the users’ commands due to restricted capabilities of the automatic 
speech recognition (ASR) unit and the language understanding unit of the system.

Interactions are simulated with a model of the system, which can be specified by the system 
designer before the actual implementation of the system using a graphical user interface 
provided by the MeMo workbench. To enable realistic interactions, the system model has to 
be annotated with the features which are relevant for user behavior. These features are 
assigned to the elements of the interface, which we call User Interface (UI) objects. This 
could be a prompt of an SDS or a widget of a GUI.

Features of UI objects can be distinguished according to their role in the interaction between 
the user and the system. On the one hand, input interactions determine which information the 
user model can provide through a UI object, e.g. a slot to be filled in reply to a prompt. On the 
other hand, output interactions describe the meaning of labels or texts associated with the UI 
object, e.g. the meaning of a system prompt. Output interactions can further be distinguished 
into requests and informs. While requests describe what the system requests through this UI 
object, informs provide the user model with knowledge it might need for the task. For 
example, they can be used to annotate confirmation prompts with the slots that are confirmed. 
This way, output interactions can determine non-optimal behavior of the user model due to 
semantic misinterpretations. Finally, features describing the appearance of the UI object can 
be defined. Some of these are calculated automatically, e.g. the length of the system prompt is 
calculated from a text string. Further features can be freely defined and annotated by hand. 
These features can determine user behavior due to form and arrangement of the UI objects, if 
there are respective rules.

Performing an input interaction on a UI object leads to a new system state. This is modeled 
by a transition from the UI object to the successive state. The entirety of states (represented by 
an interface with several UI objects) and transitions is called system interaction model. Apart 
from this, a system task model needs to be defined, which specifies the tasks supported by the 
system.

Such a system task is determined by the information which is conveyed from the user to the 
system in order to accomplish the task goal. As in previous work on user simulation and 
dialog management (e.g. Schatzmann, 2007b), the information is specified as a set of 
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semantic concepts, which have the form of an attribute and one of several values that can be 
assigned to it (attribute-value-pairs, AVPs). This description is not identical with the task 
goal, as the user might be able to circumvent some input (e.g. by using a shortcut or macro) or 
neglect a constraint. Therefore, the task goal is specified as a further set of AVPs which are 
obligatory to be communicated to the system for task fulfillment.

A set of attributes and values consistent with those of the system task model is used to 
describe the user task model. That is, if the user has the correct task knowledge, the user task 
model equals the system task model. However, the user’s task knowledge can differ from the 
one of the system (Möller et al., 2007a), which can result in usability problems and should 
therefore be resolved by the interface. 

During the interaction, the AVPs conveyed to the system are tracked in the system interaction 
model. The user interaction model can specify AVPs through the input interactions of the UI 
objects of the current state. For example, if the user replies to a system prompt with a 
semantic concept understandable to the system, the respective AVP will be stored in the 
system interaction model.

In order to reduce the number of state transitions necessary to describe the system behavior, 
these can be annotated with conditions and consequences. Both concern the state of AVPs 
stored in the system. For example, a transition could be conditional on the value for a specific 
attribute, or as a consequence of a transition a value could be assigned to a particular attribute. 
A mixed-initiative dialog can then be modeled by conditioning the target state of a transition 
on the AVPs the user has filled so far. This way, fewer transitions are needed than in a plain 
state-machine modeling approach.

User Group Editor

Simulations can be run for different groups of users, as was previously done by Eckert et al. 
(1997). These authors define four very distinct user groups with extreme behavior patterns 
(e.g. “patient” user hanging up the phone after 99 turns), each group reflecting a single 
psychological trait. Janarthanam and Lemon (2008) simulate the behavior of users with 
different domain knowledge in a troubleshooting system. The groups are basically 
distinguished by asking for extended help messages more or less often. 

The user group editor of MeMo tries to go beyond this by allowing the definition of more 
realistic user groups. Each user group is described by a set of characteristics which are 
considered to be relevant for user interaction behavior. The user characteristics considered in 
MeMo have been derived from previous work on the classification of users (Hermann et al., 
2007). The cited paper aimed at a user classification scheme which is based on interaction 
behavior, thus allowing to recruit a comprehensive set of users for usability tests. To do this, 
the most differentiating characteristics of users were collected at first. Examples are affinity to 
technology, anxiety, problem solving strategy or domain expertise. In the user group editor, 
also the user’s age and deficits like hearing impairment can be specified.

A user group is defined by assigning a value to each characteristic given in a GUI editor
(Figure 1). All characteristics can have a neutral value (or range), which means that this 
characteristic is not considered in the calculation of the probabilities for the user actions. Like 
this, the knowledge about users can be formalized in a user group, while not all characteristics 
have to be known to the person defining the user group.

To generate differentiated user behavior, in addition to the user groups rules need to be 
defined which describe the relation between the user characteristics and the user behavior. 
Note that rules are not specified for the groups, but for the characteristics and their values. 
E.g., a rule might state that users with high anxiety more often fail to utter their request in 
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time. Such relations are much easier to estimate than the behavior of a complex user with 
many characteristics.

To instantiate a user for an iteration of the simulation, it is sampled from the user group by 
assigning corresponding values for each characteristic. If a range of values is specified for a 
group, a concrete value out of that range is selected randomly.

Figure 1. User group editor of the Memo workbench.

Rule Engine

The rule engine evaluates the features of the current system state and the user characteristics, 
selects the rules which apply, and calculates the resulting probabilities for each possible input 
interaction. Changes in probabilities are specified only approximately, as rules should be as 
general as possible. A rule can increase or decrease the probability for a specific input 
interaction to one of five fixed levels. Concrete values for each level are specified in a 
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configuration file. This way, by changing the configuration file, the effect of all rules can be 
adjusted to reflect user behavior as close as possible.

While one could possibly think of finding general rules applicable to all interfaces, or to all 
interfaces of one class, a designer can also custom-tailor rules for the current simulation in 
order to modify the behavior of the modeled users. This way, simulations can be run under 
specified assumptions, such as expected user errors.

A further module integrated into the MeMo workbench simulates speech recognition and 
understanding errors to be encountered in real-life systems. A number of approaches to 
modeling such errors have been proposed in recent years. To cite just a few, a simple model 
by Pietquin and Renals (2002) estimates the error probabilities from the type of recognition 
task, while a more complex model might take into account acoustic confusability of potential 
user utterances, as in Schatzmann et al. (2007c). We chose a simple approach, in which 
deletions, substitutions and insertions of semantic concepts are generated at random to an 
amount specified in a configuration file. The amount of such errors may also depend on 
system and user characteristics, such as prompt openness or domain expertise, and can 
therefore be adapted according to the current situational context and user type during the 
interaction. In early development phases, before the ASR and language understanding units 
are fully developed, such an approach can model the knowledge which the developer has 
about the system and its potential users reasonably well. For later phases, a more complex 
error model could be integrated into the simulation process.
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3. Conducting an Experiment with MeMo

In order to evaluate our simulation approach, we conducted an experiment with the MeMo 
workbench and compared the results to those of the same experiment with real users. Figure 2
gives an overview of the procedure, which will be explained in detail in the following 
sections.

Figure 2. Overview of the Evaluation simulation procedure

3.1 Modeling the INSPIRE Smart-Home System

The smart-home system has been developed in the frame of the EU-funded IST project 
INSPIRE (INfotainment management with SPeech Interaction via REmote microphones and 
telephone interfaces; IST 2001-32746). It was designed to control the following domestic 
devices via speech: 3 lamps, an electronic program guide (EPG), a TV, a video recorder, a 
fan, and an answering machine. 

INSPIRE leads a mixed-initiative dialog with the user to successively fill the necessary slots 
for a task. The dialog starts with the system question “How may I help you?” The user can 
reply to this with any set of concepts. In the course of the dialog various errors can occur, 
which the system can cope with. If it does not understand any concept, a no-match prompt is 
played back. If only part of the user utterance was understood, the system will re-ask the 
concerned concept at the appropriate point of the dialog. As a further error, the system can 
misunderstand a concept, which can result in two values specified for the same concept, e.g., 
{Device=lamp,TV}. In this case, the system will enter a special state where it informs the user 
about this conflict, and restricts the reply options to one of these concepts. Also, the system 
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performs an implicit confirmation whenever it has understood a concept. By this, the user 
knows when she needs to restate a concept.

All these features have been implemented in the system model with the help of states, 
transitions and their conditions. The original system also features some strategies to cope with 
the situation that a set of concepts has been acquired for which no solution exists in the 
database. As the system model does not work on a database, this would have to be hard-coded 
in the interaction logic of the system. In addition, these system features took effect only in 
rare cases, so we decided to disregard these features for the model of the system.

We tested our simulation by considering a task with the EPG which our test participants had 
performed in the experiment. We chose this task because it provoked a wide variety of user 
behavior including different types of errors. The task was given to the users in the following 
form:

Have a look into the electronic program guide to get an overview of the evening 
program. Choose from the offers the system proposes on the screen. As soon as you 
find an interesting movie, ask the INSPIRE system to remind you when it starts.

The system’s internal description of this task contains 8 concepts to choose the device, restrict 
the movie database and perform an action on the movie. 

 TV, program_info, today, evening, movie, channel_id, number, reminder

Not all of these concepts are necessary for a successful task accomplishment. Once a slot has 
been specified, the system (model) searches a database of possible task solutions and the 
corresponding constraints. It then requests the next slot for which more than one value is still 
possible. If the user for example starts with “remind me on a movie”, {reminder} and 
{movie} will be added as constraints for the database search. As all possible entries contain 
the constraints {TV} and {program_info}, the system will ask for the day the movie is 
broadcasted next. The channel concept is left out by the system, because it is redundant, 
however, when the user names a channel, the system can find a solution for the task.

3.2 Modeling the experiment

In this section we describe the experiment modeled with the workbench. In this test, which 
was conducted recently with INSPIRE, two conditions - user age and help style - were varied. 
32 participants were recruited from an “old” (older than 60 years) and a “young” (20-30 
years) population. Both groups interacted with two versions of INSPIRE: The first one 
provided help only when required (dynamic help), while the second version provided help 
whenever the user entered a state for the first time (fixed help). By this, the user could always 
know the reply options and possible wordings, with the cost of longer system prompts. Each 
user performed two scenarios in this experiment, covering all devices which can be operated 
with the system. Each scenario consisted of seven tasks. Speech recognition was bypassed 
with a human transcriber, however, the natural language understanding component of the 
system was used, so understanding errors could occur.

From the logged dialogs, interaction parameters have been calculated according to ITU-T 
Supplement 24 (2005). Not all parameters defined in this standard have been used for the 
evaluation of our simulation. Definitions for the parameters selected by us are given in Table 
1. After each scenario, users filled out a questionnaire similar to the one proposed in ITU-T 
Rec. P.851 (2003), to rate the quality of the system. The questionnaire included a user 
judgment of the overall impression of the interaction.  This judgment was stated on a scale 
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with five points connected by a ruler to suggest equidistance of the points. The points were 
labeled with words expressing the overall quality from “excellent” to “bad” (Figure 3). This 
item was collected also for individual tasks during the scenarios, and could thus be used for 
this study, where only one task of the scenarios was considered. 

Abbr. Name Definition
CER concept error rate Percentage of incorrectly understood semantic units, 

per dialogue. Concepts are defined as attribute-value 
pairs (AVPs), with nAVP the total number of AVPs, 
and sAVP, iAVP and dAVP the number of substituted, 
inserted and deleted AVPs. The concept error rate 
can then be determined as follows:

AVP

AVPAVPAVP

n

dis
CER




#AVPs Number of attribute 
value pairs

Average number of semantic concepts (AVPs) per 
user utterance

UserTurns

n
AVPs AVP

#
# 

WPST words per system 
turn

Average number of words per system turn in a 
dialogue.

#UserTurns number of user 
turns

Overall number of user turns uttered in a dialogue.

#NoMatch number of ASR 
rejections

Overall number of ASR rejections in a dialogue. An 
ASR rejection is defined as a system prompt 
indicating that the system was unable to “hear” or to 
“understand” the user, i.e. that the system was unable 
to extract any meaning from a user utterance.

Table 1. Definitions of parameters used in this study according to ITU-T Supplement 24 (2005).

Figure 3. Rating scale for collecting user judgments (“How do you rate the dialog with the system for this 
task? – bad / poor / fair / good / excellent”, see ITU-T Rec. P.851, 2003)

Like Ai and Weng (2008), we trained a PARADISE model (Walker et al., 1997) to predict 
these user judgments for the simulated dialogs from the interaction parameters. The 
PARADISE framework assumes that user satisfaction can be modeled as a function of task 
success and dialog costs in terms of efficiency and dialog quality. Task success and dialog 
costs can be measured in the form of interaction parameters, as they were described above. 
The prediction model for the user’s satisfaction is obtained by training a linear regression 
equation on empirical data, using interaction parameters as predictors and subjective 
judgments of the corresponding dialogs as the dependent variable. We used the task-wise 
data, which provided 14 vectors of predictors and ratings for each of the 32 users. From the 
parameters offered to the stepwise inclusion algorithm, three were taken into the model, 
namely the number of user turns (#UserTurns), the average number of words per system turn 
(WPST), and the concept error rate (CER).
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CERWPSTUserTurnsrateTask  16.020.0#37.0_

(R2
adj=0.34; all parameters were normalized to zero mean and unity variance prior to the 

regression)

Rules for the simulation  

Analysis of the experimental data showed that both system version and user group impacted 
the user behavior. The CER was significantly impacted by the help condition (t(60)=-3.387, 
p=0.001), and to some degree by the users’ age (t(60)=-1.829, p=0.072). For the help 
condition, the effect is very clear as in the fixed-help condition the possible replies were 
explicitly mentioned each time the user encountered a system question. Principally, these 
effects should be modeled with the rule engine, however, it currently lacks some features 
necessary for doing so. Therefore, as a quicker, intermediate-term solution, this functionality 
was added independent of the rule engine. This allowed us to enter the target number of 
insertions, deletions and substitutions directly for each combination of user age and the 
presence of help in the current dialog state, as exemplified in Figure 4. Note, that also in the 
dynamic help condition help is given sometimes, e.g. embedded in the no-match prompts.

# initial error probabilities
DELETE_RATE=0.28
SUBST_RATE=0.010
INSERT_RATE=0.023
# young user group without preceding help prompt
YOUNG_NO_HELP_DELETE_RATE=-0.37
YOUNG_NO_HELP_ SUBST_RATE=-0.37
YOUNG_NO_HELP_INSERT_RATE=-0.37
# old user group after help prompt
OLD_HELP_DELETE_RATE=-0.68
OLD_HELP_ SUBST_RATE=-0.68
OLD_HELP_INSERT_RATE=-0.68

Figure 4. Exemplary rules determining the default rates of deletions, substitutions and insertions, and 
their variation depending on user group and help state.

The other characteristic of the user utterances which shows considerable variance is the 
number of concepts provided. It significantly depends on the users’ age (t(60)=-3.400, 
p=0.001). We also expected that the number of concepts would vary with the prompt type 
(free/open/closed). This was quantified by calculating the average number of concepts for 
each user group and prompt type. The effects could be described with nine MeMo rules. For 
each prompt type, one rule sets the average likelihood for a specific number of AVPs 
provided in a user utterance. Two other rules per prompt type modify these probabilities 
according to the user group.

For the rules to take effect, the system prompts had to be annotated with the respective 
attributes (prompt-openness and presence of help). The prompts had been specified 
independent of the dialog states and then been assigned to them. Like this the system 
configuration with fixed help could be derived rapidly from the original system model by 
adding the respective help prompt to each state. Then, we custom-tailored two user groups 
which differed in their age range. In the experiment, age had an effect on the user behavior 
mainly due to it’s correlation with technical affinity and the cognitive abilities. However, we 
chose to design the simulation according to the experimental design, so we could take 
advantage of the clear division between the groups with equal participant numbers and bi-
polar distribution of the age variable.
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3.3 Example dialog

In order to illustrate the simulation process we consider an example dialog between the user 
model and the system model, see Table 2.1

The interaction starts with the system asking a free question to the user in step 1. The column 
“State Features” shows how the prompt is communicated to the user model in the form of 
features. These comprise the openness of the prompt (free), and an output interaction of type 
request (non = the system does not ask for a specific attribute). In addition, the information 
accepted as a response in this state (all AVPs) is given. As for the feature “prompt_open” the 
value is “free”, a rule with this condition is triggered. The rule engine determines that it is 
most likely for the user to provide 2 or 3 AVPs in the next utterance, instead of one single 
AVP which might be the typical answer for a prompt asking for one particular attribute. 

Now a random number is generated to determine the number of AVPs to be 3. As no 
particular AVP is asked for by the system, the three AVPs are randomly selected from the 
user task knowledge.

In step 2, the system first gives an implicit confirmation, modeled as a set of AVPs in an 
inform-type output interaction. The number of AVPs in the next utterance is determined to be 
1, which is likely because the prompt is now open and not completely free. As the system asks 
for a specific attribute, the user replies with the value for this attribute. If a second AVP 
would be specified by the user, this would be selected randomly from the remaining AVPs in 
the task knowledge which the user still needs to convey. After the utterance has been selected, 
a speech understanding error is generated by the respective module, resulting in the system 
understanding “afternoon” instead of “evening”.

In the third step, the system again gives an implicit confirmation of what it understood in the 
previous turn. Thus, the user model can recognize a mismatch between its task knowledge and 
the presented information. As a consequence, repetition of the misunderstood AVP is set as a 
priority action. In this turn, the random number generator and the rule engine decided for two 
AVPs to be uttered by the user. Therefore, the attribute the system has asked for in that turn 
(TVShowType) is provided by the user as well.

In the subsequent step the system presents the user a program listing for the next evening and 
requests the number of the entry the user wants to choose. The user replies with the number 4 
and asks the system to remind him of this particular show. In this state, the grammar is 
restricted to recognize only numbers, consequently the AVP {TVAction=reminder} is not 
recognized.

Finally, in step 5 the user is asked which action she wants to perform on the chosen show, 
where she transfers {TVAction=reminder} once more because the system explicitly asked for 
this attribute. After successfully transmitting this AVP, the simulator notices that the system 
task goal conditions have been met and terminates this simulation run.

                                                
1 The entire simulated dialog corpus can be downloaded from <web address>
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# Surface Form
State Features/ User 
Utterance AVPs Rules/Remarks

S1:
Welcome to the INSPIRE smart 
home system. How may I help 
you?

Prompt_open=free
OutputInfo=none
InputInfo=
All AVPs

If prompt is completely free, the 
user provides 2 or 3 AVPs rather 
than 1 or more than 3.

U1:
I’d like to see the TV program 
for tomorrow.

{device=TV}
{action= program_info} 
{day=tomorrow}

S2:
I understood TV, program info 
and tomorrow. For which time 
would you like to search?

Prompt_open=open
OutputInfo=
Request(Time)
OutputInfo=
Inform({device=TV}, 
{action=program_info}, 
{day=tomorrow})
InputInfo=all AVPs

If prompt is open, the user 
provides 1 or 2 AVPs rather than 
3.

U2: In the evening. {Time=afternoon}
Substitution of concept due to a 
speech recognition error.

S3:
I understood afternoon. What 
type of program are you 
interested in?

Prompt_open=open
OutputInfo=request 
(TVShowType)
OutputInfo=inform 
({time=afternoon})
InputInfo=all AVPs

If prompt is open, the user 
provides 1 or 2 AVPs rather than 
3.
Mismatch between inform and 
user task knowledge leads to the 
time being repeated.

U3:
Please show me shows, but in 
the evening, please.

{time=evening}
{TVShowType=Show}

S4:
I understood evening and show. 
Please select a show from the 
list by saying a number.

Prompt_open=closed
OutputInfo=request 
(TVShowName)
OutputInfo=inform 
({time=evening}, 
{TVShowType=Show})
InputInfo=TVShowName

If prompt is closed, the user 
provides 1 AVP rather than 2, and 
never three or more.
Note: Only the TVShowName is a 
possible input at this state.

U4: Remind me on number 4.
{TVShowName=4}
{TVAction=reminder}

S5:
I understood number 4. What 
do you want to do with the 
show?

Prompt_open=open
OutputInfo=request 
(TVAction)
OutputInfo=inform 
({TVShowName=4})
InputInfo=all AVPs

If prompt is open, the user 
provides 1 or 2 AVPs rather than 
3.

U5: Set a reminder. {TVAction=reminder}
Goal conditions met.
Simulation stopped.

Table 2. Example dialog illustrating the simulation process in the MeMo workbench.
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4 Analysis of Simulated Corpora

4.1 Evaluation Criteria

In our analysis of the quality of the simulation, we adhere to Schatzmann et al., (2005), who 
assessed simulated corpora by comparing them to real user corpora. 

On the one hand, Schatzmann et al. analyze “high-level-features”, i.e. interaction parameters 
such as #Turns, the turn length quantified as the number of actions per turn, and the user 
activity quantified as the ratio of system to user actions per dialog. In addition, the dialog 
style, quantified as the number of speech acts, and the task success are regarded. In 
Schatzmann’s analysis, these measures show a constant decrease with the sophistication of the 
four user models tested, i.e. they are generally applicable to the assessment of simulations. 
However, a good fit of these measures does not automatically imply that the simulation was 
realistic. Like Schatzmann et al., we compare the distributions of the parameters, i.e. apart 
from mean values the standard deviation (Std), maximum (Max) and minimum (Min), to 
obtain more detailed results.

The interaction parameters used by us are those presented in Table 1. Our parameters 
#UserTurns and #AVPs are basically the same as Schatzmann’s #Turns and turn length. In 
addition, we calculated the parameters needed for the user judgment prediction model, WPST
and CER. #NoMatch was calculated because it has often shown a high correlation with user 
judgments (e.g. Walker et al., 2000). We did not determine the task success, as it is done by 
Schatzmann et al., because we assume that it cannot be reliably measured in usability 
experiments, i.e. the “realistic” task success rate is unknown. 

Schatzmann et al. furthermore analyze Recall and Precision of utterances generated by the 
simulator. This is done on a turn-by-turn basis, feeding each system turn into the simulator, 
together with the dialog history, and collecting the response of the simulated user. Utterances 
are modeled in an abstract way as actions compound of a speech act and the information 
conveyed. When compared to real user utterances of a corpus, Recall and Precision can be 
calculated as

responsesimulatedinactionsAll

actionspredictedCorrectly
P

____

__
100

responserealinactionsAll

actionspredictedCorrectly
R

____

__
100

Again, the simulations can be distinguished by these measures. However, no value range is 
presented that indicates that a corpus is realistic. 

We adopted these two procedures for our evaluation. In reporting our results, we start with the 
comparison of interaction parameters for complete corpora. We then proceed with the 
comparison of individual utterances in the corpus. As the workbench does not allow to feed in 
system states together with their history, we compared the utterances in the simulated corpus 
with those in the real user corpus. This can be done under consideration of different amount of 
context of the utterance, where the context is defined by the features of the current system 
state and the dialog history. If no context is considered, utterances might be judged as correct 
although they were uttered in a situation where they were inappropriate or did not make sense. 
On the other hand, if too much context is considered, a great many experimental data are 
needed to cover a significant number of replies in that situation.
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We chose to not consider context at first, i.e. we compared the utterances irrespective of the 
situation they were uttered in (“context-free”). Then, we considered the utterances in the 
context of the system prompt, i.e. an utterance was considered as equal to another one if the 
same concepts were replied to the same system prompt (“state-dependent”). No information 
about the dialog history was included in the context features.

Unlike Schatzmann’s approach, utterances in MeMo are represented as concepts, without the 
addition of the speech act. We abandoned the speech acts as in our data they carry additional 
information only in very few cases, when the user has to undo a concept. In all other cases, 
the speech act is to provide information, or if the concept is “yes/no”, the speech act is to 
confirm information.

4.2 Results

High-Level Features

We first discuss CER and #AVPs (Table 3), which we adapted for the simulation from the 
experiments. The remaining parameters, discussed below, were not adjusted according to the 
experimental data, but were derived from #AVPs and CER by means of our simulation. 
Therefore, they are not just dependent on these two parameters, but also on characteristics 
peculiar to our simulation approach, i.e. the hard-coded aspects of the user task and 
interaction model. Note that CER and #AVPs were also produced by running multiple 
iterations of the simulation with the rules describing their statistical distribution across the 
groups, conditions and system attributes. Consequently, their consideration gives insight in 
how well given facts can be modeled with the current workbench.

For CER, the modeling seems to be adequate. All four configurations were replicated 
relatively accurately. Also, for #AVPs the values for each sub-group were replicated well 
enough to clearly show the differences between the age groups as well as the equality of the 
help conditions. Table 5 shows the significance of the effects for the experiment and the 
simulation. While in the simulation the effect of help condition is significant, the effect size
(Partial η2) is negligible, as it is in the experiment. We want to note here that tweaking this 
parameter is not as easy as just specifying the average numbers. The number of concepts as 
output by the rule engine might be chopped if fewer concepts are required for the task. To 
cope with this, we tuned the user to utter slightly more concepts than required, part of which 
would be chopped in the dialogs. To model this more accurately, the time dependence of the 
user behavior needs to be included in the rules.

We then turn to the parameters inferred by the simulation (Table 4). We look here at those 
parameters which showed to have a significant relation to the perceived quality of the 
INSPIRE system in the experiments described above. A quick look at the table shows that the 
values achieved with the simulation differ considerably from those acquired in the 
experiment, but the relation between the groups is replicated quite well.

We first have a look at the parameter #UserTurns. The mean turn number was much lower in 
the simulation, because some errors with very problematic consequences did not occur. Such 
errors concern the user’s conception of the task rather than utterance wording problems which 
are modeled with the speech understanding error generator. For example, some users did not 
understand that they had to provide a time for the system to find an appropriate program. 
Instead they expected the system to present a schedule of programs including starting times to 
choose from. Some of these users reset the dialog several times when the system asked for the 
time. On the other hand, the shortest dialogs we simulated underestimated the number of steps
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it took even the quickest users to finish the task. However, the differences found between the 
help conditions are replicated well by the simulation, while in both cases differences between 
age groups are not significant (Table 5). Thus the simulation would lead to the correct 
conclusions given this evaluation question.

The next parameter, WPST, mainly depends on the system prompts as they are specified in the 
model. While generally the true system prompts were used, the system features some dynamic 
prompt generation, which was not explicitly modeled in the workbench. In particular, the 
system implicitly confirms the concepts it understood from the previous user utterance, by 
inserting them into a template sentence. In the model, just the template was copied in, so that 
the word number is always equal to the case of two concepts confirmed. In addition, in the 
experiment the task occurred sometimes in the middle of the scenario, where the system uses 
a shortened starting prompt (“What else?” instead of “Welcome to the INSPIRE smart home 
system. How may I help you?”). Overall, the system model seems to be accurate enough, as in 
the dynamic help condition the resulting word counts for both user groups are very similar to 
those in the experiment. However, for the fixed help condition, the word counts are far too 
high. This leads to a clearly higher effect size of the help condition in the simulation, whereas 
the age groups do not differ significantly in both the experiment and the simulation.

To explain the overestimated word counts in the fixed help condition, we refer to the lower 
number of turns in the simulated dialogs, which were attributed to a smoother dialog. The 
straight path through the dialog also increased the WPST, because the users did not pass a 
state more than once (as it happened in the experiment), so that all prompts are “seen for the 
first time”. Therefore, all prompts are coupled with a help prompt, which clearly makes them 
longer on average.

The last parameter examined, #NoMatch, is closely related to the CER, however, not all 
concept errors result in a no-match. Also, a no-match normally has a different consequence 
than a partial non-understanding or a substitution or insertion of a concept. Therefore, the 
number of times where a concept error leads to each of these consequences would be 

Table 3. Comparison of parameters controlled by rules.

Parameter
Age 
group

Help 
condition N Min Max Mean Std

CER

Exp
Young

Fix 16 0.00 0.25 0.11 0.10
Dyn 16 0.00 0.61 0.23 0.19

Old
Fix 15 0.00 0.33 0.17 0.09
Dyn 15 0.11 0.65 0.32 0.18

Sim
Young

Fix 1000 0.00 1.50 0.10 0.13
Dyn 1000 0.00 0.73 0.21 0.15

Old
Fix 1000 0.00 1.50 0.16 0.15
Dyn 1000 0.00 2.00 0.32 0.16

#AVPs

Exp
Young

Fix 16 1.00 1.67 1.20 0.18
Dyn 16 1.00 1.80 1.23 0.27

Old
Fix 15 1.00 2.00 1.44 0.31
Dyn 15 1.00 2.05 1.46 0.31

Sim
Young

Fix 1000 0.89 2.67 1.22 0.22
Dyn 1000 0.89 2.25 1.22 0.21

Old
Fix 1000 0.92 2.67 1.39 0.29
Dyn 1000 0.90 2.50 1.42 0.26
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interesting to know from the simulation. In our simulation, however, the number of no-
matches is underestimated, which becomes apparent in the mean and maximum values for 
each configuration. As the average number of AVPs in the simulated utterances is as high as 
in the real experiment, we conclude that the understanding errors occurred in clusters in
reality. In other words, in reality some utterances were associated with many errors, while 
some where associated with fewer errors, while in the simulation the errors were equally 
distributed among the utterances. However, also for this parameter the significant impact of 
the help condition could be predicted with the simulation. For the user groups, no significant 
difference was found in the experiment, while in the simulation the difference between age 
groups was significant. In both cases, the size of the effect is underestimated by the 
simulation, meaning that the higher significance of simulated results is due to the higher 
number of cases mainly.

In summary, while the absolute values of the tested parameters differ between the 
experimental data and the simulation, the relative results are replicated well. Thus, a 
comparison between age groups or system variants via simulation, (e.g. with the aim of 
deciding which system to employ for each group) would result in the same decision as the real 
user experiment.

Parameter
Age 
group

Help 
condition N Min Max Mean Std

#UserTurns

Exp
Young

Fix 16 5 18 9.5 3.8
Dyn 16 5 30 12.8 7.7

Old
Fix 15 5 21 11.1 5.3
Dyn 15 6 35 15.7 8.2

Sim
Young

Fix 1000 2 12 5.6 1.2
Dyn 1000 3 13 6.5 1.6

Old
Fix 1000 2 13 5.6 1.4
Dyn 1000 1 15 6.7 1.8

WPST

Exp
Young

Fix 16 12.2 30.1 19.2 5.2
Dyn 16 10.1 17.6 13.7 1.9

Old
Fix 15 12.2 27.0 18.3 4.5
Dyn 15 10.1 19.1 13.6 2.7

Sim
Young

Fix 1000 20.8 40.0 32.1 2.2
Dyn 1000 9.6 23.2 15.0 1.7

Old
Fix 1000 19.0 40.5 31.8 2.8
Dyn 1000 9.0 25.5 15.3 2.1

#NoMatch

Exp
Young

Fix 16 0 4 0.8 1.1
Dyn 16 0 7 2.1 2.3

Old
Fix 15 0 3 1.1 1.1
Dyn 15 0 10 3.7 2.8

Sim
Young

Fix 1000 0 5 0.3 0.6
Dyn 1000 0 6 1.0 1.0

Old
Fix 1000 0 6 0.5 0.8
Dyn 1000 0 8 1.4 1.3

Table 4. Interaction parameters found by simulation compared to the same parameters in the real 
experiment.
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Exp Sim

Effect F(1) p Partial η2 F(1) p Partial η2

CER 

Help condition 11.9 0.001 0.170 818.2 0.000 0.170
Age group 3.9 0.053 0.063 316.6 0.000 0.073
Help condition* 
Age group

0.1 0.729 0.002 34.4 0.000 0.009

#AVPs
Help condition 0.2 0.672 0.003 6.7 0.009 0.002
Age group 11.2 0.001 0.162 557.4 0.000 0.122
Help condition* 
Age group

0.01 0.914 0.000 3.7 0.056 0.001

#UserTurns

Help condition 5.7 0.021 0.089 419.1 0.000 0.095
Age group 1.9 0.168 0.032 3.3 0.070 0.001
Help condition* 
Age group

0.2 0.676 0.003 9.6 0.002 0.002

WPST

Help condition 28.1 0.000 0.326 57371.3 0.000 0.935
Age group 0.2 0.636 0.004 0.2 0.627 0.000
Help condition* 
Age group

0.1 0.708 0.002 15.0 0.000 0.004

#NoMatch

Help condition 14.9 0.000 0.204 664.0 0.000 0.142
Age group 4.0 0.051 0.064 97.8 0.000 0.024
Help condition* 
Age group

1.5 0.226 0.025 14.9 0.000 0.004

Ratings

Help condition 0.4 0.512 0.007 3.8 0.052 0.001
Age group 7.7 0.008 0.117 54.0 0.000 0.013
Help condition* 
Age group

1.4 0.239 0.024 23.6 0.000 0.006

Table 5. Statistical significance of experimental results, compared to the significance of simulation results.

User Judgment Prediction

We then used the prediction model introduced in Section 3.2 to predict user judgments from 
the simulated data for each configuration of the experiment. The results can be seen in Figure 
5. The ratings have been normalized to zero mean and unity variance, as the model was 
trained on normalized data. Displayed are mean and standard deviation for both user groups 
(line-styles) and help conditions. Displayed on the left-hand side, young users judge the 
system more positively than old users (p>0.01, see Table 5). In addition, old users judged the 
dialogs with dynamic help worse than those with fixed help. The standard deviations overlap 
largely in all conditions, and neither the effect of help condition, nor the interaction between 
the two effects is significant, as can be seen in Table 5. On the right-hand side, the predictions 
are displayed. As in the real data, young users are estimated to rate the dialogs higher than old 
users (p>0.01), but the effect size is much lower. The difference between the help conditions 
is underestimated for the old users, and not significant, as in the experiment.
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Figure 5. Comparison of user judgments as observed in the experiment or predicted from the simulation. 
Compared are results for both system configurations, lines representing old (dotted) and young (solid) 

users.

Context-
free

State-
dependent

# correctly predicted turns
# unique sim. replies
# unique exp. replies
Precision
Recall

25
172
77

14.5
32.5

44
554
179
7.9
24.6

Table 6. Overlap between utterances in simulated corpus and the experimental corpus. Context-free 
means that utterances are compared irrespective of the context they were uttered in. State-dependent 

means that the previous system question is considered in the comparison.

Precision and Recall

We also compared the utterances in our simulation to those observed from real users (Table 
6). We observe a very low Precision for both context-free utterances and state-dependent 
replies. This means that the simulation produces many utterances which we did not observe in 
the experiments. This is to some degree due to the higher number of unique utterances in the 
simulation than in the experiment. An analysis of these utterances shows that the biggest part 
of them is very plausible for the EPG task. However, they seem to be less likely than other 
utterances, as they did not appear in the experiment.

The Recall of utterances from the experiment is also very low, considering the much higher 
number of different utterances in the simulation than in the experiment. 69.1% of the 
utterances found with real participants are not produced by the simulation and are thus not 
available for the improvement of the system. 

As expected, the results for utterances in the context of the state they were uttered in stay 
behind those for context-free analysis. This can be explained by the higher number of possible 
pairs of utterances and states.
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5 Discussion

Ai and Litman (2006) analyzed how results like those above are related to the realism of the 
simulated corpora by comparing not only simulations to real corpora but applying the same 
analysis also to different real corpora. By comparing interaction parameters and success 
metrics, they showed that two real corpora (with only slight system changes) differ in the 
evaluation parameters as well. On the other hand, only very poor simulations with completely 
random user behavior showed remarkably lower values for the same parameters than did the 
real corpora. Therefore, they concluded, the measures cannot be used to describe the “reality-
level” of simulations.

The task and interactions simulated here are complex enough to trigger a wide variety of 
different user behavior. Therefore, in this section we benchmark the measures applied above 
by comparing two real user corpora, the one cited above (called exp. 1 in the following), and a 
new corpus described below (exp. 2). We then proceed to analyze the simulation in more 
detail. Utterances which were not produced with the simulation are classified according to the 
complexity that would have to be added to the simulation in order to produce them. Finally, 
we look at entire dialogs to assess utterances in this context. By analyzing two examples 
manually, we avoid the statistical problems arising from the small data set.

5.1. Results for the comparison of real corpora

Experiment 2 data

The second real user corpus stems from an experiment conducted in 2004 with the INSPIRE
system at Ruhr-Universität Bochum, Germany. This usability study was designed to explore 
three different interface metaphors for the INSPIRE system. The experiment was conducted 
with 24 users (10 f, 14 m) aged between 19 and 29 years (mean: 23.7 years), and recruited 
from the university environment. Each user interacted with all three metaphors according to 
three different task scenarios. Two of the interaction scenarios contained exactly the same 
tasks with the EPG as the experiment described above. However, as a result of the experiment 
the prompts had been shortened and some vocabulary had been entered into the natural 
language understanding component. As no significant differences between the interface 
metaphors were found, data could be merged for our analysis. More details on the experiment 
are described in Möller et al. (2007b).

High-level features

We first compared the interaction parameters for the two experiments. Only those cases of 
exp.1 have been considered which were comparable to those in exp. 2, i.e. young users 
interacting with the dynamic help version of the system. Table 7 shows that the distributions 
of the parameters differ considerably, although not all differences are significant, which 
however might be due to the low number of remaining cases from exp. 2. In case of WPST
(t(58)=-6,31; p<0.001), this is due to the shortening of the prompts after exp. 2 had been 
conducted. However, no such simple explanation can be given for the differences in 
#UserTurns and #NoMatch (both not statistically significant). As we tried to improve the 
NLU component, we would expect less no-matches in the more recent exp. 1. After all, 
changes in the system vocabulary were minimal and cannot be the only reason for the mean 
no-match rate to increase by nearly 50%. 

The higher average number of turns in exp.1 interactions could be explained with the (still 
unclear) increase in no-matches. However, looking at the maxima, an increase in dialog 
length by ten turns cannot be due to the less than eight no-matches. 
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Parameter N Min Max Mean Std

WPST
Exp.1 16 10.1 17.6 13.7 1.9

Exp.2 44 12.9 26.4 17.8 2.4

#UserTurns
Exp.1 16 5 30 12.8 7.7

Exp.2 44 4 20 9.4 4.2

#NoMatch
Exp.1 16 0 7 2.1 2.3

Exp.2 42 0 8 1.4 1.8

Table 7. Comparison of interaction parameters for two experiments with real users.

Precision and Recall 

We also analyzed Precision and Recall of utterances in exp. 2 compared to exp. 1. As for the 
simulations, all analyses were done once without the utterance context and once with the 
context of the current state. We used all data of exp. 1 including both user groups and help 
configurations, as we did not expect a considerable impact on what the users say (we only 
expected an impact on how they said it). On the other hand, a corpus shrank to 16 dialogs 
could not be expected to cover a sufficient amount of different utterances to serve as a 
benchmark. 

Table 8 shows that the Precision of utterances is considerably higher for a real user 
experiment than for the simulation. This is mainly due to the lower number of unique 
utterances in the real user corpus, as the number of utterances which are common between the 
experimental corpora is not higher. That is, the number of recalled uterances in the simulation 
is of the same size as in a real user experiment

Context-
free

State-
dependent

# correctly predicted turns
# unique exp.2 replies
# unique exp.1 replies
Precision [%]
Recall [%]

25
64
79
40
32

41
143
182
29
23

Table 8. Precision and recall of utterances between two real user corpora.

This result shows a further potential advantage of user simulation, as it exemplifies that user 
tests cannot capture all relevant user behavior within reasonable effort. Opposed to that, 
simulation has the potential to generate a comprehensive set of dialogs and utterances 
inexpensively. A good simulation can therefore not just save time and costs but even improve 
the reliability of usability tests. However, as a precondition to this, the simulation has to be 
able to generate all types of user behavior which might come up (cf. also Rieser and Lemon, 
2006). We therefore analyzed in more depth the nature of the user behavior which is missing 
in the simulation. This was done by grouping the utterances of real users which were not 
generated in the simulation by the reasons underlying their absence. The classification 
therefore hints at the improvements which are necessary to cover the full range of user 
behavior observed in exp.1.
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5.2. Analysis of individual utterances

The following groups resulted from the classification of user utterances not generated in the 
simulation.

"Mental Model" problem, incl. generation of new AVPs (Table 9)

This group comprises utterances which are caused by errors in the user’s understanding of the 
task, i.e. her Mental Model. 32 % of uncovered utterances belong to this class. Such errors 
have been discussed in HCI research, which shows their relevance for usability studies and 
experiments. Therefore, these utterances are highly interesting. They comprise unnecessary 
actions, mismatch of user intention and system task structure, and incorrect resolution of 
ambiguities in the task description given to the users. Currently, such errors cannot be 
simulated with the workbench. Mental Models are constantly developing, not always 
consistent and difficult to track in experiments. Therefore, their representation is not 
supported by the current architecture. A future challenge will be to derive knowledge about 
the user’s Mental Model from the system model and general knowledge about the user. 

System Turn
User Reply 
(Concepts) Example wording Description

What else can I do for 
you?

{switch_on}, 
{TV}

Switch the TV on. Unnecessary action

What else can I do for 
you?

{film_title} Show James Bond.
Reference to titles only 
by list-numbers

What else can I do for 
you?

Not describable
Switch off the TV 
after the film is 
finished.

Unnecessary action

What do you want to 
do with the program?

{program}, 
{show}

Please show it.
Correct action 
“remind” available as 
separate command

What type of program 
are you searching for?

{documentary} A documentary film.

User interpreted “film” 
as super-category of 
“movie” and 
“documentary”

Table 9. Examples for mental model problems not covered by our simulation.

Flexibility in user behavior (Table 10)

In 28% of the utterances not recalled by the simulation, the user deviated from the task, but 
without the action being erroneous. One variant of this is to loosen a task constraint (e.g. 
{movie}  {ANY}). In another case, the user would ask for help or repetition of the prompt. 
The utterance {MORE} may occur when not all possible shows to select from can be 
displayed on one screen. These utterances will be possible to predict with slight enhancements 
of our user model.
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System turn
User reply 
(concepts) Example wording Description

What type of program 
are you searching for?

{ANY} Show me all. No generalization or 
alternation of concepts

I could not understand 
you. How may I help 
you?

{HELP} What can I do? Help requests not 
simulated

Please select a title 
from the list by saying 
the number.

{REPEAT} Please repeat that. Repetition requests not 
simulated

Please select a title 
from the list by saying 
the number.

{MORE} Next programs. Film searched for 
always on first page of 
list

Table 10. Examples where users were more flexible than simulated users can be.

Lack of variety in simulated user behavior

These utterances are in accordance with the dialog model utilized in MeMo and are therefore 
principally possible in the simulation. However, the simulated users did not encounter the 
respective state or replied something different in case they did. A mere 15% of the utterances 
not recalled belong to this group. If an infinite number of users would be simulated, these 
utterances would occur in the simulation as well.

Example: What do you want to do with the TV? – Set a reminder. {reminder}

System feature not implemented in system model 

As mentioned in Section 3.2, a few features of the system could not be implemented in the 
model with reasonable effort. Therefore, some states the real users went through were not 
present in the system model. However, this group makes only 3.5% of the utterances.

Experimental Artifacts (Table 11)

These utterances occurred in the experiment, but are not related to the actual task given to the 
users. They make 21.5% of the utterances which were not recalled, and can be attributed to a 
lack of control over the experimental subjects, who consequently not always acted as foreseen 
in the experiment. For example, instead of having the start of a movie signaled by the system, 
some users chose news or had the system record the program. This could lead to states which 
cannot be reached when the users adhere to the task constraints. For example, selecting 
{record} leads to an explicit confirmation of the query.
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System Turn
User Reply 
(Concepts) Example wording Description

What type of program 
are you searching for?

{news} News. Correct: movie

What else can I do for 
you?

{record}, 
{movie}

Record a movie.
Correct: remind for a 
movie

Table 11. Examples for experimental artifacts.

5.3. Analysis of entire dialogs

As was shown in the previous sections, useful knowledge about the simulation can be derived 
from the comparison of simulated utterances to those from real users. However, to judge the 
realism of an utterance it should also be considered in the broader context of the dialog. 
Because of sparse data, this cannot be done statistically. Therefore, in this section two 
examples of entire dialogs are presented which were generated with our user model. From 
this, we derive further requirements for a more realistic simulation.

In the first example (Table 12), the user starts the dialog by naming a number, which makes 
sense as the number describes a specific TV program. However, in the next two steps the user 
remains in the start state because of a no-match, but changes her intention twice. A real user 
would rather try to reformulate the sentence than changing her intention, and would be even 
more unlikely to change her intention twice. Therefore, it seems necessary to take into 
account previous utterances in the selection of the current utterance, at least in cases of no-
match.

System turn
User reply 
(concepts) Example wording Description

How may I help you? {number} Number one.
Not entirely 
plausible, but 
possible.

I could not understand you. 
How may I help you?

{today} Today.
User tried a different 
concept.

I could not understand you. 
How may I help you?

{program_info}
{TV}
{reminder}

I would like to 
search for a film 
and set a reminder.

Changing the 
concept twice is 
unlikely.

I understood TV, program 
info and reminder. On 
which day?

…

Table 12. Example dialog 1.
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System turn
User reply 
(concepts) Example wording Description

How may I help you? {reminder} Set a reminder.

I could not understand you. 
How may I help you?

{program_info}
Electronic program 
guide, please.

I understood program info. 
On which day?

{today} Today.

I understood today. At 
which time?

{evening} After 6 pm

I understood evening. What 
type of program are you 
searching for?

{movie} Movies.

I understood movie. Please 
select a title from the list by 
saying the number.

{number} Number 1 please.

I understood number 1. 
What do you want to do 
with the program?

{channel_id}
{TV}
{reminder}

Set a reminder for 
the TV, channel 
one.

Stating channel name 
and TV not 
necessary after 
program has been 
selected.

Table 131. Example dialog 2.

In dialog 2 (Table 13), the user makes one rather long utterance after short utterances in the 
previous states. This was never observed in our experiment. Rather, users would start with 
longer utterances and from some point onwards stick to providing just the one concept the 
system has asked for. 

In the same dialog, as the TV show has been chosen already, it does not make sense to say the 
channel in the last utterance. Here, the model is not aware that the bits of information may be 
relevant to different sub-goals, and at this point the sub-goal of choosing a program has 
already been accomplished.

Overall, random selection of concepts which are not directly requested by the system seems 
insufficient for modeling realistic behavior. However, it is difficult to find a rule which 
concepts make sense at each point in the conversation. E.g., “remind (me on a show)” makes 
perfect sense as a start of a dialog, while “today” or “evening” does not. A simple, but 
insufficient guideline would be that after a subtask has been finished, utterances containing 
constraints for this subtask should not be produced. However, it is difficult even to just 
describe this behavior formally for a range of systems or tasks, and even more difficult to 
formulate general rules which generate such behavior automatically.

On the other hand, behavior observed in user tests can be unexpected, and therefore actions as 
in the examples cannot be ruled out completely. For example, there are no principal 
restrictions to how fast a user changes her goals after a no-match. This depends on multiple 
aspects of the system and the user, and even on the interpretation of the observers to some 
degree. Consequently, such rules are very difficult to acquire in experiments, if they aim at 
generalizability.
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In this line, we could argue that over-generation of utterances in the simulation is acceptable 
if the true interface problems can still be separated from the false ones (or if the false 
problems can be eliminated without effort). In our simulation we could identify a usability 
incident which was not observed in the experiment. Here, over-generation was beneficial. In 
the described case, the user started the dialog by naming the channel. The system then asked 
what to do with the TV, as the user could still switch the channel or use the program guide. 
However, the user could also easily choose an incompatible action, like “switch on”, rather 
than replying “program information” or something similar. Also, a user who has already 
discovered that the system infers that the EPG is used when she states a time or day might be 
irritated that after stating a channel name she has to provide this information. 

To conclude, while some simulated dialogs are rather unlikely, these can help to identify 
interface problems of relevance to some users. Therefore, dialogs as shown above should not 
be eliminated from the simulation. However, an estimation of the probability for dialogs 
would allow the designer to adjust her focus depending on the available resources.
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6. Conclusions and future work

In the previous sections we have introduced a new approach to simulate user behavior for the 
sake of usability predictions. Simulations happen on an abstract level between models of the 
system and the user, in order to facilitate their applicatin during system design. Models can be 
constructed relatively easily with a graphical editor provided by our workbench environment. 
A comparison was made between a simulated corpus and an experimental corpus, both 
datasets covering two user groups and two system versions. The simulated task had shown a 
wide variety of user behavior in the experiment, making it more difficult to simulate all 
possible interactions. Despite that, with our simulation we could predict the rank order of the 
four experimental conditions for different interaction parameters; that is, we were able to 
predict which system version was rated better by which group of users. In the design lifecycle 
of a system, such information can be valuable to decide about the interface approach pursued 
in the future development.

We then looked at precision and recall of the simulated utterances. Many of the utterances in 
the experiment were not generated by the simulation; however, a closer analysis revealed that 
15% of them could be generated without extensions to our models if more users were 
simulated. Another 28% of the unpredicted utterances could be generated with slight 
enhancements of the simulation method, such as generating repetition or help requests. 
Surprisingly, a good 21.5% of the utterances not covered by the simulation were classified as 
experimental artifacts, where users did not act in accordance with the task description. Given 
the poor predictability of user behavior, such errors may happen in subjective tests even when 
they are neatly prepared. Still, in the simulation we prefer to avoid predicting such behavior, 
as it negatively impacts the measurements. In real life, such problems do not occur of course, 
as users do not select their task according to a scenario description. If these were removed 
from the data and the slight enhancements were made to the user model, a Recall of almost 
70% would be achieved. For a task or system involving less complex user errors, we expect 
that the Recall would be even higher. 

At the same time, over-generation of utterances, measured by the Precision, increases if more 
dialogs are simulated and the models are given more flexibility. However, as the simulated 
behavior is based on reasonable rules, most utterances are meaningful even if they do not 
occur in the simulation. Furthermore, if the simulation aims at finding interface problems, 
implausible user utterances do not harm as long as they do not cause costly system changes. 
To prevent the latter, the system designer utilizing the simulation could just search for all 
interaction problems and decide about system changes depending on their plausibility.

Despite the overall positive result, we are interested in improving the simulation to maximize 
its benefits. We therefore outlined in the previous section which traits of user behavior are 
still missing in the simulation. As a first issue, modeling all features of a dialog system still 
demands more flexibility in the system model editing process. As the simulation itself is 
concerned, the modeling of speech understanding errors should be more sophisticated. Some 
related work incorporates the generation of user utterances (e.g. Chung, 2004). Integrating 
this into our workbench would require the inclusion of system grammars in the system model. 
In an earlier project, we have developed a tool which estimates the confusion probabilities 
between semantic concepts of a grammar by comparing the respective entries phonetically 
(Möller et al., 2007c). By integrating this tool we would avoid to generate acoustic 
representations of utterances and, at the same time, incorporate a developed method to 
analyze the grammars in depth. Unfortunately, the prediction of confusions has not been 
tested extensively so far.
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Currently, we cannot derive knowledge about potential errors on the level of the Mental 
Model from the system and user characteristics alone. We will have to find ways to employ 
knowledge sources on the Internet or the designer’s knowledge to generate such errors in a 
realistic and comprehensive way. Up to now, we have built a tool which calculates the 
semantic similarity between output interactions and user task knowledge (keyword engine), 
but it is not yet clear how this can be employed for the generation of all errors on the Mental 
Model level. As such a model describes how tasks are planned, we will probably also have to 
extend the representation of the user task knowledge with a more sophisticated structure.

Therefore, our next step will be to plug the keyword engine into the generation of task 
knowledge, and if necessary adapt the representation of the user task knowledge in the model. 
Furthermore, the user interaction model will be enriched in flexibility, so that generalization 
of concepts or generic actions such as help requests can be integrated in the simulation. When 
testing the resulting simulation, we can use a statistical model of understanding errors, e.g. an 
AVP confusion matrix derived from a corpus. If we consider the user model to be ready for 
evaluation tasks we will plug in a more complex mechanism to generate understanding error 
probabilities from scratch.

In parallel to this, we currently develop a usability profile generated from the simulated 
corpora. To do this we plan to utilize “dynamic user attributes”, in which variable user factors 
(e.g. satisfaction, frustration) are tracked during the interaction. These attributes should be 
changed according to events in the dialog and influence the actions of the user model. We are 
currently conducting an experiment in which we measure user satisfaction throughout the 
interactions of users with the INSPIRE system. In addition to this, we need to develop 
methods for the detection and description of errors on the Mental Model level, which will 
allow the designer to draw conclusions for the improvement of the interface.

Finally, for testing future developments in the simulation, we will have to define better 
criteria to measure the quality of the simulation. As over-generation of utterances does not 
seem to be problematic, richness of user behavior seems to be a better quality criterion than 
similarity to a corpus. Recall of real user utterances can serve as an indicator here. By the 
time, as more usability problems can be found with the simulation, the number of true 
usability problems discovered will be a reasonable measure for the simulation quality.
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