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Abstract

Additive noise generates important losses in automatic speech recognition systems.
In this paper, we show that one of the causes contributing to these losses is the
fact that conventional recognisers take into consideration feature values that are
outliers. The method that we call bounded-distance HMM is a suitable method to
avoid that outliers contribute to the recogniser decision. However, this method just
deals with outliers, leaving the remaining features unaltered. In contrast, spectral
subtraction is able to correct all the features at the expense of introducing some
artifacts that, as shown in the paper, cause a larger number of outliers. As a result,
we find that bounded-distance HMM and spectral subtraction complement each
other well. A comprehensive experimental evaluation was conducted, considering
several well-known ASR tasks (of different complexities) and numerous noise types
and SNRs. The achieved results show that the suggested combination generally
outperforms both the bounded-distance HMM and spectral subtraction individually.
Furthermore, the obtained improvements, especially for low and medium SNRs, are
larger than the sum of the improvements individually obtained by bounded-distance
HMM and spectral subtraction.
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1 Introduction

State-of-the-art Automatic Speech Recognition (ASR) systems can achieve
high recognition rates in distortion-free environments. However, the differ-
ences between the acoustical environment in the real-world application and
that used for gathering the training data cause a significant degradation in
recognition performance. A significant research effort has been devoted to
tackle this mismatch problem, particularly for the cases of convolutive distor-
tion and additive noise.

The work presented in this paper focuses on dealing with additive noise. Nu-
merous papers can be found on this subject. The interested reader is referred
to the classical paper due to Gong (1995) for an excellent review. The ap-
proaches to mitigating the effects of additive noise can be divided into three
classes:

• robust parameterisation: the selection of a set of robust features that is
relatively invariant to additive distortions. Within this category we find
techniques such as RASTA-PLP (Hermansky and Morgan (1994)), CMN
(Cepstral Mean Normalisation) (Furui (1981)), SCMN (Segmental Cep-
stral Mean Normalisation) (Viikki and Laurila (1998)), VTLN (Vocal Tract
Length Normalisation) (Hain et al. (1999)) or histogram equalization (de la
Torre et al. (2005)).

• feature enhancement : in this case, the recogniser works with estimates of the
clean features that are obtained from the noisy ones. In general, these meth-
ods were originally developed for improving the speech quality, but they
do not necessarily improve the recognition performance (see Gong (1995)).
This second category includes popular methods such as spectral subtraction
(Boll (1979)), VTS (Vector Tailor Series) (Moreno et al. (1996)) or SPLICE
(Deng et al. (2000)).

• model compensation: the third approach entails modifying the acoustic mod-
els embedded in the recogniser in order to adapt them to better model the
noisy speech. PMC (Gales and Young (1996)) and MLLR (Gales and Wood-
land (1996)) are good examples of methods within this category.

Recently, so-called missing-feature methods (Cooke et al. (2001); Raj et al.
(2004)) have been proposed as a novel technique for robust ASR. They are
difficult to classify within one of the forementioned classes. The underlying idea
of missing-feature methods is simple: the recogniser uses only the most reliable
features. Then, the new problem consists in detecting the unreliable portions
of the time-frequency spectrogram and to remove them from the recognition
process. Missing-feature approaches have shown a high efficiency when there
is perfect knowledge about the reliability of the features. However, the errors
due to incorrect feature selection may cause significant loss of performance.
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In this paper we suggest a method that we call bounded-distance HMM, which
resembles a method already proposed in speaker recognition (Matsui and Furui
(1992)). The aim of bounded-distance HMM is to mitigate the influence of
the features that are outliers for each acoustic model. Given the apparent
relationship of this method with missing-feature approaches, an interpretation
of bounded-distance HMM as a missing-feature method is discussed in the
paper.

Although the implementation is different, the technique known as acoustic
backing-off (de Veth et al. (2001a)) is similar to bounded-distance HMM.
Acoustic backing-off adds a uniform distribution to the actual distribution
of the acoustic models to model the features not well represented during the
training phase. As a result, these unseen features do not play a relevant role
in the recogniser decision. As reported in (de Veth et al. (2001b)) the main
drawback of this technique is its limited performance for wide-band noises.

As shown in this paper, the combination of bounded-distance HMM with spec-
tral subtraction is able to overcome some of the drawbacks associated with the
acoustic backing-off method. Thus, spectral subtraction is an excellent com-
panion method. Essentially, the distortions resulting from spectral subtraction
are properly countered by bounded-distance HMM, which, furthermore, takes
advantage of the feature enhancement carried out by spectral subtraction.

In this paper, the effectiveness of the combination of bounded-distance HMM
and spectral subtraction is theoretically motivated and experimentally proved.
The methods are experimentally assessed for several tasks (of different com-
plexities) and for several noise types and signal-to-noise ratios, obtaining very
encouraging results.

The paper is organised as follows. Section 2 introduces the bounded-distance
HMM method. In Section 3 we propose the combination of bounded distance
HMM and spectral subtraction for getting robust systems including some im-
plementation details. Next, in Section 4, we describe the experimental setup
and we show and discuss the results achieved by the proposed method. Finally,
the main conclusions are outlined in Section 5.

2 Bounded-distance HMM

2.1 Motivation and Antecedents

A HMM-based speech recogniser computes the log-likelihood of the sequence of
observed features for every candidate acoustic model and selects the candidate
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that provides the maximum (see either Rabiner (1989) or Young et al. (2002)
for more details):

λ = arg max
i

(
log(ai

xox1
) +

L∑

t=1

[
log(bi

xt
(ot)) + log(ai

xtxt+1
)
]
+ log(Pr(λi))

)

(1)

where:

• λi is the acoustic model i and λ is the winner acoustic model.
• ai

xtxt+1
is the transition probability between the states xt and xt+1 for the

model λi.
• ot is the observed feature vector at the time instant t.
• bi

xt
(ot) is the emission probability for the state xt of the model λi

• L is the number of input feature vectors in the utterance that is being
recognised.

• Pr(λi) is the “a priori” probability of the model λi.

In order to motivate the Bounded-Distance HMM (BD-HMM) method we
now focus on the emission log-probability, log(bi

xt
(ot)). Assuming that this

log-probability is modelled by a single Gaussian, this term can be expanded
as follows:
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where N is the feature vector dimension and µ
i

xt
and Σi

xt
are the mean vector

and the covariance matrix, respectively, for the model i and state xt.

Dropping in equation (2), for simplicity, the time, state and model indexes
and considering diagonal covariance matrices, we obtain:

log(b(o)) = −
1

2

{
N∑

k=1

log(2πσ2

k
) +

N∑

k=1

(ok − µk)
2

σ2
k

}
(3)

where σ2
k

refers to the kth component of the covariance diagonal matrix and
µk refers to the kth component of the mean vector.

It is clear that the log-probability exhibits a strong dependence on the nor-
malised euclidean distance between the current observation and the model
mean. In particular, the term

−
1

2

N∑

k=1

(ok − µk)
2

σ2
k

(4)
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Fig. 1. Bounded euclidean distance (solid line) vs. euclidean distance (dashed line).

dominates the summation if one of the components, ok, is strongly corrupted
and, consequently, is far away from its corresponding mean, µk. Thus, the
corrupted components contribute strongly towards discarding the correspond-
ing model. For this reason, it is appropriate to bound the distance and, as a
result, to bound the influence of the outliers on the final decision. To that pur-
pose, the normalised euclidean distance in eq. (4) is substituted by a bounded
distance as follows:

−
1

2

N∑

k=1

BD(ok − µk)

σ2
k

(5)

where

BD(ok − µk) =





(ok − µk)
2, if |ok − µk| < ασk

(ασk)
2, otherwise

(6)

where α is a parameter that controls the actual value of the bound. Figure 1
illustrates the original euclidean distance and the bounded distance used in
this work. For clarity reasons, it is worth noting here that for the Gaussian
mixture case eq. (6) is applied in every Gaussian component. In addition, it
should be noted that the use of the bounded-distance implies that a proper
pdf is no longer used.

The underlying idea of BD-HMM is not new. It was first proposed in the
scope of speaker recognition (Matsui and Furui (1991, 1992)). Matsui and
Furui (1991) use a new distance called DIM (Distortion-Intersection Measure)
in a vector quantisation-based speaker recognition system. Later, this distance
was adapted to a HMM-based speaker recogniser (Matsui and Furui (1992)).
In the latter work, the Gaussian distributions that model the state density
probability functions are flattened in order to set a limit to the likelihoods
attained from features that lie far away from the mean of the corresponding
Gaussians. In particular, the limit is set to 3 times the standard deviation of
the Gaussian distribution, which is similar to setting α = 3 in eq. (6).

In the field of ASR a comparable proposal was reported under the name of
acoustic backing-off (de Veth et al. (1998, 2001a,b)). The authors of these
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works claim that the classical Gaussian distribution assumed in the HMM
framework does not conveniently model the unseen features. They consider
that the trained Gaussian distribution proves to be adequate only for fea-
tures that are well-represented in the training set; however it does not fit well
at all the unseen features. Consequently, they propose to use a distribution
composed of two weighted terms: the Gaussian distribution estimated in the
training phase and an uniform distribution (assuming no previous knowledge)
that tries to describe the unobserved features. As a result, the proposed dis-
tribution becomes close to a Gaussian which saturates for some determined
value (to both sides of the mean) instead of vanishing toward zero.

As long as the distribution for modelling unseen samples in the acoustic
backing-off context (de Veth et al. (2001a)) is approximated by a uniform
distribution, this method closely resembles the BD-HMM described here. The
role of the control parameter α in eq. (6) is now played by the probability
value that defines the uniform distribution. However, de Veth et al. (2001a)
also change the pdf for the features that are not considered outliers, while
BD-HMM does not.

The effectiveness of acoustic backing-off notably depends on the parameter-
ization (de Veth et al. (2001b)). Specifically, it turns out to be more effec-
tive for parameterisations, like Frequency Filtered (FF) (Nadeu et al. (1995,
2001); Paliwal (1999)), that do not spread a localized distortion over all the
coefficients of the feature vector. Figure 2 summarises by means of a block
diagram the steps involved in the FF computation. As can be seen in this
figure, the substitution of the DCT (Discrete Cosine Transform) by a simple
band-pass filter is the main difference with respect to MFCCs. This band-
pass filter usually takes the form z − z−1 and, therefore, just involves two
log filter bank energies. As a result, the potential localized distortion affect-
ing one log-spectrum feature is just spread over two coefficients of the final
parameterisation. In contrast, the DCT involved in the computation of the
MFCC parameters spread the distortion over all the coefficients. Taking this
conclusion into account,the FF parameterisation is used in this work.

In de Veth et al. (2001b) three real noises were tested in the reported ex-
periments, namely: car, babble and factory noises extracted from NOISEX
database (Varga et al. (1992)). The authors found that their method was ef-
fective for car noise, a narrow-band and localized noise, but it was not effective
for the others. They claim that this is due to the fact that factory and babble
noises are wide-band noises while the car noise is clearly colored. As shown
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later, the joint utilisation of BD-HMM and spectral subtraction proposed in
this paper reaches quite satisfactory results for the three above mentioned
noises.

2.2 BD-HMM and missing features

Acoustic backing-off was already interpreted as a Missing Feature (MF) tech-
nique (de Veth et al. (2001a)) and BD-HMM can also be interpreted within
this framework. MF methods (Cooke et al. (2001); Raj et al. (2004)) focus
on the observed features that are considered reliable and, therefore, they dis-
card the use of the unreliable features in the recognition process. Two main
approaches can be found in the literature, those that modify the recogniser
to admit an incomplete set of features (a subset composed just for the reli-
able features), and those that estimate the unreliable components before the
recognition stage. Both approaches have shown to provide robust solutions as
long as an accurate detection of the reliable/unreliable observed features can
be obtained. The design of such a classifier is the main problem of these meth-
ods and remains an open problem (Raj (2000); Seltzer et al. (2004)). Readers
interested in a more comprehensive treatment are referred to Raj and Stern
(2005).

Like MF, BD-HMM tackles the recognition problem minimising the influ-
ence of the unreliable (outliers) features. However, the outlier (unreliable)
or non outlier (reliable) classification is implicitly embedded in the evalua-
tion of the emission probabilities and the design of an explicit classifier is
avoided. The BD-HMM specifically focuses on outliers, i. e., remarkably unre-
liable features, while typical MF approaches aim at making the more difficult
reliable/unreliable decision.

3 A synergic combination of bounded-distance HMM and spectral

subtraction

3.1 Spectral subtraction

Spectral Subtraction (SS) is a classical speech enhancement method. It con-
sists of removing an estimate of the noise spectrum from the spectrum of the
noisy speech signal. Several versions of SS can be found in the literature. In
Gong (1995) the interested reader can find a summary of the most relevant
proposals.
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For this paper we used the minimum statistics method proposed by Martin
(2001) to perform the estimation of the noise power spectral density. Essen-
tially, the method looks for minima in the power spectrum of the contaminated
speech signal. These minima likely correspond to silence fractions where there
is not speech signal and, therefore, those power spectrum minima are related
to the mean noise power spectral density through a constant factor. This
method allows to update the noisy estimation more often than methods based
on voice activity detectors (VADs), since it works even during the short silence
periods between words or sentences, and, as a result, is more appropriate for
non-stationary noises.

In this work, we have taken ideas from different authors to implement a par-
ticular SS method. Specifically, our implementation is based on the following
ideas:

• Before removing the noise power spectral estimate from the contaminated
power spectrum, Boll (1979) suggests to make an average of this latter spec-
trum over time. This average should involve just a few frames due to the
inherent non-stationary nature of the speech signal. We used three frames
(30 ms) for computing this average. Assuming that the noisy signal is sta-
tionary along these three frames we are reducing the variance of the noise
power spectral density by a factor of three.

• It is more convenient to perform SS at the input of the mel-scaled filter bank
(Nolazco Flores and Young (1994)). The mel-scaled filter bank involves an
averaging operation within each one of the considered bands. Thus, it is
preferable to carry out the estimation of the noise spectrum and the SS
before this averaging. On the contrary, some spectral resolution would be
lost.

• When the noise power spectrum estimation is subtracted from the noisy
speech power spectrum, the result could become negative as a consequence
of potential estimation errors. Several “ad-hoc” solutions have been pro-
posed to solve this problem (Gong (1995)). Among them, we have chosen
one which establishes a minimum level for the power spectrum of the en-
hanced speech. This minimum level is given by the noise power spectrum
attenuated by a constant factor. Such an scheme is commonly used and a
recent example can be found in Pujol et al. (2004).

To sum up, the SS method implemented in this paper can be summarised by
the next equation:

P̂X(ω, l) = max
{(

P̂S(ω, l) − γP̂N(ω, l)
)
, βP̂N(ω, l)

}
(7)

where P̂X , P̂S and P̂N are, respectively, the estimates of the clean, noisy speech
and noise power spectrum densities; ω is the frequency index and l is the time
(frame) index; finally, γ and β are design constants respectively known as
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“over-estimation factor”and “spectrum flooring”. As indicated above, P̂S is
estimated as an average over the power spectrum densities at the previous,
current and next time frames while P̂N is estimated using the method proposed
by Martin (2001).

It is well-known that, although SS methods can improve the SNR, the nonlin-
ear operations involved produce distortions that may degrade the ASR system
performance (Gong (1995)). In the next section we will see how bounded-
distance HMM can be an excellent companion method for circumventing the
negative effects of these nonlinear distortions on the performance of ASR sys-
tems.

3.2 A synergic combination of bounded-distance HMM and spectral subtrac-
tion

The BD-HMM method is effective to cope with outliers that appear when
ASR systems deal with noisy speech. As explained in Section 2 the BD-HMM
method limits the normalized euclidean distance in the Gaussian exponent
to a maximum value and, as a result, the negative effects of the outliers are
reduced. However, the BD-HMM method works only on the outliers, leaving
the remaining effects of noise.

On the other hand, SS tries to estimate the clean parameters from the noise-
corrupted ones and, unlike BD-HMM, works on all the observed features. SS
was not originally designed as a preprocessing stage for speech recognition but
as a speech enhancement method. In this context, it is well known that the
noise reduction is attained at the expense of introducing distortions. As we
will experimentally show in Section 4, these distortions produce an increment
of the number of outliers. Taking this fact into consideration, in this paper
we propose the joint application of SS and BD-HMM. To be more precise, we
suggest to take advantage of the speech enhancement attained by SS while
avoiding, by means of the BD-HMM, the negative effect derived from the
SS-generated outliers in the estimated spectral densities. Furthermore, the
BD-HMM method will be complemented by SS, that compensates all the
parameters (not just the outliers).

3.3 Implementation details

The implementation of the two considered methods in the proposed combina-
tion offers some degrees of freedom that deserve to be discussed and clarified
before presenting our experimental results.

9



For the BD-HMM method we only need to set the parameter α in eq. (6)
that determines which features are outliers. In our implementation a value
α = 3 was employed that also coincides with the value used by Matsui and
Furui (1992). The limit imposed by this value for α does not degrade the
performance of the system in absence of outliers, since, as it is well known,
for a Gaussian distribution the 99.7 % of the samples fall within ±3σ (the
experimental results that show the good performance of the method in clean
conditions are given in Table 2, Section 4).

With respect to the free parameters of the SS method, γ and β in (eq. (7)), we
explored a small set of values, namely: γ = {0.8, 1.0} and β = {0.1, 0.2, 0.3}
for every SNR and noise type for the RM1 task (this task will be described in
detail in Section 4). Although none set of values achieved the best results under
all conditions, the set {γ = 0.8, β = 0.2} was the most suitable when SS was
used alone. On the other hand, when SS was used in combination with BD-
HMM, the preferred set of parameters was {γ = 1.0, β = 0.1}. The complete
set of results that allowed us to infer this last conclusion is shown later in
Subsection 4.4.1. These parameter values for the task RM1 were extrapolated
to the rest of the tasks that will be also described in Section 4.

4 Experiments and Results

Two types of experiments were used to assess the proposed method. In the first
experiments, in order to motivate our proposal, we measured the influence of
the outliers on the recognition process. In the second experiments we obtained
results in terms of the word error rate for several ASR tasks that support our
proposal.

Four different noisy speech recognition tasks were used to perform the exper-
iments. In the following subsection we present the setting that was shared by
the four tasks. Next, we describe each task in more detail. Finally, the results
for the two types of experiments are presented.

4.1 System set-up

As mentioned above, four different tasks were considered in our experiments.
Each one was set up using a well-known database, namely: RM1 (NIST (1992)),
Wall-Street Journal (Paul and Baker (1992)), Aurora-4 (Hirsch (2002)) and
Spanish SDC-Aurora (Macho (2000)). For each task we built a specific baseline
ASR system using the HTK toolkit (Young et al. (2002)).
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The same parameterisation was used for all experiments. Specifically, the fea-
ture vector consists of 12 FF parameters plus the log-energy coefficient that
were obtained every 10 ms using a 25 ms Hamming window. For extracting
the 12nd-dimensional FF vector we computed 14 log filter bank energies and
we ignored the first and last samples of the filtered sequence. The time mean
of the FF parameters along each utterance was removed, the log-energy was
normalised and the resulting feature vector was extended with the first and
second time derivatives, resulting in a 39-dimensional vector. The training set
was also processed using SS as proposed by Shozakai et al. (1997).

4.2 Database descriptions

4.2.1 Resource Management RM1 (NIST (1992))

The well-known Resource Management RM1 database has a vocabulary of
991 words. The training corpus consists of 3990 sentences, and the test set,
which corresponds to a compilation of the first four official test sets, contains
1200 sentences. We used a down-sampled version (at 8 kHz) of the database
(originally recorded at 16 kHz in clean conditions).

The orthographic transcription of the data is based on the SRI Resource Man-
agement dictionary (provided in the same distribution by NIST). Context-
dependent acoustic models were used (cross-word triphones). A three-state,
three-mixture per state HMM was used to model each triphone. Two silence
models, long and short, were used. The long silence model consisted of three
states while the short silence model consisted of an unique state tied to the
middle state of the long silence model. Finally, the standard word-pair gram-
mar was used as the language model.

Artificially contaminated versions of this database were created by adding
five kinds of noises at four different SNRs. Specifically, 8 kHz down-sampled
versions of the white, pink, car, babble and factory noises from the NOISEX-
92 (Varga et al. (1992)) database were used. The considered SNR values went
from 0 dB to 15 dB in 5 dB steps. These contaminated versions were only
used for testing purposes (never for training).

4.2.2 Wall Street Journal (WSJ0) (Paul and Baker (1992))

The Wall Street Journal (WSJ0) database was the second database considered.
The standard SI-84 training set, which contains 7138 utterances, was used to
build the models. For evaluation, we employed the Nov.’92 CSR Speaker-
Independent 5K Read NVP (Non Verbalisation Punctuation) test set. Again,
an 8 kHz down-sampled version of the database was used.
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The CMU dictionary (v 0.6) (CMU (1998)) was used, where we removed the
vowel stress obtaining 39 phonemes for our transcriptions. As we did for the
RM1 database, cross-word triphones acoustic models and two different silence
models were used. In this case, three-state models with 8 Gaussian per state
were used, except for the silence models in which the number of Gaussians
was increased until 16. The 5K bigram language model distributed with the
corpus was used.

Finally, the artificially created noise-contaminated versions for evaluation pur-
poses were the same as for the RM1 database case.

4.2.3 Aurora-4 (Hirsch (2002))

This database is based on the above WSJ0 database and the Nov’92 WSJ0
development test.

As training set, we chose the predefined set, which comprises the clean speech
sentences acquired with the close-talking microphone. This set agrees with the
training set used for the design of the WSJ0 system described in the previous
section. The test set was based on the Nov’92 development set that includes
artificially noise-contaminated sentences. The noisy versions were created by
adding one type of noise at a randomly chosen SNR between 5 and 15 dB in
steps of 1 dB. Six different kinds of noise were used: car, babble, restaurant,
street, airport and train station. We used all the noises for our experiments
but we limited the experiments to 8 kHz down-sampled versions of the close-
talking microphone set.

The baseline ASR system was the same as for the WSJ0 database.

4.2.4 Spanish SDC-Aurora (Macho (2000))

Unlike the previously considered databases, in the Spanish SDC-Aurora the
noise was not artificially added to the clean speech, but the speech was directly
recorded in a noisy environment.

Spanish SDC-Aurora database comprises 4914 recordings using both a close-
talking microphone and a hands-free microphone. The recordings were made
in three different noisy conditions: quiet (inside a car, stopped engine), low
(driving at low speed on a town road) and high (driving at high speech in a
good road). The sentences were acquired at 16 kHz and subsequently trans-
formed to 8 kHz. The Well-Matched (WM), Medium-Mismatch (MM) and
High-Mismatch (HM) standard experiments for this database were consid-
ered. For the description of such a standard experiments the reader is referred
to Macho (2000).
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Table 1
Summary of the main differences between the 4 considered ASR tasks

RM1 WSJ0 Aurora-4 Spanish

SDC-

Aurora

Number

of words

991 5000 5000 10

Distor-

tions

types

Contamina-
ted for our
experiments:
5 noises and
4 SNRs

Contamina-
ted for our
experiments:
5 noises and
4 SNRs

6 noises at
a randomly
chosen
SNR

1 real noise,
3 noisy con-
ditions

Isolated digit and connected digits experiments were carried out. The baseline
ASR system for this task was built using the scripts distributed with the
database. Eighteen-state digit models were built using 3 Gaussians per state.
As for the previous tasks, two silence models were distinguished, for modelling
either long or short pauses between digits. The long one used 3 states and 6
Gaussians per state while the short used only one state that was tied to the
middle state of the long pause model.

Finally, Table 1 provides a brief summary of the main differences between the
4 considered tasks.

4.3 On the influence of spectral subtraction on outliers

First, we measured the percentage of outliers that occurs in the recognition
process when the speech signal is contaminated by additive noises. These
experiments were carried out for the test set of the RM1 database in two cases:
with and without SS. Since the acoustic models are the ones that decide if an
observed feature is an outlier or not, the percentage of the outliers depends on
the recognition path. For this reason, the experiments were conducted using
the state sequence that was obtained by means of a forced alignment between
the correct labels and the parameters extracted from the clean speech.

Figure 3 shows the results. The white bars indicate the percentage of outliers
computed directly from the original noisy parameters, while the black bars
indicate the additional percentage of outliers computed once SS was applied (in
this experiment we have used the parameter set {γ = 1.0, β = 0.1} in eq. (7)).
As can be observed from the figure, the number of outliers when SS is applied
increases significantly and consistently. As expected, the number of outliers
increases as the SNR decreases. It is also worth noting that these percentages
are low; however, as we show in the next experiment, their influence on the
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Fig. 3. Percentage of outliers found in the RM1 database test set for several noise
types and SNRs. The bars labelled as Baseline refer to the percentage computed
from the original noisy parameters, while the bars labelled as SS show the per-
centage obtained when spectral subtraction was applied to compensate the additive
distortion.

recogniser decision is quite significant.

When an unknown sentence is recognised, the log-likelihood along all the pos-
sible paths is computed and the maximum is chosen. We now consider the part
of the log-likelihood that accounts for how well the observations are modelled
by the HMM emission probability distributions. Going back to eq. (1), we are
referring to the time-accumulated emission log-probabilities, i.e.:

log(b)accum =
L∑

t=1

log(bi

xt
(ot)) (8)

In order to evaluate the potential influence of the outliers on the recogniser
decision, we measured the outlier contribution to this time-accumulated log-
probability. Again, since this time-accumulated log-probability depends on
the considered recognition path, we conducted our experiment using a forced
alignment. In this context, the term log(b)accum was computed in two ways:
with and without BD-HMM. Let log(b)accum denote the computed value with-
out using BD-HMM and let log(b)BD−HMM

accum
denote the result obtained using

BD-HMM. Finally, in order to quantify the contribution of the outliers to the
log-likelihood the following percentage was computed for every sentence in the
RM1 database test set:

D(%) = 100
log(b)BD−HMM

accum
− log(b)accum∑

L

t=1 | log(bi
xt

(ot))|
(9)

In order to make the experiment more intuitive and clearer, the BD-HMM
method was modified emphasising the concept of outlier. Specifically, the
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Fig. 4. Average percentage contribution of the outliers to the accumulated emission
log-probability on the RM1 database test set for several noise types and SNRs.
The bars labelled as Baseline refer to the term computed from the original noisy
parameters, while the bars labelled SS show the percentage obtained when spectral
subtraction was applied to compensate the additive distortion.

bounded normalised euclidean distance (eq. (5)) was only applied when the
feature was out of the scope of all the Gaussians that make up the Gaussian
mixture. In the original form of the BD-HMM method the bounded distance
is independently applied to every Gaussian. Thus, every Gaussian takes the
outlier/non outlier decision. If a feature is an outlier for all the Gaussians it
will be also an outlier for every Gaussian. As a result, the percentage D that
we computed is a subset of the percentage detected in the original BD-HMM
method.

Figure 4 shows the mean value of the percentage contribution of the outliers to
the accumulated emission log-probability considering all the sentences in the
RM1 database test set, for several noise types that were artificially added to
the original speech data at several SNRs. Furthermore, we present the results
with (black bars) and without SS (white bars). From this figure, the signifi-
cance of the outliers in the recognition process becomes revealing. In general,
they explain between the 20 % and the 40 % of accumulated log-probability.
In addition, the mean value of the percentage contribution of the outliers sig-
nificantly increases, as expected, due to the use of SS. It is evident that, even
though the outliers do not contain any relevant information concerning the
embedded message, they have a significant weight on the recogniser decision.
Therefore, the role of BD-HMM is justified.

4.4 Experimental assessment of the proposed method

The suggested combination of SS and BD-HMM (Henceforth, SSBD-HMM )
was assessed for the four previously described ASR tasks. Performance results
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Table 2
WER (%) for clean speech attained by each of the compared systems for the RM1,
WSJ0 and Aurora-4 tasks.

Baseline SS BD-HMM SSBD-HMM

RM1 6.70 % 6.63 % 6.29 % 6.59 %

WSJ0 9.88 % 9.79 % 9.02 % 9.30 %

Aurora-4 9.38 % 9.79 % 8.84 % 9.25 %
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Fig. 5. WER (%) attained by each of the compared systems for the RM1 task.

in terms of Word Error Rate (WER) are given along with those attained by
three reference systems, namely: the baseline (Baseline), the baseline plus
SS (SS ) and the baseline plus BD (BD-HMM ). Moreover, a more detailed
analysis is presented only for the RM1 case.

Before presenting and discussing the results for every task, recognition results
in terms of WER for clean speech are shown in Table 2 for reference purpose
(results for the Spanish SDC-Aurora task are not shown since the clean speech
is not available). It is observed that, although BD-HMM gets slightly better
results for clean speech, none of the methods produce significant changes in
the recognition rates achieved by the baseline system.

4.4.1 Results and supplementary analysis for RM1

The WER for all the compared systems and several noise types and SNRs are
given in Figure 5.

As can be observed, the SSBD-HMM method clearly outperforms the reference
systems in all of the cases with the only exception of the car noise at 15 dB,
for which the BD-HMM is slightly superior to the combination SSBD-HMM.

For white, pink and factory noises SS achieves superior performance to BD-
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HMM (with the only exception of factory noise at 0 dB). For babble and car
noises the reverse situation is found: SS gets poorer results than BD-HMM.
Car noise is the one for which the acoustic backing-off method (de Veth et al.
(2001b)) achieved its best performance; in our experiments we observe the
same trend, BD-HMM attains notable improvements by itself and no signif-
icant advantage is derived from the SSBD-HMM combination. On the other
hand, the use of SS does not achieve any improvement by itself, even incur-
ring in some performance losses for the highest SNR; however, these losses are
compensated by BD-HMM when using SSBD-HMM.

It is also interesting to highlight the synergy found between both methods,
SS and BD-HMM, in most cases. This synergy becomes evident when the
combination SSBD-HMM achieves a greater performance improvement than
the sum of those due to either SS or BD-HMM. This fact is illustrated in
Figure 6, which shows both the WER reduction achieved by SSBD-HMM and
the sum of the WER reductions individually achieved by SS and BD-HMM,
which is labelled as SS+BD-HMM.

As observed in this figure, the synergy becomes clear for lower SNRs (except
for car noise) and vanishes as the SNR is higher. These results agrees with the
fact that the SS method produces a higher number of outliers, whose effect is
alleviated by BD-HMM, when the SNR is lower.

As previously mentioned (Subsection 3.3), the chosen values for the parameters
γ and β are different if SS is considered alone or in combination with BD-
HMM. Figure 7 shows the attained results, in terms or WER, by both SS
and SSBD-HMM for two sets of parameters, namely: {γ = 0.8, β = 0.2} and
{γ = 1.0, β = 0.1}.

In most of the cases, the set {γ = 0.8, β = 0.2} is optimal for SS. However,
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Fig. 8. WER (%) attained by each of the compared systems for the WSJ0 task.

for SSBD-HMM, the best pair is {γ = 1.0, β = 0.1}. This fact is accounted
for the different number of outliers generated by each set of parameters. The
set {γ = 1.0, β = 0.1} generates more outliers and, therefore, SS gets poorer
results. However, when BD-HMM is also applied these outliers do not have
influence on the decision process and better results are achieved. In order
words, the set {γ = 1.0, β = 0.1} is better for enhancing the speech parameters
at the expense of introducing a larger number of outliers.

4.4.2 Results for WSJ0, Aurora-4 and Spanish SDC-Aurora

Experiments under similar conditions were conducted for the three remaining
tasks, namely: WSJ0, Aurora-4 and Spanish SDC-Aurora.
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Fig. 9. WER (%) attained by each of the compared systems for the Aurora-4 task.

Figure 8 shows the results for WSJ0. The suggested combination SSBD-HMM
again achieves the best performance for most of the noise types and SNRs.
The exceptions occur for car and babble noises, for which BD-HMM alone
becomes the best choice, while SS does not work. Nevertheless, in these cases,
the performances of BD-HMM and SSBD-HMM are similar, i.e., BD-HMM is
able to compensate for the poor SS performance. In these cases, the SSBD-
HMM method obtained better results with the set {γ = 0.8, β = 0.2} while
Figure 8 shows the results for the set {γ = 1.0, β = 0.1}. For factory noise
at medium SNRs the situation is even more favourable to our proposal: SS
does not work but the combination SSBD-HMM outperforms BD-HMM. For
white and pink noises BD-HMM does not perform well, in contrast to SS. The
combination SSBD-HMM clearly outperforms SS, making evident the claimed
synergy.

Figure 9 displays the results for the Aurora-4 task. The combination SSBD-
HMM again gets the best results in most of the cases. As seen in the figure,
SS does not result in any improvement (with one exception). Nevertheless,
the synergy becomes apparent, since the combination SSBD-HMM clearly
outperforms BD-HMM in almost all the cases.

For car and babble noises the results are similar to those obtained for the
WSJ0 task. It is worth noting that a slightly better performance is achieved
for babble noise, likely due to the different SNR used for contaminating the
sentences.

Finally, we used the Spanish SDC-Aurora database to asses our proposal
with non-simulated noise addition (see Subsection 4.2.4 for details). Figure 10
shows the results for the three standard experiments defined in the database.
Once more the combination SSBD-HMM takes the best of both methods. The
claimed synergy is remarkable in the High-Mismatch (HM) experiment, in
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Fig. 10. WER (%) attained by each of the compared systems for the Spanish
SDC-Aurora task.

which BD-HMM achieves a slight improvement with respect to the baseline,
SS causes a notable loss of performance and the combination gets a significant
improvement (clearly superior to that achieved by BD-HMM).

5 Conclusions

In this paper we propose the combination of what we call bounded-distance
HMM and spectral subtraction as an effective method to deal with additive
noise in ASR.

The BD-HMM method aims at mitigating the effect of outliers on the recog-
niser decision. In this paper the use of BD-HMM is motivated by quantifying
the effect of the outliers on the log-likelihood which determines the ASR sys-
tem decision. We note that BD-HMM is similar to acoustic backing off (de Veth
et al. (2001a)), though the implementation differs. Our experimental results
allow us to conclude that the combination method suggested in this paper
overcomes some of the limitations reported in de Veth et al. (2001a).

BD-HMM is limited in the sense that it acts only on the outliers. To overcome
this limitation, the combination of BD-HMM and SS is suggested. Our results
allow us to conclude that SS is an excellent companion method. Specifically,
we show how the use of SS significantly increases the number of outliers, which
affects ASR systems performance. BD-HMM compensates for this side-effect
of SS. Thus, it is possible to benefit from the best aspects of both methods
simultaneously: the speech feature enhancement due to additive noise removal
associated with SS and the ability of BD-HMM to reduce the impact of signal
distortion on the recognition process. A clear synergy between both methods
is obtained and the combination outperforms the sum of the improvements of
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the individual methods considered separately.
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