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Abstract

Speaker-dependent modeling has a long history in speech recognition, but has received less attention in
speech understanding. This study explores speaker-specific modeling for the task of automatic segmentation
of speech into dialog acts (DAs), using a linear combination of speaker-dependent and speaker-independent
language and prosodic models. Data come from 20 frequent speakers in the ICSI meeting corpus; adaptation
data per speaker ranges from 5k to 115k words. We compare performance for both reference transcripts and
automatic speech recognition output. We find that: (1) speaker adaptation in this domain results both in
a significant overall improvement and in improvements for many individual speakers, (2) the magnitude of
improvement for individual speakers does not depend on the amount of adaptation data, and (3) language and
prosodic models differ both in degree of improvement, and in relative benefit for specific DA classes. These
results suggest important future directions for speaker-specific modeling in spoken language understanding
tasks.

Key words: Spoken language understanding, Dialog act segmentation, Speaker adaptation, Prosody
modeling, Language modeling

1. Introduction

The general idea of model adaptation to a partic-
ular talker has successfully been used in the cepstral
domain for speech recognition, for example by Gau-
vain and Lee (1994) and Gales (1998). However,
less is known about speaker adaptation for spoken
language understanding. This paper explores the
question of speaker adaptation of generic models
for a language understanding task. We focus on
speaker-specific modeling for one spoken language
understanding task, automatic dialog act (DA) seg-
mentation of speech. This task is important since
standard automatic speech recognition (ASR) sys-
tems output only a raw stream of words, leaving out
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important structural information such as locations
of sentence or DA boundaries. Such locations are
overt in standard text via punctuation and capital-
ization, but are “hidden” in speech. As shown by
a number of studies, the absence of sentence or DA
boundaries in speech transcripts causes difficulties
for both humans and computers.

Effects on human sentence processing were stud-
ied by Jones et al. (2003), who demonstrated that
sentence breaks are critical for readability of speech
transcripts. Moreover, a lack of sentence segmenta-
tion can make the meaning of some utterances am-
biguous. To take an extreme case, if an automatic
speech recognizer outputs the stream of words “no
rooms are available”, it is not clear what was said –
whether it was “No rooms are available.” or “No.
Rooms are available.” In this example, the two
possible interpretations have completely opposite
meaning. Such cases are relatively rare, but other
forms of ambiguity can be much more frequent.

Lack of linguistic unit boundaries also causes sig-
Preprint submitted to Speech Communication October 20, 2009
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nificant problems for automatic processing. Many
natural language processing (NLP) techniques (e.g.,
parsing, automatic summarization, information ex-
traction, machine translation) are typically trained
on well-formatted input, such as text, and fail when
dealing with unstructured streams of words. For
instance, Furui et al. (2004) reported that speech
summarization improved when sentence boundaries
were provided. In the area of parsing, Kahn
et al. (2004) achieved a significant improvement
in parsing performance when using a more accu-
rate sentence boundary detection system. Further-
more, Matusov et al. (2007) showed that the use of
automatically-detected sentence boundaries is ben-
eficial for machine translation.

State-of-the-art approaches to DA segmentation
typically use both lexical and prosodic information.
Most prior work on this task has focused on iden-
tifying effective features or on developing advanced
models. Such work has almost exclusively trained
aggregate models, representing data pooled over
speakers.

In this work, we investigate whether the speak-
ers differ enough from each other in the produc-
tion of DA boundaries to merit speaker-dependent
modeling for this task. We perform speaker adapta-
tion for both language and prosodic models, using a
speech corpus of multiparty meetings. The meeting
domain is chosen for several reasons. First, we are
interested in spontaneous speech, since modeling of
idiosyncratic lexical patterns for DA segmentation
would not be meaningful for corpora of read speech.
We also expect that idiosyncratic prosodic patterns
are best seen in spontaneous speech. Second, as
in any study of adaptation, it is essential to have
enough data to adapt the general model to the spe-
cific one. Thus in our case the target domain should
have speakers with plenty of speech data, and ide-
ally data from different conversations for purposes
of generalization.

For these reasons, we use data from a corpus
comprising a series of naturally-occurring meetings.
This corpus, like many real-world meetings, has re-
curring participants, presenting the opportunity for
adapting models to the individual talkers. Further-
more, in this corpus, as in other meeting applica-
tions, the speakers are known beforehand and are
recorded on separate channels. This allows us to fo-
cus on the question of inherent contributions from
speaker-adaptive modeling, rather than confound
results with the issue of speaker separation or recog-
nition.

We ask several questions about speaker variation
in lexical and prosodic patterns associated with DA
boundaries. First, we ask whether speakers differ
enough from overall (speaker-independent) mod-
els to benefit from model adaptation using a rel-
atively small amount of their speech. Second, we
explore whether the effectiveness of adaptation is
correlated with the data amount available for adap-
tation. If this is not found to be the case, then
it would suggest that speakers differ inherently in
how well they are characterized by generic mod-
els. Third, we investigate whether adaptation per-
formance is dependent on different DA types (for
example statements versus questions). Finally, we
compare speaker adaptation results for language
modeling versus prosodic modeling.

The remainder of this paper is organized as fol-
lows. Section 2 surveys related work. Section 3
describes our language and prosodic models for
DA segmentation, and the speaker adaptation ap-
proach. Section 4 and Section 5 present our exper-
imental setup and discuss the experiment results.
Section 6 provides a summary and conclusions.

2. Related Work

General (speaker-independent) methods for au-
tomatic detection of linguistic unit boundaries in
speech have been studied quite extensively in the
past decades. Several different approaches utiliz-
ing both textual (lexical or syntactic) and acoustic
(prosodic) information have been proposed. The
proposed techniques include hidden Markov mod-
els (HMMs) (Shriberg et al., 2000; Kim and Wood-
land, 2003), multilayer perceptrons (Warnke et al.,
1997; Srivastava and Kubala, 2003), maximum en-
tropy (Huang and Zweig, 2002; Liu et al., 2004),
conditional random fields (Liu et al., 2005; Zim-
mermann, 2009), support vector machines (Akita
et al., 2006; Magimai-Doss et al., 2007), and adap-
tive boosting (Zimmermann et al., 2006; Kolář
et al., 2006b). Syntactic information has been used
in (Roark et al., 2006; Favre et al., 2008). Do-
main adaptation for sentence boundary detection
has been studied by Cuendet et al. (2006). How-
ever, basically no attention has been paid to speaker
adaptation of lexical or prosodic models.

For related work, we should mention papers fo-
cusing on speaker-dependent modeling for general
LM adaptation in speech recognition. Besling and
Meier (1995) improved an automatic speech dic-
tation system by speaker LM adaptation based
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on the LM fill-up method. Akita and Kawahara
(2004) showed improved recognition performance
using LM speaker adaptation by scaling the n-gram
probabilities with the unigram probabilities esti-
mated via probabilistic latent semantic analysis.
Tur and Stolcke (2007) demonstrated that unsuper-
vised within-speaker LM adaptation significantly
reduced word error rate in meeting speech recog-
nition.

Even less is known about speaker-specific vari-
ation in prosodic patterns, beyond basic F0 nor-
malization used by Shriberg et al. (2000). Studies
in speech synthesis and speaker recognition have
used prosodic variation successfully, but to our best
knowledge, modeling stylistic prosodic variability
for sentence or DA boundary detection has been
mentioned only anecdotally in the literature (Os-
tendorf and Veilleux, 1994; Hirst and Cristo, 1998).

We have already presented preliminary results of
this work in two conference papers (Kolář et al.,
2006a, 2007). Unlike the two earlier papers, this pa-
per contains more results, analysis, and discussion.
It also compares the two adaptation methods (lan-
guage and prosodic) and investigates effects based
on DA types.

3. Modeling and Features

For a given word sequence W = w1w2...wi...wn,
the task of DA segmentation is to determine which
interword boundaries correspond to a DA bound-
ary. We label each interword boundary as either a
within-unit boundary or a boundary between two
DAs. For example, in the utterance “yes we should
be done by noon”, there are two DAs: “yes” and
“we should be done by noon”. Here we describe
language and prosodic models used in this work, as
well as our approach to their speaker adaptation.

3.1. Language Models (LM)

We use a hidden event LM (Stolcke et al., 1998)
to automatically detect DA boundaries in the un-
structured word sequence. This approach based on
the hidden Markov model (HMM) framework has
been widely used for sentence and DA segmentation
and generally achieves performance comparable to
other approaches. The hidden event LM describes
the joint distribution of words and DA boundaries,
PLM (W, B), where B is the DA boundary sequence
corresponding to the word sequence W . In training,
the DA boundary is explicitly included as a token

in the vocabulary, and an n-gram LM is trained
based on the word and DA boundary sequences
in the training data. In all the experiments re-
ported herein, we used trigram LMs with modified
Kneser-Ney smoothing (Kneser and Ney, 1995) in
the SRILM toolkit (Stolcke, 2002).

During testing, a forward-backward algorithm is
used to compute the posterior probability P (Bi|W )
of a boundary Bi at position i given a word se-
quence W . Then a decision is made to select Bi

with the highest posterior probability P (Bi|W ) at
each individual boundary. This approach mini-
mizes the expected per-boundary classification er-
ror rate.

3.2. Prosodic Features and Models

Our prosodic features are designed to reflect
breaks in temporal, intonational, or energy con-
tours. Note that we are interested in speaker dif-
ferences after normalizing for a speaker’s inherent
pitch range. The features are extracted from the
word-level and phone-level time alignment informa-
tion obtained from an automatic speech recognizer
(Shriberg et al., 2000). This approach computes
features directly from the signal, without the need
for any human labeling of prosodic events. The
prosodic features can be grouped into four broad
feature classes: pause, pitch, duration, and energy.
Features are computed in regions local to each can-
didate boundary to be classified. That is, we com-
pute prosodic features in a window around each of
the arrows in a word sequence w1 ↓ w2 ↓ ...wi ↓
... ↓ wn, where the word sequence is from either
the reference transcripts or the ASR output. Fea-
tures reflect prosodic information either before, af-
ter, or across the word boundary. To capture local
prosodic dynamics, we also use features associated
with the previous and the following boundaries.

The pause features capture raw durations of
pauses between adjacent words. The duration fea-
tures include phone-normalized durations of vow-
els, final rhymes, and words; normalization statis-
tics are generated from the entire training set. We
did not use raw duration features, since they cor-
relate with lexical features that should be mod-
eled in a language model. Certain frequent DAs
(especially backchannels) have small sets of words,
so raw durations may capture those words rather
than prosody. Our pitch features include the mini-
mum, maximum, and mean values of F0, F0 slopes,
and the differences and ratios of values across word
boundaries. The pitch features are extracted from
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Table 1: Data set sizes for individual speakers. ID=Speaker ID, Train=Training set size, Test-Ref=Test size for REF, Test-
ASR=Test size for ASR. All data sizes are presented as numbers of words.

No. ID Train Test-Ref Test-ASR No. ID Train Test-Ref Test-ASR

1. me013 115.2k 51.2k 43.4k 11. mn052 10.7k 3.8k 3.5k
2. me011 50.6k 24.8k 22.9k 12. mn021 9.6k 4.1k 4.1k
3. fe008 50.6k 22.6k 19.5k 13. me003 9.3k 3.6k 3.2k
4. fe016 32.0k 15.4k 13.9k 14. mn005 7.7k 3.1k 3.0k
5. mn015 31.9k 14.7k 13.7k 15. me045 8.1k 2.4k 2.1k
6. me018 31.8k 14.7k 13.3k 16. me025 7.7k 2.4k 1.6k
7. me010 26.1k 12.6k 11.3k 17. me006 6.9k 1.5k 1.3k
8. mn007 27.2k 10.1k 8.4k 18. me026 5.2k 2.5k 2.3k
9. mn017 21.0k 7.1k 6.0k 19. me012 5.3k 2.1k 1.9k
10. mn082 13.3k 4.2k 3.7k 20. fn002 5.9k 1.5k 1.4k

F0 contours stylized by a piece-wise linear func-
tion (Sönmez et al., 1998). The energy features are
represented by the maximal, minimal, and mean
frame-level RMS values, using both raw and per-
channel normalized values.

For prosody modeling, we used decision tree clas-
sifiers (Breiman et al., 1984) because they have been
found in past work to yield good results, and be-
cause they offer the advantage of interpretability
with respect to individual features. Because DA
boundaries are much less frequent than non-DA
boundaries, we had to cope with the problem of
data skew. To overcome this problem and to de-
crease classifier variance, we use a combination of
ensemble sampling with bagging (Liu et al., 2006).
Since the trees were trained on bagged ensembles
downsampled to equal class priors, when applying
the classifiers on (the imbalanced) test data, the
output posteriors, P (B|AP ) (where AP is acous-
tic prosodic features), were adjusted to take into
account the original class priors.

We first developed a large set of candidate
prosodic features, and then performed feature se-
lection to identify a small set of useful features, in
two steps. First, for each of the broad prosodic
feature categories, we selected those features with
a feature usage statistic (measured by the num-
ber of times the feature is used in the decision
trees, see Analysis 1 in Section 5.2 for more details)
higher than a predefined threshold. Then using
these features, we performed leave-one-out feature
selection and removed a feature if its deletion did
not yield any performance loss. The selection was
performed in speaker-independent fashion. We also
tried a speaker-dependent selection, but it did not
yield overall performance improvement. The final

prosodic feature set contained 32 features. Among
them, 16 correspond to duration, 10 to pitch, 3 to
energy, and 3 to pause. Importance of individual
feature groups in terms of feature usage will be dis-
cussed in Analysis 1 in Section 5.2.

3.3. Speaker Adaptation Approach

To adapt the generic speaker-independent mod-
els to a particular speaker, we employ an interpo-
lation approach. The same approach is used for
both language and prosodic model adaptation. The
speaker-adapted (SA) result is obtained from a lin-
ear combination of posterior probabilities from the
speaker-independent model SI, which is trained
from all available data, and a speaker-dependent
model SD, which is trained using only data from
the target talker, that is

PSA(B|X ; λ) = λPSI(B|X)+(1−λ)PSD(B|X)(1)

where X denotes either the observed word con-
text or prosodic feature vector, depending on the
adapted model type, PSI(B|X) and PSD(B|X) de-
note speaker-independent and speaker-dependent
posteriors, and λ is a weighting factor that is em-
pirically optimized on development data. Note that
the SD data is already contained in the SI data
for training. Therefore, for the case of LM adap-
tation, the interpolation does not help reduce out-
of-vocabulary rate. It rather gives a larger weight
to n-grams observed in the data corresponding to
a particular speaker and is expected to better suit
this speaker. Analogous assumptions also motivate
prosodic model adaptation.

4
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4. Data and Experimental Setup

4.1. Speech Database and Dialog Act Annotation

All experiments presented in this paper are eval-
uated using the ICSI meeting corpus (Janin et al.,
2003). The database contains approximately 72
hours of multichannel conversational speech data
and associated human transcripts, manually anno-
tated for DAs (Dhillon et al., 2004). The DA anno-
tation distinguishes five broad DA classes:

• Backchannels (B) – Responses to a speaker
who has the floor as that speaker is talking;
such responses generally do not elicit feedback
Spk 1: “We’ll start with the presentation –”
Spk 2: “Uh-huh.”
Spk 1: “ – and then have lunch.”

• Disruptions (D) – Utterances that are indeci-
pherable, abandoned, or interrupted
“Tell me about the – | Do you hear me?”

• Floor grabbers/holders (F) – DAs pertaining
to mechanisms of grabbing or maintaining the
floor
Spk 1: “I am sure about it. | I can –”
Spk 2: “Well I – | It’s not so easy.”

• Questions (Q) – Interrogative DAs
“Are you happy?”

• Statements (S) – Standard declarative DAs
“She will arrive tomorrow.”

A small number of DAs were not assigned into any
of the above presented classes. These were mostly
pre- or post-meeting chatter or utterances that were
mumbled or could not be understood for some rea-
son.

4.2. Reference and ASR Transcripts

Two different test conditions are used for evalu-
ation: reference transcripts (REF) and automatic
speech recognition output (ASR). Recognition re-
sults were obtained using the state-of-the-art SRI
ASR system, originally developed for the conver-
sational telephone speech domain (Stolcke et al.,
2006). The recognizer was trained using no acous-
tic data or transcripts from the analyzed meeting
corpus. To represent a fully automatic system, we
also used automatic speech/nonspeech segmenta-
tion. Word error rates for this difficult data are
still quite high; the ASR system performed at 38.2%
(on the whole corpus). To generate the “reference”

DA boundaries for the ASR words, we aligned the
reference setup to the recognition output with the
constraint that two aligned words could not occur
further apart than a fixed time threshold (0.5 sec).

4.3. Experimental Setup

For our experiments, we selected the top 20
speakers in terms of each speaker’s total number of
words. Each speaker’s data was split into a train-
ing set (∼70% of data) and a test set (∼30%), with
the caveat that a speaker’s recording in any partic-
ular meeting appeared in only one of the two sets.
Because of data sparsity, especially for the less fre-
quent speakers, we did not use a separate develop-
ment set, but rather jackknifed the test set in our
experiments. In this approach, one half of speaker’s
test data is used to tune weights for the other half,
and vice versa.

The total training set for speaker-independent
models (comprising the training portions of the 20
analyzed speakers, as well as all data from 32 other
less-frequent speakers) contained 567k words. The
total test set contained 204k words for reference
test conditions and 180k for ASR test conditions.
Data set sizes for individual speakers are shown in
Table 1. Speaker identity is described using the
official corpus speaker IDs. The first letter of the
ID denotes the gender of the speaker (“f” or “m”);
the second letter indicates whether the speaker is a
native (“e”) or nonnative (“n”) speaker of English.
The speakers displayed in the table are sorted ac-
cording to the total numbers of words they have
in the corpus. The size of training sets available
for training of the speaker-dependent models ranges
from 5.2k to 115.2k words. Note that the test set
sizes for REF and ASR conditions differ since usu-
ally there are fewer words in ASR outputs than in
the corresponding reference.

4.4. Evaluation Metric

For performance evaluation, we use classification
error rate, called Boundary Error Rate (BER) since
it refers to the number of interword boundaries in
the test set (Shriberg et al., 2000). It is defined as

BER =
Ins + Del

NW

[%] (2)

where Ins denotes the number of false DA bound-
ary insertions, Del the number of misses, and NW

the number of words in the test set. We also present
chance error for every experiment – the error rate
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Table 2: DA segmentation error rates for speaker-independent (SI) and speaker-adapted (SA) language models for individual
speakers in REF conditions [BER %]. Better result for each speaker is shown in boldface, * indicates that the improvement of
SA over SI is significant by the Sign test at p < 0.05.

ID Chance SI SA ID Chance SI SA

me013* 13.66% 6.75% 6.52% mn052 16.53% 7.33% 7.28%

me011* 16.09% 7.40% 7.25% mn021* 13.06% 6.68% 5.65%

fe008* 13.79% 7.51% 7.16% me003 13.36% 8.78% 8.56%

fe016* 14.54% 7.35% 7.18% mn005* 12.99% 7.83% 6.92%

mn015* 14.41% 8.05% 7.80% me045 22.31% 8.90% 8.90%

me018* 17.22% 6.64% 6.45% me025 18.07% 8.06% 7.85%

me010* 14.11% 7.24% 6.84% me006 19.46% 9.53% 9.47%

mn007* 20.52% 7.59% 7.31% me026 11.28% 5.80% 5.80%

mn017* 15.05% 7.02% 6.44% me012* 16.21% 6.85% 6.29%

mn082 11.17% 6.33% 6.21% fn002 19.71% 10.92% 11.33%

Table 3: DA segmentation error rates of speaker-independent and speaker-adapted (SA) language models for individual speakers
in ASR conditions [BER %]. Better result for each speaker is shown in boldface, * indicates that the improvement of SA over
SI is significant by the Sign test at p < 0.05.

ID Chance SI SA ID Chance SI SA

me013* 12.16% 8.29% 8.18% mn052* 14.03% 10.87% 10.17%

me011* 14.77% 8.81% 8.51% mn021* 10.70% 8.20% 7.73%

fe008* 13.32% 9.19% 8.89% me003 12.82% 9.36% 9.33%

fe016 13.72% 8.42% 8.31% mn005* 6.81% 11.47% 10.42%

mn015* 12.69% 10.16% 9.84% me045 16.21% 11.08% 11.27%
me018* 15.09% 8.12% 7.90% me025 16.89% 14.36% 14.36%

me010* 13.28% 8.39% 7.91% me006* 16.06% 10.94% 10.40%

mn007* 14.80% 11.28% 10.78% me026 10.09% 7.35% 6.88%

mn017* 11.80% 8.92% 7.84% me012 13.39% 8.68% 8.31%

mn082 12.31% 10.37% 10.10% fn002 13.83% 13.40% 12.89%

achieved by classifying every word boundary into
the class with the highest prior probability (which
is “non-DA boundary” in our case). Chance perfor-
mance reflects a speaker’s relative rate of various
DA types. For instance, a high chance error rate
typically correlates with a speaker who produces
many short DAs, such as backchannels.

5. Results and Discussion

5.1. Results for Language Model Adaptation

Table 2 shows a comparison of DA segmentation
performance for the baseline speaker-independent
LM and speaker-adapted LMs for individual speak-
ers, using reference transcripts. The results indicate
that performance improved for 17 of 20 speakers.
Note that it is possible for the SA to perform worse
than the SI model, because weights are estimated
on fairly small amounts of data that are separate
from the data on which the model is tested. The

degree of the improvement varies across particular
speakers. For 12 talkers, the improvement was sta-
tistically significant at p < 0.05 using the Sign test.

Table 3 reports the corresponding results for the
ASR conditions. The results show that 18 speak-
ers improved by LM speaker adaptation. Of the
two speakers that did not improve, one also did not
improve for the REF condition. The improvement
was statistically significant at p < 0.05 for 12 of the
18 improved speakers.

An important finding from these results is that
for both test conditions, the relative error reduction
achieved by speaker adaptation is not correlated
with the amount of adaptation data. This find-
ing suggests that speakers differ inherently in how
similar they are to the generic speaker-independent
LM. Some talkers probably differ more and thus
show more gain, even with less data available for
model adaptation.

An overall comparison of performance of baseline
6
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Table 4: Overall DA segmentation error rates of speaker-
independent (SI) and speaker-adapted (SA) language models
in REF and ASR conditions [BER %]

Model REF ASR

Chance 15.02% 13.19%
SI 7.30% 9.06%
SA 6.99% 8.76%

speaker-independent and speaker-adapted LMs is
presented in Table 4. In total, the test set contains
204k words for REF and 180k words for ASR con-
ditions. The results show that for both conditions,
speaker-adapted LMs outperform the baseline. The
overall improvements by LM speaker adaptation
for both conditions are statistically significant at
p < 10−15, using the Sign test. Also note that
the average value of the interpolation weight λ (in
Equation 1) across all speakers is 0.49, so the SI
and SD components are approximately balanced in
the speaker-adapted LMs.

To better understand the effects of speaker adap-
tation on model performance, we also analyzed the
results broken down by DA types as described in
Section 4.1. The results for individual DA types are
shown for both test conditions in Table 5. Along
with SI and SA error rates, the table shows num-
bers of words in each DA group and relative error
changes by speaker adaptation. Negative relative
numbers indicate error rate reduction, and positive
numbers mean increased errors.

In REF conditions, LM speaker adaptation ben-
efited all DA types. The largest relative improve-
ment was achieved for B. Improvements were much
smaller for the other types (S, Q, F, and D). From
these results, we can infer that B is the class that
has the most speaker-idiosyncratic lexical patterns
associated with DA boundaries. The results for
ASR show some differences in comparison with
REF, especially for B. Unlike REF, speaker adap-
tation resulted in an error increase for B in ASR
conditions. The discrepancy may be explained by
the largely different numbers of backchannels in
REF and ASR transcripts; backchannels are of-
ten missed by the ASR system. We notice that
the number of backchannels in ASR conditions is 6
times lower than that in REF. We hypothesize that
those backchannels that were recognized correctly
are also the ones that are less likely to be speaker
specific since the frequent backchannels have higher
probabilities in the LM used for speech recognition.
The highest error reduction by speaker adaptation

in ASR conditions was achieved for S, followed by
F, Q, and D. The improvements for these types are
slightly less than those in the REF condition, pos-
sibly due to ASR errors.

5.2. Results for Prosodic Model Adaptation

Table 6 compares performance of SI and SA
prosodic models for individual speakers in REF con-
ditions. The results indicate that the SA model is
better than the SI model for 7 of the 20 speakers.
For 6 other speakers, SI and SA achieved identi-
cal results because λ was estimated as 0. Using
the Sign test, 4 of the 7 improved speakers showed
improvements significant at p < 0.05 or better;
one speaker (fn002) was marginally significant at
p < 0.10.

Although only some speakers show these im-
provements (while some others show rather poor
results from SA modeling), the finding is impor-
tant. If a speaker shows significantly improved re-
sults using a model trained on far less data than the
SI model, this suggests that the speaker’s prosodic
marking of DA boundaries differs from that of the
SI model. That a number of speakers do not bene-
fit from SA modeling is consistent with their being
well described by the SI model. That is, there are
most likely some consistent ways that people be-
have prosodically, but for some speakers who de-
viate more from these norms, speaker-dependent
modeling is an important direction to investigate
for further improvements.

Table 7 presents results for ASR conditions.
The results indicate that 15 speakers improved by
prosodic model adaptation. Although this is more
speakers than improved for the REF condition, the
magnitudes of improvement were relatively smaller
for the ASR than for the REF condition. Note
that 6 of the 7 speakers who improved in REF
also improved in ASR conditions. Also note that
the speakers who improved in ASR but not in
REF have on average relatively smaller improve-
ments than those who improved in both condi-
tions. Similar to our findings for LM adaptation,
the error reduction of the SA model with respect
to SI varies across speakers in a manner uncor-
related with amount of adaptation data. Using
the Sign test, only one speaker (mn007) showed
a gain significant at p < 0.05 in ASR. One other
speaker (mn005) showed a marginally significant
gain (p < 0.10). The variance between REF and
ASR may be explained, at least in part, by the dif-
ferences in the test sets caused by ASR errors. For
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Table 5: DA segmentation error rates for SI and SA language models by DA type. B – Backchannel, D – Disruption, F – Floor
grabber/holder, Q – Question, S – Statement; NW – Number of test words for the DA type, REL – Relative error change after
adaptation (negative numbers indicate error reduction, positive numbers error increase).

REF ASR

DA NW SI SA REL NW SI SA REL

B 3.6k 9.19% 7.70% -16.16% 0.6k 18.40% 18.91% +2.78%
D 20.9k 12.50% 12.33% -1.38% 17.6k 14.11% 13.98% -0.89%
F 4.3k 38.00% 36.81% -3.13% 3.0k 43.45% 42.61% -1.93%
Q 15.4k 6.30% 6.02% -4.43% 13.7k 8.82% 8.69% -1.49%
S 157.3k 5.75% 5.47% -4.82% 143.3k 7.65% 7.31% -4.40%

example, the ASR data contain a smaller number of
backchannels, which are more difficult for speaker-
specific prosodic modeling (as shown below in Anal-
ysis 2 ). However, the results indicate that there is
more variance in speaker-dependent prosodic mod-
eling than in speaker-dependent language model-
ing. Furthermore, we compare the average values of
λ between speaker-adapted language and prosodic
models. While the average λ across all speakers for
LM adaptation is 0.49, it is 0.67 for prosodic model
adaptation. Thus, the SD component (1-λ in Eq 1)
is less represented in the SA prosodic models than
in the SA language models.

The overall results summed over all 20 speakers
are shown for both test conditions in Table 8. In
REF tests, the overall best performance is from
the SA model. The improvement of SA over SI
in reference conditions is statistically significant at
p < 0.001 using the Sign test. Given the abso-
lute difference in BER, the relatively high level of
significance may seem a little surprising, but there
exist two explanatory reasons. First, the overall
test set is quite large (204k words). Second, if
the SD information does not benefit a particular
speaker, it often gets zero weight in the interpola-
tion model. Thus, both SA and SI show identical
output for many unimproved speakers, which de-
creases variance between the overall outputs and
consequently supports statistical significance in the
Sign test. In ASR conditions, the SA model was
also the best performing one. The superiority of
SA over SI was significant at p < 0.05. The relative
gain by prosodic model speaker adaptation in ASR
conditions was higher than that achieved in REF
conditions.

Analysis 1: Prosodic feature usage

To better understand the results, we analyzed rel-
ative prosodic feature usage for the speakers who
improved in REF conditions. REF was chosen

rather than ASR to focus on the aspect of the
speaker-dependent prosodic characteristics rather
than analyzing effects of speech recognition errors.
The metric “feature usage” (Shriberg et al., 2000)
reflects the number of times a feature is queried in
a tree, weighted by the number of samples it affects
at each node. Total feature usage within a tree
sums to 1. The statistics here are based on aver-
aging results over multiple trees generated in bag-
ging. For this analysis, the prosodic features were
grouped into five nonoverlapping groups: pause at
the boundary in question, duration, pitch, energy,
and “near pause” (pause durations at the preceding
and the following interword boundaries). We com-
pare the SD feature usage distribution with the SI
distributions. In addition, we divide the speakers
into two categories: native English speakers and
non-native speakers. The relative feature usage
statistics from this analysis are shown in Figure 1.

The three native speakers show very similar us-
age to each other and to the SI model. However, as
we saw earlier, SA improves their results. This sug-
gests that even when general feature usage patterns
for a talker are similar to those of the SI model, spe-
cific features and/or feature thresholds may still be
better modeled by training on the specific speaker.
Given that this analysis is based on only three na-
tive speakers (their SA model improved over SI),
it is possible that not all native speakers show the
same pattern. This is a question for further research
on a larger data set.

Feature usage for nonnative speakers, on the
other hand, looks quite different. Speakers differ
from each other, as well as from the SI pattern.
Although more research is needed before drawing
final conclusions, this finding is nevertheless con-
sistent with stylistic differences between nonnative
speakers and an overall SI model, in prosodic mark-
ing of DA boundaries. An obvious next question
would be whether improvement depends on native

8
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Table 6: DA segmentation error rates for SI and SA prosodic models in REF conditions [BER %]. Better result for each speaker
is shown in boldface, * indicates that the improvement of SA over SI is significant at p < 0.05 using the Sign test.

ID Chance SI SA ID Chance SI SA

me013 13.66% 8.36% 8.39% mn052 16.53% 8.29% 8.32%
me011* 16.09% 6.61% 6.41% mn021 13.06% 8.01% 8.08%
fe008 13.79% 8.53% 8.55% me003 13.36% 5.83% 5.83%

fe016* 14.54% 9.62% 9.52% mn005* 12.99% 7.73% 7.18%

mn015 14.41% 7.99% 7.96% me045 22.31% 7.20% 7.29%
me018 17.22% 7.74% 7.74% me025 18.07% 8.32% 8.32%

me010 14.11% 8.30% 8.20% me006 19.46% 9.86% 9.99%
mn007* 20.52% 10.71% 10.19% me026 11.28% 7.94% 7.94%

mn017 15.05% 8.03% 8.03% me012 16.21% 8.66% 8.66%

mn082 11.17% 9.00% 9.02% fn002 19.71% 9.79% 9.32%

Table 7: DA segmentation error rates for SI and SA prosodic models in ASR conditions [BER %]. Better result for each speaker
is shown in boldface, * indicates that the improvement of SA over SI is significant at p < 0.05 using the Sign test.

ID Chance SI SA ID Chance SI SA

me013 12.16% 8.41% 8.37% mn052 14.03% 8.96% 8.70%

me011 14.77% 7.01% 6.77% mn021 10.70% 7.56% 7.56%

fe008 13.32% 9.04% 8.90% me003 12.82% 6.40% 6.27%

fe016 13.72% 9.40% 9.41% mn005 6.81% 6.78% 5.90%

mn015 12.69% 8.09% 7.96% me045 16.21% 7.93% 7.89%

me018 15.09% 8.16% 8.18% me025 16.89% 11.14% 10.83%

me010 13.28% 8.62% 8.30% me006 16.06% 10.94% 10.63%

mn007* 14.80% 10.74% 10.01% me026 10.09% 7.91% 7.61%

mn017 11.80% 8.04% 8.04% me012 13.39% 8.99% 8.99%

mn082 12.31% 8.03% 8.00% fn002 13.83% 9.74% 9.46%

Table 8: Overall DA segmentation error rates for speaker-
independent (SI) and speaker-adapted (SA) prosodic models
in REF and ASR conditions [BER %]

Model REF ASR

Chance 15.02% 13.19%
SI 8.25% 8.41%
SA 8.19% 8.26%

language, proficiency in English, or degree of per-
ceived accent. The sample of nonnative speakers is
too small to examine these questions. In our pre-
liminary analysis, we found that among the three
native German speakers in our data set, all highly
proficient in English, one speaker improved from in-
dividual modeling while two others did not. Of the
three Spanish speakers, all moderately proficient,
two improved and one did not. Further studies are
still needed to examine other factors.

Analysis 2: DA types, prosody and LM

We performed analysis of prosodic adaptation
benefits for individual DA types. The results are
displayed in Table 9, for both REF and ASR con-
ditions. In REF conditions, the highest improve-
ment from speaker adaptation was achieved for D,
followed by Q and S. On the other hand, speaker
adaptation resulted in worse results for F, and es-
pecially for B. The results for ASR conditions are
quite similar, with slightly better improvement for
most DA types. Speaker adaptation benefited D,
S, and Q, but hurt F and B. The effects of prosodic
adaptation on B and F are almost opposite to those
of LM adaptation. For example, in REF conditions,
B had the highest improvement by LM adaptation,
but the highest performance drop by prosodic adap-
tation. Similarly, F shows improvement for LM but
not for prosody. Thus, we conclude that, overall,
prosodic model speaker adaptation has different im-
provement patterns than LM speaker adaptation.

Another obvious question is whether the speak-
ers who benefit from prosodic model adaptation

9
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Figure 1: Relative usage of prosodic feature groups for na-
tive (top) and nonnative (bottom) speakers who improved
from SA in REF conditions

also benefit from LM adaptation. Of the 7 speak-
ers who improved by prosodic adaptation in REF
conditions, 6 also improved by LM adaptation.
The number of improved speakers in common may
seem high, but it approximately corresponds to
the chance agreement based on the counts of im-
proved speakers in both sets (5.95 speakers). Simi-
larly, of the 15 speakers who improved by prosodic
adaptation in ASR conditions, 13 improved also by
LM adaptation, while the chance agreement is 13.5
speakers. These numbers indicate that there was
no apparent correlation between speakers’ idiosyn-
crasy in prosodic and lexical patterns associated
with DA boundaries.

6. Summary and Conclusions

We have investigated speaker-specific language
and prosodic modeling for automatic DA segmenta-
tion in multiparty meetings. The method was eval-
uated on 20 frequent speakers with amounts of data
available for speaker-dependent modeling ranging
from 5k to 115k words. In the first set of exper-
iments, we explored speaker adaptation of hidden
event language models. Improvements were found
for 17 of the 20 speakers using reference transcripts,
and for 18 of the 20 speakers using automatic tran-
scripts. It was not expected that all speakers may
improve because some speakers may be close to
the SI model. We also measured overall results,
summed over all 20 speakers. These results showed
that we achieved a statistically significant improve-
ment over the baseline LM for both test conditions.

In the second set of experiments for speaker adap-
tation of prosody model, we observed improved re-
sults for 7 of the 20 speakers in reference conditions,
and for 15 of the 20 speakers in ASR conditions.
In the ASR conditions, we observed a higher num-
ber of improved speakers, but the improvements
were relatively smaller than those in the REF con-
ditions. Also note that the speakers who improved
in ASR but not in REF have on average relatively
smaller improvements than those who improved in
both conditions. The variance between REF and
ASR may be explained in part by the differences
in the test sets caused by ASR errors. However,
the results indicate that there is more variance in
speaker-dependent prosodic modeling than in lan-
guage modeling. Overall results, summed over all
20 speakers, indicate modest yet statistically signifi-
cant improvement by prosodic model adaptation for
both test conditions. The relative overall improve-
ment was smaller than that achieved by LM adapta-
tion. Prosodic feature analysis, while preliminary
given the number of speakers, suggests that non-
native speakers may differ from native speakers in
overall feature usage patterns associated with DA
boundaries.

For both types of speaker adaptation, improve-
ments were achieved even for some talkers who had
only a relatively small amount of data available for
adaptation. In addition, the relative error reduction
achieved by speaker adaptation was not correlated
with the amount of adaptation data. This find-
ing suggests that speakers differ inherently in how
similar they are to the generic models. Some talk-
ers probably differ more and thus show more gain,
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Table 9: DA segmentation error rates for SI and SA prosodic models by DA type. B – Backchannel, D – Disruption, F – Floor
grabber/holder, Q – Question, S – Statement; NW – Number of test words for the DA type, REL – Relative error change after
adaptation (negative numbers indicate error reduction, positive numbers error increase).

REF ASR

DA NW SI SA REL NW SI SA REL

B 3.6k 6.69% 7.20% +7.53% 0.6k 19.93% 21.12% +5.98%
D 20.9k 9.96% 9.78% -1.87% 17.6k 9.72% 9.33% -3.97%
F 4.3k 37.81% 38.40% +1.54% 3.0k 44.92% 45.42% +1.12%
Q 15.4k 6.32% 6.23% -1.34% 13.7k 6.38% 6.27% -1.83%
S 157.3k 7.43% 7.36% -0.88% 143.3k 7.63% 7.49% -1.87%

even with less data. We also found that the agree-
ment between speakers who improved by LM adap-
tation and those who improved by prosodic adap-
tation is not higher than chance. Thus, there is
no apparent correlation between speakers’ idiosyn-
crasy in prosodic and lexical patterns associated
with DA boundaries. Further analysis revealed that
LM and prosodic speaker adaptation differ in the
DA types that they benefit. For example, while LM
adaptation benefits backchannels and floor grab-
bers/holders, prosodic adaptation hurts them.

We conclude that speaker adaptation aids both
prosody- and LM-based DA segmentation, and that
future work should investigate the potential of
speaker-specific modeling for other tasks in spoken
language understanding. The techniques for model
adaptation to speaker behavior may be extremely
helpful for various speech-based applications. Im-
portant areas for future extensions of our work in-
clude the integration of lexical with prosodic or even
multimodal information in a single model, investi-
gating clustering of speakers similar in behavior for
greater model robustness, and exploration of unsu-
pervised adaptation approaches.
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