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Abstract 
This article presents a segmental vocoder driven by ultrasound and optical images (standard 
CCD camera) of the tongue and lips for a “silent speech interface” application, usable either 
by a laryngectomized patient or for silent communication. The system is built around an 
audio-visual dictionary which associates visual to acoustic observations for each phonetic 
class. Visual features are extracted from ultrasound images of the tongue and from video 
images of the lips using a PCA-based image coding technique. Visual observations of each 
phonetic class are modeled by continuous HMMs. The system then combines a phone 
recognition stage with corpus-based synthesis. In the recognition stage, the visual HMMs are 
used to identify phonetic targets in a sequence of visual features. In the synthesis stage, these 
phonetic targets constrain the dictionary search for the sequence of diphones that maximizes 
similarity to the input test data in the visual space, subject to a concatenation cost in the 
acoustic domain. A prosody template is extracted from the training corpus, and the final 
speech waveform is generated using “Harmonic plus Noise Model” concatenative synthesis 
techniques. Experimental results are based on an audiovisual database containing one hour of 
continuous speech from each of two speakers.  
 
Keyword: silent speech, ultrasound, corpus-based speech synthesis, visual phone recognition 
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1) Introduction 

In recent years, the design of a device allowing speech communication without 

vocalization of the sound has emerged as a new research domain. This “Silent Speech 

Interface”, or SSI, targets several applications. The device could for example be used for 

voice communication in a silence-restricted environment, either to preserve privacy in a 

public place, or for hands-free data transmission during a military or security operation. Based 

only on non-acoustic information, the SSI also enables voice communication even when 

speech is masked by background noise. The second main targeted application is medical: for 

assistance to a laryngectomized patient, using the SSI as an alternative to the electrolarynx; to 

oesophageal speech, which is difficult to master; or to tracheo-oesoephageal speech, which 

requires an additional surgery.  

Different approaches and solutions have been adopted and described in the literature to 

make silent communication possible. For some applications, such as private communication 

by non-laryngectomized people, “absolute silence” may not always be necessary. A small 

airflow in the vocal tract can produce a “murmur” which is captured by a stethoscopic 

microphone, as in Heracleous et al. (2005) and Tran et al. (2008). In other applications, the 

SSI must be able to recover an intelligible speech signal exclusively from a stream of non-

acoustic features. These features measure the activity of the voice organ during the production 

of silent speech and can be derived from different measuring techniques. In Maier-Hein et al. 

(2005), for example, several surface EMG electrodes placed on the speaker’s face record 

myoelectric signals. In Jorgensen et al. (2003), an electro-palatogram device (EPG) is 

combined with the same type of EMG surface electrodes, placed below the jaw in order to 

record the activity of the larynx and sublingual areas together with tongue-palate contacts. In 

Fagan et al. (2008), magnets are glued to the tongue and lips and tracked by magnetic sensors 

incorporated in a pair of eyeglasses.  
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In our approach, a portion of the vocal tract is imaged using an ultrasound device coupled 

with a standard optical camera as shown in figure 1. This multimodal imaging system focuses 

mainly on tongue and lip visualization, even if some other vocal tract structures can also be 

observed. Because of its non-invasive property, clinical safety and good time resolution, 

ultrasound is well adapted to vocal tract imaging and analysis. Furthermore, since laptop 

based high performance ultrasound imaging systems are available today1, a wearable real-

time SSI system with an embedded ultrasound transducer and camera, can reasonably be 

envisioned.  

 

Figure 1:  Ultrasound-based silent speech interface (schematic). 

The problem of speech synthesis from the analysis of articulatory motion is usually 

addressed by the use of a two or three-dimensional articulatory model of the vocal tract (as in 

Maeda (1990), Sinder et al. (1997), Birkholz and Jackèl (2003)). However, the state of the art 

in high-quality speech synthesis uses a segmental approach (or HMM-based methods, as 

discussed later), in which the speech waveform is obtained by concatenating acoustic speech 

segments. In our work, we propose to drive a segmental vocoder by visual observations of the 

articulators. In what follows, the terms “visual information” and “visual observations” are 

taken to refer both to the ultrasound and optical images.  

Our approach integrates a phone recognition stage with a corpus-based synthesis system. 

As the first (off-line) step, an “audio-visual” dictionary is built from a training set containing 
                                                        
1 For example, the Terason T3000 portable ultrasound system http://www.terason.com  
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units which associate the acoustic and visual realizations of each phone; this dictionary will 

later be used in the synthesis step. Given a test sequence of visual information only, the 

vocoder generates the speech waveform in three stages:  

a) An HMM-based decoder predicts a sequence of phonetic targets from the given set 

of visual features.  

b) A unit selection algorithm, driven by this prediction, searches in the dictionary the 

optimal sequence of audio-visual units that best matches the input test data.   

c) A speech waveform is generated by concatenating the acoustic segments for all 

selected units. Since there is no glottal activity, recovering an “acceptable” prosody 

from “silent data” is an issue, and prosodic transformations of the synthesized 

speech waveform are needed. These transformations are achieved using “Harmonic 

plus Noise Model” (HNM) (Stylianou et al. (1997)) coding and synthesis 

techniques.  

An overview of the recognition/synthesis system is given in figure 2.  
 
 
 

 
Figure 2:  Overview of the segmental vocoder 
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Our study is based on a two-speaker (one male, one female, native speakers of American 

English), audiovisual database containing one hour (per speaker) of ultrasound and optical 

images of the tongue and lips, recorded along with the acoustic signal. We point out that all 

experiments are performed here using uttered speech. The aim of the paper is to study the 

performance of our SSI on these databases; it will of course ultimately need to be evaluated 

on truly “silent” speech, which may be a non-trivial issue. 

 The second section of the article describes the data acquisition protocol and database 

content. The third section details visual feature extraction techniques, while the fourth 

describes the implementation of the visual phone recognizer and evaluates its performance for 

different levels of linguistic constraints. Finally, the unit selection algorithm, waveform 

generation procedures, and HNM-based prosody adaptation are presented in the fifth section 

together with experimental results. 

2) Data acquisition 

The “Head And Transducer Support” system (HATS, Stone and Davis (1995)) is used for 

data collection. In this system, the transducer is locked into a fixed position beneath the chin 

and the head is immobilized. Evolution towards a portable acquisition apparatus is being 

investigated for a future study. An acoustic standoff is used to minimize or eliminate upward 

pressure from the transducer on the tissue. Tongue data were collected with an Aloka SSD-

1000 ultrasound machine with a multi-frequency (2.5-6 MHz) convex transducer (120° scan 

angle) which provides a single section of the tongue, in this case the midsagittal plane. The 

ultrasound machine was configured for a single focal point at a 7 cm depth, and post-

processing algorithms, such as image averaging and speckle reduction, were disabled. To get 

both profile and lateral views of the speaker’s lips, two standard video cameras were used. A 

microphone captured the speech signal. The three video streams (two cameras plus 

ultrasound) and the audio signal are combined together into the same video sequence with an 
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analog video mixer in the NTSC format. This analog acquisition system unfortunately limits 

the frame rate of the video data to 29.97 Hz since the three video streams become normalized 

to this rate. A new digital acquisition system, which permits to work at higher frames rates 

and can handle streams with different frame rates, is currently under study (Ultraspeech 

system, Hueber et al. (2008a)). Typical images recorded by the current, analog acquisition 

system are shown in figure 3. 

  
Figure 3: Example of an ultrasound vocal tract image with embedded lip view and 

regions of interest for speaker A (left) and speaker B 

Because our approach combines phone recognition and diphone-based concatenative 

synthesis, the textual material of the recorded database must be phonetically balanced and 

have a good coverage of the diphone space. To meet these two conditions, the CMU-Arctic 

text corpus, which is used for the design of synthetic voices in the Festvox Text-to-Speech 

system (Kominek et al. (2004)) was chosen. This corpus contains 1132 sentences divided into 

two phonetically balanced sets (S1 and S2) containing respectively 593 and 539 items. 

American English is described here by a phoneme set of 41 elements (39 phonemes plus 

schwa and pause) so that the diphone coverage in sets S1 and S2 is 78 % and 75.4 % 

respectively.  

Two native speakers of American English (one female and one male, referred to 

respectively as A and B) were asked to read all sentences of both sets, which were displayed 

on a laptop screen in front of them. The speakers were instructed to speak as neutrally as 

apex 
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possible. Because no inter-session recalibration mechanism was employed, data was recorded 

in a single long session during which subjects remained fixed in the HATS system. For both 

speakers, the full Arctic S1 set was acquired, but because of speaker fatigue, the acquisition of 

set S2 was limited to 80%, so that the total number of sentences was 1020 rather than the 

expected 1132. 

Due to tissue deformation or abnormal movement of the acoustic standoff, some 

displacements or drifts may be observed over the course of an acquisition session of several 

hours. In a head-based coordinate system, potential head and transducer displacements can be 

detected and monitored by extracting palatal traces at intervals throughout the acquisition. 

This is because during swallowing, the tongue contacts the roof of the mouth, allowing the 

ultrasound beam to traverse soft tissue until it is reflected by the palate bone (Epstein et al. 

(2001)).  To obtain the palatal traces, 10 cc water deglutitions were executed during brief 

pauses every 90 sentences. For both speakers, the palatal traces extracted manually from 4 

widely separated deglutitions are super-imposed and shown in figure 4.  

  
Figure 4: Palatal traces extracted during 4 separated deglutitions  

For speaker A, the proximity of the palatal traces demonstrates that the speaker’s head 

remained stable during the acquisition. However, this is obviously not the case for speaker B, 

for whom the head/transducer relationship has changed substantially between “Time 1” and 

“Time 2”. This “accidental” displacement, which was noticed and reported by speaker B 

during the acquisition, occurred after the recording of 240 sentences. From observing the 

Speaker A  Speaker B 
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orientation of the hyoid and mandible acoustic shadows in the ultrasound images before and 

after this displacement, it became apparent that the images corresponding to the first 240 

recorded sentences of speaker B were shifted. In order to avoid introducing image degradation 

with a re-alignment procedure, which would consist here of an image rotation, the first 240 

sentences of the speaker B database were simply dropped, and in order to have the same 

amount of data in both databases, we chose to drop these sentences from the speaker A 

database as well. Even after removing these data, as compared with speaker A, palatal traces 

of speaker B between Time 2 and Time 4 still appeared less stable, and periodic alignment 

problems in fact remained. In a sequence of optical images, where reference points can be 

tracked (the eyes for instance), such displacements, which are a combination of translations 

and rotations, can be estimated. However, their accurate estimation in a sequence of 

ultrasound images, where tracking a tissue point is much more difficult, was considered 

unfeasible, and in the end the remainder of the speaker B database was left as it was taken. In 

a general sense, the anatomy of speaker B resulted in his being less well fixed into the 

acquisition setup, and the problems encountered undoubtedly contributed to the deficit in 

performance observed for this speaker, as discussed below. There is still much to be learned 

about the best way to adapt an ultrasound SSI system to each individual user; these concerns 

will also enter into the design of a future, portable apparatus.  

Although it is not a major focus of the present article, we note in passing that stabilizing 

the position and orientation of the ultrasound transducer and camera with respect to the 

speaker’s vocal tract will definitely be a major challenge. As a first step towards a wearable 

system, we have been experimenting with 3D accelerometers which measure the position of 

the ultrasound probe with respect of the speaker’s head. Such a technique may help re-align 

the ultrasound images and compensate for relative movement of the probe or optical camera. 
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After cleaning the data, both speaker databases contained roughly 45 minutes of speech 

(780 sentences) and 80 000 bitmap frames. Audio files were sampled at 16 000 Hz.  

3) Tongue and lip visual feature extraction 

This section describes all steps of the visual feature extraction chain, in which acquired 

images are processed and coded into vectors of features. First, regions of interest (ROI) are 

selected in ultrasound and optical images. For ultrasound images, the region of interest is a 

rectangle delimited horizontally by the acoustic shadows of the mandible and hyoid bone, and 

vertically by the short tendon, hyoid bone and palate (visible during deglutition), as shown in 

figure 3. If the head position relative to the transducer remains the same during the 

acquisition, the region of interest determined on the first recorded images is considered valid 

for the rest of the database. For the lip images, the region of interest is defined as a bounding 

box including the lips, as shown in figure 3. Following the observations of Lucey and 

Potamianos (2006) and Hueber et al. (2008b), that the frontal view of the lips seems to 

provide more articulatory information than the profile, only the frontal view will be used in 

this study, although both are present in the database. 

A natural approach for describing an ultrasound image of the tongue is the extraction and 

the parameterization of the tongue surface contour, for which approaches based on active 

contours (snakes), often combined with a spline interpolation of the tongue surface, are state 

of the art (Li et al. (2005), Akgul et al. (2000)). However, when nearly parallel to the 

ultrasound beam, the tongue surface is poorly imaged, as in the case of the phoneme [iy]2 (as 

in beet) for instance. Contour tracking algorithms are also not efficient enough to cope with 

small gaps or “double edge” artifacts appearing in the tongue contour, and may fail for such 

frames. One solution to this problem consists in a more global approach where the entire 

region of interest is taken into account. In Hueber et al. (2007a), the “EigenTongues” 

                                                        
2 In this paper, the TIMIT format is used for phonetic transcription  
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approach, derived from the “EigenFaces” method developed for face recognition (Turk and 

Pentland (1991)) was introduced. In this technique, each ultrasound image is projected into 

the representative space of “EigenTongues”. This space can be seen as the space of standard 

vocal tract configurations and is obtained after a Principal Components Analysis (PCA) of a 

subset of typical frames. In order to guarantee a better exploration of the possible vocal tract 

configurations, this subset is constructed so as to be phonetically balanced. The EigenTongue 

components encode the maximum amount of relevant information in the images, mainly 

tongue position, of course, but also other structures such as the hyoid bone, the position of the 

short tendon, visible muscles such as the genioglossus and also fat below the tongue.  A 

similar “EigenLips” decomposition is used to encode optical images of the lips.  An 

illustration of the EigenTongue/EigenLips decomposition techniques is given in figure 5, 

where a tongue image and a lip image are represented by their coordinates  and . 

 

 
Image to encode 

= 
   

x
 

Visual Features
 

EigenTongues/EigenLips 

  

  …
 

…
 

  

Figure 5: Encoding ultrasound and optical images of the tongue and lips using the 
EigenTongue/EigenLips decomposition. 

The authors also tried other dimensionality reduction techniques such as Linear 

Discriminant Analysis and fast linear transforms (Discrete Cosine Transform). These 

alternatives however were unable to improve the recognition results.  

Before performing the EigenTongue/EigenLips decomposition, ultrasound and optical 

regions of interest are resized to 64x64 pixel images using cubic interpolation and are 

converted to grayscale. To reduce the effect of speckle, reduced ultrasound images are often 
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filtered using an anisotropic diffusion filter, which tends to smooth the noise without 

destroying important features such as edges (Perona and Malik (1990)). The filter proposed 

by Yu (Yu and Acton (2002)), was adopted here. The indices n,m which quantify the number 

of projections onto the set of EigenTongues/EigenLips used for coding are obtained 

empirically by evaluating the quality of the image reconstructed from its first few 

components. Typical values of the pair (n, m) used on both database are (30, 30). In order to 

be compatible (albeit artificially) with a more standard frame rate for speech analysis, the 

sequences of EigenTongues/EigenLips coefficients are oversampled from 30 Hz to 100 Hz 

using linear interpolation. The effective frame size thus corresponds to 10 ms.  Using a 

“feature fusion strategy”, tongue and lip features are concatenated into a single visual feature 

vector, along with their first and second derivatives, resulting in vectors of typically 180 

components. The eigentongues/eigenlips features are used in the remainder of this article.  

4) Visuo-phonetic decoding 

4.1) Implementation and evaluation protocol 

This section details the visuo-phonetic decoding stage, in which an HMM-based speech 

recognizer predicts a sequence of phonetic targets from an unknown sequence of visual 

features. The choice of HMM-based modeling rather than a simple GMM is motivated by the 

assumption that a visual phone must be interpreted in terms of tongue and lip trajectories, and 

not only in terms of static articulatory positions. During the training stage, sequences of visual 

features are modeled, for each phonetic class, by a left-to-right, 5-state (with one non-emitting 

initial state and one non-emitting terminating state), context independent, continuous HMM. 

It was assumed that context-dependent models could not have been efficiently trained, even 

with parameter tying, because of the small size of our training datasets (less than one hour).  

Phonetic transcription is derived from the text by using the CMU pronunciation dictionary, 

which transcribes over 125 000 words into phone sequences. The set of 41 visual phone 
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models is initialized by a uniform segmentation of the visual data (flat start initialization) and 

refined using incremental embedded training. During training, the number of Gaussians per 

state is increased iteratively up to 32 using a dyadic procedure. All HMM work in our study 

was done using the HTK front-end (Young et al. (2005)). 

During the testing stage, phonetic decoding is performed using a “Token Passing” 

algorithm which finds the optimal path through an HMM network (Young et al. (1989)). 

Recognizing accurately a sequence of phones from tongue and lip observations only is a 

difficult task. Some very important sources of information are missing in the visual data, such 

as the voiced/unvoiced characteristic and the nasality. Moreover, the tongue visualization is 

incomplete. The apex (the tongue tip), which is very important in the articulation of dental 

sounds, is not always correctly imaged in ultrasound imagery, as it is often hidden by the 

acoustic shadow of the mandible. To overcome these limitations, linguistic constraints can be 

introduced to help the phonetic decoding.  In a traditional “audio speech recognition task”, a 

stochastic language model trained on large text corpora can be used to constrain the HMM 

decoding. Because the CMU-Arctic corpus was originally designed for speech synthesis, it 

does not necessarily contain the most likely combination of sub-word units and could even 

show very rare ones. This is why the use of a universal language model, which a priori would 

not be efficient on that corpus, is not envisioned in this paper.  

The size and the content of the dictionary from which the decoding network is built could 

also have an important impact on system performance. In this study, we propose to use the 

dictionary as a way of introducing a variable level of linguistic constraint in the HMM 

decoding process.  Three decoding scenarios are introduced:  
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a) In the “free phonetic” decoding scenario, the dictionary contains all possible phones; 

no phonotactic constraint is used; and the grammar from which the decoding network 

is built allows all possible phoneme combinations.  

b) In the “word-based” scenario, the decoder is forced to recognize words contained in 

the CMU-Arctic sentences. In this scenario, the word dictionary contains 2569 items 

and the grammar allows all possible word combinations.  

c) These first two represent the highest and lowest levels of linguistic constraint. In the 

third, intermediate scenario, called “hybrid” phonetic decoding, the dictionary 

contains all diphones and triphones observed in the CMU-Arctic corpus, plus all 

words in the CMU-Arctic sentences, for a total of 12 125 items.  

The choice of decoding scenario depends upon the targeted application of the silent vocoder. 

If it requires a strictly open-domain vocabulary, the system should theoretically be able to 

decode all possible phoneme combinations, and the first scenario is the most realistic. For a 

limited-vocabulary application, on the other hand, the second, “strongly constrained” 

scenario, with its word-based dictionary, will be preferable. Between these two extremes, the 

third scenario, with its relatively low level of linguistic constraint, appears most acceptable 

for a generic application. 

For performance evaluation, the 780 sentences of databases A and B are divided into 26 

lists of 30 sentences. In order to increase the statistical relevance of the speech recognizer 

performance, we use a jackknife procedure (Efron (1981)) in which each list is used once as 

the test set while the other lists compose the training set.  For each phone class, a 

representative measure P of the recognizer performance, the phoneme accuracy, is defined as 
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where N is the total number of phones in the reference string of the test set, D the number of 

deletion errors, S substitution errors, and I insertion errors. According to the Wilson formula, 

(Hogg and Tanis (1996)), a 95 % confidence half-interval is computed: 

 with  and a normal distribution assumption. 

Phonetic equivalence classes, in which within-group confusions were not counted as errors, 

were also created among some of the 41 visual HMMs. These are {[er]-[r]}, {[ih]-[iy]}, 

{[uh]-[uw]}, {[ao]-[ow]} and {[aa]-[ah]}; an additional class, {[sh]-[zh]}, was added to 

account for the rare occurrences of the phoneme [zh] (52 times in the database). The jackknife 

procedure produces 26 (ideally independent) experiments, of which two are kept for 

validation. The number of Gaussians per state for each recognizer, as well as an inter-HMM 

transition penalty3, used to limit the number of insertions, are estimated using these validation 

experiments. The authors chose parameters so as to maximize the phoneme accuracy. An 

alternative approach would be to tune the inter-model transition penalty to balance the 

insertion and deletion rates. However, in tests using the visuo-phonetic decoding scenarios, 

several percentage points of recognition accuracy were lost in the process. As discussed 

below, this suggests that the numerous deletions are “real”, and a consequence of the low 

frame rate of our acquisition system. 

In order to compare the visual recognizer performance to a “best possible” result, a 

traditional phonetic decoder, based on acoustic features derived from the uttered speech 

signal, is also evaluated. The acoustic component of the audiovisual database was first 

parameterized using 12 Mel-frequency cepstral coefficients, along with their energies and first 

and second derivatives, and modeled by a set of 41 continuous HMMs (left-to-right, 5 states, 

32 Gaussians per state). An identical procedure as that used in the modeling of the visual 

                                                        
3 Typical values for this penalty are -100 (HTK model insertion log probability) for the word-based model and 
triphone/diphone-based model (hybrid decoding scenario), and -20 for the phone-based model. 
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features was used here for training, testing and evaluating the performance of this acoustic 

phonetic decoder.  

4.2) Experimental results and interpretations 

Table 1 details the performance of the visual phone recognizer, for both speakers and 

for the three different decoding scenarios.  

 

 Speaker A Speaker B 
 Phone-based 

decoding 
Hybrid 

decoding 
Word-based 

decoding 
Phone-based 

decoding 
Hybrid 

decoding 
Word-based 

decoding 
 A V A V A V A V A V A V 

P(%) 80.8 59.0 85.8 60.8 89.6 67.6 77.3 48.3 83.1 50.9 86.2 56.0 
2Δ 1.0 1,2 0.9 1,2 0.8 1,2 1.0 1.3 0.9 1.3 0.9 1.2 
D 2087 4614 1780 4711 1305 3383 2397 6362 2145 7040 1550 5388 
S 2163 4409 1305 4062 923 3567 2717 5292 1627 4341 1419 4417 
I 464 1039 394 846 318 984 459 1027 361 662 406 993 
N 24496 

Table 1: Visual (V) and acoustic (A) based phone recognizer performance 

 

While it is reassuring to see that the performance is roughly similar for the two speakers, the 

phone recognizer in fact performs better for speaker A than for speaker B in all decoding 

scenarios. As seen in section 2, some experimental issues characterized by small 

displacements of speaker’s head occurred during database B recording. Such shifts can lead to 

two identical articulatory configurations being imaged differently, thus degrading the 

coherence of the feature space and in turn, the accuracy of the visual HMMs. To correct for 

this, both lip images and ultrasound images would need to be re-aligned for this database. 

Such a procedure is very difficult and, was considered to be too cumbersome for the scope of 

this article. The interpretations and discussions in the remainder of the article will focus on 

database A, which was recorded without any of these experimental difficulties.  

As expected, the level of linguistic constraints on the HMM decoding has an influence 

on the system performance. For both audio and video modalities, the best and worst 

performances are always achieved for the word-based and phone-based decoding scenarios, 
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respectively. Performance obtained in the hybrid decoding scenario, where word and sub-

words based units are merged in the same dictionary, is always intermediate. This decoding 

scheme embeds enough linguistic information to constrain the recognition without limiting 

the available vocabulary, and is thus appropriate for generic applications. For comparison, we 

also tested a phone based decoding scenario with a simple bigram language model based on 

the training set. Using this model, we obtained a 0.7% absolute improvement compared to the 

“free” phonetic decoding scenario. Such a phonotactic language model does not actually 

assist the recognizer very much because the CMU corpus was constructed to ideally cover the 

entire the diphone space, and, as such, it may contain unusual phone sequences. Our hybrid 

scenario gives better performance. 

The performance of the visual phone recognizer is plagued by a large number of 

deletion errors, especially when decoding is done with a relative low-level of linguistic 

constraints, as in the phone-based and hybrid scenarios. The phones which are most often 

deleted are very short ones, corresponding to rapid articulatory gestures such as [t], [d] and 

[n]. In fact, the phone [t], with a mean duration of 65 ms in our database, is usually 

represented by only one or two ultrasound images in a 30 fps video sequence, and between 3 

and 6 frames after feature interpolation. This phone is thus poorly modeled by a 3-state 

HMM. This issue is illustrated in figure 6, where estimated probability density functions of 

the five first EigenTongue coefficients, for the three emitting HMM states, are displayed for 

phones [t] and [ng]. For the phone [ng], with a mean duration of 126 ms in our database, the 

tongue trajectory is represented by 3 or 4 images (9 to 12 interpolated frames), so that each 

state of the HMM can model a specific portion of the tongue motion. Thus, the estimated 

probability density functions differ significantly from one state to another (see figure 6), while 

in the case of the phone [t], they are quite similar. This suggests that we could use smaller 

HMM models (1 or 2 emitting states) for short phones. We partially circumvent this problem 
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by interpolating the visual features such that the effective frame size corresponds to 10 ms 

(see section 3, page 11). In order to reduce the deletion rate, a new acquisition system with 

higher frame rate (Ultraspeech system, Hueber et al. (2008a)) is under study; it is further 

discussed in the concluding section of the article. 

 

 
 

 
Figure 6: Estimated probability density function for the 5 first EigenTongues 

coefficients (referred as « Feature ») of the 3 emitting HMM states, for the phone [ng] (top) 
and phone [t] (bottom). 
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In order to further analyze the quality of the HMM-based modeling, a confusion matrix is 

derived for the unconstrained phone-based decoding scenario (speaker A), as displayed in 

figure 7. 

 
 
 
 
 

 
 

Figure 7: Confusion matrix for phone recognition from ultrasound tongue sequences and 
frontal lip views for database A in the phone-based decoding scenario. The color space map was 

chosen to emphasize errors. The histogram at top shows the number of occurrences of each phone in 
the database. Most of the errors in the confusion matrix for speaker B (not shown) are of the same 

type as those discussed for speaker A. 

As expected, the phones which are the most often confused are those with similar articulatory 

gestures such as {[p],[b],[m]}, {[k],[g],[ng]}, {[f],[v]}, {[s],[z]} and {[t],[d],[n]}. Some of the 

vowel mismatches are quite “reasonable”, such as [uh] (book) being confused with [uw] 

(boot), and [iy] (beet) interpreted as [ih] (bit). Because of vowel reduction and syllabic 

consonants (such as the [l] in “bottle”), many phones are confused with the phone [ah]. 

Diphthongs for which a tongue glide is involved are sometimes confused with one of their 

pure vowel components, for example [ey] (bait), [oy] (boy) and [ow] may be matched with 
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[ah], [iy] and [ao] (caught) respectively. The matrix also clearly shows an error occurring on 

dental and alveolar sounds {[th],[dh]} (thin, then) and {[t],[d],[s],[sh]}. This can be explained 

by the lack of information about the tongue tip (apex) and voicing in the ultrasound images. 

Most of the errors in the confusion matrix for speaker B (not shown) are of the same type as 

those discussed for speaker A. 

Finally, we study the contributions of video (lips) and ultrasound (tongue) individually to 

the recognition accuracy, for speaker A and the phone-based scenario, as shown in Table 2. 

  
Baseline 

(Tongue+Lips) 
Ultrasound 
(Tongue) 

Video 
(Lips) 

P (%) 59,0% 55,9% 39,0% 

2∆ 1,2% 1,2% 1,2% 

D 4614 5702 6782 

S 4409 4277 6805 

I 1039 830 1338 

N 24496 

Table 2: Phone recognizer performances using ultrasound (Tongue) and video (Lips) streams. 

It appears that decoding using ultrasound (tongue) images alone gives quite a good 

recognition accuracy, only 3.1% below that of the baseline system. There are two possible 

explanations for this. First, there seems to be a great deal of redundancy between the two 

streams, with ultrasound images of the tongue clearly conveying the lion’s share of the 

information. Secondly, it is possible that our chosen “feature fusion” technique is not the 

optimal way of combining the two modalities. We are currently studying more sophisticated 

fusion techniques such as multistream HMMs (Gravier et al. (2002), Hueber et al. (2009)). 

Though there is still room for improvement, the performance of the visual phone 

recognizer is promising when compared with the acoustic-based system: for all decoding 

scenarios, the ratio of the performance of video-based system to that of the audio-based one, 

which can be interpreted as a target for this database, is about 0.7. Furthermore, some 

mismatches in the phone recognition stage need not necessarily lead to unintelligible 
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synthesis, and some psychoacoustic effects could potentially also be used to advantage. The 

results can thus be considered as encouraging enough to warrant investigating the feasibility 

of a corpus-based synthesis driven by our visual phone decoding system.  

5) Corpus-based synthesis driven by video-only data  

5.1) Unit selection 

In the proposed framework, the segmental vocoder combines phonetic decoding and 

corpus-based synthesis to recover an acoustic speech signal from video-only data. Our 

approach is based on the building of an audiovisual dictionary which associates visual units to 

acoustic units. To initiate the procedure, both video and audio modalities of the recorded 

database are first labeled at the phonetic level using a forced-alignment procedure. This 

technique, which is a simplified recognition task where the phonetic sequence is already 

known, uses both visual and acoustic HMMs estimated during the training of the phonetic 

decoders. Therefore, the labeled database can be considered as an audiovisual unit dictionary 

which associates to each visual phone an equivalent in the acoustic domain. As shown in 

figure 8, the temporal boundaries of visual and acoustic phones are not necessarily the same. 

This asynchrony between the uttered speech signal and the motion of the articulators can be 

explained by the anticipation phenomena. A segmentation of the dictionary into diphones is 

then deduced from the phone labeling by requiring spectral stability points at the boundaries 

of all phones. 

 
Figure 8: Asynchronous labeling of the database at the phonetic level 
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Starting from an input sequence of purely visual features, and given the predicted phonetic 

target, a speech waveform is generated in several steps. A unit selection algorithm first 

searches for the sequence of diphones that maximizes similarity to the input test data in visual 

space, while constraining unit concatenation in the acoustic domain. The proposed algorithm, 

which is an adaptation from the standard path search algorithm used in concatenative speech 

synthesis (Hunt and Black (1996)), is defined as follows.  

Assuming a test sequence of visual features , where L is the length of the 

sequence, and  (with  and ) the temporal segmentation of v given 

by the visual phone recognizer, the sequence  of T target units is defined by: 

 

Among all appropriate diphone units, the unit selection algorithm finds the optimal sequence 

 that best matches the target . The quality of the match is determined by 

two costs,  and . The target cost  expresses the visual similarity between the target 

units and the units selected in the dictionary. The target cost between unit Uk and Tk 

( ) is defined by: 

 

where  is the cumulative distance obtained after a dynamic time warping between 

the two sequences of visual feature vectors. With this non-linear alignment procedure, 

temporal stretching and compression observed in the articulator motion are naturally taken 

into account. The concatenation cost  estimates in the acoustic domain the spectral 

discontinuity introduced when the two units  and  are concatenated together and is 

given by: 
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where D is the Euclidean distance and  are MFCC coefficients of the unit Uk at 

frame l. Because the audiovisual dictionary can be considered as a fully connected state 

transition network where each state is occupied by a unit, the least costly path that best 

matches the test sequence can be determined by a Viterbi algorithm (see for instance Forney 

(1973)). State occupancy is estimated using the visual-based target cost function and 

transition between states is evaluated by the acoustic-based concatenation cost, as shown in 

figure 9. In the present algorithm, the target and concatenation cost are weighted manually. 

 
Figure 9: Phonetic decoding, unit selection algorithm and unit concatenation. 

5.2) HNM-based speech waveform generation 

After the unit selection procedure, the speech waveform can be generated by 

concatenating the acoustic component of selected diphones. However, no prosodic 

information such as pitch, loudness or rhythm is available in an SSI, and the generation of an 

acceptable prosody in a speech synthesis driven only by visual data is a serious issue. 

Adapting the duration of the selected units can be done according to the temporal 

segmentation provided by the phonetic decoding. However, there is no guarantee that this 

“articulatory rhythm” will provide an acceptable “acoustic rhythm”. In a syllable-timed 
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language, such as Spanish, French or Japanese, an acceptable solution could be to adapt 

selected diphone duration so that every syllable of the sentence will take up roughly the same 

amount of time. However, such a solution cannot be a priori adapted to English, which is a 

stress-timed language (time between two consecutive stressed syllables is more or less 

constant). Without any information about loudness or pitch, the stressed/unstressed 

characteristic of the synthesized syllable will potentially have to be inferred from the text. In 

this study, no duration adaptation mechanism has been implemented, and prosodic 

modifications are done only in order to generate a speech waveform with an acceptable pitch 

evolution. Because no pitch information is used during the unit selection stage, the 

concatenation of selected diphones does not provide a realistic pitch curve. To restore an 

acceptable prosody, a simple procedure is used. A target sentence having a comparable 

number of phones, and thus duration, to the test sentence under study (which of course is not 

contained in the training set), is chosen from the training corpus; the pitch pattern of this 

comparable sentence is then used as a template pattern for the test sentence. The criterion for 

a sentence to be “comparable” is determined simply by the total number of phones, and not 

the distribution of phones in the sentence. The pitch evolution of the target sentence, hence, is 

extracted, smoothed using a median filter, and used as a prosody-template for synthesis.  

 Pitch modification to fit the template, but also loudness and spectrum smoothing at 

diphone boundaries (the concatenation points), are achieved using a “Harmonic plus Noise 

Model” of the speech signal (Stylianou et al. (1997)). HNM is a pitch-synchronous scheme 

that allows good-quality prosodic modifications, such as pitch adaptation and time stretching. 

In the HNM framework, the spectrum of a speech frame s(t) is described as the sum of a 

harmonic part H(t) and a noise part B(t): 
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where n is the number of harmonics included in H(t), f0 is the estimated fundamental 

frequency, Bgauss(t) a Gaussian noise frame and F(t) an autoregressive filter. Our 

implementation employs 12 harmonic components along with a 16th-order auto-regressive 

model for the noise part. 

5.3) Experimental Results 

The aim of this subsection is to evaluate our phone-based synthesizer when the phone 

transcription is 100% correct, independently of the recognition stage, and is in no way meant 

to be an evaluation of the final performance of our system. 

In the proposed framework, the quality of the synthesis obviously depends strongly on the 

performance of the phonetic decoding stage. In fact, the unit selection synthesis is driven 

exclusively by the predicted phonetic sequence, and thus an error during the recognition stage 

will necessarily corrupt the synthesis. In a recent, preliminary study, we have also 

experimented with HMM-based synthesis (Tokuda et al., 2000), which avoids this “hard 

decision” problem, and appears thus far to also be promising in our application. 

In order to independently evaluate only the proposed synthesis framework, i.e. the unit 

selection algorithm and the HNM-based waveform generation with prosodic adaptation, 20 

test sentences  are re-synthesized from their visual data alone, after first labeling it with the 

correct phonetic transcription. The audiovisual unit dictionary is built from the training set, 

and the 20 test sentences chosen randomly from the test database. Because the phonetic target 

is given to the unit selection algorithm, this protocol can be seen as a way to evaluate the 

performance of the vocoder when the phonetic decoder is performing well. Seven native 

speakers of American English were asked to transcribe the 20 synthesized sentences, as well 

as the corresponding original sentences. They were allowed to listen to each sentence only 

once. Clearly in a final system validation, a more realistic intelligibility test, with more 

listeners, more test data, and unpredictable sentences, should clearly be done, but our test 
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gives a rough idea of what should be possible. While allowing homophones, the quality of the 

transcription is evaluated with a word-based accuracy criterion, as is traditionally used in 

speech recognition, and is similar to the criterion P introduced in section 4.1 (with N now the 

number of words).  The average recognition accuracy of the original sentences was 97%, 

which gives an idea of the upper bound for this intelligibility test. The results on the 

synthesized sentences are presented in Figure 10. 

 

 

Figure 10: Evaluation of the synthesized speech intelligibility when the phonetic 
prediction is correct (transcription accuracy and confidence interval). The black vertical bar 

indicates the average transcription accuracy of the original sentences (97%).  

These preliminary results show that the system is able to generate a reasonably intelligible 

speech waveform from video-only speech data when the phonetic prediction is correct. We 

also note that short sentences, i.e., with only one prosodic group, are transcribed more 

accurately, whereas the intelligibility of long sentences is often hindered by a non-realistic 

rhythm. With a visual phone recognizer accuracy of 66% though (corresponding to speaker A 

in the word-based decoding scenario), consistently intelligible synthesis is as yet not possible.  

The reader can empirically evaluate the quality, the intelligibility and the naturalness of 

the synthesis by listening to several examples available at 
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http://www.neurones.espci.fr/ouisper/specom/, where five corpus-based syntheses driven by 

video-only data are presented. The examples are ordered according to the performance of the 

visuo-phonetic decoding stage; starting with speech synthesis based on a “100% correct 

phone recognition”, to “typical” performance of the system based on a “60 % correct phone 

recognition”. When evaluating these syntheses, it should be remembered that the dictionary is 

built from less than one hour of speech data, and thus does not offer the unit selection 

algorithm a large enough variety of phonetic context to produce a completely natural-

sounding result. The acquisition of a larger database will be a critical step. For the moment, 

though, these examples show that while the system is not yet fully functional, a segmental 

vocoder driven by visual observations of the tongue and lips is a reasonable approach for 

making an SSI. 

6) Conclusions and perspectives 

In the proposed ultrasound-based SSI, a corpus-based speech synthesizer is driven by 

tongue and lip observations. The segmental vocoder combines an HMM-based visual phone 

recognition stage with an audiovisual unit selection algorithm and HNM-based prosodic 

adaptation techniques. In the current framework, the synthesis quality depends strongly on the 

performance of the visual phone recognizer. As the observation of the tongue and lips alone 

during speech is probably not enough to consistently achieve accurate phonetic decoding, we 

have suggested introducing a priori linguistic knowledge via the decoding dictionary. The 

level of linguistic constraint can be easily adjusted, depending on the targeted application. 

The evaluation of the unit selection algorithm together with HNM-based prosodic adaptation 

has demonstrated the feasibility of the approach when the phonetic decoder performs well, but 

with some 60% of phones correctly identified in a sequence of tongue and lip images, the 

system is not able to systematically provide an intelligible synthesis.  
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In this paper, the potential of an ultrasound-based SSI has been presented, and its 

performance evaluated on a difficult recognition task: a continuous speech dataset of only one 

hour duration. More experiments still need to be carried out on this data, but better 

performance could clearly also be obtained on a more limited vocabulary recognition task 

(less than 250 words, for instance), thus allowing testing of an ultrasound based SSI in a more 

restricted, but nevertheless realistic application.   

To improve the recognition stage, several solutions are envisioned. First, a new 

acquisition system has been developed and is currently being tested (Ultraspeech system, 

Hueber et al. (2008a)). Thanks to a higher acquisition rate (above 60 fps for both ultrasound 

and optical streams), the modeling of very short phones should be more accurate and the 

number of phone deletion errors reduced. This new system also includes an interactive inter-

session re-calibration mechanism, which will allow to record larger audiovisual speech 

databases in multiple acquisition sessions; the larger unit dictionary thus obtained should 

improve the performance of both recognition and synthesis stages.  The modeling of the 

tongue and lip motion could also be improved by taking into account possible asynchronies 

between these two articulators. For that purpose, the use of context dependent multistream 

HMMs as in Gravier et al. (2002) is being tested, and preliminary results look interesting 

(Hueber et al. (2009)).  

A more straightforward framework, in which the phonetic prediction constrains the 

dictionary search less, could also be envisioned. To accomplish that, the predicted phonetic 

target sequence could be enlarged to a lattice of n-best phone sequences, so that the decisions 

of the unit selection algorithm would rely more on the available units than on the accuracy of 

the stochastic model predictions. As mentioned earlier, an alternative would be to use HMM-

based synthesis (Tokuda et al., 2000) to diminish the problem of the “hard decisions” made in 
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the visuo-phonetic recognition step. We are currently investigating this stochastic synthesis 

technique, which thus far appears to be promising in our application. 

Finally, the system will need to be evaluated on truly “silent” databases, in which sound is 

either whispered or not vocalized at all. This more realistic experimental protocol will clearly 

reveal the articulatory specificities of silent speech.   
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