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Abstract

This paper briefly reviews current silent speech methodologies for normal and disabled individuals.
Current techniques utilizing electromyographic (EMG) recordings of vocal tract movements are
useful for physically healthy individuals but fail for tetraplegic individuals who do not have accurate
voluntary control over the speech articulators. Alternative methods utilizing EMG from other body
parts (e.g., hand, arm, or facial muscles) or electroencephalography (EEG) can provide capable silent
communication to severely paralyzed users, though current interfaces are extremely slow relative to
normal conversation rates and require constant attention to a computer screen that provides visual
feedback and/or cueing. We present a novel approach to the problem of silent speech via an
intracortical microelectrode brain computer interface (BCI) to predict intended speech information
directly from the activity of neurons involved in speech production. The predicted speech is
synthesized and acoustically fed back to the user with a delay under 50 ms. We demonstrate that the
Neurotrophic Electrode used in the BCI is capable of providing useful neural recordings for over 4
years, a necessary property for BCls that need to remain viable over the lifespan of the user. Other
design considerations include neural decoding techniques based on previous research involving BCls
for computer cursor or robotic arm control via prediction of intended movement kinematics from
motor cortical signals in monkeys and humans. Initial results from a study of continuous speech
production with instantaneous acoustic feedback show the BCI user was able to improve his control
over an artificial speech synthesizer both within and across recording sessions. The success of this
initial trial validates the potential of the intracortical microelectrode-based approach for providing a
speech prosthesis that can allow much more rapid communication rates.
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SECTION 1: INTRODUCTION

Recent advances in electrophysiological recording technology are for the first time making
viable, silent speech communication devices a reality. However, not all technologies are
appropriate in every situation. When considering a method that provides artificial
communication to a speech-deprived individual, one must identify the most efficient means
given the nature of the individual’s impairment. Some methods rely on non-vocalized
articulator movements or other sub-vocalizations (Betts and Jorgensen, 2006; Fagan et al.,
2008; Jorgensen et al., 2003; Jou et al., 2006; Jou and Schultz, 2009; Maier-Hein et al.,
2005; Mendes et al., 2008; Walliczek et al., 2006; Wand and Schultz, 2009) which can be
helpful for speech deprived individuals (e.g. laryngectomy patients). Unfortunately, these
options are not feasible for profoundly paralyzed individuals such as those suffering from
locked-in syndrome, which is characterized by near-complete paralysis. Locked-in patients
often retain slow eye movement or eye blink control which can be used to answer simple yes/
no questions, but they are completely deprived of any other voluntary motor behavior,
including speech and movements of the speech articulators. Consequently, few speech
restoration options are available for these individuals. Of these sparse options, intracortical
microelectrode-based brain computer interfaces (BCls) utilizing the electrical signals of
individual neurons offer great promise for conversational speech restoration.

Current methods for silent speech available to neurologically normal individuals or those with
damaged vocal tracts typically involve the placement of surface electromyographic (EMG)
electrodes on the orofacial and laryngeal speech articulators (Betts and Jorgensen, 2006; Fagan
et al., 2008; Jorgensen et al., 2003; Jou et al., 2006; Jou and Schultz, 2009; Maier-Hein et al.,
2005; Mendes et al., 2008; Wand and Schultz, 2009). Electrical recordings are transmitted from
the electrodes to an analysis computer which has been trained to recognize a small vocabulary
of words based upon the speaker’s EMG pattern. Under this scenario, the silent speech system
effectively performs automatic speech recognition utilizing articulatory information rather than
acoustic information. However, this approach fails in situations where the user has no voluntary
control over the speech articulators. An alternative method was developed for paralyzed
patients with minor voluntary muscle control for use in an augmentative and alternative
communication (AAC) device (Wright et al., 2008). The method uses residual EMG activity
from non-speaking paralyzed patients to drive a binary click operation for use in AAC devices,
with expert users achieving spelling rates of over 20 characters per minute.

Unfortunately, many locked-in patients do not have reliable control of the musculature needed
to successfully operate even minimal EMG communication devices. Such individuals can only
be helped by true brain computer interfaces (BCIs); those capable of direct control of
communication devices solely through observed changes in neural activity. There are many
types of BCI devices for communication though they can be roughly classified into two groups:
noninvasive (e.g. Birbaumer et al., 1999; Cheng et al., 2002; Donchin et al., 2000; Suppes et
al., 1997; Wolpaw et al., 2000) and invasive (e.g. Hochberg et al., 2006; Kennedy et al.,
2004; Leuthardt et al., 2004). Non-invasive techniques typically involve measurements of brain
activity through the electroencephalogram (EEG) or magnetoencephalogram (MEG), while
invasive techniques utilize the electrocorticogram (ECoG), local field potentials (LFPs) and
single unit activity (SUA). Both the EEG and MEG signals are captured by a passive recording
system with underlying signals based on the summed synchronous electrical activity of tens
of thousands to millions of neurons in the local region near the recording sensor. Recording
the ECoG, LFP and SUA require invasive surgical procedures involving a craniotomy and
placement of the recording electrode on the surface of the cerebral cortex (ECoG) or insertion
of the extracellular microelectrode into the cerebral cortex (LFP and SUA). ECoG signals
represent the cumulative activity of hundreds to thousands neurons underneath the electrode
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recording surface, the LFP signal represents the total activity of many tens of neurons in the
immediate vicinity of the electrode, and the SUA represents individual neural units.

Brain computer interfaces have been developed to aid communication for impaired populations
utilizing each of the neurobiological signals described above. Each signal type, and associated
recording methodology, has advantages and disadvantages for successful use as a BCI for
augmentative communication. In particular, the longevity of the sensing device is a crucial
factor when considering a chronic BCI, which is required for long-term use by the target
population. The remainder of this paper will discuss the state of current electrode technologies
for chronic implantation and associated methods for silent communication utilizing EEG,
MEG, ECoG, LFP and SUA. Particular attention will be paid to human intracortically
implanted electrodes measuring the SUA, specifically the Utah microelectrode array (Maynard
etal., 1997) and the Neurotrophic Electrode (Bartels et al., 2008; Kennedy, 1989). In addition,
different approaches to the problem of silent speech communication will be described,
including options for discrete, choice-based protocols and continuously varying artificial
speech synthesis. Finally, areas of BCI improvement are discussed with particular emphasis
on two main objectives: to improve signal quality and predicted speech and to convert
immobile, laboratory-based equipment into robust and portable alternatives.

SECTION 2: CURRENT ELECTRODE TECHNOLOGY

Viable chronic brain computer interfaces must utilize a recording apparatus able to record
neural signals continuously over long durations (e.g. many years) and be relatively convenient
or portable. Each neurobiological signal described in Section 1 is capable of being used for
BCI applications but only a subset meet longevity and portability requirements. A summary
of electrode technology in terms of characteristics of a successful chronic BCl is listed in Table
1, and each methodology is discussed in detail below. The study type, in Table 1, indicates
whether or not the recording methodology has been used in human applications. The duration
of each recording technology is taken from the literature of existing studies (Neurotrophic
Electrode; Bartels et al., 2008; Utah array; Hochberg et al., 2008; Michigan array; Kipke et al.,
2003; microwire arrays; Nicolelis et al., 2003), though improvements have likely been made
in unpublished results. The final three categories (cross-scalp signal transmission, mechanical
stability and fabrication) describe characteristics that are pertinent to the long-term use of each
technology in chronic BCI applications. The mechanical stability of each technology is
classified as fixed, floating, embedded or relatively movable. Fixed and floating techniques
are relatively straightforward but the embedded and relatively movable classifications require
clarification.

EEG and ECoG signals are obtained through similar recording techniques. Both utilize an
electrode placed on the recording surface, and the summed electrical activity directly below
the electrode is captured. The two technologies differ with respect to recording surface type
(EEG records scalp potentials while ECoG records cortical surface potentials) though both
primarily reflect the electrical activity of synchronously firing pyramidal cells. The EEG signal
contains information in a relatively narrow frequency band (0-50 Hz) and is non-invasively
obtained by affixing Ag/AgCl electrodes to the scalp with a conductive gel or paste. The ECoG
contains information with larger bandwidth (0-500 Hz) and greater amplitudes from platinum
electrodes placed directly on the surface of the cortex. Necessarily, the brain must be exposed
via craniotomy. Both technologies have the potential for long-term use in a chronic BCI. For
example, EEG electrodes can be placed indefinitely on the surface of the scalp (needing to be
adjusted only to maintain appropriate electrode-skin conductance and impedances) and have
been used for long-term continuous use in previous BCI applications (e.g. Birbaumer et al.,
1999). Additionally, many research groups are investigating ECoG for BCI applications and
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have claimed that the ECoG electrode grid possesses characteristics suitable for stable long-
term recording (Leuthardt et al., 2004; Schalk et al., 2007, 2008).

MEG (Hamalainen et al., 1993) is related to EEG and is derived from a similar neural source,
though the main component of the MEG signal is likely due to synchronous intracellular
currents flowing tangentially to the cortical surface (i.e. within sulci). The MEG signal is
obtained through measurement of small magnetic fields induced by intracellular ionic currents.
These tiny magnetic fields are non-invasively measured using a superconducting quantum
interference device (SQUID) which is placed within a liquid helium cooled helmet. In addition,
the magnetic fields are so small that their detection is impossible outside of an
electromagnetically sealed environment. The MEG apparatus can record continuously without
adjustment, but requires that the patient or subject remain completely still within the sensor
helmet. Due to its cost and inconvenience (e.g. electromagnetically sealed environment, subject
movement constraints, etc.), MEG is a sub-optimal solution for chronic BCI applications.

The LFP and SUA, for BCI applications, are both measured utilizing intracortical extracellular
microelectrodes, which are inserted into the cerebral cortex after exposing the brain through a
craniotomy. Microelectrode technology has a long history in neuroscience applications but is
only recently becoming specialized for simultaneous recording of multiple neural units over
long periods of time. These electrodes represent a promising area of current and future chronic
BCI research.

Many electrode technologies exist for recording extracellular potentials from groups of neurons
in the cerebral cortex. However, most of these electrodes are simply not suitable for chronic
human implantation or generally for use in clinical applications. Extracellular electrode design
formerly was aimed at precise identification and isolation of single neurons; viable long-term
recording of electrical potentials for scientific study was not considered. These single-contact
electrodes are limited in the number of simultaneously recorded single units to one or two,
though the isolation of the single units is often quite precise and unambiguous. Utilizing these
electrodes, it is possible to identify many neurons by recording from the same animal subject
over the course of several months, though recordings from any one neuron last only on the
order of minutes to hours. Common recording paradigms involve repeated insertions into the
cortical surface of interest of the subject animal. The electrode is then driven slowly into the
cortex in very small increments (5-15 nm per step) using a microdrive, leading to the discovery
of new neurons at different cortical depths (Mountcastle et al., 1975). Unfortunately, the
limitation on the number of simultaneously recorded neurons and the relative size of the entire
electrode drive renders movable single electrodes insufficient for BCI designs.

Alternatively, extracellular electrodes permit the simultaneous recording of multiple single
units, or multi-units, and have long been utilized in chronic recording paradigms (Schmidt et
al., 1976). Multi-unit electrodes are typically capable of simultaneous recordings of multiple
single units. These simultaneously recorded potentials represent additive combinations of
neuroelectrical activity observed at the electrode tip. Acquisition of these signals is analogous
to the effect observed in a cocktail-party problem; in the case of multi-units the individual
neural sources are the many speakers in the cocktail-party room and the electrode tip is the
microphone. Unfortunately, multi-unit recordings require intensive processing to correctly
identify distinct single units (i.e. SUA), which is not always possible. Despite this issue,
extracellular multi-unit electrodes are currently the only type of electrode capable of
simultaneous long-term recordings of many (e.g. tens to hundreds) neural units. In addition,
extracellular multi-unit electrodes are capable of recording the LFP signal, which represent the
summed activity of a local population of neural units around the electrode tip (Mitzdorf,
1985). As such, they are now being extensively implanted in animal subjects (Carmena et al.,
2003; Kennedy et al., 1992a; Nicolelis et al., 2003; Taylor et al., 2002; Velliste et al., 2008;
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Wessberg et al., 2000) and in some human volunteers (Bartels et al., 2008; Guenther et al., in
press; Hochberg et al., 2006; Kennedy et al., 2004; Kim et al., 2007) for experimental BCI
investigations to restore artificial movement and communication.

Recent advances in multi-unit electrode technology have improved upon two major design
components for use in human BCI devices: stability and longevity. Both are critical for
sustained functionality of a chronic neural implant for speech restoration. In this context,
stability refers to the consistent isolation and identification of recorded single units, while
longevity refers to recording viability over long durations (many years). Chronic implantation
BCI investigations in monkeys and humans currently comprise four major classes of multi-
unit electrodes: microwire arrays (Nicolelis et al., 2003; Taylor et al., 2002; Williams et al.,
1999), silicon planar arrays (Hoogerwerf and Wise, 1994; Wise et al., 1970), silicon etched
arrays (Jonesetal., 1992; Maynard et al., 1997; Rousche and Normann, 1998) and neurotrophic
microwires (Kennedy, 1989; Kennedy et al., 1992b). These four electrode types are shown in
Figure 1 (images reprinted with permission). However, only two chronic electrodes have
reported implantation durations in human subjects of two or more years, the silicon Utah
microelectrode array for 2+ years (Hochberg et al., 2008) and the Neurotrophic Electrode for
4+ years (Bartels et al., 2008; Guenther et al., in press; Kennedy, 2006).

Of the multi-unit electrodes described above, the Neurotrophic Electrode device is the only
chronic microelectrode platform for human subjects that makes use of implantable hardware
for signal pre-amplification utilizing wireless power induction and transcutaneous wireless
signal transmission over standard frequency modulated (FM) radio. Implanted electronics are
a necessity for practical, portable and permanent usage of multi-unit electrodes for silent
communication BClIs. Wireless signal transmission via FM radio eliminates the need for
percutaneous wired connectors, reducing the risk of infection by allowing the scalp incision
over the implanted area to completely heal. In addition, a wireless architecture is more
aesthetically pleasing; there are no wires protruding from a plug in the BCI recipient’s head.
Though the benefits of silent communication devices likely outweigh the aesthetic costs,
improvements in outward appearance of the device are also worthy of consideration.

A summary of all invasive and non-invasive recording systems is given in Table 1. Of the
invasive options, the properties of the Neurotrophic Electrode implant make it uniquely suited
for application to a brain computer interface for speech production. It has been used for chronic
recording studies for over four years in human (Bartels et al., 2008;Kennedy, 2006) until patient
death from underlying ailments unrelated to the implantation procedure. The Neurotrophic
Electrode is currently being used in an intracortical neural prosthesis for speech restoration
involving a 26 year old locked-in subject (Brumberg et al., 2009;Guenther et al., in press). At
the time of this writing, the original implanted electrode remains viable after over 4 years of
continuous use.

SECTION 3: BRAIN-COMPUTER INTERFACES FOR COMMUNICATION

As mentioned in previous sections, silent speech communication for profoundly paralyzed
individuals can be achieved utilizing scalp surface-based electrodes (e.g. EEG), cortical surface
electrodes (e.g. ECoG) or intracortical microelectrodes (e.g. Utah array or Neurotrophic
Electrode). Additionally, the methods for communication can differ between discrete (e.g.
typewriter) or continuous control paradigms. In the discrete paradigm, the user can select
between two or more discrete “choices”, for example choosing a particular key on a “virtual
keyboard” on a computer screen. In a continuous control paradigm, a small number of
continuous kinematic variables (for example, the x and y coordinates of the cursor position on
the screen, or the values of the first two formant frequencies for a speech prosthesis) are
controlled by the user.
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Much prior work has been accomplished for BCl augmented communication applications using
EEG: slow cortical potentials (SCP; Birbaumer et al., 1999, 2000, 2003; Hinterberger et al.,
2003; Kubler et al., 1999), P300 signal (Donchin et al., 2000; Krusienski et al., 2006, 2008;
Sellers et al., 2006; Vaughan et al., 2006), sensorimotor rhythms (SMR; Vaughan et al.,
2006; Wolpaw et al., 2000; Wolpaw and McFarland, 2004) and steady state visual evoke
potentials (SSVEP; Allison et al., 2008; Cheng et al., 2002; Trejo et al., 2006). Though these
techniques provide silent communication to paralyzed users, they are not currently capable of
operating at rates fast enough for conversational or near-conversational speech, with
production rates on the order of just one word or fewer per minute. In addition, each of the
EEG interfaces described above require accurate visual perceptual abilities for the user to
choose letters on a graphical display through a finite choice visual feedback system. The
displays typically consist of keyboard letters presented on a screen while the user changes their
electrophysiological activity to indicate a “yes” choice. Such a visually dependent system is
entirely impractical for users with such severe paralysis that visual perception is unreliable.

Each of the EEG signals used for the interfaces discussed also requires “mapping” or translation
into the speech domain, though others have conducted preliminary investigations of direct
prediction using speech related potentials with varying degrees of success (DaSalla et al.,
2009; Porbadnigk etal., 2009; Suppes etal., 1997). For instance, users of the SCP-based devices
must be trained to modulate their SCP for use in the binary selection task. The SCP themselves
do not necessarily represent the value of the intended selection; rather it is simply a
neurophysiological signal which has been shown useful to perform binary selection tasks.
Similarly, the P300 and SSVEP responses do not encode the meaning of the items selected by
the user. Instead, both indicate the presence of a visual stimulus to which the user is attending.
The EEG SMR, though, is directly related to the activity of the motor cortex. These rhythms,
also obtained through ECoG, have been shown to represent the movements of peripheral and
orofacial end-effectors (e.g. arm, hand, tongue, jaw, etc.) and have been successful for BCls
providing one and two dimensional cursor control (Leuthardt et al., 2004; Schalk et al.,
2007, 2008). Such an interface can only be used in an AAC device by selection of items on a
computer screen (Vaughan et al., 2006). Discrete “typewriter” approaches through mouse
cursor control have also been implemented using intracortical electrodes, as discussed below.

Kennedy and colleagues were the first to implant a human subject with a chronic microelectrode
for the sole purpose of restoring communication to a paralyzed volunteer by intracortical BCI
(Kennedy and Bakay, 1998). Their first subject implanted with the Neurotrophic Electrode,
MH, was able to make binary choice selections until her death 76 days after implantation,
though no attempt at “typewriter” control was made. In 1998 another locked-in subject, JR,
was implanted in the hand area of his primary motor cortex (Kennedy et al., 2004). JR learned
to control the 2D position of a mouse cursor over a virtual keyboard, and to select desired
characters via neural activity related to imagined movements of his hand. Though this technique
for typewriter control is quite intuitive, JR was only able to produce 3 characters per minute
(Kennedy et al., 2004).

Donoghue and colleagues have also chronically implanted human volunteers with their Utah
microelectrode array-based system (Hochberg et al., 2006; Kim et al., 2007) in a continuous
control scheme. At least two subjects learned to control the position of a mouse cursor on a
computer screen. Cursor position was determined by mapping the neural firing rates of single
and multi-unit neural sources into movement kinematics, specifically the position and velocity
of the mouse cursor. The system is designed to allow learned artificial mouse control as an
interface for virtual devices such as keyboards (similar to Kennedy et al., 2004) and other AAC
applications.
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Neural decoding of arm kinematics has been studied for nearly 30 years beginning with
Georgopoulos et al. (1982) and recently by Velliste et al. (2008) in monkeys. Kinematic
decoding is well-suited to artificial mouse control as well as control of arm prosthetic devices.
Unfortunately, cursor control is a clumsy and slow interface for augmented communication
when restricted to prediction of hand kinematics. We sought to address this constraint while
exploiting the decades of research of kinematic prediction from motor cortical activity. Our
key insight here lies in understanding that speech production can be characterized as a
continuous motor control task, albeit a complex one, and that speech motor cortical signals can
be used to control “movements” of an artificial speech synthesizer. Our recent research utilizing
unit activity obtained from intracortical microelectrode recordings aims to overcome the
hurdles faced by traditional BCIs for augmented speech and provide a means for silent
communication interfaces capable of producing computer synthesized conversational speech.

Decoding speech with the Neurotrophic Electrode implant

In December 2004, a locked-in brain stem stroke volunteer, ER, was implanted with the
Neurotrophic Electrode in speech motor cortex (Bartels et al., 2008; Kennedy, 2006) with the
primary goal of decoding the neural activity related to speech production and providing an
alternative means for communication (Bartels et al., 2008; Brumberg et al., 2009; Guenther et
al., in press). The implantation procedure was approved by the Food and Drug Administration
(IDE G960032), Neural Signals, Inc. Institutional Review Board, and Gwinnett Medical Center
Institutional Review Board. Informed consent was obtained from the participant and his legal
guardian prior to implantation.

The specific implanted region of the motor cortex was very important for the success of the
speech prosthesis implant. We sought to implant an area of motor cortex which was related to
the movements of the speech articulators. In this way, we hypothesized that control of the
continuous speech production BCI could be driven by speech articulation-related activity in
the motor cortex rather than non-speech related neural activity (cf. EEG P300, SSVEP, SCP,
etc.). Localization of the Neurotrophic Electrode implant involved first conducting a pre-
operative fMRI study in which ER participated in imagined picture naming and word repetition
tasks in an fMRI protocol. The task revealed increased BOLD response in much of the normal
speech production network, and the implantation site was chosen as the area of peak activity
on the ventral precentral gyrus (location of the speech motor cortex). Details of the implantation
procedure can be found elsewhere (Bartels et al., 2008, Guenther et al., in press).

For the current subject, ER, single and multi-units were identified from the multi-unit
extracellular potential recorded from the Neurotrophic Electrode. Briefly, the extracellular
potentials were first bandpass filtered (300-6000 Hz), then a voltage threshold was applied
(x10uV) using the Cheetah data acquisition system (Neuralynx, Inc., Bozeman, MT).
Threshold crossings were taken as putative action potentials, and an approximately 1 ms (or
32-point; hardware-dependent) data segment sampled at 30 kHz around each crossing was
saved for classification analysis. All spike waveforms were classified on-line using a convex-
hull technique (SpikeSort3D, Neuralynx, Inc.) according to manually defined regions obtained
from previous offline analysis. These cluster regions, once stabilized, were reused for each
recording session. In the current study, approximately 56 units were identified across two
recording channels (N1=29, N,=27), although this is likely an overestimate as some clusters
may represent the same parent neural source.

We then developed a real-time neural prosthesis for control of a formant frequency-based
speech synthesizer (Figure 2) using unit firing rates via a continuous filter approach, which is
detailed elsewhere (Brumberg et al., 2009,Guenther et al., in press) but briefly summarized
below. The neural decoder obtained firing rate activity from many neural sources and
performed a mapping into formant frequency space utilizing a Kalman filter (Kalman, 1960)
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based decoding algorithm. Specifically, the position (i.e. the first two formant frequencies, or
simply formants) and velocities (i.e. 1t derivative of formants) were decoded from normalized
unit firing rates. A similar continuous filter decoder was developed by Kim and colleagues
(Kim et al., 2007) to decode hand movement kinematics from human subjects. The formant
frequencies were then used to drive an artificial speech synthesizer which played the
synthesized vowel waveform from the computer speakers with a total system delay of less than
50 ms from neural firing to sound output. Low system delays are necessary for fluent speech,
as auditory feedback delays more than 200 ms are known to disrupt normal speech production
(MacKay, 1968).

Control of the continuously varying speech BCI is analogous to two-dimensional cursor
movement control previously accomplished with SUA in monkeys and humans. The main
difference lies in the nature of both the underlying neural signal and the control modality, both
of which are represented in the auditory domain rather than the visuo-spatial domain. Speech
production and perception are naturally acoustic tasks; as such auditory feedback is much more
informative regarding our ongoing speech movements than visual feedback (which is
completely lacking during self-generated speech). Interestingly, visual feedback can be
important for speech perception, but typically this refers to perception of external vocal
articulators (e.g. jaw, lips and tongue tip) and is of most use when the acoustic speech signal
is degraded (e.g. conversing in a noisy environment). This type of visual feedback may be
useful in the speech prosthesis to help users visualize neural decoding algorithm predictions
but will likely be secondary to fast auditory feedback.

Formant frequencies are a natural choice for speech representations in the speech motor cortex
for two reasons. First, the Neurotrophic Electrode was implanted on the border of the left
primary and premotor cortex, in a location that may be involved in planning upcoming
utterances, as proposed by a neurocomputational model of speech production, the Directions
into Velocities of Articulators (DIVA) model (Guenther, 1994, 1995; Guenther et al., 2006).
Specifically, the DIVA model hypothesizes speech motor trajectories are planned in the
premotor cortex utilizing acoustic targets. Second, the formant frequencies of speech are highly
correlated with movements of the vocal tract (e.g., changes in first formant frequency are
related to forward and backward movements of the tongue). Therefore, we used a formant
frequency approach as they are a low-dimensional representation of speech sounds and are
related to the gross movements of the jaw and tongue. We believe that a formant frequency
approach should work similarly to an articulatory approach due to this relationship, and the
low-dimensionality needed for BCI control of formants should aid ER in initial production
attempts.

In the speech production study (Brumberg et al., 2009; Guenther et al., in press), ER was
instructed to perform two paradigms. The first paradigm required the subject to listen to
artificially synthesized vowel sequences, played over computer speakers, consisting of
repetitions of three different vowels (/AA/ [hot], /I'Y/ [heat] and /JUW/ [hoot]) interleaved with
a neutral vowel sound (/AH/ [hut]). The vowels and vowel-transitions were synthesized using
a formant synthesizer according to predetermined formant trajectories. The subject was asked
to covertly speak along with the vowel sequence stimulus while he listened. The data obtained
in this paradigm was used for offline calibration of the real-time Kalman filter neural decoder.
Parameters for the Kalman filter decoder were estimated by performing a least squares
regression of unit firing rates and the vowel sequence formant trajectories. An offline analysis
of the training data showed statistically significant correlations between the ensemble unit
firing rates and formant frequencies (Guenther et al., in press). Individual unit tuning
preferences were computed according to the method in Guenther et al. (in press) and a few
examples are shown in Figure 3. The tuning curves summarize individual units’ preferred
formant frequencies defined as the correlation between unit firing rates and training sample
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formant frequency trajectories. The tuning strength is defined as the magnitude of the
correlation coefficient. The mean tuning strength (Figure 3, black curve; 95% confidence
intervals in gray) represents the units’ preference for formant frequencies in the shown direction
relative to the center vowel /AH/. Figures 3(a) and (b) show the tuning curves for units with
mostly F2 preference while Figures 3(c) and (d) show tuning curves for units with mixed F1
and F2 preference.

The second paradigm again required ER to listen to artificially synthesized vowel sequences.
However, in this paradigm he was instructed to listen only during stimulus presentation. In
addition, these stimuli were limited to two vowels (/V1 V2/) where V1 was always /AH/ and
V2 was randomly selected between the three vowels /AA/, 1Y/ and /JUW/. A production period
followed the listen period in which the subject was instructed to attempt to produce the vowel
sequence. During the production period, the real-time neural decoder was activated and new
formant frequencies were predicted from brain activity related to the production attempt every
15 milliseconds.

To date, ER has been able to perform the vowel production task using the BCI with reasonably
high accuracy, attaining 70% correct production on average after approximately 15-20 practice
attempts per session over 25 sessions (Brumberg et al., 2009; Guenther et al., in press). Table
2 illustrates the within-session learning effect. Production trials were grouped into blocks
(roughly four blocks of six trials per session) and analyzed for endpoint production accuracy
and error. Early trials (Block 1) show relatively poor performance which statistically
significantly increases by Block (p < 0.05; t-test of zero slope as a function of block). VVowel
sequence endpoint error, defined as the Euclidean distance from the endpoint formant pair to
the target vowel, significantly decreased from the session start to termination (p < 0.05; t-test
of zero slope as a function of block). A summary of trial production attempts is shown in Figure
4. In both figures, a two-dimensional histogram was computed from predicted formant
trajectories and smoothed for ease of visualization. The red trajectories correspond to /AH AA/
trials, green for /AH UW/ trials and blue for /AH 1Y/ trials. Target vowel formant regions are
indicated by the gray regions for each of the three endpoint vowels. The target region acted
both to determine the categorical accuracy of current productions as well as provide an attractor,
based on distance from target center, to help ER maintain steady vowel productions. Figure 4
(a) shows the predicted formant trajectories for all trials while Figure 4(b) is restricted to only
correct productions. A detailed description of the methods and results of the closed-loop BCI
speech production study can be found elsewhere (Guenther et al., in press). Though
preliminary, these results show it is possible for a human subject to use the Neurotrophic
Electrode for real-time continuous speech production through formant frequency speech
synthesis.

The formant frequency speech BCI suffers one major drawback, namely a high degree of
difficulty in production of consonants compared to vowels. Therefore, we are developing
methods for continuous articulatory decoding and synthesis as well as discrete phoneme
prediction. The articulation-based system permits a greater range of productions including both
vowels and consonants, in contrast to the formant based system which is suitable primarily for
vowels.

In addition to these continuous control systems, we are also implementing a discrete control
system that is intended to determine specific phonemes, syllables, and/or words from neural
firing rates. Note that the discrete system is proposed to be different than previous virtual
keyboard attempts involving the selection of characters by visual feedback. Rather, this
approach will attempt to decode phoneme information much like the automatic speech
recognition techniques using non-audible signals described in Section 1, but directly from
neural activity associated with their attempted production.
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SECTION 4: FUTURE CHALLENGES

This section addresses important areas for future development of chronically implanted
intracortical electrode speech BCls in order to achieve near-conversational speech rates. Silent
communication by intracortical electrode brain computer interface does not yet permit
synthesizer “movements” that are fast and accurate enough to achieve normal speaking rates,
though this rate limitation can be improved upon by increasing the quantity of microelectrodes
and improving decoding algorithms for estimating the speech signal from neural activity.
Furthermore, the neural prosthesis system must be portable and robust for use by the recipient
in real-world environments, rather than limited to the laboratory.

Increased number of electrodes

Both the Utah array and Neurotrophic Electrode are capable of recording from dozens of
neurons, but this number of neurons is minute compared to the number of cells involved in
speech production. Previous electrophysiological investigations of arm and hand kinematics
have shown that relatively few (N < 50) single units are needed to predict the movements of
arm and hand with reasonable accuracy, allowing for control of robotic devices via BCls
(Taylor et al., 2002; Velliste et al., 2008). However, the motor control required for speech
production is less like gross arm movements and more like fine hand movements used in
handwriting. Itis likely that the fine, precise movements of handwriting and speech may require
hundreds of single units rather than dozens. It has been shown that prediction accuracy is
positively correlated with the number of recorded units (Carmena et al., 2003; Wessberg et al.,
2000). Accordingly, future versions of the Neurotrophic Electrode will take advantage of
microfabrication techniques to increase the number of contact points per electrode wire (Siebert
etal., 2008), increasing the number of possible recorded neural signals while improving single
unit discrimination. Furthermore, several Neurotrophic Electrodes will be implanted in future
volunteers (with more wires per electrode), rather than the single three-wire electrode utilized
in the current subject, again greatly increasing the number of potentially recorded neural
sources.

Electrodes in multiple brain regions

Placement of additional electrodes requires careful study to make the most out of the increased
number of electrical recordings. Speech production in neurologically normal subjects spans
many brain regions, such as ventral primary and premotor cortex, supplementary motor area,
Broca’s area and higher order auditory and somatosensory regions (Guenther et al., 2006).
Though it is currently only possible to implant four or five Neurotrophic Electrodes due to
implanted hardware size constraints, they can be intelligently placed, for example, in the
different orofacial regions of primary motor cortex to ensure recording of neural activity related
to movements of different speech articulators, including the lips, jaw, tongue and larynx.
Speech prosthesis control would likely improve significantly with additional specific
information about the major speech articulators. Additionally, electrode recordings of Broca’s
area (the left posterior inferior frontal gyrus) and/or the supplementary motor area may increase
prediction accuracy as these areas have long been understood to be crucial to normal speech
production (Penfield and Roberts, 1959).

Improved algorithms for decoding neural signals

The algorithms currently being used to decode motor cortical activity into speech
representations were originally designed for other, non-neurophysiological tasks. Though they
perform quite well in limited applications so far, further refinement should be undertaken to
account for the specific characteristics of both speech and neurophysiological signals. For
instance, both Wiener (Gelb, 1974) and Kalman (Kalman, 1960) filtering are popular
techniques for prediction of an unknown system state (e.g. speech output) given known discrete
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measurements (e.g. neural activity) and have been used to decode arm movement kinematics
(Hochberg et al., 2006; Kim et al., 2007) as well as formant frequency trajectories (Brumberg
et al., 2009; Guenther et al., in press). However, neither method was designed with
electrophysiology in mind. Furthermore, neural decoding algorithms, in general, have been
developed under the assumption that the known measurement states are neural firing rates
(spikes/sec) of recorded neurons. Rate estimation, as such, is simply the result of kernel-based
smoothing of the neural spike train. Unfortunately, the smoothing operation eliminates useful
information contained within the individual spike arrival times. Specifically, the mean is
retained but spiking variance is ignored. Therefore, algorithms dedicated to the analysis of
point processes (i.e. neural spike trains) with specific modifications for speech representations
(i.e. formants or articulator trajectories) should lead to improved decoding (Brown et al.,
2004; Truccolo et al., 2005, 2008).

Combined continuous and discrete control systems will likely improve prosthesis performance
as well (Kim et al., 2007). Our group has already demonstrated the feasibility of discrete
decoding of speech information utilizing nonlinear and neural network techniques (offline,
Miller et al., 2007; online, Wright et al., 2007). An immediate discrete classification goal is to
predict the onset of vocalization during speech production attempts (Matthews et al., 2008)
and to integrate such a “voicing detector” into the current continuous speech decoding protocol.

Development of portable systems

For the most part, silent communication BCls are currently restricted to usage within the
laboratory. Though some EEG methods are available for home-bound, real-world environment
use, these methods do not accomplish conversation-rate speech. In contrast, intracortical BCIs
have a greater intrinsic potential given the richness of the information source (specifically, the
ability to separate the contributions of individual neurons from motor cortex) and have enjoyed
success for motor-cortical BCls for mouse and robotic arm control. Therefore, considerable
effort must be made to translate laboratory-grade intracortical BCI hardware and software
systems to robust portable systems for real-world use. One important translational milestone
has already been met by Kennedy and colleagues, who have developed a wireless telemetry
system for transmission of recorded extracellular potentials rather than wired percutaneous
connections. Wireless transmission is a key requirement to the development of portable
systems as it permits a relatively easy approach to connecting and disconnecting the user from
the prosthetic device. In addition, wireless transmission allows for complete healing of the
scalp wound, which is preferable for long-term use in uncontrolled environments as it avoids
infection. Further development of the BCI systems discussed in this manuscript can be guided
in part by lessons learned from other commercial BCls, such as cochlear implants, where the
task of converting laboratory equipment for portable use has already been successfully
accomplished.

A key factor in the development of portable systems from laboratory-grade research systems
for locked-in individuals is to accommaodate bulky hardware devices commonly used in BCI
applications. For instance, typical hardware systems for intracortical microelectrode data
acquisition are rack-mounted, making their transportation difficult. The hardware and software
systems required to acquire neural signals and decode predicted behavior states can be
integrated into the wheelchair power supply and chassis. The intracortical continuous and
discrete conversational speech production BCls described in Section 3 have further advantages
for portable design manufacturing; they require no additional hardware for acoustic output.
Artificial computer speech synthesis algorithms can be implemented on off-the-shelf
computers without additional effort. These computers simply require rugged encasings and
integration with the user’s wheelchair.
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SECTION 5: CONCLUDING REMARKS

This article has described the current state of silent communication BCI devices based on neural
signals, with a focus on intracortical electrode designs. Though EEG brain computer interfaces
have been successfully used by locked-in patients in discrete finite letter choice spelling
paradigms, typing rates are quite slow, with full paragraphs taking hours to produce.
Furthermore, we claim auditory feedback is the most natural feedback domain for speech
production and a more effective feedback modality than visual feedback (as in typing
paradigms) for locked-in users. An alternative to EEG and ECoG BCI methodologies involves
intracortical microelectrode implantation of the speech motor cortex with the goal of
continuous control of a speech synthesizer which acts as a “prosthetic vocal tract,” treating
speech as a motor control problem rather than using a keyboard-based solution.

Four major extracellular electrodes were discussed, outlining their usefulness in long-term
brain computer interfaces, with particular emphasis on the Utah array and Neurotrophic
Electrode as they are already being used in human BCI applications. Both electrode designs
have remained viable in human cortex for durations on the order of years, demonstrating their
feasibility for long-term prostheses. Recent work by our lab has extended previous non-speech
movement kinematics electrophysiological research to the speech domain, indicating how
speech production can be represented effectively in low-dimensional acoustic or articulatory
domains, making speech restoration via an invasive brain-computer interface a tractable
problem.

Finally, future directions of neural interfaces for speech restoration were discussed. Four major
design considerations were outlined, including increasing the number of electrodes, utilizing
smarter and more accurate electrode localization strategies, improving decoding algorithms
with specific emphasis on neurophysiology and speech science, and the translation of bulky
laboratory-based systems to portable designs suitable for use outside the laboratory.
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Figure 1.

Examples of the four intracortical electrodes discussed in this paper for use in chronic BCI
applications. (A) Microwire array; Nicolelis et al. (2003). Chronic, multisite, multielectrode
recordings in macaque monkeys. Proceedings of the National Academy of Sciences of the
United States of America, 100(19), 11041-11046. Copyright (2003) National Academy of
Sciences, U.S.A., (B) Michigan microelectrode array (Wise et al., 2004), reproduced with
permission (© 2004 IEEE), (C) Utah microelectrode array; Reprinted from Journal of
Neuroscience Methods, Vol. 82 (1), Rousche and Normann, Chronic recording capability of
the Utah Intracortical Electrode Array in Cat Sensory Cortex, 1-15, Copyright (1998) with
permission from Elsevier, (D) Neurotrophic Electrode; Reprinted from Journal of
Neuroscience Methods, Vol. 174 (2), Bartels et al., Neurotrophic Electrode: Method of
assembly and implantation into human motor speech cortex, 168-176, Copyright (2008) with
permission from Elsevier.
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Figure 2.

Schematic of the continuous neural decoder for speech synthesis. Neural signals are obtained
via the Neurotrophic Electrode and acquired utilizing the Cheetah acquisition system
(Neuralynx, Inc., Bozeman, MT). Formant frequencies or articulatory trajectories are decoded
from neural firing rates.
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Figure 3.

Two dimensional (F1/F2) tuning preferences for sample units determined from offline formant
analysis in Guenther et al. (in press). Tuning preference determined by correlation between
unit firing rates and formant frequency trajectories. Mean tuning preference indicated by the
black curve with 95% confidence intervals in gray. (a,b) tuning curves for units with primarily
F2 preference. (c,d) tuning curves for units with mixed F1 — F2 preference. The direction and
magnitude of each tuning curve indicates the preference for formant frequencies relative to the
center vowel /AH/.

Speech Commun. Author manuscript; available in PMC 2011 April 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Brumberg et al. Page 20

—

F2 (Mel

(a) All Trials (b) All Correct Trials

1700

1600

1500

1400

1300

1200

1100

1000

900

300 400 500 600 700 800 900 900 300 400 500 600 700 800 900

F1 (Mel) F1 (Mel)

Figure 4.

The two dimensional histogram of predicted formant trajectories found during the closed-loop
BCI study. Trajectories for /AH AA/ trials are shown in red, /AH UW/ in green and /AH 1Y/
in blue. Formant regions used for vowel classification and attractors for steady vowel
production shown in gray. (a) All trials from 25 closed-loop recording sessions. (b) Correct
trials only from all recording sessions.
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Table 2

A summary of within-session vowel production accuracy in terms categorical and continuous error measures for
subject ER using the closed-loop speech production BCI. Sessions (N=25) were broken into roughly four blocks
per session (six trials per block). Endpoint vowel success and distance to target center were computed for each
trial and averaged within blocks across all sessions. Both measures improve: hit rate increases and formant error
decreases with block number (p < 0.05; t-test of zero slope). Mean values shown with 95% confidence intervals.

Block 1 Block 2 Block 3 Block 4
Endpoint Hit Rate 0.45 (0.09) 0.58 (0.09) 0.53 (0.13) 0.70 (0.19)
Endpoint Error (Hz) 436 (72) 358 (78) 301 (87) 236 (128)
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