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Abstract

The use of feature enhancement techniques to obtain estimates of the clean parame-
ters is a common approach for robust automatic speech recognition (ASR). However,
the decoding algorithm typically ignores how accurate these estimates are. Uncer-
tainty decoding methods incorporate this type of information. In this paper, we
develop a formulation of the uncertainty decoding paradigm for Frequency Filtered
(FF) parameters using spectral subtraction as a feature enhancement method. Addi-
tionally, we show that the uncertainty decoding method for FF parameters admits a
simple interpretation as a spectral weighting method that assigns more importance
to the most reliable spectral components.

Furthermore, we suggest combining this method with SSBD-HMM (Spectral Sub-
traction and Bounded Distance HMM), one recently proposed technique that is able
to compensate for the effects of features that are highly contaminated (outliers).
This combination pursues two objectives: to improve the results achieved by uncer-
tainty decoding methods and to determine which part of the improvements is due
to compensating for the effects of outliers and which part is due to compensating
for other less deteriorated features.
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1 Introduction

State-of-the-art Automatic Speech Recognition (ASR) systems lose effective-
ness due to the mismatch problem, i.e., when they operate in environments
different from the ones considered in the training stage. One of the causes
of the mismatch is the presence of additive noise. This problem has received
a lot of attention and has been the subject of numerous research studies (a
classic review can be found in Gong (1995)). Feature enhancement is one of
the approaches to tackle this problem and consists of compensating for the
features before entering the recognition (or decoding) stage, which proceeds
as usual. In this work, we study uncertainty decoding methods, which modify
the decoding process to incorporate the information about the quality of the
feature estimates.

In this paper, we focus on ASR systems that use Frequency Filtered (FF) pa-
rameters (Nadeu et al. (1995, 2001); Paliwal (1999)). This parameterization
performs as well as the parameterizations in the cepstral domain such as the
Mel-frequency cepstral coefficients (MFCC) and has the additional advantage
of staying in the log-frequency domain. As we show in the paper, this char-
acteristic allows us to make an easy interpretation of the proposed methods.
Furthermore, unlike the MFCCs, FF parameters do not spread a frequency-
localized distortion over the remaining frequency bands and, therefore, the
effect of the distortion over the entire feature vector is minimized (de Veth
et al. (2001b)). Additionally, the compensation of outliers in systems that are
designed using the FF parameters is more effective than in those systems using
MFCCs (de Veth et al. (2001b,a)).

A previous work, where we also used the FF parameters, showed that the com-
bination of Spectral Subtraction (SS) (e.g. Boll (1979)) and bounded distance
HMM (BD-HMM) (Vicente-Peña et al. (2010)), a method inspired by that
proposed in de Veth et al. (2001b,a) which mitigates the effect of the outliers
in the recognizer, leads to notable improvements of the recognition system
performance in the presence of additive noise. In this work, we show that this
combination, called SSBD-HMM, can also be effectively complemented with
uncertainty decoding. Furthermore, the analysis of this new combination of
methods allows us to determine which fraction of the improvements in uncer-
tainty decoding methods is due to the compensation for outliers and which
fraction is due to the compensation for other features that are not so highly
contaminated.

The proposed method is assessed for the well-known RM1 and Aurora-4 ASR
tasks, and our experimental results prove that incorporating the uncertainty of
the observations in the decoding process significantly improves the recognition
rates.

2



The rest of the paper is organized as follows. Section 2 introduces uncertainty
decoding methods. Next, Section 3 describes our proposal based on the appli-
cation of uncertainty decoding to the Frequency Filtered parameters. Section
4 briefly reviews the SSBD-HMM method that is used in combination with
uncertainty decoding. Section 5 describes the experimental setup and shows
the results achieved by the proposed method. Finally, Section 6 gives some
conclusions and closes the work.

2 Uncertainty decoding

Feature enhancement methods aim at estimating clean versions of the noisy
speech parameters. However, after this estimation, a certain level of uncer-
tainty about the hidden clean parameters still remains, and it is convenient to
take into account this information when the decoding process is tackled (e.g.
Yoma et al. (1998)). As we briefly review in this section, uncertainty decoding
methods also take this information into account during the decoding process.
We start reviewing the decoding process in a conventional recognizer and then
we review the same process for a recognizer based on uncertainty decoding.

An HMM-based speech recognizer decides on the acoustic unit that has been
uttered by computing the maximum likelihood among all the possible acoustic
models (see Young et al. (2002) or Rabiner (1989) for details):

λ = arg max
i

p(λi|O) = arg max
i

p(λi)p(O|λi) (1)

where λ is the winner model; λi is the ith acoustic model and p(λi) its “a
priori” probability; O = {o1, . . . ,oT} represents the sequence of input feature
vectors with ot being the observed vector at time instant t, and T the total
number of observed vectors; finally, p(O|λi) represents the likelihood that the
observations O were generated by the model λi.

Taking into account the hidden sequence of states within each model, we
rewrite eq. (1) as follows:

λ = arg max
i

axi

0
xi

1

[
T∏

t=1

axi
t
xi

t+1
p(ot|xi

t)

]
p(λi) (2)

where Xi = {xi
0, . . . , x

i
T} is the state sequence of the ith model that produces

the maximum likelihood; axi

t
xi

t+1
refers to the transition probability between

the states xi
t and xi

t+1; and p(ot|xi
t) denotes the likelihood that the observation

ot was generated in the state xi
t.

Taking equations (1) and (2) as reference, in the following paragraphs, we
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obtain new versions of them for an uncertainty decoding-based recognizer. As
mentioned above, uncertainty decoding techniques were proposed for consid-
ering some degree of uncertainty in the input feature vectors. The uncertainty
of the estimated features, Ô, is modeled through the following conditioned
probability distribution:

p(O|Ô), (3)

which models the likelihood that the contaminated observation Ô came from
the clean one (O). Thus, the uncertainty decoding methods rewrite eq. (1)
to take into account all the clean observations that could have produced the
noisy one (Morris et al. (2001); Yoma and Villar (2002); Deng et al. (2002);
Arrowood and Clements (2002); Droppo et al. (2002); Benitez et al. (2004);
Stouten et al. (2006)):

λ = arg max
i

E
{
p(λi)p(O|λi)|O ∼ p(O|Ô)

}
=

= arg max
i

p(λi)
∫

O

p(O|λi)p(O|Ô)dO (4)

Assuming now that the observation generated at time t does not depend on
other time instants, we write p(O|Ô) as follows:

p(O|Ô) =
T∏

t=1

p(ot|ôt) (5)

Substituting eq. (5) in eq. (4) and making explicit the state sequence, we
obtain:

λ = arg max
i

axi

0
xi

1

[
T∏

t=1

axi

t
xi

t+1

∫

ot

p(ot|xi
t)p(ot|ôt)dot

]
p(λi) (6)

Now, comparing the decision rule corresponding to a conventional recognizer,
eq. (2), and that of an uncertainty decoding-based one, eq. (6), we observe
that the term

∫

ot

p(ot|xi
t)p(ot|ôt)dot (7)

is applied instead of
p(ot|xi

t). (8)

In Morris et al. (2001); Deng et al. (2002); Krisjansson and Frey (2002) this
theory is applied to ASR systems that use log filter bank energies as front-
end. Morris et al. (2001) does not use any feature enhancement technique
and combines uncertainty and conventional decoding, and the weights of the
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Figure 1. Block diagram of the Frequency Filtered parameterization.

combination are computed as a function of the distortion degree of each ob-
servation. Deng et al. (2002) and Krisjansson and Frey (2002) employ feature
enhancement techniques. In the first case, the uncertainty is modeled by means
of a Gaussian distribution, while in the second case, no one particular distri-
bution is assumed. The ASR systems using log filter bank energies obtain
worse results than those using cepstral parameters. Yoma and Villar (2002);
Arrowood and Clements (2002); Droppo et al. (2002); Benitez et al. (2004);
Stouten et al. (2006) apply uncertainty decoding to cepstrum-based ASR sys-
tems for different enhancement techniques. In any case, a clear conclusion is
extracted from these works: the parameter enhancement methods are not per-
fect and, consequently, an uncertainty exists about the estimated parameters
that should be considered in the recognizer.

3 Uncertainty decoding with Frequency Filtered parameters

In this section, we describe our proposal, consisting of applying concepts of
uncertainty decoding to an ASR system which uses the Frequency Filtered
parameterization that has been enhanced by spectral subtraction.

To this purpose, we start reviewing the FF parameterization and studying
the effects that the additive noises have on it. Then, we model these effects
by means of a Gaussian uncertainty distribution and, finally, we modify the
decoding algorithm to incorporate this uncertainty.

3.1 Frequency Filtered parameters, additive noise and Spectral Subtraction

Figure 1 summarizes by means of a block diagram the steps involved in the FF
coefficient computation. As can be seen, the substitution of the DCT (Discrete
Cosine Transform) by a simple band-pass filter is the main difference with
respect to MFCCs. This band-pass filter usually takes the form z − z−1 and,
therefore, just two log filter bank energies are involved.

In the following, we assume that the speech signal is contaminated with addi-
tive and uncorrelated noise. Therefore, the noise and speech components are
also additive in the power spectrum domain. Although this property is lost
in the magnitude spectrum domain, if either the noise or the speech signal
dominates the summation, it can be assumed that this additive property still
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holds in the magnitude domain. Since the filter bank energies are just a linear
combination of the magnitude spectrum components, this property also holds
in the filter bank energy domain. Therefore, we have that

F̂BEk ≈ FBEk + nk, (9)

where FBEk and F̂BEk are the kth filter bank energies of the clean and noisy
speech, respectively, and nk is the additive noise component of the kth filter
bank energy. Let us also assume that each noise component, nk, is a random
variable with mean µnk

and variance σ2
nk

.

Considering now the use of spectral subtraction at the front-end, the noise
spectrum estimate is removed from the noisy speech spectrum. As a result,
the mean of the random variable that models the noise component in each
energy band, nk, is assumed to be zero, i.e., (µnk

= 0).

Next, the log filter bank energies are computed:

L̂FBk = log(F̂BEk) ≈ log(FBEk + nk). (10)

The first order Taylor series expansion of the log operator around a certain
point a is used to obtain a linear approximation of the log filter bank energies.
Therefore, the noisy and clean versions of the log filter bank energies can be
written as:

L̂FBk ≈ log(a) +
FBEk

a
− 1 +

nk

a
(11)

LFBk ≈ log(a) +
FBEk

a
− 1. (12)

Now, combining equations (11) and (12) we obtain

L̂FBk ≈ LFBk +
nk

a
. (13)

To make this approximation accurate, the point a should be close to FBEk +
nk and FBEk. The former value is just the SS-based estimate of the later,
which is unknown. Therefore, we select a = FBEk + nk. It is worth noting
that (see eq. (13)) the amount of noise at the kth log filter bank energy is
inversely proportional to a, i.e., to FBEk. As a result, the high-energy bands
(spectral peaks) are less sensitive to noise than the low-energy bands (spectral
valleys). This fact is due to the log operator: for high energies, the derivative
of the log is small and, therefore, less sensitive to variations due to the noise;
however, for low energy regions, the derivative of the log is higher and more
sensitive to the noise.

As we will see in the next section, the log approximation used in this work
is mainly used to detect and avoid the contribution of the samples that are
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dominated by noise. The approximation in eq. (13) fulfills this objective and
avoids the use of more complex approximations such as, for example, VTS
(Vector Taylor Series) (Moreno et al. (1996)).

Once we have written L̂FBk as a function of LFBk (eq. (13)), it is easy to
write the noisy FF parameters as a function of the clean FF parameters. The
FF coefficient for the kth log filter bank energy is then (Vicente-Peña et al.
(2006a)):

F̂F k = L̂FB(k+1) − L̂FB(k−1) ≈ LFBk+1 +
nk+1

a
− LFBk−1 −

nk−1

b
, (14)

with a = FBEk+1 + nk+1 and b = FBEk−1 + nk−1. Given that FFk =
LFB(k+1) − LFB(k−1), eq. (14) can be rewritten as:

F̂F k ≈ FFk +
nk+1

a
− nk−1

b
(15)

and finally, denoting

Nk =
nk+1

a
− nk−1

b
. (16)

we obtain:
F̂F k ≈ FFk + Nk. (17)

Therefore, the random variable Nk determines the uncertainty of the FF pa-
rameters. Assuming that the noise components are uncorrelated among each
other, the mean and variance of Nk can be computed as follows:

µNk
= 0 (18)

σ2
Nk

=
σ2

nk+1

a2
+

σ2
nk−1

b2
. (19)

This last assumption does not hold for any noise (in fact, it will depend on
the frequency and time structure of the noise signal). Nevertheless, it becomes
a good trade-off between analytical simplicity and experimental performance.
Once we know how additive noises affect the static FF parameters and assum-
ing that the noise components at different time instants are uncorrelated, it
is straightforward to study the effects on the dynamic parameters.

3.2 Modeling the uncertainty of the FF parameters through a Gaussian model

Though several models have been proposed in the literature, there is no good
solution for any ASR task. We have chosen to use a Gaussian distribution for
modeling the uncertainty of the FF parameters since it is the most common
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one, works well for many cases, and leads to simple analytical solutions. Ad-
ditionally, we conducted some experiments using a uniform distribution but
the results turned out to be similar.

Therefore, we assume that the distribution that models the noise component
in the FF domain (eq. (17)) is Gaussian:

Nkt ∼ N (·; 0, σ2
Nkt

) (20)

where the mean and variance are given by equations (18) and (19), respec-
tively, and we have added the time index to emphasize the time dependency.

From this hypothesis, in the following paragraphs, we deduce the expression
that models the uncertainty of the observations at the front-end, p(ot|ôt) in eq.
(6). Following the notation of the previous section, the vector ot represents the
FF parameters obtained from the clean speech and ôt represents the estimated
parameters after applying spectral subtraction in the magnitude spectrum
domain. That is,

ot =




FF1t

. . .

FFkt

. . .

FFNt




; ôt =




F̂F 1t

. . .

F̂F kt

. . .

F̂FNt




(21)

where N refers to the dimension of the input feature vector. Formally, we
should add the log-energy and the dynamic parameters since the uncertainty
of the dynamic parameters has been taken into account in our experiments
(the front-end is described in detail in Section 5.1). Nevertheless, for the sake
of clarity, we have not explicitly included them in the formulas.

Assuming that the FF coefficients are uncorrelated with each other, the term
p(ot|ôt) is rewritten as:

p(ot|ôt) =
N∏

k=1

p(FFkt|F̂F kt) (22)

where p(FFkt|F̂F kt), the probability distribution that models the uncertainty
of each FF component, can be obtained from equations (17) and (20) as fol-
lows:

p(FFkt|F̂F kt) = N (FFkt; F̂F kt, σ
2
Nkt

) (23)

Once p(ot|ôt) has been determined, the decision rule of the recognizer based
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on uncertainty decoding can easily be obtained. First, we assume that the
model distribution used in the HMMs is a Gaussian mixture:

p(ot|xi
t) =

M∑

m=1

cxi
t
mN (ot; µx

i

t
m,Σx

i

t
m) (24)

where M refers to the number of Gaussians per state; µx
i

t
m and Σx

i

t
m refers to

the mean vector and covariance matrix in mixture m and state xi
t, respectively.

Considering now diagonal matrices, the above equation becomes:

p(ot|xi
t) =

M∑

m=1

cxi

t
m

N∏

k=1

N (FFkt; µxi

t
mk, σ

2
xi

t
mk) (25)

where µxi

t
mk is the kth component of the vector µx

i

t
m and σ2

xi
t
mk

the kth com-

ponent of the diagonal in the matrix Σx
i

t
m.

Using equations (23) and (25), the decision rule given by eq. (6) can be
rewritten as follows:

λ = arg max
i

axi

0
xi

1




T∏

t=1

axi

t
xi

t+1

M∑

m=1

cxi

t
m

{

N∏

k=1

∫

FFkt

N (FFkt; µxi
t
mk, σ

2
xi

t
mk)N (FFkt; F̂F kt, σ

2
Nkt

)dFFkt

}]

(26)

Considering now that the second Gaussian can be rewritten as follows:

N (FFkt; F̂F kt, σ
2
Nkt

) = N (FFkt − F̂F kt; 0, σ
2
Nkt

) = N (F̂F kt − FFkt; 0, σ
2
Nkt

),
(27)

the integral in eq. (26) can be expressed as the next convolution operation
that is evaluated at the point F̂F kt:

∫

FFkt

N (FFkt; µxi

t
mk, σ

2
xi

t
mk)N (FFkt; F̂F kt, σ

2
Nkt

)dFFkt =

=


N (FFkt; µxi

t
mk, σ

2
xi

t
mk) ∗ N (FFkt; 0, σ

2
Nkt

)




FFkt=F̂F kt

(28)

where ∗ denotes the convolution operator. The result of the convolution is
a new Gaussian whose mean is the sum of the individual means and whose
variance is the sum of the individual variances. Thus, eq. (26) can be rewritten
as:

λ = arg max
i

axi

0
xi

1

[
T∏

t=1

axi

t
xi

t+1

M∑

m=1

cxi

t
m

N∏

k=1

N (F̂F kt; µxi

t
mk, σ

2
xi

t
mk + σ2

Nkt
)

]

(29)
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As we observe in the above equation, the new decision rule with uncertainty
decoding consists just of adding a time-variant noise-dependent term, σ2

Nkt
, to

the original variance.

Thereby, the modified decision rule can be interpreted as a simple variance
adaptation method. Indeed, if we compute the mean and variance of the esti-
mated parameters:

µ
F̂F kt

= E{F̂F kt} = E{FFkt} = µxi

t
mk,

σ2

F̂F kt

= E{(F̂F kt − µxi

t
mk)

2)} = σ2
xi

t
mk + σ2

Nkt
, (30)

we observe that the mean of the estimated parameters is equal to the mean of
the original parameters, but the variance has changed and should be adapted.

Finally, we have considered in our experiments an extension of the Gaussian
distribution of eq. (20) by using a scaled standard deviation through a param-
eter δ:

Nkt ∼ N (·; 0, (δσNkt
)2) (31)

The use of this parameter allows us to compensate to some extent for inaccu-
racies in the Gaussian model assumed by eq. (20).

3.2.1 Interpretation of the Gaussian model of the uncertainty as a spectral
weighting

Looking at the uncertainty decoding using a Gaussian model as a variance
adaptation method allows us to make a new interpretation based on spectral
weighting (Vicente-Peña et al. (2006a)). To this end, we need to recall the
conventional decision rule, eq. (2), in terms of log-likelihoods:

λ = arg max
i

(
log(axi

0
xi

1
) +

T∑

t=1

[
log(axi

t
xi

t+1
) + log(p(ot|xi

t))
]
+ log(p(λi))

)
.

(32)

Now, we focus on the term that depends on the emission probability at each
state, p(ot|xi

t), suppressing the time index dependence for the sake of clarity:

log(p(o|xi
t = j)) = −1

2

{
N∑

k=1

log(2πσ2
jk) +

N∑

k=1

(FFk − µjk)
2

σ2
jk

}
(33)

where we have considered the state distribution as a single Gaussian whose
mean and variance for the kth component are µjk and σ2

jk, respectively, and
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we have denoted the state xi
t by j for simplicity. The general case of mixture

of Gaussians can be developed in a similar way, but we have preferred to keep
the equations simpler.

If we adapt the model variance to take into account the uncertainty that is
present in the estimated parameters, eq. (33) becomes:

log(p(ô|xi
t = j)) = −1

2

{
N∑

k=1

log
(
2π(σ2

jk + σ2
Nk

)
)

+
N∑

k=1

(F̂F k − µjk)
2

σ2
jk + σ2

Nk

}
(34)

Using the notation,

wjk =
σ2

jk

σ2
jk + σ2

Nk

, (35)

and rewriting eq. (34) in a more convenient way, we obtain:

log(p(ô|xi
t = j)) = −1

2

{
N∑

k=1

log(2πσ2
jk) +

N∑

k=1

wjk

(F̂F k − µjk)
2

σ2
jk

−
N∑

k=1

log wjk

}
.

(36)

If we compare this equation with the one that corresponds with the criterion
followed for the clean parameters (eq. (33)) two differences become evident:

• The term
N∑

k=1

(FFk − µFFk
)2

σ2
jk

(37)

for clean features turns into

N∑

k=1

wk

(FFkn − µjk)
2

σ2
jk

(38)

for noise features. This term is a normalized Euclidean distance that in-
dicates how near or far is the observation from the model represented by
(µjk, σ

2
jk).

We can see the weights wk given by eq. (35) as a measure of the noise
level in our input features. Therefore, when the noisy term in our variance,
σ2

nk+1
/a2 + σ2

nk−1
/b2, is relatively small, we find weights close to one. In

contrast, the weights are close to zero when the noisy term is relatively
large. Normally, weights close to one come from high-energy regions in the
log filter bank energy domain and, therefore, eq. (38) is dominated by the
spectral peaks instead of by the valleys. It is also important to note that
the weights depend on the variance of the model in such a way that models
with larger variances are less sensitive to noise distortions.

• The second difference consists of the addition of the term

−
N∑

k=1

log wk. (39)
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The problem when we weight the Euclidean distance as we do in eq. (38)
is that it is close to zero if most of the weights are low. A distance close
to zero indicates a perfect matching between the current model and the
observation. The term defined by eq. (39) adds a penalty for low weights. It
is worth noting that this term vanishes when all weights are equal to one,
that is, when there is no noise.

4 SSBD-HMM

In order to provide a suitable background for describing the combination of
SSBD-HMM and uncertainty decoding, a brief review of the underlying ideas
of the SSBD-HMM method are given in this section. For more details, the
reader is referred to Vicente-Peña et al. (2010).

An HMM-based speech recognizer computes the log-likelihood of the sequence
of observed features for every candidate acoustic model and selects the can-
didate that provides the maximum. This computation entails the calculation
of emission log-probabilities, which depends on the normalized Euclidean dis-
tance between the current observation and the corresponding model mean.
Some of these normalized Euclidean distances can dominate the log-probabilities
computation when one of their components is strongly corrupted (i.e., it is an
outlier) and, consequently, is far away from its corresponding mean. Thus, the
corrupted components contribute strongly towards discarding the correspond-
ing model. For this reason, it is convenient to bound the distance and, as a
result, to bound the influence of the outliers on the final decision.

The BD-HMM method suggests substituting the normalized Euclidean dis-
tance by a bounded distance as follows:

BD(a − b) =





(a − b)2, if |a − b| < B

B2, otherwise
(40)

where, in our case, a is a component of the observation vector, b is the cor-
responding component of the mean vector, and B is a bound directly related
to the corresponding component of the variance vector (assuming diagonal
covariance matrices).

The BD-HMM method is effective to cope with outliers that appear when
ASR systems deal with noisy speech. However, the BD-HMM method works
only on the outliers, leaving the remaining effects of noise. On the other hand,
SS tries to estimate the clean parameters from the noise-corrupted ones and,
unlike BD-HMM, works on all the observed features. SS was not originally
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designed as a preprocessing stage for speech recognition but as a speech en-
hancement method. In this context, it is well known that the noise reduction is
attained at the expense of introducing distortions. As shown in Vicente-Peña
et al. (2010), these distortions produce an increment of the number of outliers.
Taking this fact into consideration, the joint application of SS and BD-HMM,
called SSBD-HMM, takes advantage of the speech enhancement attained by
SS while avoiding, by means of the BD-HMM, the negative effect derived from
the SS-generated outliers in the estimated spectral densities. Furthermore, the
BD-HMM method will be complemented by SS, which compensates for all the
parameters (not just the outliers).

5 Experiments and Results

5.1 System set-up

The experiments were performed using two well-known databases, namely:
RM1 NIST (1992) and Aurora-4 Hirsch (2002). For each database we designed
a speech recognition system based on the HTK toolkit (Young et al. (2002)).

The same parameterization was used for both databases. Specifically, the in-
put feature vector consisted of 12 FF parameters as well as the log-energy
coefficient that were obtained every 10 ms using a 25 ms Hamming window.
The time mean of the FF parameters along each utterance was removed, the
log-energy was normalized, and the resulting feature vector was extended with
the first and second time derivatives, resulting in a 39-dimensional vector.

The magnitude of the spectrum was estimated by applying spectral subtrac-
tion to the noise-contaminated utterances. The version of spectral subtraction
used in the experiments follows the next equation:

|X̂(ω, l)| = max
{(

|Ŝ(ω, l)| − γ|N̂(ω, l)|
)
, β|N̂(ω, l)|

}
(41)

where |X̂|, |Ŝ| and |N̂ | are, respectively, the estimates of the clean, noisy
speech and noise magnitude spectra; ω is the frequency index and l is the
time (frame) index; finally, γ and β are design constants respectively known
as “over-estimation factor” and “spectrum flooring.” For our experiments, we
used γ = 0.8 and β = 0.2. |Ŝ| was estimated as an average over the magnitude
spectra at the previous, current, and next time frames (Boll (1979)), while
|N̂ | was estimated using the minimum statistics method proposed in Martin
(2001). In order to estimate the noise power spectrum density, Martin (2001)
assumes that each noise power spectrum component follows an Exponential
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distribution. However, since we were interested in estimating the noise magni-
tude instead of the noise power spectrum, we used a Rayleigh model, resulting
from applying a root square operator on an Exponential variable (Papoulis and
Pillai (2002)). In particular, the mean and variance of this Rayleigh random
variable are related to the mean of the Exponential random variable by means
of the next equations:

µRAY =

√
π

2

√
µEXP (42)

σ2
RAY =

(
1 − π

4

)
µEXP (43)

where µRAY and σ2
RAY are, respectively, the mean and variance of the Rayleigh

random variable; and µEXP refers to the mean of the Exponential random
variable that represents the mean of the noise power spectrum density. From
eq. (42) and (43), it is straightforward to infer the mean and variance of the
noise components at the filter-bank energy domain.

Finally, we combined our proposal with the SSBD-HMM method (Vicente-
Peña et al. (2010)). As SSBD-HMM employs SS to get clean parameter esti-
mates, we incorporate the information about the uncertainty that remains in
the estimates for making the system more effective.

In the next subsections, we give more details of the designed systems that are
specific to each database.

5.1.1 Resource Management RM1 (NIST (1992))

The well-known Resource Management RM1 database has a vocabulary of
991 words. The training corpus consists of 3990 sentences, and the test set,
which corresponds to a compilation of the first four official test sets, contains
1200 sentences. We used a down-sampled version (at 8 kHz) of the database
(originally recorded at 16 kHz in clean conditions).

The orthographic transcription of the data is based on the SRI Resource Man-
agement dictionary (provided in the same distribution by NIST). Context-
dependent acoustic models were used (cross-word triphones). A three-state,
three-mixture per state HMM was used to model each triphone. Two silence
models, long and short, were used. The long silence model consisted of three
states while the short silence model consisted of a unique state tied to the
middle state of the long silence model. Finally, standard word-pair grammar
was used as the language model.

Artificially contaminated versions of this database were created by adding
four kinds of noises at four different SNRs. Specifically, 8 kHz down-sampled
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versions of the pink, car, babble, and factory noises from the NOISEX-92
(Varga et al. (1992)) database were used. The considered SNR values went
from 0 dB to 15 dB in 5 dB steps. These contaminated versions were only
used for testing purposes (never for training).

5.1.2 Aurora-4 (Hirsch (2002))

This database is based on the WSJ0 database (Paul and Baker (1992)). As
a training set, we chose a predefined set, which comprises the clean speech
sentences acquired with the close-talking microphone. This set agrees with
the standard SI-84 training set defined for the WSJ0, which contains 7138
utterances. The test set was based on the Nov’92 development set, defined for
the WSJ0 database that includes artificially noise-contaminated sentences.
The noisy versions were created by adding one type of noise at a randomly
chosen SNR between 5 and 15 dB in steps of 1 dB. Six different kinds of noises
were used: car, babble, restaurant, street, airport, and train station. We used
all the noises for our experiments but we limited the experiments to 8 kHz
down-sampled versions of the close-talking microphone set.

The CMU dictionary (v 0.6) (CMU (1998)) was used, where we removed the
vowel stress obtaining 39 phonemes for our transcriptions. As we did for the
RM1 database, cross-word triphone acoustic models and two different silence
models were used. In this case, three-state models with 8 Gaussians per state
were used, except for the silence models, in which the number of Gaussians
was increased to 16. Finally, the 5K bigram language model distributed with
the WSJ0 corpus was used.

5.2 Results

Before presenting the results for the noisy experiments, recognition results
in terms of Word Error Rate (WER) for clean speech are shown in Table 1.
These results are similar to those achieved by other systems that use the same
database but different parameterization (e. g. Vicente-Peña et al. (2006b),
Woodland et al. (1994) or Parihar and Picole (2001)). In the remainder of this
section, we show the performance of our proposals for each database under
noisy conditions.

5.2.1 Results for the RM1 task

Figure 2 shows the WER for the RM1 database with a Gaussian distribution
for modeling the uncertainty of the parameters (labeled as UD-G). In this
first experiment, we used δ = 1 in eq. (31). In the figure, we also show the
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Table 1
WER (%) for clean speech attained by each of the designed systems for the RM1
and Aurora-4 databases.

Baseline
WER (%)

RM1 6.57 %

Aurora-4 8.8 %
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Figure 2. WER for the RM1 task: reference system (Baseline), spectral subtraction
(SS ) and a Gaussian model of the uncertainty (UD-G).

performance of the baseline system with and without applying SS (labeled, as
SS and Baseline, respectively). As observed in the figure, the effectiveness of
uncertainty decoding is clear except for the car noise, for which the SS is not
working properly. SS does not work for babble noise either (except at 0 dB),
but in this case, uncertainty decoding is able to compensate for the losses
owing to SS. In the remaining cases, the situation is as expected: SS improves
the results achieved by the baseline system and uncertainty decoding improves
even more the results achieved by SS. In particular, the improvements over SS
are statistically significant 1 for pink noise at 0 and 5 dB; for factory noise at
0, 5 and 15 dB and, finally, for babble noise, the improvements are significant
for all the studied SNRs. In summary, the results are statistically significant
for low and medium SNRs.

Figure 3 compares the results achieved by uncertainty decoding with those
achieved by SSBD-HMM. The results clearly prove that SSBD-HMM is more
effective dealing with additive noises than uncertainty decoding. However, un-
certainty decoding improves the way of dealing with those contaminated fea-
tures that are not outliers and, therefore, we suggest combining SSBD-HMM
with uncertainty decoding. In the same Figure 3, we show the results for this
combination (labeled as UDBD-G). The combination generally achieves the

1 We have stated the statistical significance of the results calculating the confidence
intervals, for a confidence of 95 % (see Weiss and Hasset (1993), for details).
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Figure 3. WER for the RM1 database: spectral subtraction (SS ), uncertainty de-
coding using a Gaussian distribution (UD-G), combination of SS and BD-HMM
(SSBD-HMM ) and combination of uncertainty decoding using a Gaussian distribu-
tion and SSBD-HMM (UDBD-G).
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Figure 4. WER for the Aurora-4 database: uncertainty decoding with Gaussian dis-
tribution (UD: Gauss.), spectral subtraction (SS ) and the reference system (Base-
line).

best results, with the improvements respect to SS being statistically signifi-
cant for all the cases with the exception of car noise at 15 dB. Furthermore,
the improvement over SSBD-HMM due to uncertainty decoding is statistically
significant for babble noise at 0,5 and 10 dB.

For these experiments, no significant differences were observed by using several
values of δ in eq. (31), that was varied between 0.75 and 2.0. We used δ = 1.0.

5.2.2 Results for the Aurora-4 task

Figure 4 shows the results achieved by uncertainty decoding for the Aurora-4
database. With the exception of car noise, uncertainty decoding outperforms
SS with the improvements being statistically significant for babble, restaurant,
and airport noises. However, the baseline system generally achieves the best
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Figure 5. WER for the Aurora-4 database: comparison between uncertainty decod-
ing and SSBD-HMM.

results because SS does not work properly with four out of six types of noise.

For the same reason explained previously, we suggest combining uncertainty
decoding with SSBD-HMM. As can be observed in Figure 5, the suggested
combination achieves the best results in all the cases except for car noise.
Furthermore, all of the improvements with respect to the Baseline or SS are
statistically significant.

The fact that the proposed combination achieves the best results (with the
mentioned exception) also proves that uncertainty decoding clearly contributes
to improving the already good results achieved by SSBD-HMM. We should
point out that car noise is mainly stationary and the uncorrelation property
assumed in sec. 3.1 for estimating the uncertainty in the dynamic parameters is
likely not as precise as required. For the remaining noises, uncertainty decoding
combined with SSBD-HMM obtains a relative improvement with respect to
SSBD-HMM equal to 12 % for babble noise, 8 % for airport noise, around 5 %
for train and restaurant noises and 3 % for street noise. These improvements
are statistically significant for babble and airport noises.

Again, several values for the δ parameter were tested, namely: from δ = 0.75
to δ = 2.0 in steps of 0.25. The best results were found for δ = 1.75. It is worth
noting that this value is larger than the one used for the RM1 task. This dif-
ference is likely due to the type of noises considered in the Aurora-4 database,
which makes the estimation of the clean parameters more difficult. As a result,
the application of spectral subtraction leaves a higher level of uncertainty. In
any case, recognition rates are not very sensitive to small variations of the δ
parameter.

18



6 Conclusions

The method proposed in this paper starts from a system that mitigates the
effects of additive noises by means of spectral subtraction. We applied uncer-
tainty decoding to include into the recognition process the information about
the uncertainty that still remains in the observations after SS. Specifically, our
work focused on FF parameterization, which achieves as good results as the
well-known MFCC parameterization but has the advantage of remaining in
the log-spectrum domain. Taking advantage of this fact, we obtained simple
equations for describing the effects of additive noises in the FF domain. These
simple relations allowed us to model the uncertainty present at the front-end.
We used a Gaussian distribution for modeling this uncertainty, inferring the
new decision rule that governs the recognition process. Additionally, this new
decision rule allowed us to develop a novel interpretation of the uncertainty
decoding method as a spectral weighting technique. Our first results showed
the effectiveness of the uncertainty decoding.

In addition, we suggested combining the proposed uncertainty decoding method
with an effective technique for dealing with additive noise, known as SSBD-
HMM. The experimental results on the well-known RM1 and Aurora-4 ASR
tasks clearly show how uncertainty decoding significantly improves the SSBD-
HMM performance. This improvement is explained by the fact that uncer-
tainty decoding methods are able to compensate for features that, without
being outliers for the models of the recognizer, are also affected by the pres-
ence of noise.
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