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Abstract 

 The objective is to analyze vocal dysperiodicities in connected speech produced by 

dysphonic speakers. The analysis involves a variogram-based method that enables 

tracking instantaneous vocal dysperiodicities. The dysperiodicity trace is summarized by 

means of the signal-to-dysperiodicity ratio, which has been shown to correlate strongly 

with the perceived degree of hoarseness of the speaker. Previously, this method has been 

evaluated on small corpora only. In this article, analyses have been carried out on two 

corpora comprising over 250 and 700 speakers. This has enabled carrying out multi-

frequency band and multi-cue analyses without risking over-fitting. The analysis results 

are compared to the cepstral peak prominence, which is a popular cue that indirectly 

summarizes vocal dysperiodicities frame-wise. A perceptual rating has been available for 
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the first corpus whereas speakers in the second corpus have been categorized as normal or 

pathological only. For the first corpus, results show that the correlation with perceptual 

scores increases statistically significantly for multi-band analysis compared to 

conventional full-band analysis. Also, combining the cepstral peak prominence with the 

low frequency-band signal-to-dysperiodicity ratio statistically significantly increases their 

combined correlation with perceptual scores. The signal-to-dysperiodicity ratios of the 

two corpora have been separately submitted to principal component analysis. Results 

show that the first two principal components are interpretable in terms of the degree of 

dysphonia and the spectral slope respectively. The clinical relevance of the principal 

components has been confirmed by linear discriminant analysis. 

Keywords: connected disordered speech, variogram, signal-to-dysperiodicity ratio, 

cepstral peak prominence, multi-band analysis, multi-variable analysis. 

 

1. Introduction 

Within the context of the assessment of laryngeal function, acoustic analysis has a 

central place because the speech signal may be recorded non-invasively and it forms the 

base on which the perceptual assessment of voice is founded. Generally speaking, the goal 

of acoustic analysis is to document quantitatively the degree of hoarseness and monitor 

the evolution of the voice of dysphonic speakers.  

Many voice disorders cause voiced speech to deviate from strict periodicity. 

Dysperiodicities may be caused by additive noise owing to turbulent airflow and 

modulation noise owing to extrinsic perturbations of the glottal excitation signal. 

Dysperiodicities may also be due to intrinsically irregular dynamics of the vocal folds and 

involuntary transients between dynamic regimes (Edgar, 2001), (Sapienza, 2002), 

(Schoentgen, 2003). Many acoustic features that have been used to assess vocal function 
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reflect the deviation of the speech waveform from perfect periodicity. Jitter and shimmer, 

for instance, are frequently used to summarize perturbations of the speech cycle lengths 

and amplitudes, respectively. 

Most often, acoustic markers of vocal dysperiodicities are obtained from stable 

fragments of sustained speech sounds. The reason is that most methods for estimating 

vocal dysperiodicities rely on the assumptions of stationarity and local periodicity of the 

signal. Sustained vowels can indeed be assumed, with good accuracy, to be produced by 

keeping time-invariant the characteristics of the voice source, vocal tract and articulators 

(Murry and Doherty, 1980) so that vocal perturbations and noise are easily measured. 

However, the widespread use of sustained vowels is due to the technical feasibility of the 

analysis rather than clinical relevance. 

Disregarding the issue of technical feasibility, most clinicians consider connected 

speech to be more informative than sustained sounds. Arguments in favour of analysing 

connected speech are that the vibration of the vocal folds must be switched on and off 

continually, voicing must be maintained while the supra-laryngeal impedance is changing 

incessantly, especially during obstruents, and the larynx continually ascends and descends 

in the neck (Schoentgen, 2003). Lack of stationarity as well as the greater variability of 

the conditions under which vibration must take place are considered to be a greater 

challenge to a speaker’s larynx. Also, it has been speculated that speakers are less likely 

to compensate for their voice problems while producing connected speech than while 

sustaining sounds. It may therefore be the case that speakers are able to sustain quasi-

normal sounds within a narrow interval of pitch and intensity, whereas their continuous 

speech waveform may be severely disturbed. In addition, the signal-to-dysperiodicity 

ratio obtained from sustained vowels depends somewhat on fundamental frequency and 
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sound pressure. This dependence may be weaker on average when the analysis is carried 

out on continuous speech (Klingholtz, 1990). 

In addition, sustained vowels may have other drawbacks. Some methods require that 

the analysis is carried out on recordings of long duration, which may be subject to pitch 

and intensity variations. As a consequence, the assumption of stationarity may be 

violated. The reliability of these methods may therefore depend on the ability of the 

speakers to sustain sounds at a constant pitch and intensity for a sufficient long time. 

Vocal dysperiodicity estimation often relies on the measurement of speech cycle 

durations and amplitudes of voiced speech segments, or on pitch-synchronous spectral 

analysis. Vocal dysperiodicity designates any difference in length, amplitude or shape of 

neighboring speech cycles. This means that the validity of the acoustic measures relies on 

the accuracy of the measurement of the glottal cycle lengths. In the context of clinical 

applications, such methods are appropriate for documenting mildly to moderately hoarse 

voices only (Muta et al., 1988).  

Up to now, comparatively few studies have investigated vocal dysperiodicities in 

continuous speech, even though clinical analysis of connected speech has been 

propounded early on by Fourcin and Abberton (1971, 1977), for instance. An overview of 

published studies is given in Table 1. Most of the studies have in common that they 

involve the detection of individual speech cycles, or individual pseudo-harmonics of the 

speech spectrum. But, the reliable detection of these is not always warranted in connected 

speech produced by severely hoarse speakers, resulting in omission and insertion errors 

biasing numerically the values of acoustic markers. 

Qi et al. (1999) have proposed an analysis method of dysperiodicities in disordered 

speech based on a two-stage linear prediction. The cycle-to-cycle prediction error is 

assigned to the speech dysperiodicities. The cycle-to-cycle prediction is forward only, 



ACCEPTED MANUSCRIPT 

 5 

giving rise to large prediction errors across phonetic boundaries, boosting the signal-to-

dysperiodicity ratio spuriously. The method is therefore not suited for tracking 

dysperiodicities in speech directly. However, a major advantage of this method is that it 

does not request isolating speech cycles individually.  

To avoid predicting speech samples across phonetic boundaries and to enable speech 

to be analyzed directly, Bettens et al. (2005) has proposed a bi-directional multi-step 

predictive approach. Multi-step linear predictive modelling exploits the local periodicity 

of voiced speech sounds. Indeed, if the speech signal is cyclic and the cycle amplitudes 

change smoothly, it is possible to predict approximately the present cycle on the basis of 

some previous or subsequent cycle and the prediction error may be assigned to the cycle-

to-cycle dysperiodicity. However, the weights that are involved in a multi-step prediction 

filter are not constrained to be positive. Multi-step linear predictive analysis may therefore 

invert the sign of lagged signal fragments, which is inconsistent with the definition of 

periodicity. 

To avoid this inconsistency, Kacha et al. (2006a) has proposed a generalized 

variogram to estimate speech signal dysperiodicities. The generalized variogram enables 

tracking cycle-to-cycle dysperiodicities (whatever their cause) in any speech sound 

produced by any speaker, because it is not based on the assumptions that the signal is 

locally periodic or that the average cycle length can be known a priori. A signal-to-

dysperiodicity ratio (SDR) that summarizes the dysperiodicities has been shown to 

correlate strongly with the degree of perceived hoarseness, the correlations being stronger 

for segmental than global signal-to-dysperiodicity ratios (Jayant and Noll, 1984). 

In (Kacha and al., 2006b), two variants of multi-band segmental analysis have been 

investigated and their performances compared to that of the conventional global signal-to-

dysperiodicity ratio. Results have suggested that multi-band segmental signal-to-
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dysperiodicity ratios correlate better with scores of perceived hoarseness than global ones. 

However, variogram-based methods have been evaluated so far on a corpus comprising a 

total of 22 speakers only, normophonic and dysphonic subjects combined (Kacha et al., 

2006a, 2006b; Alpan et al., 2007). The purpose of the present study is to evaluate such 

methods on much larger corpora (a total of over 900 speakers sustaining sounds and 

producing connected speech). The evaluation is carried out in terms of the ability of 

acoustic cues that report the size of the estimated vocal dysperiodicities to a) predict 

perceptual ratings of disordered voices; b) contend with or improve on existing spectral 

analysis methods; and c) discriminate between normophonic and dysphonic subjects. The 

substantial number of experimental subjects has enabled carrying out multi-cue as well as 

multi-frequency band analyses without risking overfitting. Indeed, vocal dysperiodicities 

have also been analyzed in different spectral bands. Reasons are the lack of knowledge 

with regard to their band-specific behaviour as well as the need to discover acoustic cues 

that correlate best with perceptual ratings that are likely to be influenced unequally by 

different frequency bands. In an earlier feasibility study, we had subdivided the acoustic 

frequency spectrum into three intervals (Kacha et al., 2006b). But, both the number of 

bands as well as the number of speakers have been too small to enable drawing firm 

conclusions. Here we therefore carry out multi-band analysis on much larger corpora by 

means of a subdivision of the frequency axis that is perceptually-inspired. 

The objectives of the experiments that are reported are the following. 

First, test whether separately tracking dysperiodicities in different frequency bands 

enables improving the correlation between measured signal-to-dysperiodicity ratios and 

perceptual scores of hoarseness, compared to a full-band analysis. 



ACCEPTED MANUSCRIPT 

 7 

Second, compare the relevance of signal-to-dysperiodicity ratios to a popular cue of 

dysphonia, which is the cepstral peak prominence (CPP) (Table 1) and investigate their 

inter-correlation. 

Third, test whether combining signal-to-dysperiodicity ratios with the cepstral peak 

prominence enables improving the overall correlation with perceptual scores of 

hoarseness. 

Fourth, test whether the observed differences in correlation are statistically significant. 

Indeed, these differences are expected to be statistically significant only when the corpora 

are large because the correlations that are compared are already fairly high (0.7 – 0.8) and 

therefore comprised in a narrow interval. 

Fifth, investigate multi-band signal-to-dysperiodicity ratios via a principal component 

analysis, because perceptual scoring is not available for all corpora. Principal component 

analysis is expected to combine linearly acoustic cues so that a small number of 

combinations “explain” the observed inter-stimuli differences. Given the lack of 

perceptual scores, the relevance of the combined cues have been expressed numerically 

via a linear discriminant analysis of the stimuli known to be “normal” and “pathological”. 

The results show for the first corpus that full-band, multi-band and multi-cue analyses 

differ statistically significantly with regard to the correlation with perceptual scores. 

Multi-cue analyses involve a combination of temporal and cepstral features that report 

signal dysperiodicity and their statistical analysis as a collective. Signal-to-dysperiodicity 

ratios have been submitted to principal component analysis for the two corpora. The 

results show that the first two principal components are interpretable in terms of the 

degree of dysphonia and the spectral slope, respectively. The relevance is confirmed 

numerically via a discriminant analysis in terms of normophonic and dysphonic speakers. 
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2. Methods 

Sections 2.1 and 2.2 summarize the signal processing that enables estimating cycle-to-

cycle dysperiodicities and their recapitulation via their segmental signal-to-dysperiodicity 

ratio (Kacha et al., 2006a; Alpan et al., 2007). 

2.1. Generalized variogram analysis 

For a periodic signal x(n) of period T0, one may write x(n) = x(n+kT0), k ∈� . For a 

locally-stationary speech signal x(n), the deviation from strict periodicity over an analysis 

frame of length N can therefore be estimated via expression (1). Index n positions the 

samples within the frame. 
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Expression (1) involves the squared difference between a main analysis frame and an 

auxiliary frame shifted by a signed lag T comprised between ± 2.5 ms and ± 20 ms, (i.e 50 

– 400Hz). For each main frame position, lag T is fixed so as to minimize the cumulated 

squared difference. Signed lags guarantee that, in connected speech, the shift of the 

auxiliary analysis frame across phonetic boundaries is avoided and only cycles that are 

internal to a phonetic segment are compared. Indeed, when a speech cycle is near the right 

boundary of a phonetic segment, the segment-internal cycles are expected to be to its left, 

that is, lag T is expected to be positive and vice versa for a speech cycle positioned near a 

left phonetic boundary. For voiced sounds, lag T is expected to be an integer multiple of 
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the glottal cycle length. For unvoiced sounds, (1) can still be meaningfully computed but 

the interpretation of lag T in terms of glottal cycle lengths is not valid. 

In connected speech, the signal amplitude evolves deterministically owing to onsets 

and offsets, segment-specific loudness as well as accentuation. To remove these clinically 

non-relevant variations of the signal amplitude, a local gain α is inserted into (1) to 

equalize the energies between main and auxiliary analysis frames. The expression 

between accolades in (1) is known as the variogram (Haslett, 1997) of the speech signal, 

when local gain α =1.  

The analysis frame length is fixed to 2.5 ms, so that main and auxiliary frames do not 

overlap. The shift between successive main analysis frames is also fixed to 2.5 ms, thus 

enabling the sample-by-sample dysperiodicity (3) to be computed once and only once for 

each speech sample. Lag Topt is the signed lag which minimizes energy-equalized 

variogram (1).                     

( ) ( ) ( )opte n x n x n Tα= − + .                                                                             (3) 

In addition, Alpan et al. (2007) have shown that equalizing main and auxiliary 

analysis frame averages enables discarding parasitic low-frequency transients, such as pop 

noise owing to the speaker’s breath hitting the recording microphone. However, this 

option has not been implemented because it does not increase for the corpora that are 

analyzed here the correlation between computed acoustic cues and perceptual scores of 

hoarseness. 

2.2 Segmental signal-to-dysperiodicity ratio 

Speech signal x(n) as well as the corresponding dysperiodicity trace e(n) have been 

divided into intervals of length Ls equal to 5 ms (Kacha et al., 2006a). Then, a local 

signal-to-dysperiodicity ratio (4) has been computed for each interval.  
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The segmental signal-to-dysperiodicity ratio SDRSEG is obtained by averaging the 

SDRlocs over all the intervals. The term “segmental” here refers to the subdivision of the 

signals into 5ms intervals prior to averaging. The segmental signal-to-dysperiodicity ratio 

has been favored in the framework of the evaluation of lossy speech coders, because it 

appears to correlate better with human-assigned scores of perceived quality. A possible 

explanation is that segmental ratios boost the contribution of short noisy segments, which 

seem to influence perceived timbre strongly (Jayant and Noll, 1984).  

2.3 Multi-band analyses 

For each utterance, the speech signal as well as the corresponding dysperiodicity trace 

have been filtered by means of four-channel mel-spaced linear-phase filters and segmental 

signal-to-dysperiodicity ratios (4) have been computed for each band. The ranges of the 

four mel bands (B1 – B4) have been (0 – 800 mel), (800 – 1600 mel), (1600 – 2400 mel) 

and beyond (Stevens et al., 1937). These mel-intervals correspond to the frequency bands 

(0 – 724 Hz), (724 – 2195 Hz), (2195 – 5188 Hz) and beyond. The filterbank has been 

designed by means of the Parks-McClellan method (Oppenheimer and Schafer, 1975). 

Figure 1 shows the frequency responses of the four-channel filterbank. 

2.4 Cepstral analysis and cepstral peak prominence 

The cepstral peak prominence (CPP) is a measure of the log-amplitude of the first 

rhamonic of the speech cepstrum (Hillenbrand and Houde, 1996). Usually, the speech 

cepstrum is defined as the inverse magnitude spectrum of the log-magnitude spectrum 

(Oppenheimer and Schafer, 1975). 
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The calculation of CPP involves the following steps. 

1. Obtainment of the speech cepstrum for an analysis frame length of 2048 samples 

(for a sample frequency equal to 44.1 kHz). The shift between successive frames 

equals 10 ms.  

2. Fit of a linear regression line to the log-cepstrum between 1 ms and the maximum 

quefrency. 

3. Obtainment, between the minimum and the maximum expected vocal quefrencies, 

of the height with regard to the regression line of the most prominent cepstral 

peak, which is the local (per-frame) cepstral peak prominence. 

4. Obtainment of the global cepstral peak prominence CPP by averaging the local 

cepstral peak prominences over all analysis frames. 

Cepstral peak prominences have been obtained by means of Hillenbrand’s CPPS software 

(http://homepages.wmich.edu/~hillenbr/cpps.exe). Figure 2 shows the CPP computed for 

a clean and disordered voice, respectively. 

2.5. Corpora 

2.5.1. Dutch corpus 

This first corpus has comprised sustained vowels [a] and two Dutch sentences (“Papa 

en Marloes staan op het station. Ze wachten op de trein.”) produced by 28 normophonic 

and 223 speakers with different degrees of dysphonia. Diagnoses have been the following: 

functional dysphonia (81), nodules (42), polypoid mucosa (edema) (29), paralysis/paresis 

(18), polyp (11), cyst (8), acute laryngitis (5), others (34). The voiced segments of the two 

sentences have been extracted following Parsa and Jamieson (2001) and concatenated. 

From these, two additional artificial-stimuli corpora have been formed. The first sub-

corpus comprises concatenations of the voiced segments followed by vowel [a]. The 
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second comprises concatenations of the full sentences followed by vowel [a]. Except the 

sub-corpus involving voiced segments only that has been sampled at 22050 Hz, all the 

stimuli have been sampled at 44100 Hz. Five judges have evaluated the sub-corpus 

involving the concatenation of the full sentences and vowel [a] perceptually. The five 

judges have been professional voice therapists with at least five years of experience in 

clinical voice quality ratings. Each judge has rated, from 0 to 3, the item “grade” of the 

(G)RABS scale. "Grade" represents the degree of hoarseness or voice abnormality 

(Hirano, 1981). The five perceptual scores per stimulus have been averaged. Recordings, 

segmentation and perceptual evaluation have been carried out at the Sint-Jan General 

Hospital, Bruges, Belgium (Maryn et al., 2009). 

2.5.2. MEEI corpus 

The second corpus has been the Kay Elemetrics Voice Disorder Database developed 

by the Massachusetts Eye and Ear Infirmary (MEEI) Voice and Speech Labs (Kay 

Elemetrics Corp., 1994). This corpus comprises 53 normophonic and over 650 

pathological utterances. The acoustic samples are sustained phonations of vowel [a] (3 - 4 

s long) and the first 12 seconds of the Rainbow Passage (Fairbanks, 1960) (661 stimuli) 

spoken by normophonic subjects and patients with organic, neurological, traumatic, and 

psychogenic voice disorders at different stages (from early to fully developed). The 

speech samples have been recorded in a controlled environment at 25 kHz and 16 bits of 

resolution. Hereafter, the analyses are carried out on the 12-second continuous Rainbow 

Passage utterances. No perceptual assessment has been available. 

2.6. Statistical Analysis 

2.6.1. Full-band and single-cue analyses 
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Linear regression analyses have been carried out to predict the degree of perceived 

hoarseness via the segmental signal-to-dysperiodicity ratios in the whole frequency band 

(full-band analysis) first, and via the cepstral peak prominence (single-cue analysis) 

second. This analysis has been carried out on the four sub-corpora of the Dutch corpus. 

2.6.2. Multi-band linear regression analysis 

Linear regression analysis has been carried out to predict the degree of perceived 

hoarseness via a linear combination of the segmental signal-to-dysperiodicity ratios in 

different frequency bands (1 to 4). This analysis has been carried out on the sub-corpus 

concatenating two Dutch sentences and sustained [a], for which a perceptual evaluation 

has been available. 

2.6.3. Multi-cue linear regression analysis 

Also, linear regression analysis has been carried out to predict the degree of perceived 

hoarseness via a linear combination of the segmental signal-to-dysperiodicity ratio in the 

lowest frequency band and the cepstral peak prominence (CPP). The reasons for selecting 

the lowest frequency band are explained later. This analysis has been carried out on the 

sub-corpus concatenating two Dutch sentences and sustained [a].  

2.6.4. Principal component analysis and linear discrimination analysis  

A principal component analysis has been carried out on 3 segmental signal-to-

dysperiodicity ratios (the three lowest bands) of the MEEI corpus comprising normal and 

pathological utterances (12-second Rainbow Passage) (Jolliffe, 2002), for which no 

perceptual evaluation has been available. The SDRSEGs cues have been z-normalized 

prior to analysis. To assess the generality of the principal component representation, the 

analysis has also been carried out on the SDRSEGs obtained for the first three frequency 

bands for the sub-corpus concatenating two Dutch sentences and sustained [a]. A linear 
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discriminant analysis has been carried out to assess numerically the discrimination 

performance of the first two principal components. Here, linear discrimination analysis is 

carried out to confirm the relevance of the principal component analysis.  

3. Results and discussion 

3.1 Correlation between acoustic cues and human-assigned perceptual scores 
 
 

3.1.1 Full-band segmental signal-to-dysperiodicity ratio and cepstral peak prominence 

Table 2 shows the values of the Pearson product-moment correlation �P between the 

average perceived grade G (hoarseness) and the full-band segmental signal-to-

dysperiodicity ratio (SDRSEG) for the four sub-corpora of the Dutch corpus. The null 

hypothesis (�P = 0) has been rejected for each (two-tailed t-test, �crit = 0.21, p < 0.001, t = 

12.8 – 15.5). The strongest (absolute) correlation (�P  = 0.7) is observed for the sub-

corpus concatenating Dutch sentences with vowel [a], for which the perceptual ratings 

had been carried out in the first place . The same table also shows the values of 

correlation �P between the average perceived grade and the cepstral peak prominence 

(CPP). The null hypothesis (�P = 0) has been rejected for each sub-corpus (two-tailed test, 

�crit = 0.21, p<0.001, t = 10.7 – 15.5). Again, the correlation is strongest (�P = 0.7) for the 

Dutch sub-corpus concatenating two sentences with vowel [a]. 

3.1.2 Multi-band analyses and contribution of different spectral bands to perceived 

hoarseness 

Multiple cues obtained in different frequency bands or domains (temporal versus cepstral) 

have been combined to investigate whether linear combinations of cues enable improving 

the correlation of the combined cues with human-assigned perceptual scores. Given the 
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size of the corpora, the fitting of multiple cues may be carried out safely without risking 

overfitting. 

The multi-band analysis has been carried out for the sub-corpus concatenating Dutch 

sentences with vowel [a], because it has previously given rise to the strongest correlation 

with perceptual ratings of hoarseness. Only the SDRSEG cues for the first three bands 

have been entered into the linear regression analysis, which has been stepwise. Indeed, in 

the fourth band the correlation of the SDRSEG cue with the perceptual ratings has been 

close to zero. In that band, the harmonics are masked by noise and the SDRSEG values 

are low for most speakers. 

Table 3 reports standardized regression coefficients �i of the segmental signal-to-

dysperiodicity ratios in frequency bands B1 to B3. The adjusted R2 (0.58) is a 

conservative estimate of the percentage of the variance of the perceptual scores that can 

be attributed to the combined band-limited signal-to-dysperiodicity ratios. The multiple 

correlation R is statistically significant (Rcrit = 0.176, p < 0.05, F = 113.6). The values of 

correlation R of perceptual scores with SDRSEGs differ significantly between full-band 

and multi-band analyses (two-tailed t-test, t = 3.78, p < 0.001) (Dunn and Clark, 1969; 

Hotelling, 1940). Figure 3 reports the same data graphically. It shows on the horizontal 

axis the average grade scores predicted by means of the SDRSEG cues for the first three 

frequency bands and on the vertical axis the average human-assigned scores.  

One other objective has been to investigate whether different spectral bands contribute 

unequally to the perceived degree of hoarseness (grade G). In Table 3, the weights of the 

SDRSEG cues are shown to decrease for high-frequency bands and in Table 4 the first 

frequency band is shown to contribute most to the prediction of the perceptual scores via 

segmental signal-to-dysperiodicity ratios. Table 4 indeed displays (multiple) correlation 

coefficients R obtained for SDRSEGs for one (B1), two (B1, B3) and three bands (B1, B2, 



ACCEPTED MANUSCRIPT 

 16 

B3), which are in the order of the stepwise linear regression. Correlation R increases 

statistically significantly from 0.71 (for the first frequency band) to 0.76 (for the first 

three frequency bands) (two-tailed t-test, t = 3.30, p < 0.001) (Dunn and Clark, 1969; 

Hotelling, 1940). 

This may suggest that most of the perceptually relevant information is comprised in 

the first frequency band (B1). A possible explanation is that because the spectral energy 

decreases with frequency owing to the spectral tilt, listener judgement is influenced most 

by the more intense frequency intervals that perceptually mask weaker ones. This is 

confirmed by Figure 4 that reports the variation of the correlation coefficient between 

perceptual scores and segmental signal-to-dysperiodicity ratios as a function of the upper 

cut-off frequency of the first band, which evolves from 200 Hz to 3200 Hz. The 

correlation reaches a plateau near 1000 Hz, which confirms that the first frequency band 

(B1) contributes most to the prediction of the perceptual scores. 

3.1.3 Multi-domain (temporal versus cepstral) analyses 

An additional multi-cue linear regression analysis has been carried out with a view to 

predicting perceptual scores by means of the cepstral peak prominence and the segmental 

signal-to-dysperiodicity ratio in the first frequency band. These two cues have been 

retained because their inter-correlation (�P = 0.61) is moderate and the first frequency 

band contributes most to the prediction of the perceptual scores (Table 4). 

Weights �i reported in Table 5 suggest that cepstral peak prominence and segmental 

signal-to-dysperiodicity ratio contribute roughly equally to the prediction of the 

perceptual scores. The correlation between predicted and human-assigned perceptual 

scores increases from 0.7 and 0.71 (Tables 2 and 4) for the individual to 0.79 (Table 5) for 

the combined cues. The increase is statistically significant (Rcrit = 0.155, p < 0.05, F = 

200.4).  In addition, Table 6 summarizes results of t-tests comparing the correlation 
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between human-assigned scores and scores predicted via the combined SDRSEG and CPP 

to the correlation between human-assigned scores and scores predicted via single-band 

and multi-band SDRSEGs as well as CPP alone. The differences are statistically 

significant.  

 To sum up, regression analyses involving several cues increase observed 

correlations with perceptual scores. The increase is from 0.70 for full-band analysis to 

0.76 for multi-band analysis (Table 4), and to 0.79 for multi-cue analysis involving the 

first-band SDRSEG and CPP (Table 5). The increase is expected because of the good 

correlation with perceptual scores (�P = 0.70 or 0.71) of each cue individually (SDRSEG 

and CPP) and the moderate-only inter-correlation (�P = 0.61) between the two.  

To illustrate that equal values of correlation �P may be interpreted differently, Figure 

5 reports on the vertical axis the average perceptual scores of grade G assigned by human 

judges and on the horizontal axis the same scores predicted by linear regression of single-

band SDRSEG, CPP and the combined SDRSEG and CPP. When comparing the scatter of 

samples in the two top plots in Figure 5, one notices that the trend is less non-linear for 

CPP and less dispersed around the bisector for SDRSEG. Figure 5.c suggests that the 

increased correlation is the outcome of a trend that is less non-linear blended with a 

decrease of the dispersion of the data points around the bisector. The combination of 

cepstral peak prominence and signal-to-dysperiodicity ratio appears to possess to a higher 

degree a property that linear regression analysis is used to detect, i.e. the preferential 

clustering of data points in the vicinity of a straight line. Therefore, we do not conclude at 

this stage that both cues are genuinely complementary, loose from any assumption of 

linearity. 
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3.2 Principal component and linear discrimination analyses of multi-band signal 

to dysperiodicity ratios 

Principal component analysis has been carried out on the multi-band SDRSEG cues of 

the 12-second Rainbow Passage (MEEI corpus) for which no perceptual rating has been 

available. Table 7 shows the results of the analysis applied to the SDRSEGs of the first 

three frequency bands. Eigenvalues as well as individual and cumulative variances are 

shown to the left. Coefficients of the linear combinations of the z-normalized SDRSEGs 

are shown to the right. More than ninety percent of the total variance are explained by the 

first two principal components PC1 and PC2, which are respectively interpreted as the 

negative of the average of the z-normalized SDRSEGs and the difference between the z-

normalized SDRSEGs in frequency bands B3 and B1. When the second versus the first 

principal component is reported in a 2D graph, normal and pathological utterances tend to 

cluster separately (Figure 6).  

The crescent shape of the graph can be interpreted in terms of the spectral slopes of 

the speech spectra and the overall degree of vocal disturbance. To illustrate, Figure 7 

shows four vowel [a] spectra that correspond to stimuli with PC1 < 0 and PC2 < 0, PC1 < 0 

and PC2 > 0, PC1 > 0 and PC2 < 0, and PC1 > 0 and PC2 > 0. The spectra of speech and 

dysperiodicity traces are overlaid. When comparing spectra in the left (PC1<0) (Figure 7.a 

and Figure 7.c) and right columns (PC1>0) (Figure 7.b and Figure 7.d), one sees that 

spectra to the left correspond to normal voices. Indeed, their harmonic structure is well 

defined and the dB level of the speech spectrum is higher than the dB level of the 

dysperiodicity spectrum. This agrees with the interpretation of the first principal 

component as an average that reports the overall degree of dysperiodicity.  

When comparing the spectra at the top (PC2 > 0) (Figures 7.a and 7.b) and bottom 

(PC2 < 0) (Figures 7.c and 7.d), one sees that in the latter the harmonics decrease more 
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rapidly with frequency than in the former. This suggests that the second principal 

component depends on the spectral slope. Indeed, the spectral slopes for PC2 < 0 are 

steeper (the slope is larger in absolute value) than for PC2 > 0. This observation agrees 

with the interpretation of principal component 2 as a difference between the SDRSEGs in 

frequency bands B3 and B1. Signal-to-dysperiodicity ratios appear to report on the 

spectral slope indirectly via a more rapid decrease of the signal-to-dysperiodicity ratio in 

the higher bands when the slope is steep. 

To assess the generality of the principal component representation, the same analysis 

has been carried out on the SDRSEGs obtained for the first three frequency bands for the 

Dutch sentences & vowel [a] sub-corpus. Figure 8 shows the principal component 

representation and, superimposed, the four grade intervals. The same crescent shape and 

clustering of clean stimuli to the left of the diagram are observed. 

In addition, a linear discrimination analysis has been carried out to assess numerically 

the discrimination performance of the first two principal components obtained for the 

“Rainbow passage” corpus. Classification results are shown in Table 8. Out of 661 

pathological stimuli, 596 have been correctly classified as pathological and 65 have been 

misclassified as normal. Similarly, out of 53 normal stimuli, 46 have been correctly 

classified as normal and 7 have been misclassified as pathological. Thus, the overall 

classification accuracy is 89.9%. This suggests that principal components combine 

dysperiodicity cues in a clinically meaningful way. One should however keep in mind that 

correct classification rates reported for the MEEI corpus are often higher than those 

reported for other corpora.  
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4. Conclusion 

Generalized variogram and cepstral analyses has been used to estimate vocal 

dysperiodicities in disordered connected speech for two corpora with over 250 and 650 

speakers respectively. The results are the following: 

1. Multi-band segmental signal-to-dysperiodicity ratios correlate more strongly with 

the perceptual assessment of the degree of hoarseness than the full-band one. 

2. The low frequency band contributes most to the prediction of perceptual scores. 

3. The correlations between perceptual scores and cepstral peak prominence or full-

band segmental signal-to-dysperiodicity ratio are similar. 

4. Linear regression analysis of the low-frequency band segmental signal-to-

dysperiodicity ratio combined with the cepstral peak prominence gives the best 

correlation with perceptual scores. The reason is the combined decrease of 

dispersion of the data points owing to the signal-to-dysperiodicity ratio and the 

increased linearity owing to the cepstral peak prominence. 

5. The representation in terms of the first two principal components gives rise to a 

crescent-shape scatter of the speech samples. The first principal component reports 

on the overall degree of hoarseness and the second on the spectral slope.  

6. Principal components combine dysperiodicity cues in a clinically meaningful way, 

which is confirmed by the overall classification accuracy of 89.9% of the speech 

stimuli in normal and disordered categories. 
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Figure 1: Frequency response of the mel-spaced filter bank used to decompose signal and 
dysperiodicity traces in four separate frequency bands. 

Figure 2: Cepstral peak prominence for a normal (above) and pathological voice (below) 

Figure 3: Original average perceived grade scores versus predicted average perceived 
grade scores (via the SDRSEG cues for the first three frequency bands). 

Figure 4: Correlation between perceptual scores and SDRSEG for the first frequency band 
as a function of the upper cut-off frequency. 

Figure 5: Original average perceived grade scores versus predicted average perceived 
grade scores via (a) SDRSEG in the first frequency band, (b) CPP, (c) linear combination 
of SDRSEG (in band 1) and CPP. 

Figure 6: Principal components representation for the Rainbow Passage corpus. 
Figure 7: Speech and dysperiodicity spectra obtained for [a] fragments. In black: speech 
spectrum, in grey: dysperiodicity spectrum. Vertical lines: boundaries between mel-
spectral intervals. 
Figure 8: Principal component representation for the full sentences with vowel [a] (Dutch 
corpus). The grey levels of the data points report on the perceived degree of abnormality 
(grade). 
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Table 1: Overview of published studies devoted to the acoustic characterization of 

connected speech produced by dysphonic speakers (man = manual, aut = automatic; te = 

temporal, sp = spectral, ce = cepstral, SNR = signal-to-noise ratio, CPP = cepstral peak 

prominence, NHR = noise-to-harmonic ratio, LTAS = long-term average spectrum, HNR 

= harmonic-to-noise ratio, SDR = signal-to-dysperiodicity ratio, R1 = amplitude first 

rahmonic). 

Authors Corpus 
size Processing Analysis 

domain Dysperiodicity cues 

Lieberman (1963) 31 man te cycle duration variation 
Dolansky and Tjernlund (1968) 10 man te F0, intonation, .. 
Hecker and Kreul (1971) 28 man te F0 
Laver et al. (1986) 230 aut te jitter, shimmer 
Klingholz (1987) 101 aut sp SNR 
Muta  et al. (1988) 6 man, aut sp SNR 

Hillenbrand and Houde (1996) 25 man, aut te, sp, ce 

signal dysperiodicity  
(incl. CPP) 
spectral tilt  
size of first harmonic 

Qi et al. (1999) 87 aut te SNR 
Hernandez et al. (2000) 281 aut te subset of MDVP  
Yiu et al. (2000) 30 aut te, sp subset of MDVP 

Parsa and Jamieson (2001) 228 aut te, sp 
jitter, shimmer, LTAS-
based cues, HNR, linear 
prediction-based cues 

Parsa et al. (2002) 18 aut te, sp multi-band SNR 

Heman-Ackah et al. (2002) 36 aut te, sp, ce NHR, jitter, shimmer, 
CPP 

Heman-Ackah et al. (2003) 281 aut te, sp, ce NHR, jitter, shimmer, 
CPP 

Halberstam (2004) 60 aut te, sp, ce CPP, subset of MDVP 

Heman-Ackah (2004) 150 man, aut ce NHR, jitter, shimmer, 
CPP 

Awan and Roy (2005) 134 aut te, sp CPP, jitter, shimmer, F0 
Bettens et al. (2005) 22 aut te SDR 

Umapathy et al. (2005) 212 aut te time-frequency analysis-
based cues 

Kacha et al. (2006a) 22 aut te SDR 
Kacha et al. (2006b) 22 aut te, sp multi-band SDR 
Alpan et al. (2007) 22 aut te SDR 
Alpan et al. (2009) 251 aut ce R1 
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Fredouille et al. (2009) 80 aut sp linear- and mel-frequency 
spectral coefficients 

 

 

Table 2: Pearson’s correlation coefficients between average grade 

scores and cues SDRSEG and CPP for sustained vowel [a], 

sentences, and the concatenations of voiced fragments or full 

sentences with vowel [a] (Dutch corpus). 

 [a] Sentences Voiced segments 
 & [a] 

Full sentences  
& [a] 

SDRSEG -0.63 -0.64 -0.65 -0.70 

CPP -0.56 -0.69 -0.63 -0.70 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Stepwise linear regression analysis carried out on 

segmental signal-to-dysperiodicity ratios for three frequency bands, 

�i = standardized regression coefficients, R = multiple correlation 

coefficient (Dutch corpus). 

�1 �2 �3 R R2 Adj. R2 

-0,574 -0,171 -0,154 0,761 0,579 0,575 
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Table 4: Multiple correlation coefficients obtained from stepwise linear 

regression analysis carried out on segmental SDRs for one (B1), two (B1, 

B3) and three bands (B1, B2, B3) (Dutch corpus). 

B1 B1, B3 B1, B2, B3 

0,71 0,75 0,76 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Linear regression analysis involving cues SDRSEG (first band) 

and CPP, �i = standardized regression coefficients, R = multiple 

correlation coefficient (Dutch corpus). 

�SDRSEG �CPP R R2 Adj. R2 

-0,46 -0,42 0,79 0,62 0,615 
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Table 6 : t-tests comparing the correlation with perceptual grade scores 

obtained for multi-cue regression analysis (SDRSEG1 and CPP) to 

correlations obtained for full-band variogram analysis, cepstral peak 

prominence and multi-band variogram analysis respectively (Dutch 

corpus). 

 
Full-band  
SDRSEG CPP Multi-band  

SDRSEG 
Multi-cue  

(SDRSEG1 and CPP) 
t=5.47, 
p<0.001 t=4.72, p<0.001 t=2.69, p<0.01 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7 : Results of the principal component analysis applied to the 

segmental signal-to-dysperiodicity ratios (SDRSEG) in the first three 

frequency bands for the MEEI corpus (12-second Rainbow Passage).  

 Coefficients  
Component Eigenvalues Variance 

(%) 
Cumulative 
variance (%) Band 1 Band 2 Band 3 

1 2.00 66.8 66.8 -0.56 -0.66 -0.50 

2 0.79 26.1 92.9 -0.64 -0.05 0.77 

3 0.21 7,1 100,0 -0.53 0.75 -0.40 
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Table 8 : Linear discrimination classification based on the first 

two principal components obtained for the MEEI corpus 

(Rainbow Passage). The overall classification accuracy is 

89.9%. 

   Predicted 
   Pathological Normal Total 

Pathological 596 65 661 
Count 

Normal 7 46 53 
Pathological 90,2 9,8 100,0 

Original 

% 
Normal 13,2 86,8 100,0 
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