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Abstract

Recent research has demonstrated the merit of combining Gaussian mixture models
and support-vector-machine (SVM) for text-independent speaker verification. How-
ever, one unaddressed issue in this GMM–SVM approach is the imbalance between
the numbers of speaker-class utterances and impostor-class utterances available for
training a speaker-dependent SVM. This paper proposes a resampling technique –
namely utterance partitioning with acoustic vector resampling (UP-AVR) – to mit-
igate the data imbalance problem. Briefly, the sequence order of acoustic vectors
in an enrollment utterance is first randomized, which is followed by partitioning
the randomized sequence into a number of segments. Each of these segments is
then used to produce a GMM supervector via MAP adaptation and mean vector
concatenation. The randomization and partitioning processes are repeated several
times to produce a sufficient number of speaker-class supervectors for training an
SVM. Experimental evaluations based on the NIST 2002 and 2004 SRE suggest
that UP-AVR can reduce the error rate of GMM–SVM systems.

Key words: Speaker verification; GMM-Supervectors (GSV); utterance
partitioning, GMM–SVM; support vector machine; random resampling; data
imbalance.

1 Introduction

The integration of Gaussian mixture models (GMMs) and support vector ma-
chines (SVMs) – namely GMM–SVM – has become one of the most promising
approaches to text-independent speaker verification. This approach derives a
GMM-supervector [1] by stacking the mean vectors of a MAP-adapted GMM

Preprint submitted to Elsevier 17 July 2010



[2] that captures the acoustic characteristics of a speaker. The supervector is
then presented to a speaker-dependent SVM for scoring. This SVM scoring
approach is superior to the conventional likelihood-ratio scoring because the
contribution of individual background speakers and the target speaker to the
verification scores can be optimally weighted by the Lagrange multipliers of
the target-speaker’s SVM [3].

Nevertheless, a major drawback of the SVM scoring approach is that the
number of target speaker utterances for training the target-speaker’s SVM is
very limited (typically only one enrollment utterance is available). Given that
the number of background speakers’ utterances is typically several hundreds,
the limited number of enrollment utterances leads to a serious data imbalance
problem. One problem of data imbalance is that the decision boundary of
the resulting SVM will skew towards the minority (target speaker) class [4,5],
causing high false-rejection rate unless the decision threshold is properly set
to compensate for the bias. Another problem, as will be demonstrated in
Section 3, is that the orientation of the decision boundary is largely dictated
by the data in the majority (background speakers) class.

Because imbalanced classification occurs in many problem domains, a number
of strategies have been proposed to alleviate the effect of imbalanced data
on SVM classifiers. These strategies can be divided into two categories: data
processing approaches and algorithmic approaches. The former attempts to re-
balance the training data without changing the SVM training algorithm. This
category can be further divided into (1) over-sampling [6,7] where more pos-
itive (minority class) training examples are generated from existing data, (2)
under-sampling [8,9] where a subset of negative (majority class) training sam-
ples are selected for each entity in an ensemble of SVMs, and (3) combinations
of over- and under-sampling [5]. While studies have shown that the data pro-
cessing approaches can improve the performance of SVMs in some situations,
they do have their own problems. For example, over-sampling will increase the
number of support vectors, causing computational burden for large datasets.
Some over-sampling techniques (e.g. SMOTE [6]) assume that the samples
on the line joining two neighboring positive samples are also positive. This
assumption may be invalid in some situations. Although under-sampling can
help move the decision boundary towards the majority class, it causes informa-
tion loss if useful samples are discarded. A recent study [10] also suggests that
for some applications, the performance of SVMs with over- or under-sampling
could be poorer than those without any sampling.

The algorithmic approaches attempt to modify the training algorithms to
mitigate the effect caused by data imbalance. One earlier attempt is to as-
sign different misclassification cost to positive and negative training samples
[11,12]. However, studies [4] have shown that this approach is not very effec-
tive, because increasing the value of the Lagrange multipliers of the minority
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class (due to the increase in the penalty factor) will also increase some of the
Lagrange multipliers in the majority class to satisfy the constraint

∑
i αiyi = 0.

Another algorithmic approach is to modify the kernel according to the distri-
bution of training data [4]. This approach, however, requires longer classifica-
tion time than the standard SVM.

Unlike many other problem domains, the data imbalance problem in GMM–
SVM speaker verification is special in that the number of minority-class sam-
ples (enrollment utterances) is extremely small. In fact, it is not uncommon
to have only one enrollment utterance per client speaker. This extreme data
imbalance excludes the use of over-sampling methods such as SMOTE where
minority-class samples are generated based on the existence of some (but not
one) minority-class samples. Under-sampling is also not an option, because of
the information loss that arises from discarding important background speak-
ers.

In this paper, we look at over-sampling in another dimension. Instead of creat-
ing more minority-class samples from existing ones, we generate minority-class
samples by partitioning the sequence of acoustic vectors in the enrollment ut-
terance into a number of segments or sub-utterances, with each segment pro-
ducing one GMM-supervector. To increase the number of segments, one may
reduce the length of sub-utterances. However, this will inevitably compromise
the representation power of the sub-utterances. Here, we propose to address
this issue by randomizing the sequence order before partitioning takes place.
This randomization and partitioning process can be repeated several times
to produce a desirable number of GMM-supervectors. More precisely, if the
process is repeated R times and for each time the sequence is divided into N
segments, a total of RN GMM-supervectors will be generated. In each rep-
etition, N GMM-supervectors are generated from a different set of acoustic
vectors. The randomization process ensures that the GMM-supervectors are
different from repetition to repetition. However, as the number of acoustic vec-
tors in an utterance is finite, a large R will inevitably increase the correlation
among the GMM-supervectors. In this work, R and N were found empirically.

The paper is organized as follows. Section 2 introduces the concept of GMM–
UBM and GMM–SVM. Section 3 explains why the limited number of en-
rollment utterances per target speaker can cause problems in GMM–SVM
speaker verification and proposes using utterance partitioning with acoustic
vector resampling to mitigate the problem. In Sections 4 and 5, we report our
evaluations based on NIST 2002 and 2004 SRE, which show that the proposed
utterance partitioning approach can reduce the EER and minimum DCF of
GMM–SVM systems. Concluding remarks and future work are then given in
Section 6.
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2 GMM–UBM and GMM–SVM

2.1 GMM–UBM

The idea of GMM–UBM is to create a target-speaker’s Gaussian mixture
model (GMM) via maximum a posteriori (MAP) adaptation of a universal
background model (UBM) [2]. Specifically, given an enrollment utterance with
acoustic vector sequence X = {x1, . . . ,xT}, the following formulae are applied
to the mean vectors µi of the UBM to obtain the adapted mean vectors µ̂i:

µ̂i = αiEi(X) + (1− αi)µi, i = 1, . . . ,M,

αi =
ni(X)

ni(X) + r

ni(X) =
T∑

t=1

Pr(i|xt)

Ei(X) =
1

ni

T∑

t=1

Pr(i|xt)xt,

Pr(i|xt) =
λipi(xt)∑M

j=1 λjpj(xt)

(1)

where λi and pi(x) are the mixture weight and density function of the i-th
mixture, respectively, and r is a relevance factor controlling the degree of
adaptation.

During verification, the verification score of a claimant utterance, utt(c), is
obtained by computing the ratio between the target-speaker likelihood and
background-speaker likelihood, i.e.,

SGMM–UBM(utt
(c)) = log p(X(c)|Λ(s))− log p(X(c)|Λ(b)), (2)

where X(c) is the sequence of acoustic vectors (typically MFCCs [13] and their
derivatives) derived from utt(c), and Λ(s) and Λ(b) are the GMMs representing
the target speaker and background speakers, respectively. Because the pa-
rameters of the two likelihood functions are estimated separately, the scoring
function in Eq. 2 does not make full use of the discriminative information in
the training data [14]. 1

1 When estimating the parameters of a target-speaker model in GMM–UBM sys-
tems, we do not strike to maximize the discrimination between the target-speaker’s
speech from impostors’ speech as in discriminative training. Although a target-
speaker model is adapted from the UBM, they are not computed “jointly”. This
concept has been explained in [14].
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2.2 GMM–SVM

The idea of GMM–SVM [1] is to harness the discriminative information em-
bedded in the training data by constructing an SVM that optimally separates
the GMM of a target speaker from the GMMs of background speakers. Like
the GMM–UBM approach, a speaker-dependent GMM is created by adapting
from the UBM via MAP adaptation [2]. However, unlike GMM–UBM, the
mean vectors of the speaker-dependent GMM are stacked to form a GMM-
supervector. This target supervector together with the supervectors corre-
sponding to individual background speakers are used to train a target-speaker
SVM. Therefore, in addition to a GMM, each target speaker is also repre-
sented by an SVM that operates in a space (called GMM-supervector space)
with axes corresponding to individual coefficients of GMM mean vectors.

In GMM–SVM, given the SVM of target speaker s, the verification score of
utt(c) is given by

SGMM–SVM(utt
(c)) = α

(s)
0 K

(
utt(c), utt(s)

)
− ∑

i∈S(b)

α
(s)
i K

(
utt(c), utt(bi)

)
+ d(s),

(3)

where α
(s)
0 is the Lagrange multiplier corresponding to the target speaker, 2

α
(s)
i ’s are Lagrange multipliers corresponding to the background speakers, S(b)

is a set containing the indexes of the support vectors in the background-speaker
set, and utt(bi) is the utterance of the i-th background speaker. Note that only
those background speakers with non-zero Lagrange multipliers have contribu-
tion to the score. The kernel function K(·, ·) can be of many forms. The most
common being the Mahalanobis kernel (also called GMM-supervector kernel)
[1]:

K
(
utt(c), utt(s)

)
=

M∑

j=1

(√
λjΣ

− 1
2

j µ
(c)
j

)T (√
λjΣ

− 1
2

j µ
(s)
j

)
(4)

where λj and Σj are the mixture weights and covariances of the UBM, respec-

tively, and µ
(c)
j and µ

(s)
j are the j-th mean vector of the GMM belonging to

claimant c and speaker s, respectively.

Eq. 4 can be written in a more compact form

K
(
utt(c), utt(s)

)
=

〈
Ω− 1

2
−→µ (c),Ω− 1

2
−→µ (s)

〉
(5)

where

Ω = diag
{
λ−1
1 Σ1, . . . , λ

−1
M ΣM

}
and −→µ =

[
µT

1 , . . . ,µ
T
M

]T
. (6)

2 We assume one enrollment utterance per target speaker, which is the case in NIST
SRE 2002.
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In practice, Σj’s are assumed to be diagonal.

3 Utterance Partitioning for GMM–SVM

In GMM–SVM systems, it is not uncommon to have only one speaker-class’s
supervector for training. The problem is that the SVM’s decision boundary
is largely governed by the impostor-class supervectors (support vectors). This
situation is illustrated in Fig. 1(a). There is a region in the feature space where
the positive-class’s support vector (encircled 2) can move around without
affecting the orientation of the decision boundary, but a small change in the
negative-class’ support vectors (encircled ∗) can tilt the decision boundary.

To increase the influence of speaker-class data on the decision boundary, one
may use more enrollment utterances, which means more supervectors from
the speaker class. However, as mentioned earlier, it is not practical to request
users to provide multiple enrollment utterances. To solve this problem without
introducing extra burden on users, this paper proposes partitioning an enroll-
ment utterance into a number of sub-utterances. The method is referred to as
utterance partitioning (UP). Given an enrollment utterance, a large number
of partitions will produce many sub-utterances, but their length may be too
short to represent the speaker. On the other hand, if the number of partitions
is too small, the benefit of utterance partitioning diminishes. Obviously, there
is a trade-off between the length of the sub-utterances and the representation
capability of the resulting GMM supervectors.

One possible way to generate more sub-utterances with reasonable length is
to use the notion of random resampling in bootstrapping [15]. The idea is
based on the fact that the MAP adaptation algorithm uses the statistics of
the whole utterance to update the GMM parameters (see Eq. 1). In other
words, changing the order of acoustic vectors will not affect the resulting MAP-
adapted model. Therefore, we may randomly rearrange the acoustic vectors
in an utterance and then partition the utterance into N sub-utterances and
repeat the process as many times as appropriate. More precisely, if this process
is repeated R times, we obtain RN sub-utterances from a single enrollment
utterance. We refer to this approach as utterance partitioning with acoustic
vector resampling (UP-AVR). Its procedure is as follows:

Step 1: For each utterance from the background speakers, divide the utterance
into N partitions (sub-utterances) and compute their acoustic vectors
(MFCCs and their derivatives).

Step 2: For each utterance from the background speakers, compute its acous-
tic vectors (MFCCs and their derivatives) and divide the vectors into
N partitions (sub-utterances).
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Step 3: For each background speaker, use his/her N sub-utterances and full-
length utterance to create N +1 background GMM-supervectors. For
B background speakers, this procedure results in B(N+1) background
supervectors.

Step 4: Given an enrollment utterance of a target speaker, compute its acous-
tic vectors and randomize their sequence of occurrences in the utter-
ance. Divide the randomized sequence of acoustic vectors into N par-
titions (sub-sequences). Use the N sub-sequences to create N GMM-
supervectors by adapting the UBM.

Step 5: Repeat Step 3 R times to obtain RN target speaker’s supervectors;
together with the full-length utterance, form RN +1 speaker’s super-
vectors.

Step 6: Use the RN+1 supervectors created in Steps 3 and 4 as positive-class
data and the B(N + 1) background supervectors created in Step 2 as
negative-class data to train a linear SVM for the corresponding target
speaker.

Figure 2 illustrates the procedure of UP-AVR. The same partitioning strategy
are applied to both target-speaker utterances and background utterances so
that the length of target-speaker’s sub-utterances matches that of the back-
ground speakers’ sub-utterances. Matching the duration of target-speaker ut-
terances with that of background utterances has been found useful in previous
studies [16].

The advantages of the utterance partitioning approach are two-fold. First,
it can increase the influence of positive-class data on the decision boundary.
Second, when the original enrollment utterances are significantly longer than
the verification utterances, utterance partitioning can create sub-utterances
with length that matches the verification utterances. This can reduce the mis-
matches between the test supervectors and the enrollment supervectors, be-
cause the amount of MAP adaptation depends on the length of the adaptation
utterances.

4 Experiments

4.1 Speech Data, Features, and Scoring

NIST 1999–2002 Speaker Recognition Evaluation (SRE), NIST 2004 SRE, 3

and Fisher [17] were used in the experiments. NIST’99–01 SRE and Fisher
were used as development data, and NIST’02 and NIST’04 were used for per-

3 http://www.itl.nist.gov/iad/mig/tests/sre
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Fig. 1. A two-class problem illustrating the imbalance between the number of pos-
itive-class samples and negative-class samples. (a) The orientation (slope) of the
decision boundary depends largely on the negative-class data. (b) Adding more
positive-class data can enhance the influence of the positive-class data on the deci-
sion boundary (slope changes from −1.0 to −1.12).
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Fig. 2. The procedure of utterance partitioning with acoustic vector resampling
(UP-AVR). Note that randomization and creation of target-speaker’s supervectors
can be repeated several times to obtain a sufficient number of target-speaker’s su-
pervectors.

formance evaluations. 4 Table 1 summarizes the roles played by these corpora
in the evaluations.

NIST’02 contains cellular phone conversations of 139 male and 191 female

4 Hereafter, all NIST SREs are abbreviated as NIST’XX, where XX stands for
the year of evaluation.
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target speakers taken from Switchboard Cellular Part 2. Each target speaker
provides 2 minutes of speech for training. There are 2,983 true-speaker trials
and 36,287 impostor attempts.

NIST’04 contains 28 evaluation conditions. This paper focuses on the 1side-
1side condition, i.e., each of the training and test segments contains a whole
conversation side. This condition contains 246 male and 376 female target
speakers, each providing 5 minutes of speech (including silence) for training.
The evaluation condition also contains 2,386 true-speaker trials and 23,838
impostor attempts, with each test segment containing 5 minutes of speech
(including silence).

NIST’01 contains 2,350 cellular phone conversations extracted from the Switchboard-
II Phase IV Corpus. All of these utterances were used for training the gender-
dependent background models in NIST’02 evaluation. All of the utterances
from the training sessions in the corpus were used as gender-dependent im-
postor data for training the target-speaker SVMs. Test utterances with length
(after silence removal) longer than 25 seconds were used for creating the T-
norm [18] speaker models, which amount to 127 male and 145 female speaker
models for T-norm. The corpus was also used for computing the projection ma-
trices in Nuisance Attribute Projection (NAP) [19]. Specifically, speakers with
multiple conversations were identified and the conversations of these speakers
are assumed to be extracted from different sessions. This amounts to 74 male
speakers and 100 female speakers, each providing 12 conversations on average.
The number of nuisance dimensions (corank in [20]) to be projected out is
eight for male and one for female. These numbers were found empirically to
produce the best performance on a baseline system (see Section 5.2).

For the NIST’04 evaluation, the Fisher corpus was used for training the gender-
dependent UBMs. A subset of speakers was used for training the gender-
dependent T-norm models, and another subset was used as impostor-class data
for training the target-speaker SVMs and T-norm SVMs. Finally, 236 male
and 266 female speakers from NIST’99 and NIST00 were used for estimating
the gender-dependent NAP matrices. Each of these speakers has at least 8
utterances. The NAP corank was set to 64 for both genders.

For each utterance, an energy-based voice activity detector was used to remove
the silence regions. Twelfth-order MFCCs [13] plus their first derivative were
extracted from the speech regions of the utterance, leading to 24-dim acoustic
vectors. Cepstral mean normalization [21] was applied to the MFCCs, followed
by feature warping [22]. Then, UP-AVR was applied to the feature vectors of
each utterance.

For GMM–UBM, T-norm [18] or ZT-norm (Z-norm followed by T-norm) was
applied during the scoring stage. For GMM–SVM, NAP was applied to all
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UBMs T-norm Models Impostor-class of
SVMs

NAP Matrices

NIST’02
Eval

NIST’01: 1006
male and
1344 female
utterances

NIST’01: 127
male and 145
female speakers
from test sessions

NIST’01: 112
male and 122
female speakers
from training
sessions

NIST’01: 74 male
and 100 female
speakers from test
sessions#

NIST’04
Eval

Fisher: 1100
male and
1640 female
utterances

Fisher: 200 male
and 200 female
speakers

Fisher: 300 male
and 300 female
speakers

NIST’99 and
NIST’00: 236
male and 266
female speak-
ers from test
sessions#

Table 1
The roles played by different corpora in the performance evaluations. #Only speak-
ers with 8 or more utterances were used for estimating the NAP matrices.

GMM-supervectors, followed by T-norm scoring. Unlike GMM–UBM, we did
not observe any performance advantage of ZT-norm over T-norm on the base-
line GMM–SVM system. Therefore, we only report the results of T-norm in
this paper.

4.2 Speaker Models

The classical GMM–UBM [2] and GMM–SVM [1] were used as the baselines for
comparison. For the GMM–UBM systems, the number of mixtures for gender-
dependent UBMs is 1,024. The GMMs of target speakers were adapted from
the UBMs using MAP adaptation [2] with relevance factor r in Eq. 1 set to 16.
For the GMM–SVM systems, the number of mixtures was set to 256 for most
of the experiments because this model size achieves the best performance
in the baseline GMM–SVM system (see Table 2). Each supervector in the
GMM–SVM comprises the means of a MAP-adapted GMM. For each target-
speaker SVM, positive (target-speaker) class supervectors were obtained by
stacking the means of the MAP-adapted GMMs created from the utterance of
the corresponding speaker, whereas the negative (impostor) class supervectors
were obtained from the either NIST’01 or Fisher (see Table 1). SVMlight [23]
was used for training the SVMs.
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5 Results and Discussions

5.1 Statistical Properties of GMM-Supervectors

The feature dimension of GMM-supervectors is MD, where M is the number
of mixtures in a GMM and D is the dimension of acoustic vectors. For sys-
tems that use a large number of mixtures (e.g., M ≥ 1024), the dimension
of the GMM-supervectors will become very large, which introduces excessive
computational burden on the training of speaker-dependent SVMs. If M is
too small, the resulting supervectors may not be able to represent the char-
acteristics of the target speakers. Nevertheless, one may ask: Among all the
features in the supervectors, how many of them are relevant or useful for rec-
ognizing speakers?. To answer this question, we computed the variances of
MD-dimensional features from 50 normalized GMM-supervectors Ω− 1

2
−→µ (bk),

where M ranges from 64 to 1,024, D = 24, k = 1, . . . , 50, and Ω and −→µ
are defined in Eq. 6. Features were then sorted in descending order of vari-
ances. Fig. 3 shows the variances of features against the feature indexes. The
horizontal line is a threshold (0.05) below which the features are considered
to have no significant contribution to the classification task. Evidently, when
M ≥ 512, a large percentage of features have variances below the threshold,
which means that the resulting SVMs have input dimension larger than nec-
essary. A model size of 256 mixtures seems to be a good compromise. This
observation also agrees with the verification performance shown in Table 2,
where the best speaker verification performance (in terms of equal error rate
and minimum decision cost (DCF) [24]) is obtained when M = 256. Based on
this finding, we set M = 256 for the rest of the experiments.

5.2 Effect of Varying the Corank in NAP

Fig. 4 shows the verification performance of GMM–SVM systems using dif-
ferent NAP coranks (nuisance dimension [20]) under the core test condition
in NIST’02 and NIST’04. The results suggest a small corank is appropriate
for NIST’02 whereas NIST’04 requires a larger corank. We conjecture that
the reason of using a smaller corank for NIST’02 is that the session varia-
tion in NIST’02 is smaller than that in NIST’04. Although many speakers in
NIST’02 have participated in more than one recording session, they used the
same cell-phone model, network operator (e.g. Bell Atlantic), and transmis-
sion type (e.g., CDMA) in different sessions. 5 Therefore, session variation is
mainly due to the variation in intra-speaker characteristics rather than varia-

5 This information can be found in the file ‘sid02 1sp.v2.ref’ in NIST’02.
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tion in channel characteristics. On the other hand, in NIST’04, speakers may
use different handsets in different sessions, causing larger session variation.

To verify this conjecture, we computed the eigenvalues of NAP covariance
matrices (Eq. 12 in [19] but normalized by the number of column vectors in
A) for different corpora and plotted the results in Fig 5. Evidently, NIST’02
has the smallest eigenvalues among all speech corpora. Therefore, its session
variation is also the smallest.

Comparisons between the performance at Corank = 0 (i.e., without NAP)
and that at the best corank in Fig. 4 suggest that NAP is more effective in
NIST’04 than in NIST’02. This evidence further supports our conjecture that
session variation in NIST’02 is smaller than that in NIST’04. Bear in mind
that NAP is designed to alleviate the effect of session variation. If session
variation is small, it is reasonable that NAP does not have significant effect
on verification performance. In fact, in the original paper of NAP, Solomonoff
et al. [25] also found that NAP is effective in cross-channel (carbon-button–
electret) scenarios but minor degradation is seen for same channel conditions.

Fig. 4 also suggests that the optimal corank is gender-dependent. To find out
the reason of this result, we plot the eigenvalues of gender-dependent NAP
covariance matrices of NIST’02 and NIST’04 in Fig. 6. Evidently, the eigen-
values of female speakers are smaller than the male counterpart, suggesting
that the GMM-supervectors of female speakers in these corpora have smaller
variations. Bear in mind that if there is no intra-speaker variation, the optimal
corank should be zero, meaning that the projection matrix should be an iden-
tity matrix. A small eigenvalue suggests that a small corank should be used,
confirming the results in Fig. 4 where the optimal corank for female speakers
is smaller than that of male speakers, especially in NIST’02.

5.3 Effect of Varying the Number of Speaker-Class Supervectors

Table 3 shows the effect of varying the number of target-speaker’s GMM-
supervectors (GSVs) on the verification performance in NIST’02. The GSVs
were obtained by either UP or UP-AVR. In all cases, the same partition-
ing strategy was applied to both target-speaker utterances and background-
speaker utterances so that the length of target-speaker sub-utterances matches
that of the background-speaker sub-utterances (see Fig. 2). Because UP-AVR
randomizes the feature indexes before partitioning the utterances, the super-
vectors created will be different from simulation run to simulation run. To
investigate the reliability of the estimated EER and minimum DCF, 17 inde-
pendent simulation runs were performed. The mean and standard deviation
of 17 EERs and minimum DCFs are shown in the last row of Table 3.
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Table 3 shows that for the same number of target-speaker GSVs, UP-AVR
achieves a lower EER than that of UP. Although there is a slight increase in
minimum DCF, except for the 2nd row, the increase in minimum DCF is not as
significant as the decrease in EERs. Table 3 also shows that setting N = 32 for
UP leads to very poor performance. The reason is that excessive partitioning
will produce very short sub-utterances, making the resulting speaker-class
GSVs almost identical to the GSV of the UBM after MAP adaptation.

Figures 7(a) and (b) show the trend of EER and minimum DCF when the
number of speaker-class supervector increases. The figures demonstrate that
utterance partitioning can reduce EER and minimum DCF. More impor-
tantly, the most significant performance gain is obtained when the number
of speaker-class supervectors increases from 1 to 5, and the performance lev-
els off when more supervectors are added. This is reasonable because a large
number of positive supervectors will only result in a large number of zero La-
grange multipliers for the speaker class and increase the correlation among the
synthesized supervectors. 6 Fig. 7(c) shows the p-values of McNemar’s tests
[26] on the pairwise differences between the EERs under different numbers of
speaker-class supervectors. The first row suggests that increasing the number
of speaker-class supervectors from 1 to 5 and beyond by means of UP-AVR
can bring significant reduction in EER. On the other hand, five speaker-class
supervectors may already be sufficient because further increase in this number
does not bring significant performance gain, as evident by the high p-values
in the entries other than the first row.

Fig. 8 shows the EERs of UP-AVR for different numbers of partitions (N)
and resampling (R); when R = 0, UP-AVR is reduced to UP. Evidently, for
small number of partitions (e.g., N = 2 and N = 4), UP-AVR (R ≥ 1) per-
forms better than UP (R = 0), suggesting that resampling can help create
better GMM–SVM speaker models. However, when the number of partitions
increases (e.g, N = 8), the advantage of resampling diminishes. This result
agrees with our earlier argument in Section 3 that when the number of parti-
tions is too large, the length of sub-utterances will become too short, causing
their corresponding supervectors almost identical to that of the UBM.

Table 5 shows the performance of UP-AVR in NIST’04 when the number of
speaker-class supervectors increases from 5 to 201. The results suggest that
with just 5 speaker-class supervectors (UP-AVR(5)), significant reduction in
EER can be obtained. However, adding extra speaker-class supervectors can
only reduce the EER slightly, which again confirms our earlier argument that
it is not necessary to generate excessive number of speaker-class supervectors.

6 Our preliminary investigation on several speakers suggest that when the number
of speaker-class supervectors is greater than 40, about half of the supervectors are
not support vectors.

13



The p-value of McNemar’s test [26] between System E and System F in Table 5
is 7×10−9. Because the p-value is significantly smaller than 0.005 and the EER
of System F is higher than other systems that use UP-AVR, we conclude that
all of the systems that use UP-AVR are significantly better than the one
without using UP-AVR.

5.4 GMM–UBM Versus GMM–SVM with UP-AVR

Table 4 shows the EER and minimum DCF of the best performing systems
in NIST’02 under different configurations. The results clearly demonstrate
the merit of utterance partitioning, particularly the one with acoustic vector
resampling. The EER (8.16%) and min DCF (0.0337) achieved by our system
are either comparable or better than other published results in the literature,
including [27,3,28].

Table 5 shows the performance of GMM–UBM and GMM–SVM with UP-
AVR in NIST’04. Again, the results demonstrate the merit of UP-AVR and
the insensitivity of the algorithm with respect to the number of target-speaker
supervectors. The lowest EER and minimum DCF are also lower than those
published in the literature (e.g., [29–33]). The EER of the GMM–UBM system
is significantly higher than that of the GMM–SVM systems, although it is
comparable to that of others in the literature (e.g., [29]). Further work is
required to improve the performance of the GMM–UBM system, e.g., using
eigenchannel [34].

Fig. 10 plots the minimum DCF against the EER for various configurations.
It highlights the amount of performance gain that can be obtained by UP-
AVR. Fig. 9 shows the DET curves of various systems, which suggest that
GMM–SVM with utterance partitioning is significantly better than the base-
line GMM–SVM and GMM–UBM systems for a wide range of decision thresh-
olds.

Our results and other published results in the literature suggest that the EER
and minimum DCF in NIST’02 and NIST’04 are higher than those achiev-
able in more recent corpora such as NIST’08. The reason may be that recent
results on NIST’08 are typically based on joint factor analysis using a large
amount of background data to train the Eigenchannel and Eigenvoice matri-
ces. For example, Dehak et al. [35] used Switchboard, NIST’04, and NIST’05
to estimate these matrices and achieved an EER of 6.55% (all trials). As the
amount of data prior to NIST’04 is significantly less than the amount of data
prior to NIST’08, it will be difficult to reduce the EER of NIST’04 to a level
comparable to that of NIST’08.
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Performance
No. of Centers in GSV

64 128 256 512 1024

EER (%) 10.85 9.84 9.05 9.98 11.78

Minimum DCF 0.0414 0.0372 0.0362 0.0367 0.0428

Table 2
The effect of varying the number of Gaussian components in GMM-supervectors
on the verification performance of the GMM–SVM baseline system (with NAP and
T-norm) in NIST’02.

6 Conclusion

An approach to increase the number of target-speaker’s supervectors in GMM–
SVM speaker verification has been proposed. By randomizing the sequence
order of acoustic vectors in an enrollment utterance, a useful set of speaker-
class supervectors can be generated. Evaluations based on NIST 2002 SRE
and NIST 2004 SRE show that the generated supervectors can alleviate the
data imbalance problem and help the SVM learning algorithm to find bet-
ter decision boundaries, thereby improving the verification performance. The
proposed resampling technique has important implications to practical imple-
mentation of speaker verification systems because it reduces the number of
enrollment utterances and thereby reducing the burden and time users spent
on speech recording, which is one of the major obstacles in the commercial-
ization of speaker verification technologies.
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