
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Listeners' weighting of acoustic cues to synthetic speech
naturalness

Citation for published version:
Mayo, C, Clark, RAJ & King, S 2011, 'Listeners' weighting of acoustic cues to synthetic speech naturalness:
A multidimensional scaling analysis', Speech Communication, vol. 53, no. 3, pp. 311-326.
https://doi.org/10.1016/j.specom.2010.10.003

Digital Object Identifier (DOI):
10.1016/j.specom.2010.10.003

Link:
Link to publication record in Edinburgh Research Explorer

Published In:
Speech Communication

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 03. May. 2024

https://doi.org/10.1016/j.specom.2010.10.003
https://doi.org/10.1016/j.specom.2010.10.003
https://www.research.ed.ac.uk/en/publications/a63be0be-da74-4ce5-8ebc-2e09073608fa


Listeners’ weighting of acoustic cues to synthetic speech naturalness: A

multidimensional scaling analysis

Catherine Mayo, Robert A. J. Clark and Simon King

Centre for Speech Technology Research, University of Edinburgh

Informatics Forum, 10 Crichton Street, Edinburgh, EH8 9AB, United Kingdom

tel: +44 (0) 131 650 4434 or direct dial +44 (0) 131 651 1767

fax: +44 (0) 131 650 6626

catherin@ling.ed.ac.uk

robert@cstr.ed.ac.uk

simon.king@ed.ac.uk

short title: Multidimensional scaling of synthetic speech perception

1



ABSTRACT

The quality of current commercial speech synthesis systems is now so high

that system improvements are being made at subtle sub- and supra-segmental

levels. Human perceptual evaluation of such subtle improvements requires a

highly sophisticated level of perceptual attention to specific acoustic character-

istics or cues. However, it is not well understood what acoustic cues listeners

attend to by default when asked to evaluate synthetic speech. It may, there-

fore, be potentially quite difficult to design an evaluation method that allows

listeners to concentrate on only one dimension of the signal, while ignoring

others that are perceptually more important to them.

The aim of the current study was to determine which acoustic characteris-

tics of unit-selection synthetic speech are most salient to listeners when eval-

uating the naturalness of such speech. This study made use of multidimen-

sional scaling techniques to analyse listeners’ pairwise comparisons of syn-

thetic speech sentences. Results indicate that listeners place a great deal of

perceptual importance on the presence of artifacts and discontinuities in the

speech, somewhat less importance on aspects of segmental quality, and very

little importance on stress/intonation appropriateness. These relative weight-

ing differences will impact on listeners’ ability to attend to these different

acoustic characteristics of synthetic speech, and should therefore be taken into

account when designing appropriate methods of synthetic speech evaluation.

Keywords: speech synthesis; evaluation; speech perception; acoustic cue

weighting; multidimensional scaling
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I. INTRODUCTION

Evaluation of the quality of output produced by a speech synthesis system is an impor-

tant part of the design of a successful system. At the most basic level, evaluation can give

system designers feedback on whether changes to a system engender an overall improve-

ment in perceived quality of the output. At a more sophisticated level, evaluation could

identify areas for further improvement. There are currently two main approaches to eval-

uating the quality of synthetic speech: (i) subjective, or human perceptual, methods, in

which participants listen to examples of the synthetic speech and make judgements about

quality (usually based on specific criteria), and (ii) objective, or computational, methods,

in which models are built to automatically assess improvements to the synthesis system.

There are drawbacks to both types of analysis. Subjective perceptual evaluation requires

the participation of numerous listeners in order to achieve statistical validity, and can thus

be costly and time-consuming. In addition, listeners do not always achieve high levels

of agreement either with each other or with themselves [1; 2]. This lack of reliability can

make it difficult to draw meaningful conclusions from the results of subjective evaluation

studies.

However, objective evaluation of synthetic speech is also problematic. In fields that make

heavy use of objective evaluation measures (such as speech recognition), there is gen-

erally a non-opinion-based target with which to compare the output of the system—for

example, the output of a speech recogniser can be compared against the text of the input

given to the recogniser. Success in such fields is judged based on how well the output

matches the desired target— in the case of a recogniser, that is typically how many words

the recogniser correctly identifies. Judging the perceived quality of a speech synthesis

system, on the other hand, is less straightforward. It is possible to make a direct compar-

ison between acoustic characteristics of a target utterance (what the synthesiser has been

asked to produce) and acoustic characteristics of the same utterance spoken by a human
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speaker [e.g. 3]. However, this ignores the fact that speech is highly variable (utterance-

to-utterance, speaker-to-speaker, etc.) and that there are often many acceptable ways of

producing a single utterance [see e.g. 4]. As a result, it is possible for listeners to judge two

utterances that are acoustically very different as being the same in terms of quality. The

perceived quality of a synthetic speech utterance is clearly not, therefore, simply a mat-

ter of the degree to which the physical characteristics of the utterance match the physical

characteristics of one single natural speech utterance. Rather, the perceived quality of an

utterance is a psycho-physical construct, which is closely tied to both the physical, acous-

tic characteristics of the utterance being judged, and to listeners’ psychological responses

to these characteristics [5]. Thus the success of an objective measure of synthetic speech

quality depends on two things: (i) how well the measure models the physical charac-

teristics of the speech being evaluated, and (ii) how well the measure models listeners’

behaviour with respect to that speech.

There have been a number of attempts to model human perceptual evaluation of speech.

However, to date, only low to moderate correlations have been found between objective

and subjective ratings of speech quality for both synthetic speech [6; 3; 7; 8; 9; 10; 11]

and for natural speech [12]. This lack of correlation seems to stem not from an inability

to model the physical characteristics of speech, but from difficulties in modelling hu-

man perceptual responses. As noted above, listeners’ subjective evaluations often lack

strong inter- and intra-rater consistency. In addition to making interpretation of sub-

jective evaluations difficult, such inconsistent behaviour is inherently less amenable to

objective computational modelling.

The question to be answered, therefore, is why subjective evaluation behaviour is so in-

consistent. There is an understanding in the field of speech synthesis of what paradigms

are currently available for testing perceived quality [e.g. 13], and an understanding of the

need for principled use of evaluation paradigms [e.g. 14]. This knowledge should allow
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for studies to be carried out in which listeners’ responses are more consistent. However,

despite the awareness of testing paradigms, there is a general lack of understanding of

the psycho-acoustic processes that underpin the complex task of auditory evaluation of

synthetic speech. In particular, it is not clear from research to date what the exact relation-

ship is between the acoustic characteristics of synthetic speech and listener responses to

these characteristics. Without an understanding of this relationship, it is very difficult to

choose evaluation methods in a principled manner, and as a result, raters may be asked

to carry out tasks which their perceptual systems cannot physically perform: Naturally

this could easily result in inconsistent or unexpected rating behaviour.

In fact, what little is known about the psycho-acoustic task of speech evaluation does

point to the possibility that listeners are often asked to perform perceptually challeng-

ing tasks. One of the dominant state-of-the-art speech synthesis techniques (and the one

which we use in this work) involves unit selection. In this method, a large database of

natural speech is labelled in terms of units (usually phones, diphones or half phones). An

automatic search is then performed to find the best units or sequences of units from the

database, and these units are concatenated together to form the target utterance [see e.g.

15]. This method has resolved many of the issues surrounding gross segmental quality

and intelligibility that caused problems for earlier, rule-based synthesis systems, and has

thus allowed researchers to move on to fine-tuning individual sub-segmental character-

istics [e.g., discontinuities at concatenation points, 16] or supra-segmental characteristics

[e.g., intonation, 17]. As a result, speech synthesis evaluation is now much less about de-

termining the overall intelligibility or overall acceptability of synthetic speech, and more

about evaluating the quality of a single one of these sub- and supra-segmental character-

istics. Unfortunately, research has shown that listeners sometimes find it difficult to focus

on just one characteristic, particularly when faced with complex acoustic stimuli such as

speech. For example, it has been found that listeners are much less able to rate intonation

consistently when it varies simultaneously with many other acoustic characteristics than
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when intonation is the only acoustic characteristic of the stimulus set to be varied [1].

This would suggest that it may be beyond listeners’ abilities to evaluate just one sub- or

supra-segmental characteristic of a synthetic speech utterance.

However, concluding that subjective evaluation of single characteristics of multidimen-

sional stimuli is impossible assumes that listeners give equal perceptual attention or

“weight” 1 to all acoustic characteristics and cannot disentangle individual characteristics

from each other. This does not seem to be the case. Instead, it appears that listeners give

more weight to some characteristics than others. Evidence for this comes from studies

that have shown, for example, that the addition of synthetic intonation to natural speech

segments was more detrimental to listeners’ speech quality ratings than was the addition

of synthetic segment duration [18], suggesting that for this listening situation, intonation

was weighted more heavily than segment duration. Other studies have found that listen-

ers have been more influenced by intonation appropriateness than by segmental quality

[19], less influenced by intonation naturalness than by segmental quality [20; 19], and less

influenced by intonation variation than by overall synthesis quality or presence of discon-

tinuities due to concatenation [21; 22]. In fact, studies from across perceptual evaluation,

speech perception and general auditory perception research [e.g. 23; 24; 25; 26; 27; 22]

indicate that listeners have very complex hierarchies of weighting for different acoustic

characteristics, and that these can differ depending on the stimuli (e.g., speech versus

non-speech, natural speech versus synthetic speech, first language versus second lan-

guage, etc.). This would suggest two things. First, it should be straightforward to devise

an evaluation paradigm to assess the quality of those acoustic characteristics that are by

default weighted heavily by listeners. Second, if listeners are asked to evaluate character-

istics that are lower on their weighting hierarchy, they could easily be unduly influenced

by those characteristics that are weighted more heavily. This could leave a large number

of acoustic characteristics unaccessible for evaluation.
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Fortunately, research suggests that even those acoustic characteristics that are weighted

less heavily could be accessible to listeners, under specific circumstances. Studies have

found that listeners’ auditory weighting patterns are not necessarily fixed, but rather can

be flexible, with most adult listeners changing their weighting hierarchy to meet the needs

of the stimuli or the listening situation. A number of studies have examined the ease with

which listeners can detect spectral discontinuities at join points (points at which units of

speech from two different source utterances are concatenated). These studies have found

differences in rates of detection for male and female synthetic voices, and for joins in dif-

ferent segmental contexts [e.g., monophthong versus diphthong, pre-vocalic consonants

versus post-vocalic consonants, front versus back vowels, etc., see 16; 28]. Additionally,

listeners’ default weighting patterns for speech and non-speech auditory stimuli have

been shown to be capable of change due to outside influences: listeners’ acoustic char-

acteristic hierarchies have been changed by training [25; 29; 30], by manipulation of the

stimuli to mask certain dimensions (e.g., simultaneous white noise [31; 32] or reverbera-

tion [33]) or to enhance certain dimensions [34; 35], by manipulation of the distribution of

the acoustic dimensions across the whole stimulus set [23] or by manipulation of listen-

ers’ conscious focus of attention (e.g., by presenting the rating task simultaneously with

another task [36]). It appears possible, therefore, that if listeners do not by default give

adequate attention to the acoustic dimension under investigation, appropriate methods

could be designed to allow listeners to refocus their attention.

However, both (i) taking advantage of listeners’ default hierarchy of weighting to eval-

uate dimensions that are weighted heavily, and (ii) developing methods that will allow

listeners to attend more closely to dimensions that receive less weight, presuppose a bet-

ter understanding of the default weighting given to potential acoustic dimensions of syn-

thetic speech than is currently available. The study described here is an attempt to pro-

vide a more complete account of the acoustic dimension weighting behaviour of listeners

with respect to unit-selection synthetic speech.
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A. The current study

The current study aimed to determine which of a large number of acoustic characteristics

of synthetic speech play greater or lessor roles in listeners’ responses to such speech. To

address this aim, the study made use of multidimensional scaling (MDS) techniques [37],

which have been used successfully to determine weighting patterns for numerous audi-

tory domains: e.g., complex non-speech sounds [38; 23], coded speech [39], segmental

contrasts [40], voice quality [41], and musical timbre [42].

The goal of MDS techniques is to create a geometric, spatial representation of the prox-

imities between objects—either actual or perceived proximities. In the current study, syn-

thetic utterances were presented pairwise to listeners, who were asked to decide whether

each pair was “similar” or “different” in terms of naturalness. The total number of times

a given pair of utterances received a “different” response from listeners was taken as the

proximity value for (i.e., the psycho-physical distance between) that pair of utterances.

The output of an MDS analysis is an n-dimensional stimulus space or map, in which

each object—here, each of the synthetic utterances—is represented by a single point. The

first key characteristic of an MDS map is that two objects that are physically or psycho-

physically close are represented by two points that are close on the map, while two ob-

jects that are physically or psycho-physically distant are represented by two points that

are farther apart on the MDS map. The second important characteristic of an MDS map

is that the dimensions that make up the space often correspond (directly or indirectly) to

the physical or psycho-physical dimensions used most heavily by subjects to make their

proximity judgements. Thus by examining and interpreting both the MDS map dimen-

sions and the configuration of the points within those dimensions, it should be possible

to determine the underlying characteristics of the objects represented in the space that

led to subjects’ responses to those objects. For the current study, this means that analy-

sis of the MDS space should allow us to identify some of the acoustic characteristics of
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synthetic speech that relate to listeners’ judgements of that speech. Analysis and inter-

pretation of an MDS stimulus map can be done in a number of ways. For many two-

and potentially three-dimensional spaces it may be possible to interpret the space by vi-

sually examining the distribution of the objects within the space and trying to find any

underlying pattern(s) in the organisation of the points. For stimulus spaces with four or

more dimensions (i.e., numbers of dimensions that are less straightforward to represent

in a way that can be examined visually) or for more complex two- and three-dimensional

maps, it is often necessary to make use of other methods, such as cluster analysis, or mul-

tiple regression (i.e., regressing relevant characteristics of the objects in the MDS space on

the coordinates of the points in the MDS map). In the current study, it was not clear before

MDS analysis was carried out whether the MDS map resulting from listeners’ “different”

responses would be straightforward to analyse either visually or auditorily. Therefore, in

addition to the listening experiment, a thorough acoustic analysis of the synthetic utter-

ances used in the listening experiment was also carried out, with the aim of identifying

and quantifying a large number of acoustic characteristics of the synthetic speech with

which to compare the MDS stimulus space.

A small pilot study using MDS methods [43], indicated that listeners are influenced by at

least two general characteristics when determining how similar utterances sound in terms

of naturalness: segmental information (likely to include such things as appropriateness of

segments, audibility of joins at unit edges, and number of discrete units used to create the

utterance), and prosodic information (most likely including intonation, duration/timing,

and stress). The small number of utterances used in this pilot meant that stimuli tended

to be placed at extremes in the stimulus space, which in turn meant that it was not pos-

sible to determine whether listeners might respond to more fine-grained aspects of the

two general characteristics identified. However, despite this, the study showed clearly

that MDS techniques are likely to serve as a useful method of identifying the acoustic

characteristics of synthetic speech that most influence listeners’ perceptual evaluation be-
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haviour. The current study aimed to expand on the pilot by increasing the number of

utterances and the number of listeners in order to engender a more fine-grained stim-

ulus space, and thus identify more precise characteristics which might be involved in

the perception of naturalness in synthetic speech. Note that the experiment described in

the current study focused on listeners’ evaluation of unit-selection speech produced by

a typical unit selection speech synthesis system, Festival [44]; further studies should en-

deavour to examine listeners’ responses to other unit-selection synthesis systems, as well

as systems based on other techniques [e.g. statistical parametric models, 45].

In summary, the aim of the current study was to better understand the relationship

between the acoustic characteristics of unit-selection synthetic speech and listeners’ re-

sponses to such speech. In the current study, 24 synthetic utterances were presented

pairwise to listeners for assessment as either “similar” or “different” in naturalness. Lis-

teners’ responses were analysed using MDS techniques, and the resulting spatial map

was correlated with acoustic characteristics of the 24 synthetic utterances. These methods

should allow us to determine which of the acoustic characteristics identified in the syn-

thetic speech played a role in listeners’ perception of synthetic speech quality, and should

also allow us to begin to evaluate these characteristics’ relative importance in determining

how similar/dissimilar listeners perceived the stimuli to be.

II. METHOD

A. Participants

Thirty adults (22 female, 8 male 2) ranging in age from 18 years to 43 years (average age

24 years) took part in this experiment. All were monolingual native speakers of English

who were living in Edinburgh, UK at the time of testing (self-reported dialects broke

down as follows: Southern British English: 12; Northern English: 6; Scottish: 5; Irish:
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3; North American: 4). All subjects reported themselves and their siblings as being free

from speech/language disorders and dyslexia, and all reported being free from hearing

deficits. Immediately prior to testing, each participant was required to pass a hearing

screening at  35 dB HL in the range 125 Hz–8 kHz. All listeners were paid for their time.

B. Stimuli

This stimuli were generated using the multisyn module of the Festival speech synthesis

system, which is a typical unit-selection text-to-speech synthesiser. Unit-selection syn-

thesis uses a large database of natural speech recordings of a single speaker, from which

suitable units are selected and concatenated to create any required target utterance. In

Festival, the units are diphones: Units of speech that begin halfway through one phone

and finish halfway through the subsequent phone. The speech database is automatically

phonetically labelled and from the phone labels, diphone boundaries are derived.

At synthesis time, Festival first performs text analysis, resulting in a phonetic transcrip-

tion of the utterance to be created; this transcription is then converted to a sequence of di-

phones known as ‘targets’. Then the best sequence of diphone instances from the database

is selected and concatenated to create the output speech. As in other unit-selection syn-

thesisers, the measure of ‘best’ has two components. One, the target cost, measures the de-

gree of mismatch between each candidate diphone available in the database and the cor-

responding target diphone. The mismatch is judged in terms of linguistic context—that

is, the difference between the phonetic and prosodic contexts of candidate and target—

on the assumption that fewer mismatches will result in perceptually more natural speech

output. The other component is the join cost, which measures how well each pair of

consecutive candidates will concatenate; join cost is typically calculated based on proper-

ties of the speech signal such as spectral discontinuity, energy and F0. It is assumed that

smaller differences in these acoustic properties at join points between candidate units will
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be less perceptually noticeable and thus more natural-sounding. A search must be per-

formed in order to find, from amongst all possible sequences of candidates, the one that

minimises the sum of target and join costs. By defining the join cost between candidates

that are consecutive in the database to be zero, the search is biased towards selecting con-

tiguous stretches of speech. This means that there will generally be fewer concatenation

points in the output speech than there are phonemes in the target utterance. Festival ad-

ditionally attempts to avoid using extreme outlier candidates (in terms of duration, for

example) and can substitute any missing diphones with alternatives (i.e., in cases where

there are no instances of a required diphone type in the database).

The text material for the synthetic utterances used in this study came from the “phonetically-

compact” portion of the TIMIT corpus [46]. This portion was hand-designed “to include

a basic phonetic coverage and interesting phonetic environments” with special regard for

“phoneme pair coverage, consonant sequence coverage and the potential for applying

phonological rules both within words and across word boundaries” [47, p. 2162]. The

reason for using this material was to ensure the test utterances would contain a reason-

ably wide variety of acoustic-phonetic phenomena that might impact on perceived speech

quality.

All 450 of the phonetically-compact TIMIT sentences were synthesised using the Festi-

val 1.96 multisyn engine with a female, Standard Southern English voice (cstr rpx nina

multisyn) 3. Twenty-four of the resulting utterances were chosen as the test utterances

for the current study. All 24 were chosen at random, with the proviso that they be similar

in duration (both in milliseconds and in total syllables; this was done in order to minimise

any effect of length of utterance): The test utterances were therefore between 2.60 sec and

2.70 sec in duration (average duration: 2.65 sec) and all contained approximately 12 syl-

lables (range: 9-14 syllables; average: 12 syllables). None of the 24 test utterances were

manipulated during or after synthesis. All variations in the acoustic characteristics of the
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synthetic speech and in the the perceived naturalness of that speech were thus uncon-

trolled, and resulted only from the diphone coverage of the voice database used and the

performance of Festival.

In addition to the 24 test utterances, a set of 10 practice utterances and a set of 6 familiari-

sation utterances (both also from the phonetically-compact TIMIT sentences) were also

synthesised.

The 10 practice utterances were between 2.26 sec and 2.27 sec in duration (average du-

ration: 2.26 sec) and all contained approximately 10 syllables (range: 6-13 syllables; av-

erage: 10 syllables). Again, none of the practice utterances were manipulated during or

after synthesis. All of the sentences were lexically different from those presented in the

main test.

The 6 familiarisation utterances were designed to be presented in three specific pairs to il-

lustrate extreme examples of “similar” and “different” with regard to naturalness. These

pairs comprised one pair of “different” utterances, which contained an extremely natural

utterance and an extremely unnatural utterance, and two pairs of “similar” utterances,

one of which contained two extremely natural utterances, and the other of which con-

tained two extremely unnatural utterances. The 6 utterances that made up these famil-

iarisation pairs were synthesised using the same voice that was used to create the practice

utterances and the main test utterances. In order to create the 3 utterances designed to

illustrate extremely unnatural speech, only a subset of the voice database was employed

by the synthesiser (400 utterances, rather than the full database of 2000 utterances). Re-

stricting the diphone coverage available to the synthesiser degrades the output speech

quality. The three utterances designed to illustrate very natural synthetic speech were

chosen by the experimenters as being representative of the most natural utterances that

this synthesis system was capable of producing from the given voice database. None of

the familiarisation utterances were lexically the same as those in either the practice or the
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main test.

1. Test sets

In order to acquire the proximity values necessary for MDS analysis, it was necessary

to present the synthetic speech utterances in pairs, to determine the perceived degree of

similarity/dissimilarity in naturalness between each utterance and every other utterance.

To create the utterance pairs for presentation to the listeners in this study, each of the 24

test utterances was paired with every other test utterance, in both directions (i.e., both AB

and BA), resulting in 576 possible pairs of utterances (24 of which were same-utterance

pairs, e.g., utterance 1 paired with utterance 1). Pilot testing [43] had revealed that lis-

teners could rate 168 pairs of utterances in approximately 30-40 minutes, and that this

number of utterance pairs and duration of testing was approaching the upper limit of

what listeners could tolerate in a single test session. Therefore, to avoid listener fatigue

and any possible associated drop in performance, it was decided that the complete set of

576 utterance pairs would be divided into three smaller test sets, and that each listener

would hear only one of these three test sets 4.

The subdivision of the complete set of utterance pairs was done as follows. A 24x24

grid of all possible pairs of utterances was created. This complete set of pairs was then

subdivided into 9 smaller subsets by superimposing a 3x3 grid over the larger 24x24 grid.

Each of the 9 subsets therefore contained 64 pairs of utterances (e.g., utterances 1-8 x

utterances 1-8, or utterances 1-8 x utterances 9-16, or utterances 1-8 x utterances 17-24,

etc.). A Latin square arrangement was then used to allocate the utterance pairs in the 9

subsets into one of three test sets: The cells in the 3x3 grid were labelled A-B-C, B-C-A,

and C-A-B by row, and all of the utterance pairs in the cells labelled ‘A’ were put into a

single test set; the same was done for the utterance pairs in the cells labelled ‘B’ and those

in the cells labelled ‘C’. This resulted in 192 utterance pairs per test set. At this point all
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of the same-utterance pairs were removed from the test sets (there were 8 same-utterance

pairs per test set). This was done because all utterance pairs except the same utterance

pairs contained two lexically different sentences. Including a small number of pairs of

lexically identical sentences in a test set made up predominantly of different-utterance

pairs could have biased listeners’ responses in an unpredictable way. The final version of

each of the three test sets therefore contained 184 pairs of utterances.

This design resulted in a manageable test set size for each listener, while maintaining

maximal variation in what each listener heard (each test set contained each of the 24 test

utterances paired with one third of the 24 test utterances, less the same-utterance pairs),

and ensuring complete coverage of the test set (i.e., ensuring that every possible different

utterance pair was heard by at least a portion of the subjects).

C. Presentation of stimuli

All participants were tested individually in a sound-treated room. The stimuli were pre-

sented over closed-back headphones (Sennheiser Evolution H270, frequency response 12-

22000 Hz) with volume set at a constant, comfortable listening level. Testing took place

in one 40-45 minute session, with two short breaks part way through testing.

Presentation of the pairs of stimuli was controlled by a suite of computer software [E-

Prime, 48] that also recorded listeners’ responses. The listeners’ task was to listen to

the two utterances in a pair, and indicate whether they were “similar” or “different” in

terms of their naturalness (that is, with regard to how much like real speech each utter-

ance seemed to be). Importantly, the participants were not instructed to listen to any one

acoustic characteristic of the stimuli, or to any specific psycho-acoustic concept that might

make up the overall construct of “naturalness” (e.g., “listening effort,” “pleasantness,”

“pronunciation,” etc.) such as used in mean opinion scale (MOS) tests of synthetic speech
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quality [49]. Instead, the listeners’ task was simply to make a binary decision (“similar”

or “different”) about the degree of similarity in naturalness of each pair of stimuli.

Before testing, the participants were given an opportunity to listen to the three famil-

iarisation pairs of synthetic sentences. As noted above in Section B., these pairs were

designed to introduce listeners to extreme examples of “similarity” and “differentness”

in naturalness, and were explicitly identified to the listeners as such (that is, listeners

were told “These two sentences are similar in terms of naturalness.”). No responses were

collected from listeners during this period. Following this familiarisation, a pre-test was

administered, to ensure the listeners understood the task. This pre-test consisted of the 10

practice utterances, again presented in pairs. Only 10 of the possible pairs of utterances

were presented to each listener, in random order. No feedback regarding naturalness was

given during this pre-test; additionally, as there was no pre-defined “correct” response

to whether a given pair of utterances sounded “similar” or “different”, no listeners were

excluded on the basis of answers given during this pre-test period.

During the test proper, each participant heard one test set of 184 pairs of utterances (see

Section 1. for a description of these test sets). The interval between the presentation of

each member of a pair was 5000 msec (onset to onset). Responses were not timed, and

the presentation of the next pair of utterances began 2000 msec following the entry of

the preceding response. Breaks were given following the presentation of the 61st and the

122nd pairs; the duration of these breaks was controlled by the participants.

D. Acoustic analysis of stimuli

It was unclear at the start of the current study which potential acoustic characteristics

might play a role in listeners’ judgements of the stimuli used in this study. It was therefore

important to undertake as complete an analysis as possible of the stimuli to determine
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the spread of acoustic characteristics across the utterances and subsequently to use this to

interpret the MDS configuration.

Two types of acoustic analysis were carried out—automatic and manual—on the 24 syn-

thetic utterances used in the listening experiment, and where appropriate, on the natural

utterances used to create the synthetic utterances. All analyses are listed in Tables 1–3 .

The automatic analyses included measurements carried out by Festival in the process of

synthesising the 24 stimulus utterances, which included target cost of individual units,

join cost for joining two individual units, and number of “bad” units (those units that

are not statistically representative of other units containing the same segments from the

database) or missing units (those diphones that cannot be found in the database and are

replaced by something similar, e.g., a diphone containing a long vowel may get backed-

off to a unlengthened version).

Also in the automatic analysis were those measures that could be automatically calcu-

lated based on Festival’s measurements. These were: total cost (a measure based on

overall target cost and overall join cost for an utterance); target cost for different types

of target diphone (e.g., consonant-consonant, vowel-consonant, etc.); join cost for differ-

ent types of join (e.g., joins in vowels, stop consonants, fricatives, etc.); proportion of

units or joins with different values of target or join cost. Finally, the automatic analysis

included a number of other automatically calculable measurements, for example: dura-

tion of an utterance in milliseconds, whether the initial and final diphones were taken

from initial/final position in the source utterance, etc.

In addition to these automatic analyses, five different manual analyses were also carried

out, three on the 24 synthetic utterances, and two on each of the natural source speech

utterances in the voice database from which units were selected to create the 24 synthetic

utterances. The natural source utterances were first analysed for number of transcrip-

tion/pronunciation errors per synthetic utterance. The database of natural speech utter-
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ances is automatically phonetically labelled, based on the text that the database speaker

was given to read. If the speaker deviates from this text in some unexpected way, this

will cause a mismatch between the database speech, and the phonetic label, which in

turn will cause problems if these mismatched units are chosen for use in synthesis. Errors

in this category included (i) mispronunciations by the database speaker (e.g., pronounc-

ing “Maryland” as “Marilyn”: results in a section of database labelled /d/ when no /d/

has been produced); (ii) automatic segment labelling not accounting for pronunciation

variation (e.g., speaker producing “window” as /wInd@/, but the lexical entry only con-

taining an unreduced diphthong in the second syllable: results in errors in contexts where

reduction of the diphthong is not possible, e.g., “gateau”); (iii) the incorrect labelling of

any non-silent stretch of speech as “silence”.

The natural source utterances were also manually analysed for number of segmentation

errors per synthetic utterance. As noted above, Festival makes use of segmentation in-

formation to determine the points at which a unit should be cut out of a source utterance

for use in a target utterance. Note that cuts/joins are not made at boundaries between

phones, but at diphone boundaries. These points are, however, derived from phone seg-

mentation information. The accuracy of the initial segmentation of the natural speech is

therefore important to the success of the splicing procedure in unit selection speech syn-

thesis. Accuracy of the segmentation of the natural speech database was evaluated using

the principles set out by Turk, Nakai and Sugahara [50]. Segmentation errors were only

noted if they occurred at the edge of a unit boundary (e.g., if the automatic segmentation

was found to be incorrect for the boundary between /ô/ and /g/, but the entire sequence

/aôg@/ was selected from a source utterance for use in a target utterance, then this error

in segmentation was ignored).

The synthetic utterances were manually analysed for: (i) number of inappropriate di-

phones, (ii) number of detectable joins, and (iii) number of areas of incorrect stress/intonation
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(both lexical and phrasal). Classed as inappropriate diphones were any diphones taken

from a segmental context in the source utterance which would be segmentally incom-

patible with the target utterance (e.g., a post-vocalic /ôI/ diphone taken from the word

“prioritization” to be used in the post-stop context in the word “predicament”: the post-

vocalic context would engender a much longer /ô/ than would be appropriate for the

post-stop context). Detectability of joins were analysed by means of spectrograms and

spectra, and “detectable joins” included all joins in which there was at least one of: (i) a

mismatch in vowel formant frequencies at the join point, (ii) a mismatch in pitch at the

join point, (iii) a mismatch in intensity at the join point. Stress/intonation was marked as

inappropriate in the following circumstances: (i) if the source utterance carried/did not

carry lexical stress on the to-be-used vowel and this was inappropriate for the target con-

text (e.g., the lexically stressed syllable /bôI/ from the word “BRItish,” being used in the

target word “UPbringing,” where the syllable should not carry lexical stress), (ii) if the

source contained stress/intonation appropriate for a particular location in an utterance

and this was inappropriate for the location in the target utterance (e.g., a sequence with

phrase-final falling intonation used phrase medially) and (iii) if the source carried/did

not carry contrastive stress and this was inappropriate for the target context.

III. RESULTS AND DISCUSSION

The proximity values dictated by the listeners’ “similar”/“different” responses to the 24

synthetic utterances used in this study are best represented by a three-dimensional MDS

map [R2 = .75, residual stress= .18]. As the rotation of the MDS space is potentially arbi-

trary, principal component analysis (PCA) was used to ensure any principal components

were aligned with the axes; PCA did not further rotate the space 5. Figures 1, 2 and 3 show

three two-dimensional pairwise axis projections of the three-dimensional MDS map.
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A. Visual, auditory and cluster analysis

Kruskal and Wish [37] advocate attempting a basic visual analysis of MDS maps in the

first instance, before subjecting the map to further analysis. In the case of the current

study, this basic analysis also included an auditory analysis and a cluster analysis of the

distribution of the synthetic utterances within the MDS space.

From an initial visual and listening analysis, it is clear that listeners are able to make

a certain number of important distinctions with regard to the acoustic characteristics of

the synthetic speech used in this study. We identified five general groups into which

listeners appear to have classified the utterances. More fine-grained groupings may be

present in this data, however they are not immediately present from this first-pass visual

and auditory analysis: They may become evident after further (statistical) analysis (see

below). These five groupings are:

A very high quality utterances, with (i) very few poor units (i.e., few units with tran-

scription/pronunciation errors, inappropriate diphones, high target costs, etc.) and

(ii) very few joins (i.e., the entire utterance was made up of long stretches of con-

tiguous speech from the database), for example, utterances 10, 11, 12;

B utterances with very poor quality joins (as indicated by high join costs and audible

discontinuities at joins), for example, utterances 15, 18, 21, 22, 23;

C utterances with many joins, but all of them of relatively high quality (indicated by

low join costs and absence of audible discontinuities at joins), for example, utter-

ances 6, 11, 20;

D utterances with a handful of poorly selected units (containing instances of transcrip-

tion/pronunciation errors, etc.), for example, utterances 4, 5, 17;

E utterances with many poorly selected units, for example utterances 1, 2.

To attempt to validate these groupings as being meaningfully different in terms of their
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location in the MDS space we performed k-means clustering. The within-groups sum-

of-squares for different cluster sizes suggests that that four to six clusters are present.

Clustering with six clusters produces groupings which match very closely our initial in-

terpretation, as illustrated in Figure 4. In the top left of Figure 4 we see a cluster contain-

ing the stimuli 3, 8, 9, 10, 12, 13 and 16, which matches our group A. In the top right of

Figure 4 we see two clusters: The first containing stimuli 15, 18 and 22 and the second

containing stimuli 14, 19, 21, 23 and 24. These two clusters together match our group B

(note that these clusters merge, if clustering is performed with only 4 clusters). Stimuli 6,

7, 11 and 20 form a cluster at the bottom centre of Figure 4, corresponding to our group C

and stimuli 4, 5 and 17 form a cluster to the left of the previous cluster, relating to group

D. Finally stimuli 1 and 2 form a cluster that matches the stimuli described by group E

(again if only 4 clusters are requested, these last two clusters merge).

These groupings allow us to make the following inferences. First, listeners seem able

to differentiate between utterances on the basis of the number of joins in an utterance

(many, even if low cost/high quality, as in group C, versus few, as in group A) and the

quality of joins across an utterance (poor quality/high cost, as in group B, versus better

quality/lower cost, as in group C). Listeners also seem able to differentiate between utter-

ances on the basis of number of poor quality units, with at least three different identifiable

levels of unit quality: (i) many, poorly selected units, as in group E, (ii) a handful of poorly

selected units, as in group D, (iii) few poor quality units, as in group A. It is not, however,

evident from these general groupings whether listeners are able to, or do, use any aspect

of intonation or prosody in their judgements of the naturalness of these utterances, as

described below.
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B. Regression analysis: Accounting for the x-, y-, and z-dimensions

Following the above visual, auditory and clustering analyses, to further investigate the

resulting spacial configuration, all of the acoustic characteristics of the synthetic speech

utterances were regressed onto the x-, y- and z-dimensions of the MDS map. This analy-

sis is performed to determine whether any meaningful interpretation of the axes can be

made.

Note that while the configuration of utterances along both the x- and y-dimensions were

found to correlate with a number of the acoustic characteristics at p = 0.05, the distribu-

tion of utterances along the z-dimension did not correlate with any characteristics at this

level of p. At p = 0.06, the z-dimension was found to be accounted for by 6 acoustic char-

acteristics; these results should be treated more cautiously, given the weaker relationship

between the dimension and the characteristics. The results of all of these regressions can

be found in Table 4, Table 5 and Table 6. R

2
change analysis showed that the addition

of each new predictor made a significant contribution to the model for each dimension

(p = .01 or less for each addition); Durbin-Watson analysis confirmed independence of

errors.

An examination of these correlations with respect to the general categories and distinc-

tions identified in the auditory and visual analysis described above shows that all three

of the dimensions of the MDS map were accounted for by some aspect of join qual-

ity/quantity, and by some aspect of unit appropriateness, while only one dimension was

accounted for by any aspect of intonation/prosody. However, each dimension was ac-

counted for by very different aspects of, and amounts of, each of these general acoustic

characteristics, as described below.
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1. The x-dimension: Overall join quality/quantity

As can be seen in Table 4, the distribution of points along the x-dimension was predom-

inantly accounted for by measures of join quality and/or quantity, namely the number

of joins (normalised for the number of possible joins, as this will vary across utterances),

and average join cost across an utterance. Together these two measures can be thought

of as capturing some sort of high-level or global impression of the nature (i.e., num-

ber and overall quality) of the joins in an utterance. Additionally variability in the x-

dimension was accounted for by one aspect of unit appropriateness: The average target

cost of consonant-consonant diphones.

2. The y-dimension: Join distribution and detectability

Table 5 shows that, like the x-dimension, variation in the y-dimension was accounted for

predominantly by measures of join quality/quantity. However, it appears that where the

x-dimension appeared to reflect some sort of overall impression of join behaviour, the

y-dimension reflects more fine-grained detail regarding the distribution and detectability

of joins in an utterance. First, variation in the y-dimension is predicted by the number

of joins at 2-diphone intervals in an utterance (as reflected by “number of double units”).

This is clearly some sort of measure of join number/distribution, and may also reflect

join detectability. For example, this 2-diphone interval could, depending on the word,

be roughly equivalent to a mora or syllable (for example, in the word “hippopotamus,”

a join every 2-diphones would place a join either in the middle of every consonant, or

in the middle of every vowel). Given the perceptual importance of mora- and syllable-

like units [see e.g., 51], the presence of joins (and thus potentially join discontinuities) at

these intervals might be particularly salient to listeners. Second, variation along the y-

dimension is accounted for by the proportion of joins with a join cost of between .31 and

.40, which is the second highest (i.e., second worst quality) of the four divisions of join
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costs made in this study, and is thus simply a measure of the number of relatively poor

quality joins in an utterance, normalised for the overall number of joins in the utterance.

It is interesting to note that it is not the highest join costs (i.e., the join costs that reflect the

least smooth, most audible joins) that are the most perceptually important in this study.

This could, however, have something to do with the distribution of the join costs across

the artificial levels utilised in this study. The first two divisions of join costs, covering the

two lowest costs (less than .20 and .21-.30) appear in roughly equal proportion across all

24 of the utterances used in this study (40.58% and 41.79% respectively). The highest level

of join cost (more than .41), on the other hand, is rarely seen (only 4.79% of all joins had

this cost), Thus it is possible that joins in the range .31-.40, which accounted for 12.83%

of all joins in this study, might be more perceptually noticeable. Variation along the y-

dimension is also predicted by the segmental location of joins (as reflected by “ratio of

joins in consonants to joins in vowels”). This last correlation is not surprising: Studies

that have found that listeners’ ability to detect discontinuities at join points depends on

the segmental context of the join in question, with joins in vowels more detectable than

joins in consonants [e.g. 16; 28]. Finally, again, like the x-dimension, there is also a small

role for appropriateness of units (specifically consonant-vowel units) in accounting for

variability in the y-dimension.

3. The z-dimension: Unit appropriateness and prosody

Table 6 shows that in contrast to the x- and y-dimensions, variance along the z-dimension

was accounted for more by measures of unit appropriateness than by measures of join

quality/quantity. First, variance in the z-dimension is accounted for by a characteristic

(“unit errors”) that combines number of transcription/pronounciation errors, number of

inappropriate diphones, number of Festival-identified “bad units”, and number of miss-

ing diphones. This measure reflects those unit errors in which segmental information is
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outright incorrect or missing, rather than simply a poor match to the target. It should

be pointed out that the salience of this type of segment error might not be strictly to do

with segmental incorrectness: It is probable that all of these errors would additionally

cause some sort of discontinuity in the signal at a join point, thus possibly making these

errors particularly perceptable. Second, the z-dimension was also predicted by the av-

erage target cost across an utterance for vowel-initial units (vowel-vowel diphones and

vowel-consonant diphones), potentially reflecting something to do with the distribution

or detectability of unit errors.

An aspect of join cost does, however, play some role in accounting for variance along the

z-dimension, specifically the proportion of joins with a join cost of less than .20, which

is the lowest (i.e., best quality) of the four divisions of join costs made in this study. It

is possible that this aspect of join cost in fact corresponds with the large number of unit-

appropriateness predictors of the z-dimension, because joins appear to play a much larger

overall role in perceived naturalness than units. It may thus be necessary to have low join

costs (i.e., good, or less detectable joins) in order to be able to judge the appropriateness

of segmental units.

Finally, the z-dimension was the only dimension that was accounted for by any aspects

of intonation and/or prosodic appropriateness. First, the z-dimension was accounted for

by a measure indicating whether or not the final diphone in a synthetic utterance was

taken from utterance-final position in the source utterance (that is, whether or not the

final diphone carried the appropriate utterance-final stress and intonation pattern). This

is unsurprising given the importance of utterance-final prosody (which can include any

of the following: Lengthening of syllables, pitch declination, pausing) in the perception

of phrase boundaries [52] (see [53] for a review). Second, a small percentage of the vari-

ation in the z-dimension was also predicted by a measure of the number of instances

of incorrect stress/intonation, across an utterance. These two measures capture both a
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global/high-level picture of the prosody errors across an utterance, and a more detailed

picture of one important aspect of prosody, namely utterance final prosody.

C. Regression analysis: Accounting for the acoustic characteristics

The linear regression described above in Section B. was performed with the x, y and z axes

as the response variables because these were the axes on which subjects distinguished the

synthetic speech stimuli and, as noted above, the main aim of the current study was to

devise an acoustically valid account of the listeners’ perceptual evaluation behaviour.

However, it is also possible to analyse the space from an alternate perspective, and per-

form linear regression with each acoustic characteristic in turn as a response variable and

the x,y and z values as input variables. The results of such an analysis can be interpreted

as follows: MDS analysis demonstrates that the listeners who participated in the current

experiment made use of certain psycho-acoustic characteristics of speech that correspond

to the x,y and z dimensions of the MDS space. Given that this is the case, if we were to

present the same listeners with speech samples about which we knew nothing (with re-

gard to acoustic characteristics), the x,y and z dimensions of the current MDS space could

be used to predict variation in certain of the acoustic characteristics of the new speech.

The seven out of 52 acoustic characteristics for which a significant amount of variance can

be accounted with a linear model consisting of a constant and the three axis values are

reported in Table 7. The x dimension contributes to the variation in the largest number of

acoustic characteristics. Five of these are related in some way to joins, namely the num-

ber of joins in an utterance (normalised for the number of possible joins), the length (in

diphones) of the longest contiguous section of database speech in a synthetic utterance,

the number of contiguous sections of database speech that were four diphones long or

longer in a synthetic utterance, the number of number of joins at 2-diphone intervals, and

the number of joins with costs between .31 and .40. These all indicate the strong rela-
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tionship between the x dimension and measures of join acceptability. In particular these

measures correspond predominantly to number of joins and/or join location across ut-

terances, with one measure representing severity or detectability of join (number of joins

with costs between .31 and .40). Note, however, that (as discussed above in Section 2.)

the number of joins at 2-diphone intervals could also be considered to be a measure of

join detectability as well as join number/distribution. The x dimension also accounts for

variation in two measures of unit acceptability: average target cost across an utterance,

and the average target cost across an utterance for consonant-consonant diphones.

The y dimension contributes to the variation in only two of the above characteristics, both

related to joins, and more specifically, both related in some way to join detectability: The

number of number of joins at 2-diphone intervals, and the number of joins with costs

between .31 and .40. The z dimension did not make any contribution to the variation in

the analysed acoustic characteristics at the significance levels reported here.

IV. CONCLUSIONS

The aim of the current study was to make use of multidimensional scaling (MDS) tech-

niques to help identify those acoustic characteristics of unit-selection synthetic speech

that might play a role in listeners’ evaluation of such speech.

The first point to note is the overall importance of joins. For all three dimensions of the

MDS space at least 20% of the variance can be accounted for by some aspect of joins; for

some of the dimensions this percentage is much higher. It is perhaps unsurprising that

joins should receive the highest perceptual weight, as in natural speech the presence of

audible “pops” and “clicks” in the speech stream would be extremely unexpected. What

is more surprising is the fact that both number of joins in an utterance and quality of joins

make independent contributions to listeners’ perception of an utterance’s naturalness. In
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addition, listeners appear sensitive both to the general or overall behaviour of joins across

an utterance (such as captured by “average join cost”) as well as to more specific, context-

dependent behaviour of joins (such as captured by “ratio of consonant-located joins to

vowel-located joins”). Interestingly, this last finding replicates earlier work showing that

listeners are sensitive to differences in joins in different phonetic contexts [16; 28], but

expands the finding to full sentences (the original work was done on isolated syllables).

It is clear from the current study, therefore, that it is not simply the case that listeners

find unexpected spectral discontinuities in the speech stream extremely salient. Instead,

it appears that listeners are highly sensitive to many aspects of joins, and differentiate

between them at very subtle levels.

In contrast, none of the three dimensions of the MDS space correlate with general descrip-

tions of unit acceptability, such as might be captured by “average target cost”. Instead,

different dimensions of the MDS space seem to be affected differently by more specific

and context-dependent aspects of unit acceptability, namely target cost in each type of

diphone (e.g., consonant-consonant, consonant-vowel, etc.), as well as some measure of

auditorily detectable unit errors. This suggests one of a number of things. One possibility

is that the general descriptions of unit acceptability examined here do not capture listen-

ers’ perceptions of overall unit behaviour in the same way that general measures of join

acceptability seem to capture listeners’ intuitions about overall join behaviour across an

utterance. A second possibility is that listeners are themselves unable to make a judge-

ment about overall unit acceptability across an utterance, but instead are sensitive only

to the appropriateness of given units in specific contexts. Finally, it may be the case that

the heavier weighting of joins “washes out” much of the perceptual effect of unit appro-

priateness. This latter explanation is certainly implied by the results of the regression

analysis for the y-axis, which correlates with high quality joins and numerous measures

of unit appropriateness. This grouping of acoustic cues suggests that in order to be able

to judge unit appropriateness, there must be few distractions from inappropriate joins.
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Finally, it is important to note the very small role of stress/intonation appropriateness in

listeners’ judgements of the naturalness of the 24 utterances used in this study: It accounts

for a little more than 10% of the variance in the z-dimension (and it should be noted that

correlations with this dimension were calculated at a less stringent p=.06). Again, it is pos-

sible that the way in which stress/intonation appropriateness was calculated here does

not actually reflect listeners’ perception of stress/intonation in synthetic speech. How-

ever, given the dominance of join cost measures and unit appropriateness measures in

these correlations, it is equally possible that stress/intonation appropriateness is simply

a characteristic of synthetic speech that by default receives much less weight than other

acoustic characteristics. Certainly this result concurs with research from previous studies

of synthetic speech in which intonation variation was explicitly controlled [20; 21; 22; 19].

The results of the current study also support research on the perception of natural speech

such as that by Bradlow, Nygaard and Pisoni [54]. These authors found that listeners

are more able to encode and remember variability in the speech signal relating to the

acoustic characteristics of different talkers (which would include a great deal of accept-

able segmental variability) than they are to encode variations in the amplitude in the

speech (which would come under the heading of prosodic information). It is particularly

interesting to note that the lighter weighting of intonation is not exclusive to synthetic

speech. The reason for this almost certainly lies in the fact that a high degree of variabil-

ity in intonation and prosody is acceptable in natural speech. For example, it has been

demonstrated that if a speaker (either natural or synthetic) produces an utterance with

intonation that does not quite meet the expected prototypical pattern for the context, this

unexpected production may only result in a different semantic/pragmatic interpretation

by the listener (rather than an interpretation of the speech as foreign-accented or unnatu-

ral, for example) [CITE jilke]. Unless the chosen intonation pattern is explicitly forbidden

in a given context, listeners will only become aware of intonational deviations from pro-

totypical patterns after repeated deviations (that is, there is a cumulative effect).
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In addition to investigating which acoustic characteristics of synthetic speech influ-

ence listeners’ judgements of naturalness, the intention of this study was to gain a

more complete understanding of the relationship between acoustic characteristics of syn-

thetic speech and listeners’ responses, in order to develop better subjective evaluation

methodologies. Our findings can be summarised under three categories: join quality,

stress/intonation, and segmental quality.

A. Join quality

It seems clear that listeners have little difficulty attending to discontinuities at unit joins—

in fact, listeners appear to be highly sensitive to many different aspects of join quality.

The high weight given by default to this particular aspect of synthetic speech means that

subjective evaluations of join quality are straightforward: there is little interference from

other aspects of the speech.

B. Stress and intonation

On the other hand, although listeners are aware of stress and intonation, these character-

istics receive very little perceptual weight by default. Therefore, it would be inadvisable

to ask listeners to evaluate possible improvements to aspects of the stress or intonation of

a synthesiser without first training the listeners, or carefully designing the stimuli or the

method of presentation in order to change listeners’ default weighting patterns. Without

such training or careful experimental design, it is highly likely that listeners’ judgements

of stress and intonation quality will be influenced by their much heavier weighting of (for

example) the quality of joins produced by the system.

30



C. Segmental quality

Finally, it appears some caution should also be taken in the evaluation of unit or segmen-

tal quality. Although this aspect of synthetic speech is clearly more accessible to listeners

than is intonation, it does not seem to receive as much perceptual weight as quality of

joins. Additionally, listeners do not seem to attend to a general or overall measure of

unit appropriateness, but rather seem to perceive unit quality in terms of multiple dif-

ferent aspects of unit appropriateness, with particular emphasis on the type of unit (e.g.,

consonant-consonant, etc.). This should be considered carefully when designing methods

to evaluate unit appropriateness.

D. Implications for the evaluation of synthetic speech

The findings summarised above should be taken into account when designing subjec-

tive methods of synthetic speech evaluation and, in particular, when asking listeners to

evaluate specific sub- or supra-segmental aspects of such speech.

Objective methods for evaluating synthetic speech do not (yet) correlate very strongly

with human judgements [11], although they can now be used to make broad judgements,

such as separating out the systems in the Blizzard Challenge into three groups of ‘good’,

‘average’ and ‘poor’. The problems with comparing synthetic speech to a natural refer-

ence were mentioned earlier; these problems are particularly acute in the case of supra-

segmental properties. It also seems unlikely that single-ended objective methods (i.e.,

those which do not require a reference signal) will ever be able to successfully rate the

supra-segmental quality of synthetic speech. Whilst it is to be hoped that objective mea-

sures continue to improve – and that our findings can help achieve that – they do not

currently offer a solution to the difficulties inherent in subjective evaluation of synthetic

speech, and of supra-segmental aspects in particular. Reliable objective measures remain
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an attractive, though elusive, proposition. However, whilst they may not be able to com-

pletely replace human judgements, they do have a place within the system design and

development cycle, offering the possibility of tests repeated many times on large amounts

of material, which would be impractical for subjective testing. One specific example of

this would be to use knowledge of the weighting given to different acoustic cues for tun-

ing the target and join costs of a concatenative system. Another example would be to

incorporate a model of speech perception or an objective speech quality measure into the

objective function for training a statistical parametric system – this is something we are

now working on.
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Notes

1The term perceptual weight is used here, and throughout this paper, as a synonym

for perceptual attention or importance, and is used in a relative, rather than absolute or

quantifiable sense [see 29; 55; 30; 26; 56].

2This gender split accurately reflects the gender split of the undergraduate students in

the department from which the majority of the subjects were solicited.

3A live demonstration of this voice, called ‘Nina’, can be found at http://www.

cstr.ed.ac.uk/projects/festival/onlinedemo.html

4A possible alternative solution, that of presenting all utterance pairs to every listener

over multiple test sessions, was dismissed due to the high probability of subject attrition

over second and subsequent test sessions.

5The fact that PCA did not rotate the MDS space suggests that the way that MDS is

implemented in SPSS incorporates PCA, which is an entirely reasonable assumption.
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Table I. Automatic acoustic analyses made of synthetic and natural source utter-

ances: General measures.

Average join cost across a synthetic utterance

Average target cost across a synthetic utterance

Total cost (combination of overall join cost and overall target cost across a syn-

thetic utterance)

Duration of synthetic utterance, in msec

Table 1:
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Table II. Automatic acoustic analyses made of synthetic and natural source utter-

ances: Join measures.

Average join cost across a synthetic utterance for joins in each of: consonants;

vowels; stops; fricatives; affricates; nasals; approximants; liquids; schwa-based

vowels; diphthongs; all other vowels; silences

A count, per synthetic utterance, of joins with a cost of: less than .20 (good joins);

between .21 and .30 (less good joins); between .31 and .40 (relatively poor joins);

more than .40 (very poor joins; note that these divisions are different from those

given for target costs in

because the two costs differ in overall distribution)

Possible number of joins (the total number of joins that would be present in a

synthetic utterance if it was created completely from individual diphones, rather

than from a combination of diphones and larger, multi-diphone units as would

normally be the case)

Actual number of joins

Number of diphones in the longest unit (the longest unit was the unit with the

highest number of sequential diphones from a single source utterance, in that

utterance)

Number of “long” units (long units were classed as any unit from a source utter-

ance with more than 4 sequential diphones)

Number of “single” units (a single unit was a source unit made up of a single

diphone)

Number of “double” units (a double unit was a source unit made up of two se-

quential diphones)

Largest number of single units in a row

Largest number of double units in a row

Table 2:
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Table III. Automatic acoustic analyses made of synthetic and natural source ut-

terances: Target measures.

Average target cost across a synthetic utterance for all targets in each of: vowel-

vowel diphones; vowel-consonant diphones; consonant-consonant diphones;

consonant-vowel diphones

A count, per synthetic utterance, of targets with a cost of: less than .10 (a good

match between source and target); between .11 and .20 (a less good match be-

tween source and target); between .21 and .30 (a relatively poor match between

source and target); more than .31 (a very poor match between source and target;

note that these divisions are different from those given for join costs in

because the two costs differ in overall distribution)

Number of “bad units” per synthetic utterance

Number of “missing diphones”

Whether the initial diphone in the synthetic utterance was taken from utterance-

initial position in the source

Whether the final diphone in the synthetic utterance was taken from utterance-

final position in the source

Table 3:
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Table IV: Results of regression analysis for x-dimension of MDS space.

Acoustic property R

2
, p

Ratio of the number of possible joins to the num-

ber of actual joins

R

2 = .542, p < .001

Average target cost across an utterance for all

consonant-consonant diphone units

R

2 = .700, p < .001

Average join cost across an utterance R

2 = .784, p < .001

Table 4:
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Table V: Results of regression analysis for y-dimension of MDS space.

Acoustic property R

2
, p

Average target cost across an utterance for all

consonant-vowel diphones

R

2 = .256, p = .012

Number of “double” diphone units in an utter-

ance

R

2 = .507, p = .001

Number of joins in an utterance with a join cost

between .31 and .40

R

2 = .683, p < .001

Ratio of the average join cost for all joins made

within a consonant to the average join cost for

all joins made within a vowel over an utterance

R

2 = .777, p = .011

Table 5:
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Table VI: Results of regression analysis for z-dimension of MDS space at p = .06.

Acoustic property R

2
, p

Total number of unit errors (sum of (a) transcrip-

tion/pronunciation errors, (b) inappropriate di-

phones, (c) bad units, and (d) missing diphones)

per utterance

R

2 = .153, p = .059

Number of joins in an utterance with a join cost

of less than .20

R

2 = .341, p = .012

Average target cost across an utterance for all

vowel-vowel units

R

2 = .490, p = .003

Whether or not the final diphone in a synthetic

utterance was taken from utterance-final posi-

tion in the source utterance

R

2 = .596, p = .001

Average target cost across an utterance for

vowel-consonant diphones

R

2 = .676, p = .001

Number of instances across an utterance of in-

correct stress or intonation

R

2 = .784, p < .001

Table 6:
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Sig. level of axes

Response Variable r

2
p x y z

ratio.poss.act 0.5606 0.000 0.001 - -

longest 0.4957 0.003 0.001 - -

no.long 0.4244 0.011 0.01 - -

no.double 0.4617 0.005 0.05 0.01 -

j.more.41 0.4850 0.004 0.01 0.05 -

all.t.c 0.4295 0.009 0.01 - -

t.c.c 0.4445 0.007 0.01 - -

Table 7: Multiple regression analysis results modelling acoustics characteristics from co-

ordinate values. In addition to the significances shown the intercept is significant for all

models at p < 0.001.
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Figure captions

FIG 1 Two-dimensional X-Y projection of the three-dimensional MDS map. Each number

refers to the number of a single synthetic utterance.

FIG 2 Two-dimensional X-Z projection of the three-dimensional MDS map. Each number

refers to the number of a single synthetic utterance.

FIG 3 Two-dimensional Y-Z projection of the three-dimensional MDS map. Each number

refers to the number of a single synthetic utterance.

FIG 3 K-means clustering of two-dimensional X-Y projection of the three-dimensional

MDS map with 6 clusters. Each number refers to the number of a single synthetic utter-

ance.
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