
HAL Id: hal-00727161
https://hal.science/hal-00727161

Submitted on 3 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mapping between Acoustic and Articulatory Gestures
G. Ananthakrishnan, Olov Engwall

To cite this version:
G. Ananthakrishnan, Olov Engwall. Mapping between Acoustic and Articulatory Gestures. Speech
Communication, 2011, 53 (4), pp.567. �10.1016/j.specom.2011.01.009�. �hal-00727161�

https://hal.science/hal-00727161
https://hal.archives-ouvertes.fr


Accepted Manuscript

Mapping between Acoustic and Articulatory Gestures

G. Ananthakrishnan, Olov Engwall

PII: S0167-6393(11)00016-1

DOI: 10.1016/j.specom.2011.01.009

Reference: SPECOM 1967

To appear in: Speech Communication

Received Date: 31 May 2010

Revised Date: 15 January 2011

Accepted Date: 21 January 2011

Please cite this article as: Ananthakrishnan, G., Engwall, O., Mapping between Acoustic and Articulatory Gestures,

Speech Communication (2011), doi: 10.1016/j.specom.2011.01.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.specom.2011.01.009
http://dx.doi.org/10.1016/j.specom.2011.01.009


  

Mapping between Acoustic and Articulatory

Gestures

G. Ananthakrishnan, Olov Engwall

Centre for Speech Technology (CTT), School of Computer Science and
Communication, KTH (Royal Institute of Technology), SE–100 44

Stockholm, Sweden, Tel. +468-790 75 65

Abstract

This paper proposes a definition for articulatory as well as acoustic ges-
tures along with a method to segment the measured articulatory trajectories
and the acoustic waveform into gestures. Using an simultaneously recorded
acoustic-articulatory database, the gestures are detected based on finding
critical points in the utterance both in the acoustic and articulatory rep-
resentations. The acoustic gestures are parameterized using 2-D cepstral
coefficients. The articulatory trajectories are essentially the horizontal and
vertical movements of Electromagnetic Articulagraphy (EMA) coils placed
on the tongue, jaw and lips along the midsagittal plane. The articulatory
movements are parameterized using 2D-DCT using the same transforma-
tion that is applied on the acoustics. The relationship between the detected
acoustic and articulatory gestures in terms of the timing as well as the shape
is studied. Acoustic-to-articulatory inversion is also performed using a GMM-
based regression, in order to study this relationship further. The accuracy
of predicting of the articulatory trajectories from the acoustic waveform are
at par with state-of-the-art frame-based methods with dynamical constraints
(with an average error of 1.45-1.55 mm for the two speakers in the database).
In order to evaluate the acoustic-to-articulatory inversion in a more intuitive
manner, a method based on the error in estimated critical points is suggested.
Using this method, it was noted that the estimated articulatory trajectories
using the acoustic-to-articulatory inversion methods were still not accurate
enough to be within the perceptual tolerance of audio-visual asynchrony.

Email address: agopal@kth.se, engwall@kth.se (G. Ananthakrishnan, Olov
Engwall)



  

Key words: Acoustic Gestures, Articulatory Gestures,
Acoustic-to-Articulatory Inversion, Critical Trajectory Error

2



  

Mapping between Acoustic and Articulatory

Gestures

G. Ananthakrishnan, Olov Engwall

Centre for Speech Technology (CTT), School of Computer Science and
Communication, KTH (Royal Institute of Technology), SE–100 44

Stockholm, Sweden, Tel. +468-790 75 65

1. Introduction

The relationship between an acoustic signal and the corresponding articula-
tory trajectories is of interest both for practical applications (such as speech
coding, robust ASR, or feedback in computer-assisted pronunciation training)
and on theoretical grounds, e.g. with respect to human speech perception
and production. Among the different theories of speech perception, three
main theories, namely the Motor theory (Liberman et al., 1967), the Direct
realist theory (Diehl et al., 2004) and the Acoustic landmark theory (Stevens,
2002) claim that humans make use of articulatory knowledge when perceiving
speech.

The motor theory of speech perception considers the perception of speech
as a special phenomenon. According to the theory, speech perception is
carried out by analyzing the signal based on the innate knowledge of the
articulatory production of the particular sound. Because of the invariance
in the production mechanism, signals that differ in acoustic properties by a
large amount, can still be perceived as the same phonemic class. A classic
example is that even though the acoustic properties of the initial segment /d/
in /da/, /di/ and /du/ are different, it is categorized into the same phonemic
class.

The direct realist theory reasons along similar lines as the motor the-
ory, but does not claim that speech perception is largely different from the
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perception of other kinds of sounds. The theory postulates that the objects
of perception in case of speech are articulatory gestures, and not phonemic
targets as proposed by the Motor theory. The gestures are inferred from
evidence given in the acoustic signal.

The landmark based theory of speech perception also makes use of artic-
ulatory gestures in order to explain the phenomenon of speech perception.
The theory claims that the segments in speech are encoded by different states
of the articulators. Due to the quantal nature of the mapping between ar-
ticulatory and acoustic parameters, when moving from a particular encoded
configuration of articulators to the next, we can perceive distinct segments
in the acoustics.

In this paper, we draw inspiration from the direct realist theory, in that we
attempt to study the mapping between articulatory trajectories and acoustic
segments of speech. For this we first define what we call acoustic and artic-
ulatory ‘Gestures’ and then propose a method to detect and segment these
gestures. The analysis is further substantiated by performing acoustic-to-
articulatory inversion, where the articulatory trajectories of an utterance are
predicted from acoustic segments.

Acoustic-to-articulatory inversion has commonly been performed by ap-
plying an inversion-by-synthesis method, in which an articulatory model
(such as Maeda’s (Maeda, 1988)) is first used to build a codebook by syn-
thesizing sounds from the entire articulatory space of the model (Atal et al.,
1978). Inversion is then performed by a lookup in the codebook in combina-
tion with constraints on smoothness or entropy of the estimated trajectories.
Recently, statistically based inversion methods have been able to provide fur-
ther insight. These methods rely on databases of simultaneously collected
acoustics and articulatory data, e.g., Electromagnetic Articulography (EMA)
(Wrench, 1999; Toda et al., 2008; Richmond, 2002) or X-ray microbeam data
(McGowan and Berger, 2009; Dusan and Deng, 2000). Some researchers
have also employed visual information from the databases (such as videos or
markers on the face) in order to make better predictions of the articulation
(Katsamanis et al., 2008; Kjellström and Engwall, 2009). For a review of var-
ious data-driven methods, please refer to Toutios and Margaritis (2003). In
brief, the problem of data-driven inversion is usually tackled using statistical
regression methods, using different types of machine learning algorithms, e.g.,
Linear Regression (Yehia et al., 1998), Gaussian Mixture Model Regression
(Toda et al., 2004a), Artificial Neural Network Regression (Richmond, 2006)
and Hidden Markov Model (HMM) regression (Hiroya and Honda, 2004).
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It is then assumed that the articulatory configuration, given the acoustics,
is a random variable with as many dimensions as the number of measured
articulator positions.

Most of the methods, both analytical and statistical, have tried to predict
area functions or the position of discrete flesh points of the articulators at a
particular time instant given the acoustics, rather than trying to predict the
shape of the articulatory trajectory or the gestures using the acoustics of an
utterance. Several researchers have used dynamic constraints on the articu-
latory parameters knowing that the movement is along a smooth trajectory
(Ouni and Laprie, 2002; Richmond, 2006; Zhang and Renals, 2008). Özbek
et al. (2009) augmented Mel Frequency Cepstral Coefficients (MFCC) with
formant trajectories and showed that there is a slight improvement in the
prediction of the articulator trajectories.

The above paradigm of predicting the articulator positions at each time
instant can be said to draw its inspiration from the motor theory, in that
it corresponds to the proposed innate mechanism of mapping the acoustics
directly to the articulatory production. In contrast, we propose an inversion
method that is closer to the direct realist theory, in that the units of inver-
sion are acoustic gestures and their corresponding articulatory movements,
rather than articulatory parameters at a single instance of time with smooth-
ing constraints. Such a method of mapping gestures in the acoustic and the
articulatory domains has not been tried with success before, because of two
reasons. The first problem is that of segmentation. There are no clear or con-
sistent ways of segmenting the acoustics into gestures, whereas segmenting
into phonemes is deemed easier because it can be verified with our under-
standing of speech units. The second problem is parameterizing time-varying
acoustic features. Most acoustical analyses deal with short windows of the
signal where the signal is considered stationary. In order to map acoustic
and articulatory gestures, a time varying parametrization is necessary.

We therefore propose a general segmentation algorithm for time-varying
data, which can be applied to segment both acoustics and articulatory tra-
jectories into units which we call ‘gestures’. The segmentation is effected by
finding the ‘Critical points’ in the acoustic and articulatory trajectories. The
relationship between the acoustic and articulatory gestures, being interest-
ing and quite complex is studied with some detail, especially the question
of timing between the gestures made by different articulators with respect
to the acoustics. The articulatory gestures occur at different times for the
different articulators. While the acoustic gestures are likely to overlap with
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the articulatory gestures made by some articulators, they may not overlap
with other articulators.

When we perform inversion, no information about the articulator move-
ments is available. So instead of using different articulatory gestures we
parameterize the acoustic gestures and the corresponding movement of artic-
ulators that we observe in the training data. The corresponding articulator
movements could span over one or more articulatory gestures. The acoustic
gestures are parameterized using length independent time-frequency 2-D cep-
stral coefficients, obtained using a Two Dimensional Discrete Cosine Trans-
form (2D-DCT). The 2D-cepstral coefficients give a time-frequency represen-
tation for these segments. The articulator movements during this acoustic
gesture are also parameterized by the same function, the 2D-DCT. The pa-
rameterized gestures are then modeled as a joint distribution using the mul-
tivariate Gaussian Mixture Model (GMM). The correspondence between the
acoustic and articulatory movements are learned using Gaussian Mixture
Model Regression (GMMR) (Sung, 2004), which is used to predict the artic-
ulatory gestures corresponding to unseen acoustic gestures. Finally, in order
to find smooth articulatory trajectories, between predictions from adjacent
acoustic gestures, we perform a Minimum Jerk Smoothing.

We study the mapping between the acoustic and articulatory gestures
as well as the inversion method using a corpus of simultaneous acoustic
and articulatory measurements. The articulatory measurements are based
on the positions of EMA coils on the tongue, lip, jaw and velum of two
speakers. Based on the ‘Critical points’ we detect, we propose a new eval-
uation criterion which gives a more intuitive understanding about the er-
rors made by acoustic-to-articulatory inversion. We also compare the pro-
posed method against the standard frame-based inversion method where the
acoustic-articulatory relationships are learned using the same machine learn-
ing technique, namely GMMR.

This article is structured as follows. In Section 2 we first describe the
motivation and algorithms for segmenting the acoustic and articulatory ges-
tures. We also describe the parameterization schemes and the machine learn-
ing techniques we use for acoustic-to-articulatory inversion. In Section 3 we
detail the acoustic-articulatory data we use for our experiments as well as
the methods adopted for evaluating the segmentation algorithms as well as
the acoustic-to-articulatory inversion. Section 3 also describes the experi-
ments we performed using the proposed techniques and data. We discuss the
results we obtained from our experiments in Section 4, before concluding on
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the findings of this study in Section 5.

2. Theory and Methods

2.1. About Gestures

Our use of the term ‘Gestures’ is not from a semiotic point of view, which
requires that a gesture necessarily has a linguistically significant meaning.
Here, a gesture is more from a phonological point of view. The gesture
specifies a unit of production, such as the movement during the production
of a phoneme or a syllable, as described by the direct realist theory of speech
perception (Fowler, 1996).

Although it is quite clear what articulatory gestures are qualitatively,
there is no clear quantitative method for defining them. The definition is
even more vague when one refers to an acoustic gesture. It is especially un-
clear what the unit of the gesture within a sentence or a phrase is. Secondly,
the notion of linear sequences of non-overlapping segments of speech has
been criticized by some researchers (Browman and Goldstein, 1986; Keating,
1984). The organization of the temporal movements of different articulators
may further differ for different speakers, languages or contexts. On the other
hand, some studies have shown that the gestures may be controlled by in-
variant articulatory targets (MacNeilage, 1970) or acoustic targets (Miller,
1989) and thus, the gestures themselves may not be important and can be
retrieved by applying constraints on the transitions between the acoustic or
articulatory targets.

The problem of finding a correspondence between articulatory gestures
and the acoustic signal thus makes it necessary to obtain a quantitative
definition of what gestures imply. The same definition should be valid for
both signals. Secondly, the definition should include an implicit method for
segmenting individual ‘gestures’ from a sequence.

The notion behind our definition is that there is an innate correlation
between targets and gestures, even though there may not be a one-to-one
mapping between them. Each gesture has a minimum of two targets, because
there must be some sort of motion involved. If there are only two targets,
the object making the gesture starts at one target, move towards the second
target and stops. If there are more than one target within a specified amount
of time, then the object need not stop before it continues towards the next
target. This is the case in the utterance of a sentence, consisting of several
targets and several gestures. In theory, by controlling the curvature of the
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trajectory, an object can move from one target to another via an in-between
target without reducing its speed while approaching it. However, it has been
found that human motor movements (especially the limbs and oculomotor
systems) seem to follow the so called ‘1/3rd power law’ (Viviani and Terzuolo,
1982) in the speed-curvature relationships. The velocity of motion in human
motor movements is related to the curvature as

v(t) = kc(t)−1/3 (1)

where v is the velocity and c is the curvature at time t and k is the velocity
gain. This means that when the curvature is larger, the velocity is reduced to
allow for greater precision (Schmidt et al., 1979). Thus reduction of velocity
is a good indicator of the human motor object approaching a target. While
Viviani and Terzuolo (1982) talked about motor movements in the context
of hand and finger movements while writing or drawing, Perrier and Fuchs
(2008) showed that even though the power law is valid in an overall sense
for articulatory movements it may not hold for individual movements of
the articulators, probably due to the high elasticity of their tissue. The
relationship between an increase in curvature and a decrease in instantaneous
velocity was however preserved. Viviani and Terzuolo (1982) also observed
that the angle made by the trajectory with respect to the horizontal axis
was a good indicator for segments in the motion. Points of inflection and
cusps were characterized by a large change in angle made by the moving
object. Thus those points where there is a drop in velocity and a large
change in the angle can be considered as articulatory targets. Gestures are
the motion through or towards such targets. The true targets may not be
reached because of the time constraints while uttering a sentence and by how
much they are missed depends on the velocity.

We propose a two-step approach in segmenting gestures. First we locate
what we call the ‘critical points’ in the trajectory, which are the projections
of the theoretical targets onto the trajectory. We then define a gesture as
the motion through one such ‘critical point’.

2.2. Articulatory Gestures

For an utterance with T time samples, let γγγa(t) ∈ �n be the column vector
corresponding to the position of the articulator a at time instant t. The
absolute velocity (speed) va(t) = |γγγa(t) − γγγa(t − 1)|2 is calculated between
the positions ∀ t : 2 ≤ t ≤ T , where |.|2 is the L-2 norm of the vector. The
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‘Importance’ function, which gives an indication of how close the position is
to a target, Ia(t) can be calculated as

Ia(t) = log

⎛⎝θa(t)

2π
− va(t)

max
1≤i≤T

va(i)

⎞⎠ (2)

The angle θa(t) is the acute angle (in radians) between the vectors γγγa(t −
1) − γγγa(t) and γγγa(t) − γγγa(t + 1). A ‘critical point’ is a local maximum in
this ‘Importance’ function. The Importance function needs to be smooth in
order to find good local maxima, and a minimum jerk trajectory algorithm
is therefore used for smoothing. A minimum jerk trajectory is the smoothest
possible trajectory an object can take between two points with the minimum
peak velocity during the trajectory. Since jerk is the third derivative of the
position, setting the fourth derivative to zero would minimize the jerk. In
order to fit the minimum jerk trajectory, we need to integrate the fourth
order differential equation. Solving for each of the 4 derivatives as well as
the constant of integration gives us a 5th order polynomial equation. Given
the noisy (jittery) trajectory of the object γγγa(t), a smoothed version γγγsa(t)
can be obtained as

γγγsa(t) =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1
t t
t2 t2

t3. . . n times t3

t4 t4

t5 t5

⎤⎥⎥⎥⎥⎥⎥⎦

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1̄ t̄ t̄2 t̄3 t̄4 t̄5

...
n times

1̄ t̄ t̄2 t̄3 t̄4 t̄5

0̄ 1̄ 2t̄ 3t̄2 4t̄3 5t̄4

...
n times

0̄ 1̄ 2t̄ 3t̄2 4t̄3 5t̄4

0̄ 0̄ 2 6t̄ 12t̄2 20t̄3

...
n times

0̄ 0̄ 2̄ 6t̄ 12t̄2 20t̄3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

†

⎡⎣ γγγa(̄t)
dγγγa(̄t)
d2γγγa(̄t)

⎤⎦

(3)
where † indicates the pseudo-inverse of a matrix. t̄ is a column vector of
time instances from interval [t−ws, t + ws]

T , with 2ws + 1 being the window
length. 0̄, 1̄ and 2̄ are column vectors the same size at t̄. Thus γγγa(̄t) would
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(a) Original Trajectory (b) Smoothed Trajectory

Figure 1: (a) The original recording of the trajectory of an EMA coil placed on the tongue
tip along the mid-sagittal plane during the utterance of the sentence, “Jane may earn
more money by working hard”. (b) The smoothed version of the same trajectory using
minimum jerk smoothing with smoothing window ws = 40 ms.

be a column vector with (2ws +1)∗n rows1. The trajectory is expected to be
smooth and following minimum jerk within this window. Figure 1 shows the
original jittery trajectory and the smoothed version of an EMA coil placed
on the tongue tip in the MOCHA-TIMIT recordings (Wrench, 1999). The
jitter in the signal can probably be attributed to measurement errors of the
EMA coil.

The Importance function, calculated on this smooth trajectory has more
reliable local maxima than when calculated on the original trajectory, facili-
tating better detection of ‘critical points’. The level of smoothing and thus
the number of critical points depends on the window length. The larger the
window, the finer transitions in the trajectory will be smoothed over, hence
resulting in fewer gestures. Figure 2 shows the Importance function of the
trajectory calculated using Equation 2 and the critical points obtained from
its local maxima. Since a gesture was defined as the movement through at
least one such critical point, we consider a gesture as the movement between
two alternate critical points. That is, for every critical point C, the gesture
starts from the preceding critical point P and lasts until the succeeding one S
unless C is the first or the last critical point. Adjacent gestures overlap, since

1∗ is the multiplication symbol
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Figure 2: (a) The trajectory of an EMA coil placed on the tongue tip along the mid-sagittal
plane during the utterance of the sentence, “Jane may earn more money by working hard”
along with the Importance function and ‘critical points’. It can be noted that the absolute
value of the Importance function is not crucial, but the relative importance for different
parts of the articulatory trajectories is. Hence the y-axis denotes the scale only for the
articulatory trajectories (1/100th of an mm). (b) The EMA trajectory along the vertical
and horizontal axes. One such ‘gesture’ is also shown.

the trajectory PC of one gesture corresponds to CS for the previous one.
The importance function as well as one such gesture is shown in Figure 2.

The application of the above method to motion, such as in articulatory
data, is rather intuitive in view of the speed-curvature relationship. We
propose to apply the same paradigm to acoustic signals, as outlined in the
following subsection.

2.3. Acoustic Gestures

There are several automated methods to segment speech into small time
units. Segmentation after counting the number of level-crossings in a re-
gion of the speech waveform (Sarkar and Sreenivas, 2005) is usually highly
accurate. Methods using intra-frame correlation measures between spectral
features to obtain the segments called the Spectral Transition method (STM)
(Svendsen and Soong, 1987) is also a popular method. Statistical modeling
using Autoregression (or ARMA) models (Van Hemert, 1991) and HMM
based methods (Toledano et al., 2003) are often used to good effect. Many
different features like amplitude (Farhat et al., 1993), short time energy in
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different frequency sub-bands (Gholampour and Nayebi, 1998; Ananthakr-
ishnan et al., 2006), fundamental frequency contour, (Saito, 1998), auditory
models, (Zue et al., 1989) and Mel Frequency Cepstral Coefficients (MFCC)
(Toledano et al., 2003) have also been tried. While most research is directed
towards detecting boundaries, some algorithms, including the one presented
in this article, are directed towards finding acoustic landmarks (Zue et al.,
1989; Liu, 1996) in the stable regions of the speech signal. The landmarks
have often been described as linguistically or phonetically motivated events.
The approach we have used is following Ananthakrishnan et al. (2006) as we
find the energy along different frequency sub-bands to give multi-dimensional
acoustic trajectories along time, and then locate the landmarks by applying
simple physical rules on these acoustic trajectories.

We represent the acoustic signal as a time-varying filter-bank based on
the Equivalent Rectangular Band-width (ERB) scale (Moore and Glasberg,
1983) instead of the traditional ‘Mel’ scale. The advantage of using such a
filter-bank is its relationship with the critical bands of hearing, in which the
noise outside the critical band is suppressed. In contrast to the short-time
segmental approach, the signal is filtered into frequency sub-bands. The kth

spectral component of the transform of the time signal x(t) : 1 ≤ t ≤ T
sampled at sampling frequency Fs is given by

Xk(t) = α(k)

L(k)∑
m=1

Wk(m)x(t − m) (4)

where, L(k) is the length of the window corresponding to the kth spectral
component. α(k) is a weight that is set to 1 in the current experiments, but
could correspond to the equal loudness weights or pre-emphasis.

The window function Wk : 1 ≤ k ≤ K is a set of Finite Impulse Response
(FIR) linear phase band pass filters. Their Central Frequencies (CF ) are
calculated by dividing the ERB scale into K equal parts, where K is the
total number of filters (45 in our experiments). CF (K) must be less than
Fs/2. Their Band-Widths (BW ) are calculated by Equation 5 which is the
approximation of the ERB scale made by Moore and Glasberg (1983)

BW = 6.23 ∗ 10−6 ∗ f 2 + 9.339 ∗ 10−2 ∗ f + 28.52 (5)

where f is the frequency in Hz. The order, L(k), depends on the pass band
frequency and is calculated as L(k) = 2/BW (k). The order for the FIR
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Figure 3: The frequency magnitude response of the ERB Filter-banks Wk with B = 80
Hz and 45 filters. One can see that the sub-band ripple is below 40 dB for all the filters.

filters also indicates the time resolution of the filters. One can see that these
are dependent on the frequency giving higher temporal resolution to higher
frequencies and higher frequency resolution to lower frequencies. Thus this
sort of spectral modeling is expected to be an advantage over the traditional
short-time analysis window methods. The filter Wk(t) : 1 ≤ t ≤ L(k) is
calculated as follows

Wk(t) = H(t) ∗
sin

(
(t − (L(k)/2)) BW (k)

Fs

)
(

t − L(k)

2

) ∗ exp

(−j2πtCF (k)

Fs

)
(6)

where H(t) is the windowing function, in this case, the ‘Hann’ window. Fig-
ure 3 shows the frequency response of the designed ERB filter-bank. It is
quite clear from this figure that while the main lobe (pass-band lobe) is quite
flat, the sub-band ripple for all the filters is below 40 dB. This reduces the
leakage from the higher frequency sub-bands to lower frequency ones. This
property would not be exhibited by a uniform order filter-bank.

The complex signal Xk(t) is then converted to a real signal by finding
its absolute value and compressing it using the log scale approximation of
loudness, as

lXk(t) = 10 log10(|Xk(t)|2) (7)

where |.| is the absolute value. The real signal lXk(t) is used for further
processing. In our experiments the minimum frequency of the filter-bank
was 80 Hz, the maximum frequency was less than 6500 Hz and the total
number of filters was 45. The configuration was not optimized for the task
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at hand, but small changes in these numbers did not result in any larger
differences in the experimental results.

Figure 4 shows the original output of the filter-banks and after smoothing
with the minimum jerk formulation, which can be considered as a 5th degree
polynomial smoothing, with weighted coefficients. While this provides a
smoothing for the frequency representation, it does not remove the salient
features of the spectrogram, as is also illustrated in Figure 5

Applying the conditions for finding the Importance function as in Equa-
tion 2, the angle θa and speed va are calculated on a K dimensional vector
lXk. The ‘critical points’ are detected as defined in Section 2.2. We hope the
‘critical points’ to correspond to the stable regions of the acoustics, which
are the projections of the acoustic target onto the measured acoustic space.
Thus this algorithm should be able to predict the salient landmarks in the
speech signal.

2.4. Two-Dimensional Discrete Cosine Transform

Mel Frequency Cepstral Coefficients (MFCC) are the most common acoustic
parametrization for speech recognition and more recently synthesis. The
cepstra are often calculated by taking the cosine transform of the short time
log of the frequency warped spectrum of the acoustic signal. It is known that
MFCCs of consecutive segments of speech are highly correlated. In order to
use time-varying information, velocity (or acceleration) coefficients are also
added in the parameterizations.

A two-dimensional cepstrum (2D-cepstrum) along the time and frequency
dimensions was suggested by Ariki et al. (1989), with a linear frequency scale.
It was later adapted to the Mel Frequency scale by Milner and Vaseghi (1995).
Such a parametrization of speech is shown to be a time varying representa-
tion with parameters that are highly de-correlated with each other. Thus,
by using 2-D cepstra, further feature reduction schemes such as Principal
Component Analysis or Linear Discriminant Analysis need not be performed
in order to reduce the correlation between the features.

In most previous studies, the 2D-cepstrum was calculated for a fixed
duration window. In this study, it is instead calculated for segments of
varying duration, since the duration of each gesture could vary greatly, and a
length independent representation of the acoustic segment is hence required.

The 2D-cepstra are calculated by applying a 2-dimensional discrete cosine
transform (2D-DCT), as follows. For 1 ≤ p ≤ P and 1 ≤ q ≤ Q, (where P
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(a) ERB output
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(b) Smoothed ERB output

Figure 4: A part of the spectrogram from ERB filter-bank outputs of an utterance of the
sentence “Jane may earn more money by working hard” sub-sampled to 500Hz, before and
after minimum jerk smoothing with ws = 40ms.
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(b) Long-term average spectrum

Figure 5: The figure illustrates that although the Minimum Jerk Smoothing affects the
spectrum of single frames (in this case a frame corresponding to the vowel /o:/ in the
context of the word ‘more’), there is no significant difference in spectral properties when
averaged over time.

and Q are the number of cepstra in the frequency and time, respectively),
the time-varying cepstral coefficients are

τττ(p, q) =
T∑

t=1

K∑
k=1

lXk(t)

T
∗ cos

(
π(k − 1

2
)(p − 1)

K

)
∗ cos

(
π(t − 1

2
)(q − 1)

T

)
(8)

where K is the total number of frequency components (or filters) as in Equa-
tion 4 and T is the length of the gesture in terms of number of samples. The
axis along p is called the ‘quefrency’ and the axis along q is the corresponding
parameter along time, which we call ‘meti’, following the tradition of flipping
the first two syllables. Quefrency has the units of time and meti has the units
of frequency. It should be noted that the 2D-DCT has been modified so that
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(a) Original Segment (b) Reconstructed Segment

Figure 6: (a) The original spectrogram segment (output of the ERB filter-bank) of the
acoustic gesture during the sequence of phonemes /Ã eI n/ in the context of the word ‘Jane’.
(b) Reconstructed spectrogram segment(from 2D-cepstrum with P = 18 and Q = 3)

this representation is length invariant, which means that the parameters are
not affected by stretching or compression in time. In that sense, this repre-
sentation is length-normalized. By selecting P and Q to be smaller than K
and T respectively, this representation provides a compression of complexity,
i.e. the representation is only an approximation of the original signal.

Along with the 2D-cepstra, which were normalized with respect to time,
the actual duration of the gesture is taken as an additional feature, in case
there were would be dependencies on duration. Figure 6 shows what features
of the original spectrogram, obtained from the output of the ERB filter-banks
for a gesture, are retained by the parameterized 2D-cepstrum.

The articulatory gestures were parameterized in the same manner, i.e.
2D-DCT coefficients, without allowing for compression in the number of ar-
ticulatory parameters., i.e., P was the same as the number of articulatory
parameters and Q was the same as the number chosen for the acoustic ges-
tures. Thus 2D-DCT is a parametrization scheme which is applicable to
time-varying segments of both acoustic signals and articulatory trajectories.

While the methods described in Section 2.2 and 2.3 have shown how it
is possible to segment articulatory gestures, the correspondence between the
acoustic and articulatory gestures is quite complex as will be discussed in
Section 4.2. While we have simultaneous recordings of acoustics and articu-
lation for training the regression for acoustic-to-articulatory inversion, we do
not have knowledge of the articulation during the actual inversion process.
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For this reason, we do not segment the articulatory gestures separately but
apply the acoustic segmentation to the articulator movements. Instead of
parameterizing the articulatory gestures, we parameterize the articulatory
movement corresponding to the segmented acoustic gestures. This makes
the task for acoustic-to-articulatory inversion more tractable. Secondly the
matrix τττ is converted to a vector, in order to perform regression.

2.5. GMM Regression

When performing acoustic-to-articulatory inversion, the acoustic waveforms
of the utterances are first segmented into overlapping gestures and each
acoustic gesture is parameterized using 2D-cepstra. For each acoustic ges-
ture, the corresponding articulatory movement, which may be a part of one or
more gestures for different articulators is also parameterized using 2D-DCT.
The the mapping between acoustic gestures and their corresponding articu-
latory movement is learnt using one of the state-of-the-art machine learning
algorithms, Gaussian Mixture Model regression (GMMR) (Sung, 2004). It is
a piece-wise linear space approximation and it can be used to calculate the
regression in a probabilistic sense. The GMMR is explained briefly below,
following the notation used by Toda et al. (2004b).

The conditional probability density of a variable yt ∈ �d (in this case the
vectorized version of the 2D-DCT on articulatory movements) conditioned
on variable xt ∈ �D (in this case the vectorized version of the 2D-cepstra),
modeled as a GMM with M Gaussians for a given instance t (in this case
one acoustic gesture), is represented as

P (yt|xt) =

M∑
m=1

P (m|xt)P (yt|xt, m) (9)

where

P (m|xt) =
ρmN (xt;µµµ

x
m, Sm

xx)∑M
n=1 ρnN (xt;µµµx

n, Σxx
n )

(10)

is the conditional probability of each Gaussian. N represents the function of
a Gaussian distribution. The parameters are µµµx

m and Sm
xx, the mean vector

and covariance matrix respectively. ρm are the weights for the individual
Gaussians.

P (yt|xt, m) = N (yt;E
y
m,tD

yy
m ) (11)
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is the conditional distribution of each Gaussian component with parameters
Ey

m,t, the mean vector and Dyy
m , the covariance matrix. Ey

m,t is calculated as

Ey
m,t = µµµy

m + Sm
yx(Sm

xx)−1(xt −µµµx
m) (12)

If the covariance matrices of the individual Gaussian components for the joint
distribution of [xt yt]

T is Sm, then

Sm =

[
Sm

xx
Sm

xy

Sm
yx

Sm
yy

]
(13)

Thus the covariance matrix Dyy
m is calculated as follows.

D
yy
m = Sm

yy − Sm
yx(Sm

xx)−1
Sm

xy (14)

The Minimum Mean Square Estimate (MMSE) for the regression, ŷt,
given xt, is calculated as

ŷt = E[yt|xt] =

M∑
m=1

P (m|xt)E
y
m,t (15)

where E[.] is the expectation of the distribution. The GMM on the joint
space (xy) is obtained using the Expectation Maximization (EM) algorithm
(Bilmes, 1998). The estimated vector is the weighted average of the different
conditional means estimated over individual Gaussian components.

2.6. Minimum Jerk Smoothing with multiple weighted hypotheses

In our method, the estimates of the articulatory trajectories are parameter-
ized and are hence calculated by the inverse transform of Equation 8, taking
care of the length of the required articulatory segments. Due to overlapping
acoustic gestures, there is a corresponding overlap of trajectory estimates at
the critical point (c.f. Section 2.1). The predicted articulatory movement
corresponding to adjacent acoustic gestures may not form a smooth articu-
lator path. There are at least 2 hypotheses about the estimated articulatory
positions at every point from the preceding and succeeding acoustic gestures
and in fact 3 hypotheses at the critical point. This overlap in information is
handled using a minimum jerk smoothing with multiple weighted hypotheses
as shown in Figure 7. In the current implementation, the weights for each
hypothesis are set to be equal, but they could be optimized through further
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Figure 7: Due to overlapping acoustic gestures, multiple hypothesis about the articulatory
gestures are generated. For every critical point, Hypothesis 1 is the articulatory segment
predicted corresponding to the previous critical point in the acoustics, Hypothesis 2 is
the predicted segment corresponding to the current critical point and Hypothesis 3 is the
predicted segment corresponding to the succeeding critical point. This example is shows
the acoustic-to-articulatory inversion for the tongue-tip (TT) during the sentence, “Jane
may earn more money by working hard”
.

experimentation. The minimum jerk smoothing for a time column vector t̄
of time interval [t − ws, t + ws]

T , with multiple hypotheses at each time in-
stant, is the minimum mean square error (MSE) solution to the optimization
function J ,

J(βββt) = (ϕϕϕ − G ∗ βββt)
T ∗ diag(Φ) ∗ (ϕϕϕ − G ∗ βββt) (16)

βββ5×1
t are the parameters of the minimum jerk trajectory. The vector ϕϕϕ3∗(2∗ws+1)∗h×1

is given by

ϕϕϕ =

⎡⎢⎢⎢⎢⎣
[
H1(̄t)

T dH1(̄t)
T d2H1(̄t)

T
]T[

H2(̄t)
T dH2(̄t)

T d2H2(̄t)
T
]T

...[
Hh(̄t)

T dHh(̄t)
T d2Hh(̄t)

T
]T

⎤⎥⎥⎥⎥⎦ (17)
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where [H1 H2... Hh]
T are the h hypotheses predictions of the values of one

articulatory parameter from the acoustic-to-articulatory inversion based on
3 consecutive acoustic gestures. If the t corresponds to a critical point, then
h = 3, otherwise h = 2. dH and d2H denote the corresponding velocity and
the acceleration parameters. Matrix G3∗(2∗ws+1)∗h×6 is

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 t̄ t̄2 t̄3 t̄4 t̄5

0 1 2t̄ 3t̄2 4t̄3 5t̄4

0 0 2 6t̄ 12t̄2 20t̄3

repeat h times
...

...
...

1 t̄ t̄2 t̄3 t̄4 t̄5

0 1 2t̄ 3t̄2 4t̄3 5t̄4

0 0 2 6t̄ 12t̄2 20t̄3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

The weight vector,Φ3∗(2∗ws+1)∗h×1, is the weight for each hypothesis for each
time instance in t̄. The velocity and acceleration parameters can also be
weighted independently. Using the parameters, βββt, the new smoothed tra-
jectory γ̂(t) can be found by

γ̂(t) =
[
1 t t2 t3 t4 t5

] ∗ βββt (19)

3. Data and Experiments

3.1. Data

We used two sets of data for running our experiments. The detection of
acoustic gestures required an acoustic database with highly accurate tran-
scription and segmented data, in order to assess how well the acoustic critical
points are detected. For this purpose we used the TIMIT database (Seneff
and Zue, 1988). The test set contained sentences spoken by 168 speakers in
8 American dialects with a total of 1344 sentences. Since the method did not
use any training, the experiments were run directly on the test corpus.

The rest of the experiments were conducted on the simultaneously recorded
Acoustic-EMA data from the MOCHA database (Wrench, 1999) consisting
of 460 TIMIT sentences spoken by two speakers, one male (msak) and one
female (fsew). The sentences had a total number of 46 phonemes including
silence and breath. The sentences were more or less balanced in covering
the phoneme set. The sentences were recorded along with 14 articulatory
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channels consisting of the X- and Y-axis trajectories of 7 EMA coils, namely
Lower Jaw (LJ), Upper Lip (UL), Lower Lip (LL), Tongue Tip (TT), Tongue
Body (TB), Tongue Dorsum (TD) and Velum (VE). The position of the coils
were selected to represent the position of the important articulators that have
often been described in previous studies (Perkell et al., 1992; Hoole, 1996).
It has also been shown that the whole tongue contour (or at least the oral re-
gion) can be predicted from knowing the positions of these coils (Qin et al.,
2008). Since the magnet for recording the EMA coils was head mounted,
the positions were normalized for head movement. The co-ordinates were
rotated so that the origin coincided with another coil placed at the upper
jaw, which was invariant to the articulation. The articulatory trajectories
were processed as described by Richmond (2002) in order to remove the drift.
The system recorded the data with a resolution of 0.01 mm, but the effective
resolution was 0.43 mm on an average (Hoole, 1996).

3.2. Description of the Experiments

We used the TIMIT database containing only acoustic data in order to ver-
ify whether the gesture segmentation and critical points detection algorithm
could detect acoustically relevant segments and salient landmarks respec-
tively. We calculated the number of phonemes that were represented by at
least one gesture and the number of phonemes that were represented by more
than one gesture. Thus, the accuracy of the segmentation would be indicated
by how many times at least one critical point is detected within the duration
of a phoneme. An insertion denotes whether a phoneme was segmented into
more than one gesture. More than one gesture per phoneme may be suitable
for diphthongs or aspirated stop consonants, but may not be appropriate for
other stop consonants, fricatives and vowels.

By increasing the smoothing (larger ws), the number of insertions were
expected to decrease but at the cost of not detecting all the phonemes. One
must note here that the focus of this segmentation scheme is not on get-
ting highly accurate acoustic segments, but to have a scheme which is also
compatible with segmenting articulatory trajectories in order to explain cor-
respondences between acoustic and articulatory gestures. The results are
detailed in Section 4.1

It is more difficult to judge whether the articulatory gestures are detected
correctly and meaningfully. Critical points constituted around 1 to 4% of
the trajectory lengths depending on the articulator and the content of the
sentence. By performing minimum jerk interpolation between the critical
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points, the entire trajectories were estimated. These were compared with the
original trajectories. The error is expected to increase with a larger value
of ws. As a comparison, we also interpolated and estimated trajectories
from randomly selected points on the original trajectories. We used the
articulatory measurements from the MOCHA-TIMIT database in order to
evaluate the detection of articulatory gestures.

Once the acoustic and articulatory gestures are obtained, one needs to
ascertain if these gestures had any relevance to the study in terms of cor-
respondences between acoustics and articulatory trajectories. We therefore
made several analyses to compare the obtained acoustic and articulatory crit-
ical points as well as the corresponding gestures. We first performed a visual
assessment comparing the timing between the acoustic gesture and articula-
tory gestures, explained in Section 4.2. We then performed a clustering of
all the articulatory gestures, which were parameterized using the 2D-DCT.
Based on the clustering, we looked at phonetic labels of the acoustic seg-
ments corresponding to the critical point in the articulatory trajectory. We
expected that the clustering would reveal a relationship between the artic-
ulatory gestures and the role the gestures play in producing the particular
phoneme.

Finally, we performed acoustic-to-articulatory inversion in order to assess
whether the gesture detection and parametrization schemes were effective or
not. This was compared to a baseline method using the same machine learn-
ing algorithm (GMMR), but using point-by-point inversion, i.e. inversion
from every frame of the acoustics to the corresponding articulator position.
This is described in further detail in Section 3.5.

3.3. Evaluation Criteria for the Inversion

Since the predictions of the articulation are trajectories, a commonly used
evaluation criterion in acoustic-to-articulatory inversion is the Root Mean
Square Error (RMSE) between the measured and estimated trajectories of
every articulator a.

RMSEa =

√√√√ 1

T

T∑
t=1

(γγγa(t) − γ̂γγa(t))2 (20)

where γγγa is the measured trajectory and γ̂γγa is the estimated trajectory of
length T . The mean RMSE (mRMSE) is the mean across all the A artic-
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ulators, calculated as

mRMSE =
A∑

a=1

RMSEa (21)

The second standard evaluation criterion is the Correlation Coefficient
(CCa) between the measured and the estimated trajectories calculated as

CCa =

∣∣∣∣∣∣
∑T

t=1(γγγa(t) − Ê[γγγa]) ∗ (γ̂γγa(t) − Ê[γ̂γγa])√∑T
t=1(γγγa(t) − Ê[γγγa])2 ∗∑T

t=1(γ̂γγa(t) − Ê[γ̂γγa])2

∣∣∣∣∣∣ (22)

where Ê[.] is the estimate of the expected value, i.e. the sample mean.
The mean Correlation Coefficient mCC is calculated by averaging over all
articulatory trajectories.

Both these criteria, although used quite often, may not really be effective
in determining where or what the error really is. The estimated trajectory
may simply be out of phase with the true trajectory, which, depending on
the articulator in question, is not as much a problem as making a different
trajectory all together. Besides, the error made for different parts of the
trajectory (for different phonemes) may not be of equal importance. Another
issue is that the RMSE error would be lower for smoother trajectories.
This means that gestures without much movement (which then are not as
important) would be predicted better than gestures with more movements.
Most of the drawbacks associated with RMSE are also applicable to CC.
Additionally, calculating CC gives no intuitive idea about the location of
the error and about how significant the error is. It is generally known that
a low RMSE and a high CC is good, but they do not indicate whether
the performance of the state-of-the-art systems are good enough for their
purpose.

One evaluation method would be to use these estimates in an articulatory
synthesis model and see whether the estimates are able to produce intelligible
speech. The quality of the sound produced by the synthesizers is however
highly dependant on the vocal tract excitation function (or glottal source
modeling) (Childers, 1995). Since these factors are unknown, synthesized
speech hence may not make a fair comparison when the articulatory features
are estimated by other techniques than inversion-by-synthesis.

Another method of evaluating the overall goodness of the estimates is to
use the estimated trajectories to enhance speech recognition. Several studies
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(Wrench and Richmond, 2000; Zlokarnik, 1993; Stephenson et al., 2000) have
shown that measured articulatory data improves the performance of speech
recognition systems significantly. However, almost none of the studies that
tried to enhance speech recognition performances with estimated trajecto-
ries (or probabilistic models of the estimates) were successful in improving
speech recognition significantly (Stephenson et al., 2000; Markov et al., 2006;
Neiberg et al., 2009).

Engwall (2006) and Katsamanis et al. (2008) have suggested two alter-
native evaluation schemes for acoustic-to-articulatory inversion based on a
classification task and a weighted RMSE, respectively. The first method
attempts to determine if the important articulatory features are correctly
recovered, while the second gives more importance to errors that were found
to be statistically important for a given articulator and phoneme.

The evaluation method proposed in this article relies on the critical points
and thus depends on the reliability of the method to obtain the critical points.
If the critical points are calculated reliably, then the rest of the trajectory
can be obtained by interpolating between the critical points (described later
in Section 4.1). However, the estimated critical points may not just be mis-
placed in position, but may also be misplaced in time. Secondly, a very
jittery movement which is able to predict the critical points is not adequate,
which means that erroneous insertion of critical points needs to be penalized.
Similarly, a smooth prediction may give a high CC and RMSE but may not
have enough critical points. Thus the proposed error measure which we call
‘Critical Trajectory Error’(CTE) finds the displacement both in space and
time, and returns a quantity which gives an indication of how unsynchronized
the estimated trajectory is. The units of this error measure is a unit of time,
typically seconds or milliseconds.

3.4. Algorithm to Find CTE

Consider the measured trajectory γγγa and the estimated trajectory γ̂γγa

1. Find the measured critical points [Cp Ct] on γγγa. C has two dimen-
sions, position p (units mm) and time t (units ms). Say there are M
critical points.

2. Find the average velocity, ν, of the gesture associated with each critical
point m.
∀m
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ν(m) =

∑Ct(m+1)
k=Ct(m−1) |γγγa(k) − γγγa(k − 1)|
Ct(m + 1) − Ct(m − 1)

(23)

3. Find the estimated critical points [Ĉp Ĉt] on γ̂γγa.
Say there are N estimated critical points.

4. Initiate N flags, F (1 ≤ n ≤ N), required to know whether all the
estimated critical points find their correspondences.

5. Initialize the total error for the entire trajectory, tCTEa = 0 for artic-
ulator a.

6. ∀m : 1 ≤ m ≤ M

(a) The nearest critical point in the estimated trajectory to the mth

critical point in the measured trajectory is found as
N̂m = arg min

1≤n≤N
(Ct(m) − Ĉt(n))2

(b) set F (N̂m) to indicate that the critical point in the estimated
trajectory has a correspondence in the measured trajectory

(c)

tCTEa = tCTEa+

⎛⎝(Cp(m) − Ĉp(N̂m)

ν(m)

)2

+ (Ct(m) − ĈtN̂m))2

⎞⎠1/2

(24)
This equation adds to the total error, tCTEa, the Euclidean dis-
tance caused by the displacement of the estimated critical point
in the time-position, 2-D space. In order the normalize between
the two axes, i.e. time and position, the displacement in position
is normalized by the velocity. Thus importance to the position
with respect to time depends on the velocity. The resulting value
has the same units as that of time.

7. In order to penalize all the extra critical points in the estimated trajec-
tory without a corresponding critical point in the measured trajectory,
∀n ∈∼ F , (where ∼ is an unset flag),

(a) The nearest critical point in the measured trajectory to the nth

critical in the estimated trajectory is found as
M̂n = arg min

1≤m≤M
(Ct(m) − Ĉt(n))2
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(b)

tCTEa = tCTEa+

⎛⎝(Cp(M̂n) − Ĉp(n)

ν(M̂n)

)2

+ (Ct(M̂n) − Ĉt(n))2

⎞⎠1/2

(25)
This equation adds to the total critical error the displacement at
the extra critical point in comparison to the closest critical point
in the original trajectory. Thus all the excess estimated critical
points are penalized.

8. tCTEa now contains the total critical error for an articulatory channel
a over an utterance. This is averaged over the true number of critical
points in the utterance, and the final average critical error is CTEa =
tCTEa

M
.

This method weighs the displacement in position error by the inverse of
the average speed during the gesture. So if the gesture is very slow, a larger
penalty is given to the difference in position, while if the gesture is fast, a
lower penalty is given. For missing critical points, the error would be quite
large because the closest estimated critical may be highly displaced in time.
For inserted critical points, the error is calculated with respect to a closest
critical point in the measured trajectory, as shown in Figure 8.

This error measure thus gives a better idea about how well the algorithm
performs in terms of how far the estimated trajectory is from being perfectly
synchronized with the measured trajectory. The drawback, however, is the
reliance on a method to find these critical points.

3.5. Inversion Experiments

The inversion experiments were conducted on the MOCHA-TIMIT data-
base. For comparison with our gesture based method, we follow Toda et al.
(2004b), who applied the GMMR technique to frame-based acoustic to artic-
ulatory inversion. They used 11 consecutive frames of 24 MFCC coefficients
as acoustic parameters and the positions of the articulators corresponding to
the central acoustic frame as the articulatory features to be detected. The
training samples were corresponding acoustic-articulatory frames from a part
of the data. Articulation prediction was made based on every instance of the
acoustic data in the testing set. They performed regression based on two
methods, namely the Minimum Mean Square Error Estimate (MMSE) and
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Figure 8: Plot showing how the Critical Trajectory Error (CTE) measures are calculated.
One can see that this CTE error measure gives an idea about how unsynchronized the
estimate is with respect to the original trajectory. The time scales are in milliseconds.

the Maximum Likelihood Trajectory Estimate (MLTE). The former method
simply considered the positions of the articulators, while the latter consid-
ered the velocity of the articulators, in order to improve the estimation. We
replicated their experiments with as much fidelity as was possible, in order
to have a baseline for evaluating the gesture mapping.

3.5.1. Frame-based Inversion

The EMA data was low-pass filtered and down-sampled to 100 Hz, in order to
correspond to the acoustic frame shift rate. Each acoustic frame was parame-
terized by 24 MFCC coefficients (including the 0th), and 11 adjacent acoustic
frames each of duration 25 ms (at a frame rate of 100 Hz) were considered.
The features were reduced using Principal Component Analysis (PCA) such
that all components that contributed to less than 2% of the variation was
removed. Thus each acoustic frame had between 64 to 69 (different for each
cross-validation set) acoustic features and contained information from 125
ms of the signal. The delta features for the articulatory measurements were
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also computed with a look-ahead and lag of 30 ms for the MLTE estima-
tion, giving 28 articulatory features corresponding to the central frame of
the acoustic features. A ten-fold cross-validation was performed where 90%
(314 sentences, around 94,100 data-frames) of each of the speaker data was
used for training the GMMR models and 10% (46 sentences, around 10,400
data-frames) of the same speaker data was used for testing each speaker
model’s performance. The MFCC and the articulatory trajectory vectors of
the training data were normalized to zero mean with a Standard Deviation
(SD) of 1. The parameters were optimized on the male speaker. The number
of Gaussians that gave the best results was 64 when using the entire training
set. The MMSE and MLTE estimates were then filtered using the cut-off
frequencies that were suggested by Toda et al. (2008) for each articulator
trajectory.

3.5.2. Gesture based Inversion

For the method proposed in this article, we performed segmentation of
the acoustic data into acoustic gestures as described in Section 2.3. Since
no information about the articulation would be available while performing
inversion, we applied the same segmentation to the articulatory movements
and parameterized articulatory movements corresponding to the acoustic ges-
tures. These movements may not have been complete articulatory gestures,
but would include parts of one or more consecutive gestures. The acoustic
gestures and their corresponding articulatory movements were encoded us-
ing the 2D-cepstra and 2D-DCT respectively, as described in Section 2.4.
After segmentation, we had an average of around 26,450 samples of acoustic-
articulatory pairs for training and an average of around 2,430 pairs for test-
ing. Each acoustic gesture was parameterized by P × Q quefrency and meti
parameters plus the actual duration of the gesture. So with P equal to 18
and Q equal to 3, there would be 55 parameters (18×3+1).

The ten-fold cross-validation was performed for this method similarly as
for the frame-based method. The encoded parameters of the training were
normalized to have a zero mean and an SD of 1, before the training the
GMMR with 64 Gaussians. The articulatory trajectories were not filtered or
down-sampled as was the case in the frame-based method. The test sentences
in both the cases were normalized according to the mean and SD, calculated
on the training set. All evaluations were performed against the drift-corrected
articulatory trajectories at the original sampling rate rather than the down-
sampled version of the trajectories.
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Three main parameters may influence the results of the gesture-based
acoustic-to-articulatory inversion, namely, the level of smoothing for seg-
menting the acoustic gestures, and the number of 2-D cepstral coefficients
for parameterizing the acoustic space along quefrency and meti (P and Q
respectively). We assumed that the same number of meti components are
sufficient for parameterizing the articulatory trajectories, although in prin-
ciple this could be another parameter to optimize. In speech recognition, 12
to 20 MFCC are typically considered, and in this study P ∈ {12, 15, 18, 20}
were tested. The order for Q should typically be quite small, between 3
and 5. The higher the number of coefficients Q, the lower the compression
and the more the variations in the trajectories and noise in the acoustic sig-
nals as well as articulatory trajectories are captured. Thus Q ∈ {3, 4, 5}
were tested. The sizes of the window for smoothing that were tested were
ws ∈ {30, 40, 50} ms (c.f. Equation 3). We conducted a 4× 3× 3 grid search
over the possible parameter choices.

4. Results and Discussion

4.1. Detecting Critical Points and Gestures

Table 1 shows the results for detecting acoustic gestures on the TIMIT data-
base. Most of the deletion errors occurred when the phoneme duration was
less than 10 milliseconds, while most of the insertion errors occurred for
phonemes with durations longer than 200 ms. Several diphthongs and aspi-
rated stops (/p, t, k/) had insertions too.

Window Length Accuracy Insertions
(ws) (%) (%)
30 ms 83.16 23.98
40 ms 76.5 11.67
50 ms 69.48 5.91

Table 1: Performance of the acoustic gesture detection algorithm. Accuracy indicates how
many times at least one critical point was detected within the duration of a phoneme.
Insertions denotes how many times a phoneme was segmented into more than one gesture.

The results are comparable with other segmentation methods described
in the literature (e.g. Sarkar and Sreenivas (2005), Svendsen and Soong
(1987)). However, the focus and evaluation strategies of the two methods
were different. While the proposed method tries to find critical points, which

30



  

Cri 30ms Rand (3.58 %) Cri 40ms Rand (2.73 %) Cri 50ms Rand (2.30 %) Cri 60ms Rand (1.37 %) Cri 70ms Rand (1.25%) Cri 80ms Rand (1.15 %)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

m
e
a
n
 R

M
S

 e
rr

o
r 

(m
m

) 
−

−
−

−
>

Figure 9: Comparison of the mean RMSE (mm) of the trajectory reconstruction by in-
terpolation using only the critical points. For comparison, the reconstruction error when
interpolating between the same number of randomly chosen points over the trajectory
is also shown. By chosing critical points, more information about the trajectory can be
recovered as compared to chosing points randomly on the trajectory.

are likely to occur somewhere in the middle of the segment, the other methods
tried to detect phonemic boundaries.

Figure 9 shows that in spite of knowing the positions of only 1 to 4%
of the points in the trajectory, i.e. the positions of the critical points, the
RMSE for reconstruction is as low as 0.33 mm. This error is in fact lower
than the average resolution of the recording system. For comparison, the
reconstruction error for interpolating between the same percentage of ran-
domly selected points on the trajectory is also shown. The error for the same
percentage sample of the trajectories is much higher, around 0.8 mm to 1.5
mm.

The results described in Table 1 show that the critical point detection
algorithm is able to detect phonetically relevant units in the acoustic sig-
nals. Figure 10 illustrates that the detected critical points for most of the
phonemes lie close to the center of the segmented phonemes. The corre-
sponding acoustic gestures are usually found to be triphones or longer pho-
netic units, but diphones and monophones are also common, whenever there
are insertion errors. The next question is whether these detected gestures
can be used for acoustic-to-articulatory inversion, which is investigated in
Section 4.3. The results in Figure 9 show that the critical points in the artic-
ulator are good representative points along the trajectory. The relevance of
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these critical points, and the correspondences of the same in two modalities
(i.e. acoustics and articulation) is studied in the following section.

4.2. Relationship Between Acoustic and Articulatory Critical Points

The critical points detected using the acoustic signal and the articulatory
trajectories have a very complex relationship. There is a high correlation
between the critical points when the particular articulator is important for
the acoustics, but low when it is not so, as can be seen in Figure 10. The
IPA symbols corresponding to the ASCII characters denoting phoneme labels,
displayed on the figure, are detailed in Table 4.

The critical points on the lower lip (LL) are synchronized with the acoustic
critical points for the phoneme sequences ‘r-m, b and w’ (/ô-m, b, w/). We
see synchronization between the critical points on the tongue tip (TT) and
the acoustics for phonemes ‘jh and n’ and the silence before the ’d’ (/dZ, n,

d/). One find synchrony between the tongue dorsum (TD) and acoustics for
phonemes ‘ei, oo, k and ng’ (/eI, o:, k, N/). On the other hand, the many
critical points are either absent or not synchronized with the acoustic critical
point for articulators which are not important for the production. However,
all such relationships are not straightforward, since what the important ar-
ticulators for a certain phoneme are, is not easily known. Many phonemes,
have more than one important articulator, while for some phonemes, es-
pecially vowels, the important articulator depends on the context. Some
other phonemes, such as diphthongs, may have more than one critical point
for more than one articulator. In order to study this further, we analyzed
the co-occurrences between the articulator critical point and acoustic critical
point, within a window of 40 ms. The results are displayed in Figures 11 and
12. The articulatory gestures corresponding to the detected critical points
are first parameterized using 2D-DCT and then clustered using k-means clus-
tering. For each critical point in the cluster, the probability that it coincides
with an acoustic critical point is calculated. An acoustic critical point is con-
sidered coinciding if it falls within 40 ms of a detected articulatory critical
point.

From Figure 11a, it is clear from the shape of the centroid of the cluster
that this cluster represents a sharp opening of the jaw. The phonemes with
the highest probability of acoustic-articulatory co-occurrence for the Lower
Jaw (LJ) are open vowels and diphthongs. However, some consonants like ‘th,
g and w’ (/T, g, w/) too have a sharp jaw opening. The second cluster, shown
in Figure 11b shows a jaw opening along with movement in the horizontal
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(b) Tongue Tip
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(c) Tongue Dorsum

Figure 10: Illustration of the relationship between the critical points in the the acoustic
signal and the different articulatory channels for the sentence “Jane may earn more money
by working hard”. In all figures, the upper part shows the acoustic importance function
and critical points and the speech waveform, while the bottom part shows the articulatory
trajectories. For the y-axis the scales of the acoustics and articulatory trajectories are not
maintained because the illustration indicates the relative changes in acoustics, articulation
and the Importance. The vertical lines represent the phoneme boundaries marked by
forced aligned annotations. The ellipses indicate the regions where synchrony is observed
between the the acoustic and articulatory critical points. In most cases, the critical point
in the trajectory of the articulator that is expected to be important for the production
of the corresponding sound is synchronous with the acoustic critical point. The critical
points for the unimportant articulators may not co-occur with the acoustic critical point.
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plane, but not as sharp as in cluster 1. The maximum co-occurrence is for
back vowels, diphthongs as some consonants like ‘b, dh, h and ng’ (/b, D, h,

N/). The third cluster shown in Figure 11c is for gestures with a closing of
the jaw. These are mostly for fricatives and affricates such as ‘s, z, sh, zh, ch
and jh’ (/s, z, S, Z, Ù, Ã/), where the jaws tend to close in synergy with the
tongue tip. What is interesting here, is that although one would consider the
opening of the jaw as an important articulatory gesture for open and back
vowels, the probability of acoustic-articulatory co-occurrence is lower than
for phonemes where the jaw closing occurs. This shows that the timing of
the articulatory critical point for jaw opening (which is typically the extreme
end of the gesture) is not as important and consistent as that of the jaw
closing.

Figure 11d shows the cluster where the upper lip (UL) is retracted up-
wards and inwards. Vowels such as ‘i and ii’ (/I, i:/) where the lips are drawn
sideways are often found to co-occur in the acoustics and articulatory critical
points. Besides these, the consonant ‘zh’ (/Z/) is seen to have a high prob-
ability of co-occurrence for cluster one with upper lip retraction. However,
since there are very few instances of this phoneme, it could be an artifact of
the limited context available. The second cluster shown in Figure 11e indi-
cated a sharp upper lip raising, with no horizontal movement. There is a mix
of vowels, diphthongs and consonants, showing no strong pattern. The diph-
thong ‘u@’ (/U@/) shows the highest probability of synchrony in this cluster,
which is intuitive. The third cluster, with a sharp downward and forward
movement, show in Figure 11f is dominated by phonemes which are usually
attributed to being produced by the lips, such as the bi-labials ‘p, b and m’
and phonemes such as ‘w and uu’ (/p, b, m, w, u:/). Here it is clear that
the timing of the upper lip lowering is more important and correlated to that
of the acoustics than that of the upper lip raising. As expected, the cluster
for lip lowering corresponds to the place of articulation of the represented
phonemes.

Figures 11h to 11i show the three clusters for the lower lip (LL) gestures.
Cluster 3 for the lower lip has similar phonemes as the cluster 1 for the
lower jaw in Figure 11a, which shows the synergy between the lower lips and
the jaws. Cluster 2, indicating the lower lip raising gesture is dominated by
similar phonemes as in the Cluster 3 of the upper lip, i.e., ‘b, p, m, uu’ (/b,

p, m, u:/) etc. as well as the labio-dental fricatives ‘f and v’ (/f, v/). Again
it is clear that the timing for lip closure is more important that lip opening.

Figures 12a to 12c represent the correspondences of the three clusters
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Figure 11: The articulatory gestures corresponding to the critical points are parameterized
using 2D-DCT (P=2, Q=3) and then clustered into 3 clusters using k-means clustering.
For each cluster, the probability of the articulatory critical point coinciding (falls within
20 ms) with the acoustic critical point, of each phoneme is calculated. Phonemes with
the top 10 probabilities of the co-occurrence between the articulatory critical point and
the acoustic critical point are displayed. The normalized shape of the mean articulatory
gestures along the midsagittal plane for each of the clusters is displayed in the inset. The
results shown are for the male speaker, who is recorded facing towards the left hand side.
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made by the tongue tip (TT) gestures. The first cluster consists of tongue
tip raising gestures, but slightly backwards. These are represented by post-
alveolar consonants such as ‘r, sh, zh, ch and jh’ (/ô, S, Z, Ù, Ã/). The third
cluster, consisting of a tongue tip raising slightly forward, is represented by
alveolar consonants like ‘t, d, n, s, z’ (/t, l, d, n, s, z/) as well as vowels
like ‘i and ii’ (/I, i:/). Cluster 2, indicating the tongue tip lowering gesture,
contains phonemes where the important articulator is likely to be one other
than the tongue-tip, but have critical points for the tongue tip due to synergy
with either the lips or the jaw. Some open vowels and diphthongs like ‘aa, ai
and au’ (/a:, aI, aU/) are also represented in the tongue tip lowering cluster.

Cluster 1 of the tongue back (TB) gestures shown in Figure 12d nearly
duplicates the first cluster for the tongue tip, both in the shape as well as
the representative phonemes. Cluster 2 which represents the lowering of the
tongue back is dominated by the dental fricative ‘th and dh’ (/T, D/) as well
as the lateral ‘l’ (/l/) and open vowels such as ‘a, o and aa’ (/æ, 6, a:/).
The third Cluster of sharp lowering of the tongue back, consists of phonemes
where the place of articulation is usually the lips. This may be in synergy
with the lips, which is not very obvious initially.

Lowering of the tongue dorsum (TD) is captured by cluster 1, shown in
Figure 12g, and is important for of open and central vowels such as ‘@, @@,
a and aa’ (/@, 3:, æ, a:/) as well as alveolar and dental fricatives, ‘s z, th and
dh’ (/s, z, T D/) and lateral ‘l’(/l/). The upward and forward movement of
the tongue dorsum is indicated in Figure 12h which is dominated by the velar
consonants ‘g, k and ng’ (/g, k, N/) and palatal approximant ‘y’ (/j/). The
third cluster in Figure 12i shows a backward movement of the tongue dorsum
for post-alveolar phonemes like ‘ch, jh, sh, zh and r’ (/Ù, Ã, S, Z, ô/), showing
a synergy with the front region of the tongue. However, back vowels and
diphthongs such as ‘oo, oi and ou’ (/O:, OI, oU/) and the velar approximant
‘w’ (/w/) also show a backward tongue dorsum gesture, although not as
frequently.

In most of the cases, the critical point in the articulatory gesture that is
important for the production of the phoneme is co-incident with the acoustic
critical point. There are also different types of synchrony and synergy be-
tween the different articulators, depending on the gesture involved. For ex-
ample, the tongue dorsum backward movement is in synergy with the tongue
back raising, but the closure or protrusion of the lips is in synergy with the
tongue back lowering. This result may not have been obvious by simple cor-
relation analysis because we now observe that the correlation depends on
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Figure 12: The articulatory gestures corresponding to the critical points are parameterized
using 2D-DCT (P=2, Q=3) and then clustered into 3 clusters using k-means clustering.
For each cluster, the probability of the articulatory critical point coinciding (falls within
20 ms) with the acoustic critical point, of each phoneme is calculated. Phonemes with
the top 10 probabilities of the co-occurrence between the articulatory critical point and
the acoustic critical point are displayed. The normalized shape of the mean articulatory
gestures along the midsagittal plane for each of the clusters is displayed in the inset. The
results shown are for the male speaker, who is recorded facing towards the left.
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the type of gesture involved. The observations indicate that the tongue back
lowering gesture is as important as the lip closure for the production of the
bi-labials ‘b and p’ such that the probability of co-incidence between acoustic
and articulatory critical points is around the same for both lips and tongue.
For each cluster, the probability of the articulatory and acoustic critical point
co-occurring is around 80% for several phonemes. But for many clusters and
phonemes, the probability is around 50%. Under these circumstances, it is
difficult to decide whether the gesture is important for production or not.
This, however, indicates that there is a lot of variation, not only in the shape
of gestures corresponding to the phoneme, but also in the timing of the ges-
tures. These variations could be attributed to the co-articulation effects of
the phoneme occurring in different contexts.

While this study details the issue of the co-occurrences of the acoustic and
articulatory critical points as well as the clustering of articulatory gestures,
it says little about how the acoustic gestures are related to the articulatory
movements. The results from the inversion experiments in the next section,
throw some light on this aspect.

4.3. Results from the Inversion Experiments

Table 2 shows the partial optimization table, i.e., the result of variation over
one parameter at a time while keeping the other parameters to the optimal
ones. The level of smoothing does not affect the performance of the algorithm
substantially, but the best performance was for a detection with a balance
between number of insertions and deletions (c.f. Table 1). The largest effect
is seen by the number of meti parameters Q, as the performance decreases
with more than 3 parameters.

Figure 13 compares the performances of the traditional frame based acoustic
to articulatory inversion methods with the gesture based method proposed in
this article. The Gesture based method shows an mRMSE of 1.45mm (0.63
of Standard Deviation) and 1.55mm (0.64 of Standard Deviation) for the male
subject (msak) and female subject (fsew), respectively. The figure shows that
there is no statistical difference between the gesture-based method and the
frame-based one using dynamical constraints. However there is a statistically
significant difference (p < 0.05) between the methods using dynamic features
and the MMSE based method. This shows that modeling of dynamics of the
articulatory trajectories is important for the inversion.

The different methods showed an asynchrony (based on CTE) in the
range of 48-50 ms. Earlier research (Reeves and Voelker, 1993) based on
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ws RMSE (mm) CC CTE (msec)
30 ms 1.47 0.78 50.1
40 ms 1.45 0.79 48.4
50 ms 1.49 0.75 51.3
P RMSE CC CTE
12 1.49 0.78 50.3
15 1.47 0.79 49.6
18 1.45 0.79 48.4
20 1.46 0.79 49.3
Q RMSE CC CTE
3 1.45 0.79 48.4
4 1.5 0.74 50.1
5 1.55 0.71 52.3

Table 2: Table comparing the performance of the proposed method for different window
lengths (ws), number of ‘quefrency’ components (P ) and number of ‘meti’ components
(Q). When one parameter was being optimized, the default setting for the remaining
parameters were ws = 40ms, P = 18 and Q = 3. The results presented are the average
over the ten-fold cross-validation on the male speaker (msak) using 64 Gaussian GMMR.

asynchrony between audio and video has shown that an asynchrony of around
40 ms cannot be detected easily by human subjects, but affects their per-
formance in retrieving information from the audio. Thus we can say that
the current methods for statistical inversion are close to the point where the
error may not be detectable, but will definitely degrade the performance.
This effect has been observed in experiments on enhancing speech recogni-
tion with estimated articulator trajectories (Wrench and Richmond, 2000;
Neiberg et al., 2009). As mentioned in Section 3.3, measured trajectories
could enhance the speech recognition accuracy, but the same was not true
when estimated trajectories were used.

Figures 14 and 15 show the RMSE estimates from the gesture based
inversion algorithm for different phonemes. One can also observe that the
largest error in terms of RMSE is for the tongue tip which has the maxi-
mum variance among the different articulators, in accordance with previous
observations (Richmond, 2002; Toda et al., 2008).

Table 3 shows that that the both the inversion methods are better for
vowels, fricatives and diphthongs than for stop-consonants, nasals, liquids
and approximants. The performance of the ‘Gesture’ based method is better
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Figure 13: Comparisons of the mRMSE, correlation coefficients (mCC) and critical tra-
jectory error (mCTE) over a ten-fold cross-validation for different methods. The left
column is for the male speaker (msak) and the right column is for the female speaker
(fsew). The MMSE and MLTE methods are the traditional Frame Based (FB) methods,
without and with dynamic features respectively, while the Gesture based method uses the
same GMMR regression, but has gesture based features.
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Figure 14: The RMSE in mm for individual phonemes and different articulators, from
bottom to top: Lower Jaw (LJ), Upper Lip (UL), Lower Lip (LL), Tongue Tip (TT),
Tongue Body (TB), Tongue Dorsum (TD) and Velum (VE)

for fricatives, stop consonants and diphthongs, while the frame-based method
performs better for vowels, nasals and liquids. This is probably due to the
better modeling of transients like diphthongs and stop consonants by the
‘Gesture’ based method. Insertion errors can cause problems to the ‘Gesture’
based method during essentially static segments of speech such as in longer
vowels.

5. Conclusions and Future Work

There are three main contributions and insights on two aspects from the
paper. The first contribution is a definition for acoustic and articulatory
gestures along with a method of unsupervised segmentation of these gestures
(or critical point detection) which can be applied in the same way on both
the articulatory and acoustic spaces. This draws inspiration from the Di-
rect Realist theory which supposes a direct correspondence between acoustic
and articulatory gestures. The gestures are detected based on finding criti-
cal points in the trajectory of the articulators or in the acoustic waveform.
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Figure 15: The RMSE in mm for individual phonemes and different articulators, from
bottom to top: Lower Jaw (LJ), Upper Lip (UL), Lower Lip (LL), Tongue Tip (TT),
Tongue Body (TB), Tongue Dorsum (TD) and Velum (VE)
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Phoneme Type
mRSME in mm (Std. Dev.)

‘Gesture’ based Frame-based
male speaker female speaker male speaker female speaker

Vowels 1.53 (0.13) 1.60 (0.11) 1.48 (0.10) 1.55 (0.17)
Diphthongs 1.43 (0.08) 1.50 (0.11) 1.46 (0.09) 1.52 (0.2)
Stop consonants 1.63(0.30) 1.71 (0.25) 1.86 (0.41) 1.77 (0.28)
Nasals and Liquids 1.66 (0.27) 1.71 (0.20) 1.62 (0.21) 1.65 (0.18)
Fricatives 1.38 (0.28) 1.57 (0.3) 1.52 (0.29) 1.65 (0.3)

Table 3: Table comparing the performance of the ‘Gesture’ based and frame-based algo-
rithms in terms of mRMSE and its standard deviation for different phoneme classes.

Based on these detected gestures, the relationship between the gestures and
their timings was studied. Several observations regarding the importance of
timing the articulators in synchrony, in order to effect the specific acoustic
landmark were made. Studying the mapping between acoustics and articula-
tion in terms of gestures, rather than the instantaneous position or acoustics
of one frame, provides insights about two aspects, namely the timing between
the acoustics and articulatory parameters and correlations between different
articulators, depending on the type of gesture involved. While there seems
to be a high correlation between gestures in the articulatory domain and ges-
tures in the acoustic domain, the study also finds a high degree of variability
in the types of gestures. This shows that the acoustic-articulatory gesture
relationship is more complex than one may initially assume. While this paper
does not claim to prove the superiority of the direct realist theory as against
other theories of speech perception, it provides a basis for pursuing research
in this direction.

The second contribution is the parametrization of acoustic segments using
length-independent 2D-cepstral coefficients. This form of parametrization
using 2D-DCT is suitable for both acoustics and articulatory trajectories,
which is proved by the performing acoustic-to-articulatory inversion based
on mapping acoustic gestures to their corresponding articulatory trajectories.
The gesture based method follows a different paradigm from the traditional
frame-based method. The machine learning algorithm used was exactly the
same as the traditional frame-based methods. The only difference was in the
types of units used for mapping and their parametrization. The frame-based
method made use of every single frame of corresponding acoustic features
and articulatory positions for making the inversion, while the Gesture based
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method made use of longer segments of acoustics and articulatory move-
ments, thereby reducing the load on the machine learning algorithm. There
was a 4-fold reduction in the number of instances used for training in the
Gesture based method which correspondingly reduces the training time for
the machine learning based regression models.

While the overall performance of the Gesture based method was compara-
ble with the the frame-based method with dynamic features, the performance
over different phoneme classes was found to be slightly different in the Ges-
ture based method. The frame-based methods were found to be partial to
vowels and liquids which, being longer and static segments, contribute to a
larger percentage of the frames in the database. The Gesture based method
tries to provide only one sample of correspondences for every occurrence of
a phoneme, while modeling the dynamic movement of the phoneme. This
method shows a slight preference towards transients.

In spite of different types of parameters selected for the gesture detection
and their differences in performance, the inversion results were largely un-
affected. This may be attributed to the definition where adjacent gestures
overlap with each other. Due to this, small errors in gesture detection may
not have a large contribution to the inversion. So in principle, any segmen-
tation algorithm may work equally well for Gesture based inversion as long
as there is sufficient overlap between adjacent segments. The minimum jerk
smoothing with multiple hypothesis could thus be an important contribution
to the overall performance, although it is not easy to speculate on the extent
of the importance.

The final contribution from the paper is the critical trajectory error mea-
sure CTE which could project the error of the estimation in terms of asyn-
chrony between the trajectories, thus giving a more intuitive idea about the
level of errors made. The paper shows that the present error of 48 to 50 ms
of asynchrony may not be sufficient to drive oro-facial agents. We propose
an error of 40 ms at most in the mCTE for perceptually suitable use in
automatic oro-facial simulations.

It would be interesting to see the scalability of the Gesture based method
towards speaker adaptation. In addition to different sizes and shapes, dif-
ferent speakers may have different strategies in co-articulation. The Gesture
based method may be more suitable to model various co-articulation strate-
gies than the frame-based method.

The proposed method may also be an alternative to traditional short-
time stationary (frame-based) approaches towards speech signal processing
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in general. Earlier studies (Ananthakrishnan et al., 2009; Neiberg et al.,
2008) have shown a non-uniqueness in the mapping between acoustic frames
and positions of the articulators in continuous (natural) speech, which may
be treated as evidence against the motor-theory of speech perception. It
remains to be seen whether this sort of non-uniqueness can be observed even
at the gestural level, thus either corroborating or contradicting the direct
realist theory.

The gesture based method may be more useful than the frame-based one
while driving virtual oro-facial agents (avatars) with articulatory or visual
features in cases where the speed of the animation needs to be changed.
The different articulatory gestures with varying speeds can be independently
controlled quite easily. For example, a gesture corresponding to a particular
phoneme may be made slower than others in order to stress on a particular
aspect of the utterance.

Comparing the gestures made by the EMA coils with the gestures made
by articulatory parameters derived from PCA is another direction that would
be interesting.

Future work will also be directed towards implementation of a system
which can be used for pronunciation feedback in the form of articulatory
gestures.
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Qin, C., Carreira-Perpiñán, M.Á., Richmond, K., Wrench, A., Renals, S.,
2008. Predicting tongue shapes from a few landmark locations, in: Proc.
Interspeech, Brisbane, Australia. pp. 2306–2309.

Reeves, B., Voelker, D., 1993. Effects of audio–video asynchrony on viewers
memory, evaluation of content and detection ability. Research Report
Prepared for Pixel Instruments, Los Gatos, California, USA .

Richmond, K., 2002. Estimating articulatory parameters from the speech
signal. Ph.D. thesis. The Center for Speech Technology Research, Edin-
burgh.

48



  

Richmond, K., 2006. A trajectory mixture density network for the acoustic-
articulatory inversion mapping, in: Proc. Interspeech, Pittsburgh, USA.
pp. 577–580.

Saito, T., 1998. On the use of F0 features in automatic segmentation for
speech synthesis, in: Proc. International Conference on Spoken Language
Processing, Sydney, Australia. pp. 2839–2842.

Sarkar, A., Sreenivas, T., 2005. Automatic speech segmentation using aver-
age level crossing rate information, in: Proc. International Conference on
Acoustics, Speech, and Signal Processing, Philedelphia, USA. pp. 397–400.

Schmidt, R., Zelaznik, H., Hawkins, B., Frank, J., Quinn, J., 1979. Motor-
output variability: A theory for the accuracy of rapid motor acts. Psycho-
logical Review 86, 415–451.

Seneff, S., Zue, V., 1988. Transcription and alignment of the timit database.
TIMIT CD-ROM Documentation .

Stephenson, T.A., Bourlard, H., Bengio, S., Morris, A.C., 2000. Automatic
speech recognition using dynamic bayesian networks with both acoustic
and articulatory variables, in: Proc. International Conference on Spoken
Language Processing, Beijing, China. pp. 951–954.

Stevens, K., 2002. Toward a model for lexical access based on acoustic land-
marks and distinctive features. Journal of the Acoustical Society of Amer-
ica 111, :1872–1891.

Sung, H., 2004. Gaussian mixture regression and classification. Ph.D. thesis.
Rice University,Houston.

Svendsen, T., Soong, F., 1987. On the automatic segmentation of speech sig-
nals, in: Proc. International Conference on Acoustics, Speech, and Signal
Processing, Glasgow, Scotland. pp. 77–80.

Toda, T., Black, A., Tokuda, K., 2004a. Acoustic-to-articulatory inversion
mapping with Gaussian mixture model, in: Proc. Interspeech, Jeju Island,
Korea. pp. 1129–1132.

49



  

Toda, T., Black, A., Tokuda, K., 2004b. Mapping from articulatory move-
ments to vocal tract spectrum with Gaussian mixture model for articu-
latory speech synthesis, in: Fifth ISCA Workshop on Speech Synthesis,
Pittsburgh, USA. pp. 31–36.

Toda, T., Black, A., Tokuda, K., 2008. Statistical mapping between articu-
latory movements and acoustic spectrum using a Gaussian mixture model.
Speech Communication 50, 215–227.

Toledano, D., Gomez, L., Grande, L., 2003. Automatic phonetic segmenta-
tion. IEEE Transactions on Speech and Audio Processing 11, 617–625.

Toutios, A., Margaritis, K., 2003. A rough guide to the acoustic-to-
articulatory inversion of speech, in: 6th Hellenic European Conference of
Computer Mathematics and its Applications, Athens, Greece. pp. 1–4.

Van Hemert, J., 1991. Automatic segmentation of speech. IEEE Transactions
on Signal Processing 39, 1008–1012.

Viviani, P., Terzuolo, C., 1982. Trajectory determines movement dynamics.
Neuroscience 7, 431–437.

Wrench, A., 1999. The MOCHA-TIMIT articulatory database. Queen Mar-
garet University College, Tech. Rep .

Wrench, A., Richmond, K., 2000. Continuous speech recognition using ar-
ticulatory data, in: Proc. International Conference on Spoken Language
Processing, Beijing, China. pp. 145–148.

Yehia, H., Rubin, P., Vatikiotis-Bateson, E., 1998. Quantitative association
of vocal-tract and facial behavior. Speech Communication 26, 23–43.

Zhang, L., Renals, S., 2008. Acoustic-Articulatory Modeling With the Tra-
jectory HMM. IEEE Signal Processing Letters 15, 245–248.

Zlokarnik, I., 1993. Experiments with an articulatory speech recognizer, in:
Proc. European Conference on Speech Communication and Technology,
Berlin, Germany. pp. 2215–2218.

Zue, V., Glass, J., Philips, M., Seneff, S., 1989. Acoustic segmentation and
phonetic classification in the SUMMIT system, in: Proc. International

50



  

Conference on Acoustics, Speech, and Signal Processing, Glasgow, Scot-
land. pp. 389–392.

51



  

A. List of Phonemes

ASCII Symbol IPA representation ASCII Symbol IPA representation
Vowels and Diphthongs

o 6 e e

aa A: @@ 3:

a æ i I

oo O: ii i:

@ @ u U

iy 9 uu u:

uh 2 u@ U@

oi OI ai aI

i@ I@r ou oU

ow aU ei eI

Stop Consonants
p p b b

t t d d

k k g g

Nasals, approximats and other sonorants
m m l l

n n r ô

ng N w w

y J

Fricatives
f f v v

ch Ù j Ã

s s z z

sh S zh Z

th T dh D

h h

Table 4: The list of phonemes used in this study along with the ASCII symbols and
corresponding IPA symbols
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