
Design and evaluation of acceleration strategies for speeding
up the development of dialog applications

Luis Fernando D'Haro *, Ricardo de Córdoba, Rubén San-Segundo, Javier Ferreiros,
José Manuel Pardo

Grupo de Tecnología del Habla, Universidad Politécnica de Madrid, Madrid, Spain

Abstract

In this paper, we describe a complete development platform that features difíerent innovative acceleration strategies, not included in
any other current platform, that simplify and speed up the definition of the difíerent elements required to design a spoken dialog service.
The proposed accelerations are mainly based on using the information from the backend datábase schema and contents, as well as cumu-
lative information produced throughout the difíerent steps in the design. Thanks to these accelerations, the interaction between the
designer and the platform is improved, and in most cases the design is reduced to simple confirmations of the "proposals" that the plat­
form dynamically pro vides at each step.

In addition, the platform provides several other accelerations such as configurable templates that can be used to define the difíerent
tasks in the service or the dialogs to obtain or show information to the user, automatic proposals for the best way to request slot contents
from the user (i.e. using mixed-initiative forms or directed forms), an assistant that offers the set of more probable actions required to
complete the definition of the difíerent tasks in the application, or another assistant for solving specific modality details such as confir­
mations of user answers or how to present them the lists of retrieved results after querying the backend datábase. Additionally, the plat­
form also allows the creation of speech grammars and prompts, datábase access functions, and the possibility of using mixed initiative
and over-answering dialogs. In the paper we also describe in detail each assistant in the platform, emphasizing the difíerent kind of meth-
odologies followed to facilitate the design process at each one.

Finally, we describe the results obtained in both a subjective and an objective evaluation with difíerent designers that confirm the
viability, usefulness, and functionality of the proposed accelerations. Thanks to the accelerations, the design time is reduced in more than
56% and the number of keystrokes by 84%.

Keywords: Development tools; Automatic design; VoiceXML; Data mining; Speech-based dialogs

1. Introduction

The current increasing demand of automatic dialog sys-
tems for difíerent domains and user requirements has

* Corresponding author. Address: ETSI Telecomunicación, Ciudad
Universitaria s/n, 28040 Madrid, Spain. Tel.: +34 91 453 35 43; fax:
+34 91 3367323.

E-mail addresses: lfdharo@die.upm.es (L.F. D'Haro), córdoba®
die.upm.es (R. de Córdoba), lapiz@die.upm.es (R. San-Segundo),
jfl@die.upm.es (J. Ferreiros), pardo@die.upm.es (J.M. Pardo).

resulted in several companies and academic institutions
working on the development of fully integrated platforms
that need to provide the máximum number of features to
designers and final users, a high level of portability, stan­
dard izaron and scalability in order to minimize design time
and costs. Moreover, these platforms have to enable the
rapid development and maintenance of automatic dialog
services, as well as being flexible enough to allow the crea­
tion of a wide range of services and to be adapted to the
special characteristics of each one. In general, these plat­
forms are made up of difíerent and independent assistants

mailto:lfdharo@die.upm.es
http://die.upm.es
mailto:lapiz@die.upm.es
mailto:jfl@die.upm.es
mailto:pardo@die.upm.es

that allow collaborative role-based development so that
different developers teams can work on the same project
at the same time. Finally, the usability of these platforms
is increased thanks to a clear and fully integrated graphical
user interface, as well as the incorporation of built-in
libraries and out-of-the-box dialog components that allows
previous knowledge to be reused and an easy deployment
of the service.

/ . / . Strengths and weaknesses of commercial and academic
platforms

In their effort to speed up the design of dialog applica-
tions, most of the commercial platforms (e.g. Nuance
V-builder,1 IBM Web-Sphere,2 Audium Studio,3 Envox,4

etc.) include state-of-the-art modules such as speech recog-
nizers, high quality speech synthesizers, language identifi-
cation modules, etc., as well as using widespread
standards such as VoiceXML, SALT, CCXML, etc. These
platforms also include a large number of predefined
libraries for typical dialogs such as requesting addresses
or social security numbers. In addition, they incorpórate
assistants for debugging and logging the service. Finally,
these platforms provide user-friendly graphical interfaces
that simplify the development of very complex applica-
tions. On the other hand, a large drawback they present
is that the behavior of the service may change across differ­
ent platforms because of the use of attributes or features
not supported in most platforms (e.g. including non-stan­
dard tags in the VoiceXML script to allow sending faxes
or playing videos) or because they use advanced runtime
modules (e.g. automatic speech recognizers, text-to-speech,
language identification or speaker identification) that can
reduce the necessity of coding many actions in the scripts.
In addition, it is difficult to intégrate proprietary modules
and they do not provide automatic proposals for defining
the dialog flow. Finally, it is difficult to intégrate new
modalities, créate the service in múltiple languages, adapt
the service according to predefined user profiles, or obtain
the same functionalities on different operating systems.

In contrast to commercial platforms, academic and
research platforms (e.g. CSLU-RAD,5 DialogDesigner,6

Trindikit,7 RavenClaw,8 etc.) do not necessarily incorpórate
all of the aforementioned features. However, they allow
more complex dialog interactions (e.g. incorporating the
possibility of changing the dialog goal at any moment and
then recovering it later (Bohus and Rudnicky, 2009), allow-
ing users to interact with the final system using several differ-

1 http://www.nuance.com.
2 http://www-01 .ibm.com/software/voice/.
3 http://www.audiumcorp.com/Audium_Studio/.
4 http://www.nuxiba.com/envox.html.
5 http ://cslu.ese.ogi.edu/toolkit/.
6 http://spokendialog.dk/DialogDesigner/.
7 http ://www.ling.gu. se/projekt/trindi/trindikit/.
8 http://wiki.speech.cs.cmu.edu/olympus/index.php/RavenClaw.

ent modalities at the same time (Tsai, 2006), or allowing
complex confirmation strategies for error handling (McTear
et al., 2005)); in addition, some of them are available as open
source and can be extended using third party modules. The
main drawback is that they may have serious limitations
such as a low portability level as they are tied to specific run­
time platforms which make them difficult to intégrate with
other systems and/or architectures; besides, many of their
interesting features are not easily available, therefore they
are only used by advanced developers. The number of differ­
ent services and capabilities that they can offer to the final
users and programmers is also usually low. They also require
the designer to know several programming languages and
non-standard formats thus reducing their usability. Finally,
they may present limitations for implementing dialog strate­
gies that take into account the user experience, different
modalities, and languages required by the service.

In spite of these features, interestingly, both kinds of
platform lack accelerations (i.e. mechanisms to automate
or simplify the design of the dialog service) based on basic
business intelligence and data mining methodologies
applied to the contents of the task datábase and from the
data model structure (i.e. the set of object-oriented classes
and attributes that model the datábase tables and fields and
their relationships). To cope with this issue, our objective
was to define and use dynamic and intelligent acceleration
strategies so that we can, among other things, predict the
necessary information required to complete the definition
of a state, accelerate the specification of the application
flow, the definition of the datábase access functions, and
to help designers with built-in solutions, not forcing them
to define all this information from scratch. For a more
detailed description of the capabilities provided by current
commercial and academic platforms please refer to Section
2.1 and Appendix B in (D'Haro et al., 2004).

1.2. Incorporation of datábase contents information in the
design

Although the datábase content or structure is rarely
used for accelerating the definition of the dialog flow, in
the literature we can find examples of use in other stages
in the design.

In (Polifroni and Walker, 2006) a rapid development envi-
ronment for speech dialogs from online resources is
described. Here the goal is to reduce the need to specify a
pre-defined dialog flow. Therefore, the flow is dynamically
built based on an analysis of the retrieved data at every turn,
as the user provides new constraints. For instance, here the
datábase contents are used to créate clusters of numeric fields
in order to establish subjective ranges that the users can use
in their answers such as "near" or "cheap/expensive", in the
domain of a hotel reservation, that change depending on the
city. This way, if the datábase contains information about
the average price of a room for each hotel and for different
cities, it is possible to automatically classify which hotels
are "cheap" from those that are "expensive" and include this

http://www.nuance.com
http://www-01
http://ibm.com/software/voice/
http://www.audiumcorp.com/Audium_Studio/
http://www.nuxiba.com/envox.html
http://spokendialog.dk/DialogDesigner/
http://www.ling.gu
http://wiki.speech.cs.cmu.edu/olympus/index.php/RavenClaw

information in the datábase. At each turn the system also
uses the retrieved results to genérate and select, on the fly,
the prompts to summarize the retrieved results or to suggest
new constraints.

In (Pargellis et al., 2004) the dialog flow is dynamically
modified through a set of templates adapted to the final
user of the system, as well as with the available information
and services. The system uses the dynamic contents of the
datábase to créate, on the fly, new grammars and prompts,
as well as the dialog flow for presenting information to the
user, or for solving errors, through predefined templates
and according to the user profile.

In (Chung, 2004) the datábase is used together with a
simulation system in order to genérate thousands of unique
dialogs that can be used to train the speech recognizer and
the understanding module, as well as diagnosing the system
behavior against problematic user interactions or for unex-
pected user answers. In (Wang and Acero, 2006) the system
generates a large number of artificial sentences using the
datábase contents and sentences from other domains by
applying syntactic and semantic information that are used
to improve and créate new language models for the speech
recognition system.

Feng et al. (2003) proposes a very different approach,
not using a datábase but mining the contents of corporate
websites for automatically creating spoken and text-based
dialog applications for customer care. After analyzing the
content and structure of the website, the dialog manager,
at runtime, will identify the focus or expectations of the
user question and will provide a concise answer. Although
the dialog flow is not defined using any GUI, the paper
proves that important knowledge can be extracted from
well-designed contents as we have done.

In (D'Haro et al., 2006), we described our initial steps to
include several acceleration strategies to the design, based
mainly on exploiting the structure of the backend datábase
and with a special emphasis in proposing accelerations for
the assistant used to define the dialog flow at a high level
(i.e. modality and language independent, see Section 3.5).
In the current paper, we describe new strategies that exploit
the datábase contents and schema incorporating them in
diverse ways. For instance: (a) for creating different kind of
templates that can be used to define the dialog flow (Section
3.4.2) or the actions to be done at each state (Section 3.5). (b)
To propose which slots should be requested at the same time
to the users or one by one considering mainly the difficulty of
the speech recognizer to correctly recognize them (Section
3.4.3). (c) To reduce the information displayed to the
designer in the different assistants of the platform (Section
3.2). (d) To simplify the process of debugging the datábase
access functions used by the real-time system and automati­
cally proposed by the platform (Section 3.3.2).

1.3. Platform background and limitations

Taking into account the limitations of the best commer-
cial and research platforms, the scant use of datábase

content information in the design, as well as the limited
number of research projects for creating, accelerating,
and improving these design platforms, we undertook the
GEMINI European Project (GEMINI, 2011). The final
result was a complete, flexible, and highly automated devel-
opment platform consisting of a set of tools and agents that
guide the design process and allow the definition of the dif­
ferent levéis of knowledge needed to complete and run the
state-of-the-art speech and Web-based services. The plat­
form allows the creation of a wide range of applications
to access datábase centered services such as the ones pro-
vided in banking transactions, transport reservations,
information kiosks, etc. through a Web browser or a
telephone.

In (D'Haro et al., 2006, 2004) we describe in detail the
initial platform, our efforts in separating the general and
high-level definition of the dialog flow from the specific
details imposed by each modality, language and user pro-
file, as well as the differences between operating systems
and runtime platforms by using several standard lan-
guages. Finally, we also describe our first attempts to accel-
erate the design using only information from the data
model structure and by proposing different kinds of actions
for completing the dialog flow.

After finishing the project, we decided to continué work-
ing on the platform in order to propose new accelerations
strategies and improving its capabilities. The main new
improvements described in this paper can be summarized
as follows:

(1) Incorporation of heuristic information extracted
from analyzing the contents of the backend datábase.
This information is used later onto speed up the
design of the datábase schema (Section 3.2), or to
suggest when two or more data (slots) should be
requested to the users together or one by one (Section
3.4.3).

(2) Incorporation of two new wizard windows to help
designers to automate/eliminate repetitive or com-
mon procedures in the design. The first one allows
the creation of complex classes and attributes when
defining the datábase schema (Section 3.2), and the
second one provides automatic proposals of SQL
queries to access the backend datábase at runtime
(Section 3.3.2). Finally, we have also redesigned the
GUI of the assistant used to define the application
flow, including also some algorithms and strategies
to improve the visualization of the workspace used
to show the states and transitions in the dialog appli­
cation (Section 3.4.1).

(3) Integration of the runtime system into a distributed
platform allowing the use of third party modules
for the ASR, TTS, or voice browser (Section 2.4).

(4) Finally, we have also incorporated new several con-
figurable templates based on the datábase schema
and access functions to accelerate the creation of
the states in the dialog flow (Section 3.4.2).

It is important to mention that we have focused a lot on
proposing generic strategies that could be useful for a great
variety of services and tasks where the users can modify or
obtain information stored in a datábase. For example, the
platform allows the creation of applications such as a
banking application, a travel agency, a remote access to
an agenda or phone directory, a command control device,
or for appointment reservation, among others. In general,
these are the kind of services that can be created consider-
ing the capabilities and Hmitations of the VoiceXML and
xHTML standards generated by the platform. On the other
hand, since many of the new strategies are based on using
heuristic information from the backend datábase contents,
it is clear that these strategies will be limited by the number
of tables and records available in the datábase. In order to
increase the robustness of the proposed accelerations, some
of them allow the configuration of different parameters that
the designer can adjust according to the requirements of
each task (e.g. number of relevant tables, capabilities and
expected performance of the speech recognizer, vocabulary
size, etc.). Finally, we want to mention one current limita-
tion of our platform is that we do not consider the possibil-
ity of using key semantic terms (such as "cheap", "near",
etc., as used in (Polifroni and Walker, 2006)). As we
describe in Section 3.1 this limitation can be solved in a
future versión of the platform.

1.4. Relevant definitions

Throughout this paper we are going to use some terms
that we want to clarify beforehand from the perspective
of our platform since they do not necessarily present a gen-
erally accepted definition.

Slot: This term will refer to any compulsory information
that the system requests from the user.
Action: This term will refer to any kind of procedure
(e.g. calis to other dialogs, calis to datábase access func-
tions, arithmetic or string operations, programming
constructs, etc.) required to complete the 'states' in the
application.
Dialog: This term will refer, as in VoiceXML, to the spe-
cific form or turn where the information is provided or
requested to/from the user.
State: This term will refer, like in the dialog and auto-
mata theory, to one of all the possible nodes or states
in a finite state based dialog system. However, in our
platform we have extended this concept considering that
a state does not represent a single dialog or action but
that it is a group of dialogs or actions. This extensión
to the concept allows us to reduce the complexity of
understanding and visualizing the whole application
flow to a reduced number of 'states' instead of hundreds
or thousands of actions.
Acceleration: This term will refer to the different meth-
odologies implemented in the assistants of the platform

in order to reduce the design time and facilitate the def­
inition of the different actions required to design and run
the service.
Mixed-initiative and Over-answering: Following the def­
inition of the VoiceXML standard (McGlashan et al.,
2004), the term mixed initiative will indicate the system's
ability to ask for two or more compulsory data from the
user simultaneously, and, if the user's answer is incom-
plete or wrong new sub-dialogs are started in order to
obtain the corresponding data. Over-answering will indi-
cate the user's ability to provide additional data - not
compulsory at the current state - to the system.

1.5. Paper organization

The paper is organized as follows: in Section 2 we pres­
ent an overall description of the platform architecture, the
main assistants and layers that makes it up, its scope and
Hmitations. Section 3 describes the main accelerations in
the platform and the assistants that include them; then,
in Section 4 we will show the results of a subjective and
objective evaluation of the platform carried out with differ­
ent designers. Finally we will show our conclusions and
future work in Section 5.

2. Platform structure

Fig. 1 shows the architecture and main assistants and
tools that make up the Application Generation Platform
(AGP). The platform consists of three main layers inte-
grated into a common graphical user interface (GUI) that
guides the designer step-by-step and lets him go back and
forth. The three layers sepárate the aspects that are service
specific (general characteristics of the application, datábase
structure and access), those corresponding to the high level
dialog flow of the application (modality and language inde-
pendent), and the specific details imposed by each modality
and language. This distribution also helps the designer to
créate several versions of the same service (for different
modalities and languages) in a single step at the intermedí­
ate level. In the figure, the assistants in yellow are those
that have been recently modified or extended in relation
to previous versions of the platform, described in (D'Haro
et al., 2006), and in those white have not been modified at
all. Detailed information will be provided for the former.

In order to ease the communication and sharing of
information between all the assistants, the platform uses
an object oriented abstract language called GDialogXML9

(Gemini Dialog XML) (see Schubert and Hamerich, 2005;
Hamerich et al., 2003). This XML language allows the def­
inition of all the application data, e.g. datábase access func-
tions, variables and actions needed in each dialog, prompts
and grammars, user models, Web graphical interfaces, etc.
After finishing the design, the platform uses all the gener-

9 http://www-gth.die.upm.es/projects/gemini/.

http://www-gth.die.upm.es/projects/gemini/

Applleitlon
Dasonplion

.'. -• .•• .l-.ri»

I
Framework

~] Layer

artícenmete

Retrieva
Layar

Dialoy;
Layer

Defrmtioii of overall aspeets of tlie
service and datábase access fimetions,
structure, and contents

Dialogue flow defmition rn a
modality and language independent
level

f T • 1 Layer ^ -

™°d»¡'j* h I M0di¡i,E<i.„.¡„„ fl í~ " h / Definitian of language and modality
L''!"i,ñr '"*""- I w^Kf dependent aspeets ot the service

S u n li fii^ • 1.", Mil

Automatic Script Generation for
^ ' eacli modality (VoiceXML and

xHTML)

| j> Assistants for language inodeling
"\ and speech recognitioii

Fig. 1. Platform architecture.

ated XML files to convert them into the languages used for
the runtime scripts according to the modality (VoiceXML
and/or xHTML).

Before starting to describe the layers and assistants in
detail, we want to emphasize their goal and the current lim-
itations. As we mentioned in the introduction, the main
objective of the platform is to allow the construction of dia-
log applications for múltiple modalities and languages at
the same time. The generated applications can be used to
access services based on datábase queries/modification
(e.g. banking transactions, transport reservations, informa­
ron kiosks, etc.) through a Web browser or telephone sep-
arately, although it should be possible to execute them
simultaneously by incorporating new code elements for
synchronization in our XML syntax and a new code gener-
ator (e.g. for X + V), It is also also important to consider
the limitations imposed mainly by the VoiceXML 2.0 and
xHTML scripts generated by the platform.

2.1. Framework layer

In the framework layer, the designer specifies the overall
aspeets related to the application and the data involved.
This layer includes the Application Description Assistant
(ADA) that is used to define the overall aspeets of the ser-
vice such as the number of modalities and languages, the
datábase connection settings (e.g. total number of connec-
tion errors, timeouts, URL of the datábase server). For the
speech modality the following information is defined: the
timeout valúes for events such as no input, default confi-
dence levéis for speech recognition, máximum number of
repetitions/errors before transferring the cali to the opera-
tor, etc.; and for the Web modality, handling of errors such

as page not found, non-authorized, or timeouts. Finally,
the designer specifies the libraries that will be used through-
out the design process, e.g. datábase access functions, list
of prompts and grammars for each language.

In the Data Model Assistant (DMA) the designer defines
the data structure (i.e. data model or schema) of the service
specifying the classes, including inheritance, attributes and
types that make up the datábase; the assistant also extracts
heuristic information from the datábase contents. The
objective of these classes is to provide information about
which tables and fields in the datábase are relevant for
the service and how the fields can be grouped together into
classes. Therefore, we can think that the attributes in a
class correspond to the possible datábase fields that can
be requested or presented to the user, as well as how these
attributes relate to the actual datábase tables and fields.

Fig. 2 shows an example of some classes and attributes
defined for a banking application. As we can see, the attri­
butes can be of several types: (a) atomic (e.g. strings, Bool-
ean, float, integer, date, time, etc.), (b) full embedded
objeets or pointers to existing classes, or (c) lists of atomic
attributes or complex objeets. Here, the Transaction class
has been defined with one basic attribute: Transaction-
Amount and two object type attributes from the class
Account: DebitAccount to specify the source account and
CreditAccount to specify the destination account. In addi-
tion, the class Account has two atomic type attributes (i.e.
AvailableBalance and Account Number) and two complex
ones (i.e. AccountHolder and LastTransactionsLisi).

Finally, the data connector model assistant (DCMA) is
used to specify the datábase access functions needed for
the real-time system to provide the information to the user.
These functions are specified as interface definitions

Example of
classes and

attributes

Fig. 2. Graphical details of data model classes and attributes.

including only their input and output parameters allowing
their use by dialog designers, without needing to know
much about datábase programming, and leaving the dialog
flow to any changes in the system backend unaffected as
long as the interface remains stable. For instance, a func-
tion that performs a money transfer between two accounts,
the designer can indicate here as input arguments two inte-
ger variables for storing the account numbers and a float
variable for the amount to transfer, and as output argu-
ment a Boolean variable to know if the operation was suc-
cessful. Another example, in this case for the domain of a
travel agency, could be a function to make a reservation;
in this case, the input arguments could be two "String"
variables, one for the departure city and the other for the
arrival city, as well as two "Date" variables for storing
the corresponding departure and returning dates. The
returning variable for this function could be an "Integer"
that stores the number of available flights retrieved by
the search and an array with all flights information.

2.2. Retrieval layer

In the retrieval layer, the general flow of the application
- in a language and modality independent way - is mod-
eled, including all the actions that make it up (transitions
and calis between dialogs, input/output information, pro-
cedures, etc.). It includes the state flow model assistant
(SFMA) and the retrieval model assistant (RMA).

The flow model assistant is used to créate the dialog flow
at an abstract level, by specifying the states of the applica­
tion, plus the slots to ask to the user and the transitions
among states. It is also possible to specify which slots are
optional (for over-answering) and which ones can be asked
for by using mixed-initiatives (see Section 3.4.3). For
instance, in the case of a banking application, the designer
specifies the different tasks that can be accomplished in the
service (e.g. welcome state, initial menú state to access
available items in the service, a state for performing trans-
actions between accounts, for providing information about
account movements, and so on). Then, the designer

specifies as slots the credit and debit account numbers
and the amount to transfer in the transaction state.

The retrieval model assistant is used afterwards to
include all the low-level detailed actions (e.g. conditions
for making transitions between states, definition of vari­
ables and assignments, math or string operations, calis to
dialogs to provide/obtain information to/from the user)
to be done in each state defined in the previous assistant.
For example, for the state where the user performs the
transaction between accounts, the designer can define the
following sequential actions (see example in Section 3.5):

(1) A cali to a sub-dialog for requesting the account
numbers and the amount to be transferred,

(2) An access to the datábase in order to perform the
transaction,

(3) Then, report to the user if the transfer was successful
or not,

(4) Finally, a jump to the next state in the application.

The assistant allows the designer to include complex
actions such as making conditional transitions, performing
mathematical or string operations, creation of variables,
inclusión of programming loops (useful in case of requiring
a user authentication procedure), as well as the possibility
of using different kind of form templates (e.g. menu-based
or sequential). Since this layer is modality and language
independent all the input/output data provided by/to the
user are managed using concepts.

2.3. Dialog layer

Finally, the dialog layer contains the assistants that
complete the application flow specifying the details that
are modality and language dependent for each dialog.
The platform includes the following assistants:

The User Modeling Assistant (UMA) that allows the
specification of different user levéis and settings for each
dialog in the application. Here, the designer specifies, for
instance, the system behavior at runtime for confirming

the users' answers. This way, if the speech recognizer
returns a low confidence in the recognition result then the
system could request an explicit confirmation through a
direct question or by asking a new one. On the other hand,
the possibility of modifying the confidence levéis according
to the user profile allows the designer to change the behav-
ior of the system to (1) permit advanced users to interact
more naturally with the system by allowing additional con­
firmation strategies (e.g. implicit confirmations and not
only the explicit confirmations available to the novice
users), or (2) impose a stricter confirmation for critical data
such as the amount in a banking transaction.

The modality extensión retrieval assistant for Speech
(MERA-Speech, see Section 3.6) adds special sub-dialogs
that complete the dialogs already defined for the applica-
tion considering the specific issues of using speech. Thus,
the designer can créate a complex dialog flow in order to
deal with modality specific problems. Here we have dealt
with the two basic problems that are specific to the speech
modality: (1) the presentation of list of results retrieved
from the datábase to the users in several steps depending
on the number of retrieved items (i.e. zero, one, from two
up to a máximum number, or more items than the máxi­
mum allowed, and (2) handling recognition errors by using
different confirmation strategies (i.e. none, implicit, expli­
cit, and repeat) in the dialogs that obtain information from
the user. In the first case, the assistant allows the designer
to define the different dialogs to show or request informa­
tion to the user as well as the dialog flow for each of the
four situations; in the second case, the assistant analyzes
the dialog flow and automatically creates the sub-dialogs
to provide the four kind of confirmation strategies and it
also analyzes when each confirmation can be used or not
(e.g. it is not possible to do an implicit confirmation if
the next action in the flow is the access to the datábase
since the system will not have the opportunity to confirm
the information in the next turn).

In the modality and language extensión assistant
(MLEA) the language dependent aspects of the service
are specified for each modality and language. For the
speech modality, the extensions consist of links to the
grammar and prompts for each language and dialog
defined in the previous assistants for obtaining or present-
ing information to the user, while for the Web modality
they are links to the input and output objects to interact
with the user (e.g. textboxes, radio buttons, lists of results).

The dialog model linker (DML) is the responsible for
generating one file for each selected modality where all
the information from previous assistants is automatically
linked together, i.e. dialogs, actions, input/output concepts,
prompts and grammars, etc. by filling in different sections
of GDialogXML dialog units. Then, the unified file for
each language and modality is converted into the corre-
sponding runtime script using the script generators of the
next step.

The script generators convert the file generated by the
dialog model linker into the execution scripts needed for

each modality (VoiceXML and xHTML). Therefore, these
modules solve the problems and limitations of each stan­
dard (Hamerich et al., 2003) and manage those issues
regarding the handling of multilinguality (López-Cózar
and Araki, 2005), datábase access, preparation of prompts
or Web text, etc.

Finally, there are three other assistants that complement
the platform. The first one is the Vocabulary Builder which
prepares the vocabularies that will be used by the speech
recognizer (i.e. the phonetic transcriptions of each word
and phonetic alternatives for each language). The second
one is the Language Modeling Toolkit that allows the
designer to specify and debug the grammar files (in JSGF
format or «-gram based) that will be used in the runtime
system for recognition and for prompt generation using
the Natural Language Generation (NLG) module (Georgila
et al., 2004).

Finally, the third assistant, called Diagen, allows the
manual creation from scratch or the fine tuning edition
of all the different GDialogXML models and libraries gen­
erated by the assistants of the AGP. In contrast to most
current editors available in other platforms, this assistant
allows the possibility of creating any section of the GDia­
logXML specification with minimum effort (Hamerich,
2008). In this case, instead of forcing the designer to type
in the XML tree (i.e. all the nodes and attributes), the assis­
tant uses a set of pop-up windows that are sequentially dis-
played according to the information that the designer needs
to specify. This way, in case the designer needs to créate a
state, the assistant shows a form window for obtaining the
ñame of the state and the system strategy at that state (i.e.
mixed initiative or system initiative), then several consecu-
tive windows for defining the information (e.g. ñame, type)
about each slot to ask in that state, then another pop-up
window for defining the information about the transitions,
and finally optional windows for defining help prompts,
etc. Thanks to these features, the designer does not need
to memorize the whole XML specification and thanks to
the simple mechanism for defining the information the pro-
cess is made easy.

2.4. Runtime system

Finally, another important component in order to run
the VoiceXML script generated by the AGP is the inter-
preter or browser that executes the script and performs
the connections with the other modules (recognizer, synthe-
sizer, datábase access, telephonic interface, etc.). The
selected interpreter for our platform was the open source
library OpenVXI (Eberman et al., 2002) supported by
Vocalocity Inc. The platform includes basic telephony
functionalities, an XML parser to process VoiceXML
and JavaScript files, processing user input, a complete
implementation of the Form Interpretation Algorithm
(FIA), debugging functionalities, simulated speech recogni­
tion, etc. Since the source files are available, there were
no restrictions in adapting, mainly, the TTS and ASR

-interfaces to our proprietary modules and platform (see
Córdoba et al., 2004; Hamerich et al., 2003 for detailed
information).

As a mechanism for allowing the use of third party mod­
ules instead of ours (e.g. TTS or ASR), we worked on the
integration of the runtime system into a distributed plat­
form developed during the EDECÁN10 and SD-TEAM11

projects. The platform is made up of seven modules that
carry out the different processes in a dialog system. The
current modules are Automatic Speech Recognition
(ASR), Audio server, text-to-speech (TTS), Natural Lan-
guage Understanding (NLU), Natural Language Genera-
tor (NLG), the dialog manager (DM), and the hub. The
architecture defines different messages that the modules
can use to share information between them. Since all infor­
mation is passed between modules using XML messages
via a central hub, it is possible to include new modules or
new messages as required for new modalities or system
capabilities.

3. Smart strategies to accelerate the design and improve
human-computer interaction

In this section, all the strategies and mechanisms to
accelerate the dialog design and improve the interaction
between the platform and the designer are explained in
detail. The main goal is to reduce the design time by simpli-
fying the definition of the different dialogs, actions, and ele-
ments required to specify and run the service. Moreover,
the proposed mechanisms help to guarantee that the gener-
ated models are well formed and optimized, as well as con-
tributing to minimizing mistakes in the design.

The proposed accelerations can be classified into four
classes: Heuristic-based, Rule-based, Context-based, and
Wizards for simplifying the design process.

The first one corresponds to accelerations that use the
datábase contents and datamodel structure. These accelera­
tions are used to reduce the information displayed to the
designer in the assistant for creating the datábase schema
(Section 3.2), for proposing the SQL statements to access
the datábase at real time (Section 3.3.2), for defining the
datábase function prototypes (Section 3.3.1), and for auto-
matically proposing states and dialogs templates that can
be use to define the application flow (Sections 3.4.2 and 3.5).

Rule-based accelerations correspond to the application
of the configurable domain knowledge rules that we have
incorporated from our experience in designing dialog Sys­
tems. Here, we use configurable rules that allow the assis­
tant to propose which slots should be requested together,
using mixed initiative dialogs or one by one using directed
dialogs; the proposals are made depending on the difficulty
of the data to request according to some configurable rules

and the heuristic information from the datábase associated
to each slot (Sections 3.1 and 3.4.3).

Context based accelerations correspond to strategies
that use the information generated from previous assistants
throughout the design. For instance, the relationships
between the input/output arguments of the prototypes of
the datábase functions with the attributes and classes in
the datábase schema (Section 3.3.1) are used later onto
automatically créate state templates (Section 3.4.2) or dia­
log templates (Section 3.5). In addition, we use the high-
level definition of the flow states and slots in order to pro­
pose the set of most probable actions required to complete
the definition of each state (Section 3.5 point 3). In addi­
tion, the assistant uses the sequence of actions defined for
each state in order to detect when it is possible to use impli-
cit confirmations or not at real-time for the speech modal-
ity (Section 3.6).

Finally, the fourth one corresponds to accelerations
mainly based on the incorporation of different wizard Win­
dows that automate/eliminate repetitive or common proce-
dures in the design. For instance, we have included
different form windows to define the dialog variables, for
including conditional structures in the dialog flow (e.g. for,
if-else, while), for creating mixed-initiative dialogs, for auto­
matically proposing SQL statements (Section 3.3.2), or for
defining the dialog flow used to show lists of retrieved results
to the user when using the speech modality (Section 3.6).

Most of these accelerations are innovative and do not
exist, to the best of our knowledge, in any commercial or
research platform. When a similar acceleration is available,
we have tried to go one-step further by incorporating new
automation mechanisms. For instance, currently there are
some development platforms that include assistants for
defining and debugging SQL statements, but none of them
propose the SQL statement to use; In addition, our platform
is unique since it allows the creation of dialogs with over-
answering, and over-answering plus mixed-initiative (Sec­
tion 3.5), which are not included in the VoiceXML specifica-
tion but that were accomplished by using standard elements
at the expense of generating a more elaborated final script.

3.1. Heuristic information

Since many of the accelerations rely on using heuristic
information from the datábase contents, we have imple-
mented a new module that automatically extracts this
information from the backend datábase. These heuristic
features are obtained using an open SQL query that
retrieves all the information from every table and field in
the datábase. The system automatically collects informa­
tion regarding the ñame and the number of the different
tables and fields, and the number of records for every table.
In addition, for each field the following numerical features
are also collected:

10 http://www.edecan.es/.
11 http://www.sd-team.es/all/Welcome.html.

(a) The average length in characters.
(b) The average number of words.

http://www.edecan.es/
http://www.sd-team.es/all/Welcome.html

(c) The vocabulary size (number of words that are
different).

(d) The proportion of valúes that are different.
(e) The field type.
(f) The number of empty valúes.
(g) The number of different valúes.
(h) Whether the field is language dependent or not.

These features, grouped or individual, are used in differ­
ent ways to improve the assistants and the design. For
instance: (e) and (h) are used to accelerate the creation of
the data model structure (Section 3.2) and to créate and
debug SQL statements (Section 3.3.2), (f) is used in the wiz-
ard window to define the data model classes (Section 3.2),
in order to reduce and sort by relevance the fields that can
be used to define the class attributes and when proposing
dialogs to retrieve information from the user in the RMA
(Section 3.5). Finally, (a)-(d) and (g) have been used to
detect candidate slots that can be requested using mixed-
initiative dialogs or one-by-one (Section 3.4.3); here the
idea was to use these heuristic features in combination with
predefined configurable rules in order to improve the
performance of the speech recognition system by avoiding
difficult data to be asked simultaneously (e.g. two long
number or dates, or two string fields with a high
vocabulary).

During the extraction of the heuristic features, we have
incorporated a correction mechanism based on regular
expressions in order to change the type returned by the
metadata information in the SQL query for a given field.
Thus, if the designer of the datábase defined a field using
a generic type such as string or float when they actually
corresponded, for instance, to dates or integers, then the
system sets the right type. Besides, the analysis of each field
is used to avoid or warn the designer about using mostly
empty fields since they do not provide relevant informa­
tion. One current limitation in our approach, as we men-
tioned in Section 1.3, is that we only collect numerical
valúes for the heuristic information, instead of grouping
them using associated key semantic terms (e.g. cheap,
expensive, high, far, etc.). The possibility of including them
in a future work would increase the robustness of the accel-
erations, as well as their understanding. The required mod-
ifications would be to implement some kind of automatic
clustering in topics or ranges of the datábase contents
and then introduce modifications in the different assistants
in order to replace the semantic term for the corresponding
threshold valué.

3.2. Strategies applied to the data model assistant (DMA)

In this assistant the data model structure or scheme of
the service is created through the definition of object ori-
ented classes. As we have mentioned before, the objective
of these classes is to provide information about the infor­
mation in the datábase that are relevant for the service.
Therefore, using as example the datábase schema depicted

in Fig. 2, we can see that the designer defines two classes:
Transaction and Account, and several attributes that are
related between them and with the datábase (i.e. informa­
tion about the relationship between each attribute and
tables and fields). Considering the organization of the class
Transaction, it is possible to infer that in order to perform a
transaction three elements are required: the Transaction-
Amount, the DebitAccount and the CreditAccount. Since
the last two are not atomic attributes but object references
(ObjRefr to the class Account), we are required to go one
level deeper into the class Account in order to find the cor­
responding atomic attribute that the system will request
from the user (i.e., the attribute AccountNumber). Addi-
tionally, other dialog goals could be possible from analyz-
ing these two classes, e.g. obtaining information about the
last account movements (using the attribute LastTransac-
tionList), to access the information about the account
owner (through the class Per son), information regarding
the available balance, etc.

The main acceleration in this assistant is the incorpora-
tion of a wizard window that uses the heuristic features to
propose full custom classes and attributes that the designer
can use when creating the structure (see Fig. 3). The wizard
uses the heuristic (e), the field type, for correctly setting the
corresponding information in the window. The assistant
also sorts the most important or relevant fields for each
table in the datábase by relevance, using the heuristic (f),
i.e. the number of empty valúes. Thus, if the heuristic is
high (i.e. there are a large number of empty valúes), then
the system considers that it is unlikely that it will be used
to request information from the user and it will be placed
at the bottom of the list. Moreover, the assistant acceler-
ates the design proposing automatic ñames when a new
class or attribute is being created. Finally, the assistant
allows already defined classes to be used for creating new
ones. There are also other interesting accelerations such as:

(a) Re-utilization of libraries with previously created
models, which can be copied totally or partially. In
this way, it would be possible to take advantage from
previous models of the same application in order to
add a new goal or service. Besides, the assistant allows
the possibility of creating new libraries by selecting
several classes and attributes in the current model.

(b) Automatic creation of a non-existing class when it is
referenced as an attribute within another one. For
instance, consider the case that the designer is starting
the definitions of the complex attributes for the class
Transaction in the schema shown in Fig. 2. In this
case, when the complex attribute DebitAccount is
included into the class, the assistant automatically
searches the referenced object class, i.e. the class
Account, in the internal list of already defined classes.
If this class has not been defined previously, the assis­
tant automatically creates it as an empty class that
can be edited afterwards to include the attributes that
belong to it (i.e. a top-down design). In the example,

Existing Classes
and Attríbutes

;•• D debit_acc:Oijnt_nijm|

Í - D transac*ion_amciiint

h- D tiansact¡cn_date

! ;— O ttansaclionjd

É - accounts

\- D accounLcuífencí"

• ;••• D acccuntjdenlifiei

7 • aécount_owneishíp

D acccunlj iumbei

-H[P
D rec_id

Tables and
I Fields in the DB

Strmu mng
String

Inleger

l lnteger

Date d

•7-accounts

•••• IZI account_cimencu

7 •• accounts_customers

D sccounLnumber

D ava¡lable_balance

• lir3l_narne_es_ES

D la$I_^ñrns_es_ES

D pin

- card$_3CCount tíansactions

IZI credit_account_

LJ current_credit_b

O debiLaccount.

Inlegei

I nlegei

5 trina

String

String

Integei

~s
-J

Information

The ñame of selected allribute already existed. Notbe that ¡t has changed. You can leñame it

j System

Cancel Accept

J

Fig. 3. Form fill-in window that allows the creation of custom classes (from the datábase and classes from the current model) in the DMA.

the same process can be done for the referenced class
TransactionDescription when the LastTransactionList
attribute is defined.

(c) Definition of classes inheriting the attributes of a base
class (i.e. parent classes). In this case, when defining a
new class, the designer can specify all the classes
required to be used as base classes. Then, the assistant
automatically displays all the attributes defined in the
selected base classes and include the selected ones
into the new class. This way, the platform uses con-
cepts inherited from object-oriented programming.

3.3. Strategies applied to the data connector model assistant
(DCMA)

The goal of this assistant is to allow the definition of the
prototypes (i.e. the input and output parameters) of the
datábase access functions that are called from the runtime
system. Although the platform only requires the proto­
types, we take advantage of this assistant in order to créate
the actual implementation of these functions and to include
meta-information to accelerate the dialog design in subse-
quent assistants.

3.3.1. Definition of relationship between arguments and data
model

The main acceleration strategy included in this assistant
is the possibility of defining the relationship between the
input/output arguments of the datábase access functions
and the attributes and classes defined in the data model.

Fig. 4 shows an example of the GDialogXML code
generated by the assistant for a datábase access function

in the domain of the banking application. In this case,
the function PerformTransaction has three input argument
variables that collect the information regarding the
account numbers and the quantity to transfer, and one
returning variable defined as Float. In the code, the tag
xArgumentVars (highlighted in yellow color) contains
the information regarding the input parameters: the debit
account number (DebitAccountNumber, letter A), the des­
tinaron account (CreditAccountNumber, letter B), the
amount to transfer (TransactionAmount, letter C), and
the tag xReturnValueVars (highlighted in yellow color)
contains the return argument AvailableAmount (in this
case, the available amount after performing the transac-
tion). In the figure, we can also see the information about
the dependencies with the classes and attributes of the
datábase schema defined in the previous assistant (i.e.
with the tag XDataMAttr, highlighted in blue color)
and the dependencies with the datábase tables and fields
(i.e. with the tag xDBAttr, highlighted in green color).
The usefulness of this acceleration is that these dependen­
cies will be used in subsequent assistants (i.e., SFMA and
RMA) to créate state proposals (Section 3.4.2) and the
automatic proposal of actions at each state (Section
3.5). As acceleration, during the definition of the argu­
ments, the assistant automatically proposes the class and
attribute which is more likely to be related to the given
argument, as well as the datábase table and field. The
mechanism is to use the ñame of the argument being edi-
ted to search for similar classes or attributes in the data
model structure, whereas the table and field of the data-
base is extracted from the data model since this informa­
tion has been already defined in the previous assistant.

E)..J33 DCM

B-E3 xProcedures

B-G3 ProcedureApi [PerformTransaction]

g EEI xDescription

g E3 xArgumentVars

Q..S3 Var [DebitAccountNumber]

Q GB xType [íntegerj

B-G3 xDataMAttr

g -ES Attr [AccountAccountNumber]

3-432 xDBAttr

g - E 2 Attr [accounts.account_number]

<> Var [CreditAccountNumber]

B ES xType [Integer]

Q-EE xDataMAttr

g-EZI Attr [AccountAccountNumber]

B ES xDBAttr ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

B-ES Attr [accounts.account_number]

g..EE Var [TransactionAmount]

¿••SE xType [Float]

B-432 xDataMAttr

+ -<> Attr[Transaction,Transact¡onAmount]

V0

É) ES xReturnValueVars

Q-43E Var [AmountAvailable]

B-G3 xType [Float]

B-432 xDataMAttr

S ES Attr [AccountAvailableBalance]

B ES xDBAttr ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

B-EE Attr [accounts.available_balance]

Fig. 4. Example of GDialogXML code for a Datábase access function.

3.3.2. Automatic generation of SQL queries
Fig. 5 shows the wizard window that generates the SQL

query automatically for a given function. The assistant
allows the inclusión of several constraints supported by
the SQL language such as math functions (average, max,
min, ln, exp, etc.), sorting, selection (Top or Distinct), clus-
tering (Group By), Boolean operators (AND, OR) for
combining the query restrictions, among others. In order
to créate the query automatically, the assistant uses the
input arguments (defmed in the function prototype, see
number 2) as constraints for the WHERE clause, and the
information of the output arguments as returned fields
for the SELECT clause (number 1). The wizard also uses
the heuristic (e), the field type, in order to créate and debug
the SQL statement correctly. New input or output argu­
ments can be added if the function prototype is not com­
plete or if the designer wants to test new argument
combinations. The proposed SQL query is presented in a
textbox (number 3) that the designer can edit. In addition,
the assistant has a debug window (number 5) that allows a
pre-viewing of the retrieved records when using the pro­
posed query. In order to debug the query, the assistant first
asks for specific valúes for the input arguments of the func­

tion (see number 4) proposing the valué that appears the
most in the datábase by default.

3.4. Strategies applied to the state flow model assistant
(SFMA)

In this assistant the designer defines the state transition
network that represents the dialog flow at an abstract level.
The main accelerations are the automatic generation of
state proposals, the possibility of specifying the slots
through attributes offered automatically from the data
model, the automatic unification of the slots to be
requested to the user using mixed initiative dialogs, and
the possibility of editing or generating new rules for con-
trolling the unification. In addition, a new GUI allows
the definition of new states using wizard driven steps and
a drag-and-drop interface.

3.4.1. Functionalities included in the graphical user interface
One of the first conditions imposed to be successful in

the interaction with the designer is a clear, intuitive, and
flexible GUI. This is especially relevant in this assistant
since it has to allow several editing and visualization

JÜ-íl
.ECT | TOP

Dutput Fields
~3

accounts.accoijnt number 3

•I
New Field | Edil Field | Remove Field |

Add Op5íatíori Bemove Ofjei.

SpecifytheTcp Number: |10

Fiefds used as condfóons-

I - UseÜF condition

cusióme rs.code

-Order By-

aecaunts.account identifier en UK

Op.

-1 JAuthenlicationCode

LIKE • ! ÍAccountldentilier

S E
this window lo WÑÉ the valúes you wanl lo use

muíate the valúes ol the ¡npul variables.

Field

.-ifi-nTii.inh: .-ii-:r:niir-if_ni.H-mhr-r w '3 Group By:

H avino I

tAuthenticationCade[lrrteger): | 1J017641

í&ccountldentifier [SEring]

Cancel

_U_xJ

Passbook Savtngs Account 1\
Accepl

' n.ii=iwia

SELECT TOP 10 accwntsaccoijrLnurribei

FROM accounts. customeís

WHERE cusíomerscode - ÍAuthenticationCode

AND accounts.accounLidentifiei_en_ÜK LIKE JAccountldenüfier

Genérate SQL

Test the SQL command I

lJÜ2Si\

1

2

3

4

accounts.account number

5334240138

1J3022634S

7747400999

9109643101

Accept

k
Fig. 5. Form fill-in window for the automatic creation and testing of SQL quedes.

capabilities such as the possibility of creating the flow dia-
gram easily. Basically, there are two visualization strate-
gies: tree-based form-filling object modeling (e.g. like that
used by VoiceObjects Desktop12) or state-based dialog
modeling (e.g. like that used by the CSLU RAD toolkit
or the Avaya Dialog Designer13). In our case, we have used
the state-based dialog modeling or tree-structured descrip-
tion. In this kind of representation, each leaf and branch
represents a state and a corresponding transition. Our main
motivation for selecting this kind of visual representation
was twofold: it is common in most commercial and
research platforms (McTear, 1998), and it simplifies the
visualization of the flow thanks to its different states and
transitions. Although it is limited by the complexity of
the task, since as the number of states grows the visualiza­
tion degrades, several strategies have been proposed to
solve this problem. In our case, we have followed two Solu­
tions: (a) allowing the designer to show detailed or míni­
mum information on the states, as well as some degree of
encapsulation using libraries and complex dialogs, and
(b) implementing an automatic algorithm that helps the
designer to place the objects on the canvas avoiding the cre­
ation of a confusing network of crossed lines between the
states, and that reduces the visualization problems by using
connector symbols so the designer is not forced to follow
long lines beyond the área of visualization of the canvas
(see Fig. 6). Finally, the main window also allows the cre­
ation of new states just dragging and dropping them from
the floating window with the proposal of states, or using

2 http://developers.voiceobjects.com/.
13 http ://www.avaya.com/usa/product/dialog-designer.

contextual right click commands. At the same time, it
allows the creation of several connections (N:l, 1:M or
N:M states) in few steps.

3.4.2. Automatic state proposals for defining the dialog flow
This is one of the most important accelerations in the

assistant. Here, the system automatically generates an
automatic proposal for the dialog states that include the
slots to be requested to the user. The advantage of these
proposals is that they can be used directly by the designer
with little or no modification. In order to créate these pro­
posals, the assistant uses the information from the datábase
structure and the prototypes of the access functions from
the datábase. The proposed states are available as a sidebar
for the workspace (see Fig. 7). The following sub-sections
explain these state proposals.

3.4.2.1. Class dependent states. For each class defined in the
DMA, the assistant creates a class témplate in which the
designer can drag and drop into the workspace. The pop-
up window, on the left-hand side of the figure, allows the
designer to select the attributes to be used as slots in the
new state. The assistant allows the selection of múltiple
templates/classes in order to créate the new state. In this
case, the pop-up window shows all atomic attributes that
belong to the selected class. The assistant expands the com­
plex attributes (with inheritance and objects) allowing only
the selection of atomic attributes since only these attributes
can be asked to the user in the real time system (numbers 3
and 4). A proposed ñame for the new state is automatically
generated from the selected classes, but the designer can
change it. Finally, the new state is inserted into the

http://developers.voiceobjects.com/
http://www.avaya.com/usa/product/dialog-designer

SFMA - EGBanking

©*-

-J

jSlates fiero DMA^ Statesírom DCM I Akeady cieated states j

_Empty State
dass_Accourtt
dass_AccourrtDescriplion
dass_Aerol¡nea
dass_Card
dass_CardDesc¡¡ption
da:s_CardslnfüT^p£
dass_Currency
dass_DeposttslnfoType
dass_EBankinglnfoType
dass_Eitchangeln(o
class_infoiinacion_geneial
c!assJn'orjl|3HonCalegwv
dass_Loans!nlaType
dass_Pereon
tías3_Persúr!aHhfoType
c!as3_TopLevñCategory
dassjransacdüfi
c!di5_T[ariísclori
dass_Tiansacl¡oriDeici¡pl¡ori
dass_Viaje

state_AccountldenüE¡er
£tate_AccountNumber
stale_Au(henlicationCode
stai.e_CieditAccountNumbe{
síate_Cui reney N a irte
s!ale_D ebüAccounlN LJfnbsi
state_PinCode
state_TiariT-act¡anAmount

Proposals of
States

Fig. 6. Appearance of the SFMA main window: states, connectors, and proposals of states.

Class and Att i ibule:

State Neme: |Transact¡on

Class and attiibuíes

&• 0 TíansactionAmount
é¡- CreditAccount

!••• D AccounlCurrency String

I (4) D Accounlldentifseí String

; 0 AccountNumbei Integer

' - • AvailableBalance Float

ffl- DebilAccount

+ Pecscn

+ •• LastTiansactiünList

+ •• TransactionDescriplion

_Empty Slate

I class_Account

I da - •_.".'• '• '• i jntD esciiption

:lass_Card

I clas£_CaidDesciipi.iün

I class_Cards1nfoTvpe

I class_Currency

I class_OepositslrloT,vpe

I class_PeisonallnlcT,ype

_TopLevelCategory

E
States fiem DMA States ficmDCMA | Already cteated slales [

teteJnfoCategory

:tate_l nf oS ubCategory

:tate PinCode

state_Transacl¡onAmount

Allows the creation of
new empty states

Proposed states from
classes defined in the
data model structure

(DMA)

Proposed states from
input arguments,

defined in the DB access
functions, and

containing references to
attributes in the DMA

Fig. 7. Generation of new states using a pop-up window with state proposals and slots from classes defined in the data model structure (DMA).

workspace allowing the designer to define the transitions to
other states. During this process, the mechanism for pro-
posing the unification of slots for mixed-initiative or form
filling dialogs is applied (see Section 3.4.3).

3.4.2.2. States from attributes with datábase dependeney.
This kind of state is created from any attribute defined in
the datábase model (DMA) that refers to a datábase field
and also used as an input argument in any datábase access
function. For instance, considering the datábase schema of

Fig. 2 and the input arguments of the datábase access func­
tion depicted in Fig. 4, the assistant would créate three
state proposals: one for the attribute TransactionAmount,
one for the attribute CreditAccountNumber, and another
one for the attribute DebitAccountNumber (see the marked
states with ellipses in Fig. 7).The proposed states contain
only one slot and its ñame corresponds to the ñame of
the attribute in the data model. However, the designer
can select several states before making the drag and drop
allowing the creation of states with múltiple slots.

3.4.2.3. States from datábase access functions. In this case,
the system analyzes all the prototypes of the datábase func­
tions containing input arguments defined as atomic types.
Then, the system uses the ñame of the function as a pro-
posal for the ñame of the state, and the input arguments
as slots for that state. The main motivation for proposing
these states is that they are likely to be asked to the user
since, in general, the arguments of the datábase functions
will be filled in with the information provided by the users
in real-time. For instance, in the case of the datábase access
function PerformTransaction, the assistant detects that it
contains three input arguments (Credit AccountNumber,
DebitAccountNumber, and TransactionAmouni), therefore
it creates three states, one for each input argument. and
adds them to the list in the dock window. Moreover, the
platform allows the designer to select several of these pro-
posed states in order to créate a unified state. The proposed
states are available to the designer in the main window
through the second tab in Fig. 7 (named "States from
DCMA").

3.4.2.4. Empty state témplate and already created states.
The first one allows the creation of a new empty state, with
no defined slots inside, that the designer can completely
define afterwards. Thus, we allow a top-down design.
The second one allows the designer to re-use already
defined states to créate new ones (e.g. to créate a new state
based on our example Transaction state where the user has
to provide the credit and debit account numbers but
instead of returning the available amount, in this case the
system will return the available credit or the new amount
of monthly installments).

Example. In order to demónstrate the usefulness of the
proposed states, consider the following case (all numbers
refer to Fig. 7): the designer needs to créate a state where
the user will be able to perform a money transfer between
two accounts (i.e., Transaction in number 1). Here, it will
be necessary to define three slots: two for requesting the
credit and debit accounts, and another one for the amount
to be transferred. As we can see in Fig. 7, the assistant
proposes this state through the témplate Transaction
created from the corresponding class in the datábase
schema (i.e. class Transaction in Fig. 2). From this
proposed state, the designer could select the attributes
TransactionAmouni (number 2) and AccountNumber (num­
ber 4, from the attribute CreditAccount) (the debit account
number is specified in the same way from the attribute
DebüAccount, but it is not shown in the figure) to be used
as slots in the new state Transaction. After closing the pop-
up window, the system will analyze the three defined slots
and will decide which ones should be asked together based
on the heuristic information and unification rules described
in the next section. In this case, the system will propose to
ask them one by one (because three long numbers asked
together would be very difficult to recognize). Finally, the
system will créate the new state and draw it into the

workspace where the designer can edit the transitions. On
the other hand, if instead of selecting the templates
proposed in (A), the designer selects the three states
marked with ellipses in Fig. 7 (i.e. proposals type (B)) or
selects the témplate created from the SQL function
PerformTransaction defined in the previous assistant (pro­
posals type (C)), the system will créate the state and
analyze the slot unification as before, and the result would
be the same.

3.4.3. Automatic unification of slots for mixed-initiative
dialogs

This acceleration helps the designer to decide when two
or more slots are good candidates to be requested at the
same time (using mixed-initiative forms) or one by one
(using direct dialogs) only when a mixed-initiative is not
advisable. This is an interesting and innovative feature that
we offer and distinguish our platform from others, where
they leave this decisión up to the designer. Since this func-
tionality relies on using heuristic information it is only
available when the slots in a given state have been related
to a field/table in the backend datábase.

The assistant uses the average length, the vocabulary
size, the proportion of different valúes, and the field type
as main heuristic features obtained for the candidate fields
(Section 3.1) and applies a set of customizable rules to
decide which slots can be unified and which ones cannot.
The rules included in the platform were defined from our
knowledge on deploying dialog applications and from
known guidelines in this área (Balentine and Morgan,
2001). In total, we provide a list of 30 different rules (16
for allowing mixed-initiative and 14 for using directed
forms) that ranges from analyzing combinations of more
than two slots with different field types (e.g. three strings,
one string and one integer, two dates, two floats).
Table 1 shows some examples of rules provided for allow­
ing mixed-initiative (MI) or directed-form (i.e. one by one,
DF). In the table, the terms long, short, high, etc. are
defined according to the thresholds set by the designer
for each heuristic.

For instance, according to the predefined rules included
in the platform, the system does not propose using mixed-
initiative dialogs if: (a) there are two slots defined as strings
and the sum of the average length of both is longer than 30
characters. In this case, the system tries to avoid the recog-
nition of very long sentences, (b) one of the slots is defined
as a string with an average length greater than 10 charac­
ters, and the other slot is an integer/float number greater
than 4 digits. The rule tries to avoid the recognition of long
strings, e.g. an address plus long numeric quantities, e.g.
phone or social security numbers, etc., in the same sen-
tence, which again is very likely to fail, or (c) there are
two numeric slots with a proportion of different fields for
a given attribute which is cióse to one, and the vocabulary
size of both fields is high (configurable valué). Again, there
is a high probability of misrecognition. Therefore, in all

Table 1
Example of default rules for unification or separation of slots provided by the platform (ranges and thresholds are application dependent).

Description and Justification Float Int String Date MI DF

Two or more "Date" slots: since dates include too many words we avoid to recognize them together D D D
Two "Strings", with a high number of characters or words, and related to fields with a high D D ^

vocabulary size: e.g. ñame of airports or cities and states
One single "String" and one long "Integer": Avoids the recognition of a long sentence generated by D El El

expanding the number into words
Two "Floats" with a high number ofdifferent valúes (ratio) and a high total number of valúes: Since H D D

both are floats, we have to consider the recognition of the decimal part
Three "String" slots each one with more than two words length and a médium vocabulary size: We D D E

avoid the recognition of long sentences
One short "Integer" and one "String" with low vocabulary size: e.g. channel and number in a TV D [x] El • •

recorder system
T w o "S t r ings" wi th low vocabulary size: e.g. play the cassette D D H D H •
T w o small " In tegers" wi th low or m é d i u m rat io and low vocabulary size: e.g. asking for a year, day, D H • • •

and month
Two low vocabulary "Strings" and one short "Integer": E.g. two currencies and the amount in a D El El • •

currency conversión system
One short "Float" and one "String": allows asking for a command and quantity (e.g. set cursor El • El • •

position to three point five)

E
D

D

D

D

D

D
D

D

D

D
D

D

D

D

El

El
E

E

E

three cases, the system decides that it is better to ask one
slot at a time using direct dialogs.

The configuration window, Fig. 8, allows the creation
(number 2), edition, deletion, or activation of the rules
and conditions (number 3). It is also possible to créate rules
for detecting direct dialogs (number 1).

3.5. Strategies applied to the retrieval model assistant
(RMA)

This is the most complex assistant in the platform since
this is where the designer describes each dialog in detail, i.e.
all the actions (e.g. variables, loops, if-conditions, math or
string operations, conditions for making transitions
between states, calis to dialogs to provide/obtain informa-
tion to/from the user) to be done in each state defined pre-

viously. The assistant is highly automated and intuitive, so
it reduces the designer effort. In (D'Haro et al., 2006, 2004),
we describe all the available acceleration strategies and
capabilities in detail. Briefly, the most important ones are:

(1) Automatic creation of configurable and generic dia­
logs for obtaining or showing information from/to
the user (with prefix DGet and DSay, respectively
for easy identification). These dialog templates are
created for each class and attribute defined in the
data model. For instance, using the datábase schema
in Fig. 2, the system will automatically propose a con­
figurable DSay dialog for the class Account and
another for class Transaction.Fig. 9 shows the form
window to customize the proposed DSay dialog tém­
plate allowing the selection of which information is

Rules fot Directed Forms Rules foi Mixed Iniliatwe *

17171

3 ?

Name_Ru!e

bothDates

bothStringGETIO

StiinglntegerGT4

TriSlotFIoatRalloGTEOS

[(slolj — String) AND (|ílül_2 — Integer] tí, A*/Jength(slot_2); 4))

StringGTIÜIntegei

BothlnlegerRatioGTE0 9

BolhFloatñaltoGTEO.9

IrlDates

[(slolj == Date] AMD [s lo l j == Date))

[((slolj == SUing) ¡,& AvJenglhlslotJ) >= 10] AND ((slot_2 =

Predefined
Rules

111:1:1 1 ==H:.:ll!..::, Hallo Jet TI - = L.dI
A N D I S U 2..FlDal]8,lRaüo(slot 2)>-03]
P.'.P l;|.:l •J==Floal)aRaliol¡lot 3b = 0.9]|

[d!l:l_l =. EliruJSÍ.A-Jenglh(slotJ) > 10]AND(slot_2== Integer)]

[([slolj — Float] U Ral¡o|stotJ)í=0.9]

[slol.l == DateJAND [slo<_2 == DatelAI'

[((slotj «Integer] tí, Ratio|slot_1)> - 0.9] AND [(slol_2 «. Integer] tít Ratio|slol_2|;. 0.9))

Fig. 8. Configuration window for creating or editing rules for automatic detection of direct or mixed-initiative dialogs.

going to be provided using it: the AvailableBalance
and Transaction Amount in this example. Then, the
resulting dialog can be set as the posterior turn in
the dialog flow after performing the transaction, in
order to inform the user about how much money
was transferred and what is the available balance in
the credit account. The figure also shows that the
assistant allows the selection of other inherited attri-
butes mentioned in the data model (in this case, from
the class Person in Fig. 2).On the other hand, the
assistant generates additional DSay and DGet dia-
logs for all the atomic attributes defined in the data-
base schema (e.g. two dialogs: one to show and
another one for obtaining the AvailableBalance, two
more for the AccountNumber attribute, and two more
for the TransactionAmmount). Finally, other common
dialogs are also available such as Welcome, Good-
bye, Transfer to operator, etc.

(2) Automate the process of passing information
between actions/dialogs by proposing the variables
that best match the connections or allowing the crea-
tion of new variables where no match exists. Since it
is very common in dialog applications that several
actions and states have to be 'connected' as they
use the information from the preceding dialogs, we
considered a highly valuable acceleration. In general,
most current design platforms allow the same kind of
functionality, offering the user a selectable list of all
the available variables in the dialog. In other cases,

especially considering the connections with datábase
access functions, some platforms only allow the
designer to define the matching by modifying the
script code by hand. In our platform, we provide a
better solution by automating the connection through
automatic proposals.For example, suppose that the
designer is defining a state to perform a transaction
between two accounts and then to inform the user
about the available amount. In case that the designer
had previously defined a datábase function to per­
form this action, and that the function prototype
requires three input arguments (i.e. credit account
number, debit account number, and amount) and
returns a float valué (i.e. the available amount), the
designer here needs to connect the current state vari­
ables containing the two accounts (e.g. debitAccount-
Number and creditAccountNumber) and the transfer
amount provided by the user (e.g. Transaction-
Amount), as well as the variable to save the final avail­
able amount, with the input and output arguments of
the datábase function. In this case, the assistant
detects the input/output variables required and offers
the designer the most suitable already defined vari­
able of a compatible type; if there is more than one
candidate variable to be shown, the assistant sorts
them according to the ñame similarity between func­
tion argument and current variables. If there is no
compatible variable to offer, the assistant allows the
creation of a new local/global variable. Since the sys-

GRM DGet DSay Übraries DataCAPI

Í
I

DSay Concept Témplate

DSay for Account

DSay for Card

DSay for Currency

DSay for Excbangelnfo

DSay for ID

DSay for Information

DSay for Person

DSay for Transaction
DSay for TransactionDescription

DSay List Témplate

DSay Goodbye

DSay Nolnfo In Datábase

DSay TransferToOperator

DSay Welcome

u1* Buildine a DSay for Transact ion M
DSay_Transactk>ii_ | BalanceAndAmount

f The fuüobject willbe passed asargument

CheckAI ClearAII

Attribute Type

Q- CrediAccount

!••• • AccountAlias

- • AccountHolder

D AuthenticatoonCode

• íe 'cer

• LastName

- • AccountNumber

... 0 AvailableBalance

-;•• DebitAccount

j ~ D AccountAlias

i [•]•• AccountH oider

I - • AccountNumber

I- • AvailableBalance

0 TransactíonAmount

• Transaction Date

• TransactionTvoe

Cancel

Account - ObjRefr

String

Person - ObjRefr

Integer

String

String

Integer

Float

Account - ObjRefr

String

Person - ObjRefr

Integer

Float

Float

Date

Strina

Accept

Fig. 9. Example of an edited DSay dialog that provides the user the available balance and the transaction transferred amount.

tem automatically proposes the valúes and options
presented in the forms, the designer only needs to
click the accept button and continué with the design.
Additionally, the assistant includes a window where
all the matching can be edited.

(3) Automatically propose the actions required for com-
pleting the information for each state of the dialog
flow; the assistant proposes the dialogs to ask infor­
mation from the user, the datábase access functions,
and the dialogs to show information to the user.
Fig. 10 shows an example of the proposals for a dia­
log where given a currency ñame the system provides
its specific information (e.g. buy and sell price, gen­
eral information, etc.) in the context of a banking
application. Using the proposal window, all the
designer would need to do is to select the correspond-
ing dialog to ask the currency ñame (i.e. DGet_Cur-
rencyName_IN_CLASS_Currency), then the

datábase access function for retrieving the informa­
tion (i.e. GetCurrencyByName), and finally the dialog
to show the information to the user about the cur­
rency (i.e. DSay_ATTR_BuyPrice_IN_CLASS_Cur-
rency), To provide these proposals the assistant uses
the information of the relationships between slots
and arguments of the datábase functions and the
attributes and classes in the data model. When there
is no relationship specified, we apply relaxed filters
such as matching in types, similarity of ñames, or
same number of arguments and slots in the state.

(4) The platform provides five basic dialog types that
cover the usual possibilities in programming: based
on a loop, based on a sequence of actions (e.g. calis
to sub-dialogs), a switch construct based on informa­
tion input by the user (i.e. menu-based dialog), a
switch construct based on the valué of a variable,
or empty dialogs, with no action within, that can be
edited afterwards.

(5) The platform allows the quick creation of mixed-ini-
tiative dialogs, dialogs with over-answering (that do
not exist in any current development platform), the
quick view of dialog actions using tooltips, among
others.

(6) Finally, the platform allows the quick creation/dele-
tion of dialog variables and constants, the creation
of if-then-else or loop (for, while) structures that
allow the designer to test one or more conditions
before doing other actions or proceeding with the dia­
log (e.g. to ask the user a pin code and then try to
obtain it until a defined number of tries is reached,
in case the pin is incorrect the system can provide
an error message and finish the service), selection
structures (switch-case), assignments between simple
and complex (objects) variables, and assistants for
carrying out mathematical or string operations. In
all these cases, the assistant uses form-fill windows
to allow the designer to define them and then to
include the corresponding embedded code to perform
them at real time.

RMA - SFM Proposals

-Calis to cther SFM dialogs

GetCurrencyName

State díagram

!- Currency Mame

¿ H C A L L PresentAIICur rene ¡es Dialog

Í - B J C A L L : AskOtherExchsngeRates

Q - | | C A L L AskCtherExchangeRates

I •slotVesOKNo

j - ^ C A L L : GetCurrencyName
! . " H C A L L : AskForOÍ herir formal ion

Input from user (DGet dialogs) —

CX3el_CurrencvMflme_IN_CLASS_CuiTericv

Datábase function calis -

VerifyCurrencyByName

GetCurrencyByName

GetCurrencyClassByName

pOutptf to user (OSay dialogs) -

OSay_CurrencyEx¡sts_FROM_Ver¡ryCurrencyByName

DSayATTRCjrrencyDescNameJNCLASSCurrency

DSay_ATTR_BuyPr¡ceJN_CLASS_Currency

JÜ*I

.'

A

Slots to be filled in
the dialog

List of dialogs to
jumpto

1
Dialogs to ask info to

the users

Datábase access
functions

Dialogs to show info
to the users

Fig. 10. Example with automatic dialogs and datábase access function proposals.

3.6. Strategies applied to the modality extensión retrieval
assistant for speech

In this assistant we considered solutions for two impor-
tant and specific problems for the speech modality: (a) the
presentation of results to the user after accessing the data-
base, and (b) the confirmation of the user's answers. The
common mechanism offered by current platforms to deal
with these problems is to forcé the designer to specify the
complete dialog flow or to leave the problem to some pre-
defined actions provided by the ASR engine. These solu­
tions are not satisfactory since they imply the codification
of too many situations and conditions by hand, and
because there will be restrictions on the confirmation han-
dling that the designer could not take into account. Our
solution relies on providing automatic proposals for the
different data that the designer has to specify, by automat-
ically generating all the dialog flow according to the
designer selections, and by using predefined configurable
templates and built-in dialogs (please refer to Section 4.6
and Appendix C in (D'Haro, 2009) for further
information).

For the dialogs that provide the list of retrieved results
after a datábase query, the assistant allows to specify the
dialog flow for showing the information depending on
the size of the list. Four cases were considered: (a) when
there is no retrieved result, (b) when the list has only one
item, (c) when the number of items lies within a defined
range, or (d) when there are too many items, so it is difficult
to say all of them using speech.

On the other hand, for the dialogs to obtain information
from the users, the assistant automatically generates the
flow for confirmation handling (i.e. what to do when the
user does not provide an answer after a system query, to
ask direct questions, etc.). We consider the following cases:
(a) confirmation for dialogs with one slot, (b) dialogs with
mixed-initiative, (c) dialogs with one compulsory slot plus
slots with over-answering, and (d) the most complex case,
dialogs with mixed-initiative and over-answering slots.

3.7. Strategies applied to the script generator

As we mentioned in the description of the platform
structure, the platform automatically generates a standard
compliant VoiceXML script required to run the service.
However, several tasks were carried out, both in the plat­
form and the runtime system, in order to support and over­
eóme some of the limitations of VoiceXML and to increase
the portability and functionality of the platform. Below, we
briefly describe our efforts in this área. For further infor­
mation please refer to D'Haro et al. (2006), D'Haro
(2009) and Hamerich et al. (2003).

It is well known that the current VoiceXML standard
specification limits the naturalness of the interaction of
the user with the system. One of the main problems hap-
pens when the speaker wants to go back in the flow. In this
case, the VoiceXML allows the designer to introduce a dia­

log to ask if the user wants to try again or repeat the same
action. In our platform, we have applied a more general
solution to this problem by using a "switch-case" dialog
that the designer can use to reset the corresponding slots
in the state and jump back to a previous state to allow
the user to repeat the process. Since we use global variables
to keep the information of each slot, it is easy to reset them
according to the user selection at any state.

Finally, another problem oceurs if the user wants to
change an earlier piece of information before querying
the datábase. In this case, the VoiceXML standard does
not define an easy mechanism to implement this kind of
behavior; therefore, it is responsibility of the designer to
design it. In this case, the platform allows the designer to
select the following options: (a) to use a confirmation
sub-dialog just before retrieving the results from the data-
base, or (b) to use a special token word such as: "abort"
in order to allow the user to restart the state or "agent"
in order to redirect the cali to a human agent. As future
work, we plan to include an automatic dialog témplate
for confirming the dialog slots that the designer can easily
use.

4. Evaluation

In order to estímate the performance of the platform, its
assistants, and the different acceleration techniques, two
evaluations were carried out: (a) an objective evaluation,
where different designers, using our platform, carried out
predefined typical tasks when designing dialog applica-
tions, and then compared the same tasks but carried out
with an alternative assistant with fewer accelerations, and
(b) a subjective evaluation where the designers rated the
assistants and accelerations after using the platform.

In order to understand the scope and goals of the cur­
rent evaluation, it is important to mention that right at
the end of the GEMINI project, we carried out a subjective
and an objective evaluation with more than 40 developers,
where we tested the level of functionality of each assistant
and their integration in the platform. During this evalua­
tion, a complete dialog application was carried out, allow-
ing us to know the amount of time the evaluators spent on
using and learning the application, as well as different rec-
ommended improvements in terms of accelerations and
GUI (for further details please refer to D'Haro et al.
(2006)). Besides, as part of the project, the development
platform was used for successfully creating two complex
applications: (1) a banking application for a commercial
product by a Greek bank (one of our partners), and (2)
an application called CitizenCare to offer a voice informa­
tion retrieval system in the context of publie authorities
available in both Germán and English languages, as part
of a government supported application. It is important to
highlight that both applications were evaluated with actual
callers, showing that the resulting dialog application and
the design platform worked properly. In the next section,
we will provide a short description of the evaluation results

for both applications. For additional details please refer to
GEMINI (2011), in the section "Public test evaluation
report".

4.1. Evaluation results for the runtime platform

For the banking application, a total number of 143,653
calis (with more than 2000 different customers) were
answered by the VoiceBanking system. The calis were
recorded for a total of 6 months with an average of 22
thousand calis per month. The distribution of the popula-
tion using the service was: Male: 70.5% and Female:
29.5%, without any limitation on age or profession. The
users' language was Greek with the following dialect vari-
ations: Northern, Aegean, and Cretan. One of the most
important results from the evaluation was that the percent-
age of customers that actually chose to be served by the
automatic system was almost 45%, although they knew,
from the first prompt, that they could reach the human
operator at any time. In addition, from the total number
of calis, more than 40% of them were served totally by
the system without any operator intervention. On the other
hand, dialog performance in terms of transaction success
was 92.23%. The task completion rate was 93.51%, and
the average duration of the interaction was 107.4 s consid-
ering the nine main tasks available in the application (the
result also includes the time spent on performing the user
authentication and the prompts used to provide the infor-
mation to the users). The hang-up rate was 22.08% (where
20.08% of them occurred before the lst answer), the aver­
age number of turns was 6.35, and the operator fallback
was 2.81%. Finally, a subjective survey about the system
was done among a users control group, i.e. bank employees
and cali centre agents. The results show that 74% of the
young users (20-40 years oíd) were willing to use the auto­
matic system in comparison with the 60% of older users.
Moreover, 76% of the young users changed the way of
speaking in order to increase the quality of system-user
interaction and only 60% of older people accepted such a
change.

Regarding the CitizenCare application, the evaluation
was carried out on seven male and three female Germán
subjects with ages ranging from 27 to 44. When asked
about their user experience with automatic systems, three
considered themselves as 'novices' while the other seven
considered themselves as 'intermediate' users. The results
showed that most of the subjects (80%) rated the system
easy to use, and 30% stressed the system's capability to
react on shortcuts. 10% rated the system 'partly easy to
use' since it sometimes presented too much information
at once (when selecting all information). Finally, 10% did
not find easy to get the desired information, mainly due
to the poor recognition rate of the ASR used. Seventy per-
cent of the subjects had no complaints about the dialog
flow. The other 30% criticized mainly the recognition fail-
ures of single words and the overall poor recognition
quality.

Finally, we want to highlight that many aspects of the
runtime behavior of the application were not considered
in this evaluation for the following reasons: (1) because
the final result for the voice modality is a VoiceXML com-
pliant script that can be run at any voice browser, therefore
the quality of the final script was assumed to be right,
except for minor bugs or mistakes made by the designers,
and (2) because the final dialog application is constrained
by the self-limitations of the VoiceXML standard,
although some of them, such as incorporating over-answer-
ing dialogs by using a more elaborated flow logic with stan­
dard elements, using global variables for allowing
transitions between different states and keeping the dialog
information available to all the states, using a special
switch dialog in order to be able to go back in the dialog
flow, or the ones described in Section 3.7, were tested dur-
ing the creation of the GEMINI applications (for further
details about the improvements made to the VoiceXML
standard please refer to D'Haro et al. (2004).

4.2. Experimental setup

The evaluation was made in two sessions of 4 h each by
9 testers which were classified into three levéis: 4 novices, 3
intermediates, and 2 experts. All the evaluators had some
experience in at least one programming language but little
experience in designing dialog applications. Most of the
evaluators were undergraduate students at our university.
The average age for all testers was 27. From this group,
only three participants had some knowledge of the
platform.

During the first session, the evaluators received a com­
plete explanation of the whole platform, the goals of the
evaluation, and the interface used to obtain the statistics.
Finally, they also received instructions and evaluated the
three first assistants: DMA, DCMA, and SFMA. During
the second session, the evaluators learnt how to use and
evalúate the RMA and MERA-Speech assistants. In gen­
eral, each assistant evaluation was divided into three main
blocks: (a) the evaluators received instructions on the capa-
bilities and accelerations included in the corresponding
assistant through examples of use, (b) the evaluators were
asked to carry out an example task in order to consolidate
the knowledge and to answer questions. (c) Finally, the
evaluation was carried out and the evaluators were later
requested to fill in the subjective survey to measure the
acceptance, usability, intuitiveness, and most interesting
features of each assistant.

4.3. Objective evaluation

The goal was to evalúate the proposed accelerations in
our platform against using a similar tool with different or
less accelerations. In order to do so, we collected a set of
quantitative measures obtained by the testers when they
were requested to carry out different tasks using the plat­
form and a parallel tool. Although there are currently no

standard metrics for making the comparison, in (Jung
et al., 2008), for a similar evaluation, they proposed differ­
ent tasks that the evaluators had to carry out using their
platform and an open text editor chosen by each partici-
pant. Here, different metrics were collected such as mouse
clicks, keystrokes, and elapsed time. Agah and Tanie
(2000) carried out a similar evaluation, proposing the same
metrics when evaluating their intelligent interface. Given
both cases, we decided to use these metrics too but propos­
ing a new one: the number of times the user presses the
delete key when typing. The goal of this new metric was
to provide an additional measure of the difficulty of intro-
ducing information into the assistants or writing the GDia-
logXML code. Besides, since the assistants reduce the
number of keystrokes needed, this fact could also be
reflected in the number of mistakes made by the designers.

For our evaluation, we followed a similar approach than
(Jung et al., 2008), i.e. proposing different tasks for each
assistant and comparing the quantitative measures in each
case with those obtained when annotating the same tasks
using the semi-automatic editor included in the platform
called Diagen. Like the other tools in the platform, Diagen
also includes interesting accelerations to facilitate the pro-
cess of writing or editing the GDialogXML models. The
most important features are: (a) the XML is automatically
created and pasted onto the workspace by using of a set of
pop-up windows that are sequentially displayed according
to the information that the designer needs to specify, thus it
is not necessary to type in all the tags nodes and children,
(b) incorporation of a large number of templates for defin-
ing the whole set of possible actions and information
allowed by the XML syntax for each kind of model and
assistant, and (c) the visualization and validation of the
data. For further details see Hamerich (2008) and D'Haro
(2009).

The reasons for using Diagen, instead of allowing the
evaluators to use any text editor of their liking, were: (a)
to make the fairest comparison between both evaluations.
It is well known that writing any information in any
XML-based language is a tedious and difficult task; (b)
Diagen reduces the need to memorize the XML specifica-
tion, (c) almost all developers and development platforms
use some kind of tool for writing from scratch or fine-tun-
ing the code generated by the main application, and Diagen
is a representative example of this kind of application, and
(d) because we could not find any commercial or academic
platform comparable to ours. For instance, most of the
platforms créate only VoiceXML applications instead of
multimodal services as in our case (Speech using Voice­
XML and Web using xHTML pages), or they do not take
into account the Datábase information ñor include the
accelerations that we needed to evalúate. Finally, most of
the commercial platforms have an advanced graphical
interface which we did not want to evalúate as it is well
known that the appearance of the GUI has a great influ-
ence on the evaluators.

Finally, it is also important to mention that the datábase
used during the evaluation was a modified versión of the
datábase used for developing the Greek bank application
at the end of the GEMINI project. The reason for not
using the original one was because of the sensible data
about the customers contained on it. In this case, the crit-
ical information such as ñames, account numbers, pin
codes, etc. were completely modify by similar ones; how-
ever, the datábase schema was preserved without any mod-
ification. In addition, the selection of the same datábase for
all the participants was considered as necessary in order to
compare the different metrics obtained for each evaluator.

4.3.1. Description of the evaluated tasks
In general, for each of the evaluated assistants we

defined a set of two or three different tasks that were care-
fully chosen to test the different possibilities and accelera­
tions allowed by the assistants, as well as the different
kinds of problem that a designer could find when develop­
ing a real application. Below, we provide a brief description
of each of the evaluated tasks as well as information about
the time the evaluators spent on completing them. For a
complete description, please refer to D'Haro (2009).

To evalúate the creation of the data model structure
(DMA, Section 3.2), we asked the evaluators to test two
different sub-tasks:

(a) In the assistant for creating complex classes: The def-
inition of the class Account with two atomic attri-
butes (i.e. account number and available balance,
both related to the corresponding datábase fields).

(b) In the automatic creation of non-existing classes (see
Section 3.2): The creation of a mixed class structure
(in this case, the class Person) including two atomic
attributes (i.e. first ñame and last ñame, both related
to the corresponding datábase fields and with lan­
guage dependency) and one complex attribute (i.e. a
list of accounts defined as an embedded class).

For the first task, the average elapsed time was 45 s. For
the second task, it was 65 s.

To evalúate the creation of the datábase access functions
(DCMA, Section 3.3), we proposed the creation of a func-
tion with two input arguments and one output argument,
as well as to check the results retrieved for the proposed
SQL statement (Section 3.3.2). In this case, the function
proposed for testing had to return the account number
given the authentication code and account alias. The aver­
age time needed in the evaluation was 125 s.

For the definition of the states, slots and transitions at a
high-level (using the SFMA), we proposed three sub-tasks:

(a) The creation of a state with one slot related to the
datábase (using the proposal of automatic states with
slots or the empty state témplate and then define the
slot, Section 3.4.2). The objective of the proposed

state was to ask the user for the target service and to
define the transitions to the next dialog. The average
time for this task was 33 s.

(b) The definition of a state with two slots, where both
slots had to be set as a mixed initiative, and the tran-
sition to other state (using the automatic unification
of slots to be requested using mixed-initiative dialogs
and the automatic creation of an undefined state
when it is referred as a transition state, Section
3.4.3). The proposed task was to créate a state for
requesting the pin code and alias of the account
and then to make the transition to a new state where
the user would be asked to select the available tasks
after performing the authentication step (e.g. transac-
tions, obtain account information, and buy or sell
shares). The time spent on this evaluation was 58 s
in average.

(c) The creation of a connection between two states (in
this case, this task was included for evaluating some
of the functionalities included in the graphical user
interface). The average time was 10 s.

For the complete definition of the actions to be carried
out in each state (RMA), we proposed three tasks:

(a) The creation of a menu-based dialog where users are
required to select between three options (i.e. personal
information, general information, and transactions),
and according to the user selection to jump to a dif-
ferent state. In this case, the dialog flow was designed
in less than 90 s thanks to the different kinds of dia­
logs provided by the platform (Section 3.5), the
action proposals window, and the automatic DGet
dialog templates.

(b) The creation of a dialog with over-answering and an
IF-Then-Else condition. The proposed task was to
use a DGet dialog to obtain the alias of the account
to make a transfer and optionally to provide the
transfer amount. Then, depending on the selected
account (i.e. if it was the favorite one or not) to jump
to the dialog to ask the transfer amount or to another
dialog to request additional information about the
account to be used. Here, the designers spent less
than 2 Vi min thanks to the dialog proposals window,
the automatic matching of arguments between
actions, the procedure for including compulsory
and optional slots, and the possibility of defining pro-
gramming structures.

(c) Finally, the creation of a mixed-initiative dialog to
perform a transfer between two accounts (requesting
the aliases of the debit and credit accounts), then call-
ing the dialog that asks for the amount, then calling
the function that accesses the datábase and, finally,
confirming the user if the transfer was successful or
not. This task allowed testing the accelerations pro­
vided by the assistant for defining mixed-initiative
dialogs, matching variables, the action proposals

window, and the assistant for defining local/global
variables. The average time spent on this task was
cióse to 90 s.

Finally, for the MERA-Speech assistant, we proposed
two tasks. In this case, thanks to the available accelera­
tions, the assistant automatically proposes the strategy to
be followed and automatically creates all the internal
actions for handling the speech recognizer errors.

(a) The definition of a dialog for presenting a list of
retrieved results. In this case, for providing informa­
tion on the rates for buying or selling different inter-
national currencies. The elapsed time was in this case
nearly 1 Vi min.

(b) Finally, to automatically fill-in the confirmation han­
dling for all the dialogs to ask for information from
the user included in the design. Here, the time spent
was only 4 s, since all the evaluators used the auto­
matic proposal of the application, although, as it
was expected, the expert developers spent a little
more time (around 7 s) on reviewing the proposals.

4.3.2. Evaluation results and observations
During the evaluation we observed some factors that

must be considered in order to understand the results.
The first one was that in some cases the time that experts
and novices/intermediates spent on solving the same task
was very different since the former used the available strat-
egies and accelerations but the latter used an alternative
method, not using the accelerations but a manual method.
In order to avoid this behavior, we reinforced the explana­
ron of the accelerations and spent some more time solving
questions; (b) considering the increasing complexity of the
XML language for coding the more complex tasks, we
should expect greater improvements in the elapsed time
when using the assistants instead of Diagen. However, as
the testers used Diagen continuously during all of the tasks
they soon got used to its interface and therefore worked
faster with it; (c) finally, we also saw that the evaluators,
when using the assistants, spent a lot of time reviewing
the final result to check whether it corresponded to the
expected result, however when using Diagen, since a lot
of XML text was generated, they did not spend so much
time on the revisión.

In general, all tasks using the assistants or Diagen were
carried out in just a few seconds to two minutes (Diagen
being, on average, two or three times slower). The excep-
tion were the tasks for the RMA, where the average time
elapsed using Diagen was 1493 s (around 25 min), in com-
parison to the 140 s (2Vi min) using the platform. In this
case, the time elapsed is one order of magnitude greater
than that using the assistant. The main reasons for these
valúes are the extensive complexity of the GDialogXML
syntax when codifying the optional and compulsory slots,
and the low number of accelerations included in Diagen
to codify the conditional actions.

Fig. 11 shows an overview of the average improvements,
in percentage, of using the assistants instead of Diagen, for
each quantitative measure and the average improvement
considering all the metrics and evaluators. In the figure, a
positive valué means that the assistants perform better than
Diagen, and a negative valué means the opposite. As we
can see, the accelerations proposed in this paper produce
an average improvement of 65.5%> for defining the data
model structure, 16.6% for defining the prototypes of the
datábase access functions, 42.2%> in the definition of the
finite state model of the application (SFMA), and 84.8%>
for defining all the actions of each state of the dialog flow.
Thus, we obtained an overall average improvement of
52.3%> which corresponds to 56.5%> improvement in the
time elapsed, 13.4% for the number of clicks, 84%> in the
number of keystrokes, and 55.2%> in the number of key-
stroke errors. These results are consistent with the number
and scope of the accelerations provided by each assistant.
Besides, the improvements are greater in the assistants
where the more complex structures and actions are
required; thus, we accelerate the design and guide the
designer in the steps where it is more necessary.

4.4. Subjective survey

At the end of the two sessions of the objective evalua-
tion, the evaluators were requested to fill in a subjective
survey regarding the different assistants and accelerations.
They were asked to answer a 4-item questionnaire per assis­
tant with general questions about the appearance of the
assistant, its level of intuitiveness, how fast it took to learn
it, and whether the functionality of the assistant was
enough. Then, they also answered to a 12-item question­
naire with specific questions about the accelerations
included in the AGP. In most questions the users had to
rate the relevant attribute or characteristic using a 10-point
scale (1 =minimum, 10 = máximum). Finally, the survey
also included open questions to provide comments and
suggestions.

The left-hand side of the chart in Fig. 12 shows the
results of the general questions on the different assistants
evaluated. In this case, we observed that these results con-
firm the designer-friendliness of the assistants, as well as
their usability, since all the assistants obtained an overall
score of more than 8.0, which is a satisfactory result. It is

Average Improvement for Objective Measure in All Tasks

Assistant

n Elapsed Time (s) «No. ot Clicks oíslo, of Keystrokes o No. ofKeystroke Errors «Average

Fig. 11. Chart with the average improvement by assistant considering all tasks for the objective evaluation.

Average Subjective Rating

^ 8,6 W

Diagen DMA DCMA SFMA RMA MERA-
Speech

Subjective Evaluation for the Proposed Accelerations

g 8,9 M 9,0 9,0 a, 9 9,0

All the accelerations
were marked above 8.5

• DMA Class Prapaaala

• D C M A SQL Wiiard

a SFMA: State Proposals

o RMA; Definit iúric-fVariúbles

a RMA; Mi íed- ln i tut ivc

ERMA; Ovér-AitSwering

n RMA; Pa&s Args Btw Actic-n&

O RMA: ActJiMi Propásala

H M E R A - S p : Li5t Handling

D MERA-Sp: Conlirmation Handling

Fig. 12. Average results of the subjective evaluation for general questions on the assistants (left) and for the accelerations (right).

important to mention that although Diagen was easy to
use for the first tasks, it got a bad qualification of 4.5,
probably because the generation of the final tasks was
too cumbersome in comparison to using the platform
assistants.

The right-hand side of the chart in Fig. 12 corresponds
to the results for the accelerations used during the objective
evaluation. Thus, the participants had the possibility of
using and experimenting with them, therefore their results
are relevant since they are given in the heat of the moment.
In this case, evaluators scored the automatic states in the
SFMA with 9.3, the SQL generation and the unification
of slots for mixed initiative with 9.0, and the class propos-
als for the DMA with 8.9. As regards the RMA, the pass-
ing of information between actions/dialogs and the
proposal of actions to define the states obtained 9.8 and
8.6 respectively.

5. Conclusions and future work

In this paper, we have described the main accelerations
included in a multimodal and multilingual design plat­
form in order to speed up the design and guide the
designer through all the steps required to créate dialog
services. The proposed accelerations are, in most cases,
innovative without a direct correspondence to those
offered by any of the current commercial and research
platforms. Different types of accelerations have been pro­
posed according to the requirements, capabilities, and
available information at each assistant that makes up
the platform. Most of these accelerations take advantage
of heuristic information extracted from the contents of
the backend datábase and from an object-oriented repre-
sentation of the data model structure, in order to genérate
different kinds of proposals that simplify the process of
creating and completing the dialog flow. Other accelera­
tions consist of different wizard windows or simplified
processes that help designers to complete, créate, or debug
models required by the design and runtime platform in
order to provide the service.

In order to study the usability and acceptability of the
assistants, as well as the proposed accelerations we carried
out both subjective and objective evaluations with design­
ers with different levéis of experience in programming dia­
log applications. The results showed that the proposed
accelerations improve the interaction with the platform,
help to genérate better services, reduce the design time by
more than 56%, and were highly appreciated (between 8.0
and 9.0) by the designers as proved by the subjective eval­
uation. In addition, the whole platform was rated with an
average score of 8.0 that also confirmed the high perfor­
mance of the platform and its assistants.

In spite of the good results that we obtained during the
subjective and objective evaluations, several interesting
ideas can be considered in order to extend the functional-
ities of the platform, as well as increasing the usability of
the information extracted from the datábase contents:

• DMA: Allows the automatic creation of complex data
model structures created for each table in the datábase,
allowing the possibility of including complex attributes
using the relationships defined in the datábase between
different fields and tables. The assistant could also use
the heuristic features in order to select the most probable
tables and fields to be used as attributes in the new
classes.

• DCMA: Extends the capabilities of generating SQL
statements and improve the process of defining the
input/output parameters of the function prototypes
through a graphical interface.

• UMA: Incorporation of an innovative methodology for
proposing the default valúes for the confidence levéis to
ask for information from the users. In this case, we will
use the heuristic information of the datábase and a set of
rules to modify the default valúes specified by the
designer in the first stages of the design. Another idea
is to extend the user profiles (for instance to young/old
people), in order to modify the valúes of several param­
eters for confirmation/presentation of information fol-
lowing the results reported in (Wolters et al., 2009).

• MLEA: Extends the generation of vocabulary files for
the speech recognizer by automatically creating them
from the datábase contents and heuristic information.

• General: Finally, we also consider important to improve
the evaluation by incorporating new tasks and databases
from other domains such as a travel agency or tourism
information kiosk.

Acknowledgements

This work has been supported by ROBONAUTA
(DPI2007-66846-c02-02) and SD-TEAM (TIN2008-
06856-C05-03). We want to thank the following people
for their contribution in the coding of the platform and
runtime system: to Rosalía Ramos, José Ramón Jiménez,
Javier Morante, Ignacio Ibarz, and Rubén Martín from
the Universidad Politécnica de Madrid, and to all the mem-
bers of the GEMINI project for making possible the crea­
tion of the platform described in this paper.

References

Agah, A., Tanie, K., 2000. Intelligent graphical user interface
design utilizing múltiple fuzzy agents. Interact. Comput. 12 (5),
529-542.

Balentine, B., Morgan, D.P., 2001. How to Build a Speech Recognition
Application: Second Edition: A Style Guide for Telephony Dialogs,
second ed. Enterprise Integration Group, p. 414. ISBN-13: 978-
0967127828.

Bohus, D., Rudnicky, A., 2009. The RavenClaw dialog management
framework: architecture and systems. Comput. Speech Lang. 23 (3), ,
332-361.

Chung, G , 2004. Developing a flexible spoken dialog system using
simulation. Assoc. Comput. Linguist. (ACL), 63-70.

Córdoba, R., Fernández, F., Sama, V., D'Haro, L.F. et al. 2004.
Implementation of dialog applications in an open-source VoiceXML

platform. In: Internat. Conf. on Spoken Language Processing (ICS­
LP), pp. 1-257-260.

D'Haro, L.F., 2009. Speed Up Strategies for the Creation of Multimodal
and Multilingual Dialog Applications. Ph.D. Dissertation thesis.
Universidad Politécnica de Madrid. Available at <http://www-
gth.die.upm.es/~lfdharo/index_en.php?status=publications>.

D'Haro, L.F., Córdoba, R., Ferreiros, J., Hamerich, S.W., Schless, V.,
Kladis, B., Schubert, V., Kocsis, O., Igel, S., Pardo, J.M., 2006. An
advanced platform to speed up the design of multilingual dialog
applications for múltiple modalities. Speech Comm. 48 (8), 863-887.

D'Haro, L.F., de Córdoba, R., San-Segundo et al. 2004. Strategies to
reduce design time in multimodal/multilingual dialog applications. In:
Internat. Conf. on Spoken Language Processing (ICSLP), pp. IV-
3057-3060.

Eberman, B., Cárter, J., Goddeau, D., 2002. Building VoiceXML
Browsers with OpenVXI. In: l l th Internat. Conf. on WWW, pp.
713-717.

Feng, J., Bangalore, S., Rahim, M., 2003. WEBTALK: Mining websites
for automatically building dialog systems. In: Workshop on Automatic
Speech Recognition and Understanding (ASRU '03). pp. 168-173.

Web page of the GEMINI Project. <http://www-gth.die.upm.es/projects/
gemini/> (04.11).

Georgila, K., Fakotakis, N., Kokkinakis, G., 2004. A graphical tool for
handling rule grammars in Java speech grammar format. In: Fourth
Internat. Conf. on Language Resources and Evaluation.

Hamerich, S.W., 2008. From GEMINI to DiaGen: Improving develop­
ment of speech dialogs for embedded systems. In: 9th SIGdial
Workshop on Discourse and Dialog - Association for Computational
Linguistics (ACL), pp. 92-95.

Hamerich, S.W., Wang, Y.-F., Schubert, V. et al. 2003. XML-based dialog
descriptions in the gemini project. Berliner XML-Tage, pp. 404-412.

Jung, S., Lee, C , Kima, S., Geunbae Lee, G., 2008. DialogStudio: A
workbench for data-driven spoken dialog system development and
management. Speech Comm. 50 (8-9), 683-697.

López-Cózar, R., Araki, M. 2005. Spoken, Multilingual and Multimodal
Dialog Systems: Development and Assessment. John Wiley & Sons,
262 pp., ISBN: 0-470-02155-1.

McGlashan, S., Burnett, D.C., Cárter, J., et al. 2004. Voice Extensible
Markup Language (VoiceXML) Versión 2.0. W3C recommendation.
Available at <http://www.w3.org/TR/voicexml20>.

McTear, M., O'Neill, I., Hanna, P., Liu, X., 2005. Handling errors and
determining confirmation strategies—an object-based approach.
Speech Comm. 45 (3), 249-269.

McTear, M., 1998. Modelling spoken dialogs with state transition
diagrams: experiences with the CSLU Toolkit. In: Internat. Confer-
ence on Spoken Language Processing (ICSLP), pp. 1223-1226.

Pargellis, A.N., Kuo, H.J., Lee, C , 2004. An automatic dialog generation
platform for personalized dialog applications. Speech Comm. 42, 329-
351.

Polifroni, J., Walker, M. 2006. Learning datábase content for spoken
dialog system design. In: Internat. Conf. on Language Resources and
Evaluation (LREC), pp. 143-148.

Schubert, V., Hamerich, S.W., 2005. The dialog application metalanguage
GDialogXML. In: European Conference on Speech Communication
and Technology (Eurospeech), pp. 789-792.

Tsai, M.J., 2006. VoiceXML dialog system of the multimodal IP-
telephony - the application for voice ordering service. Experts Systems
Appl. 31, 684-696.

Wang, Y., Acero, A., 2006. Rapid development of spoken language
understanding grammars. Speech Comm. 48 (3-4), 390^116.

Wolters, M., Georgila, K., Moore, J., et al., 2009. Reducing working memory
load in spoken dialog systems. Interact. Comput. 21 (4), 276-287.

http://wwwgth.die.upm.es/~lfdharo/index_en.php?status=publications
http://wwwgth.die.upm.es/~lfdharo/index_en.php?status=publications
http://www-gth.die.upm.es/projects/gemini/
http://www-gth.die.upm.es/projects/gemini/
http://www.w3.org/TR/voicexml20

