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Abstract

Existing speech source separation approaches overwhelmingly rely on
acoustic pressure information acquired by using a microphone array. Little
attention has been devoted to the usage of B-format microphones, by which
both acoustic pressure and pressure gradient can be obtained, and therefore
the direction of arrival (DOA) cues can be estimated from the received signal.
In this paper, such DOA cues, together with the frequency bin-wise mixing
vector (MV) cues, are used to evaluate the contribution of a specific source
at each time-frequency (T-F) point of the mixtures in order to separate the
source from the mixture. Based on the von Mises mixture model and the
complex Gaussian mixture model respectively, a source separation algorithm
is developed, where the model parameters are estimated via an expectation-
maximization (EM) algorithm. A T-F mask is then derived from the model
parameters for recovering the sources. Moreover, we further improve the sep-
aration performance by choosing only the reliable DOA estimates at the T-F
units based on thresholding. The performance of the proposed method is
evaluated in both simulated room environments and a real reverberant stu-
dio in terms of signal-to-distortion ratio (SDR) and the perceptual evaluation
of speech quality (PESQ). The experimental results show its advantage over
four baseline algorithms including three T-F mask based approaches and one
convolutive independent component analysis (ICA) based method.
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1. Introduction

Blind speech separation (BSS) aims to estimate the desired speech signals
in the presence of other speech signals or interfering sounds, without the prior
knowledge (or with very little information) about the sources and the mixing
process (Pedersen et al., 2007). It offers great potentials in many applications
such as automatic speech recognition, teleconferencing and hearing aids.

In the past, independent component analysis (ICA) (Lee, 1998; Stone,
2004; Hyvarinen and Oja, 2000; Comon, 1994; Hyvéarinen et al., 2009; Comon
and Jutten, 2010) has been widely employed and shown to be promising in
BSS problems. Significant contributions have been made in anechoic (i.e.
without room reflections) and over-determined/even-determined (i.e. the
number of microphones is greater than or equal to the number of sources)
situations. However, the performance of ICA is degraded in the reverberant
environments (i.e. with room reflections), especially for under-determined
(i.e. the number of microphones is smaller than the number of sources)
case, since the unmixing process becomes increasingly ambiguous due to
the overlap of the reflected sound with the direct sound, and/or the lack of
information in the under-determined case.

To separate sources under reverberant environments, two types of meth-
ods are often used, namely time-domain (Aichner et al., 2002; Thomas et al.,
2006; Nishikawa et al., 2003) and frequency-domain (Sawada et al., 2004;
Araki et al., 2001; Saruwatari et al., 2001; Sawada et al., 2005) approaches,
respectively. The time-domain methods are often based on the extension of
the instantaneous ICA to the convolutive case, and the computational com-
plexity associated with the estimation of the filter coefficients can be high,
especially when dealing with the mixtures in a heavily reverberant environ-
ment, i.e. large Ty (Amari et al., 1997; Buchner et al., 2004).

For approaches in frequency domain (Araki et al., 2003; Parra and Spence,
2000; Wang et al., 2005), the convolutive mixtures are transformed to the
complex-valued instantaneous source separation problems by e.g. the short-
time Fourier transform (STFT), and then the separated source components
in each frequency bin are aligned to remove the permutation ambiguities



before being used to reconstruct the sources in the time-domain using in-
verse short-time Fourier transform (ISTFT). Due to the use of STEFT, the
frequency-domain approaches are, in general, computationally more efficient
as compared with time-domain methods.

Recently, various methods have been developed to separate the speech
mixtures in the underdetermined scenarios. By exploiting the sparseness
property of the speech signals in the time-frequency (T-F) domain, different
approaches such as T-F masking method (Yilmaz and Rickard, 2004; Sawada
et al., 2006; Wang et al., 2009) and maximum a posterior (MAP) estimation
(D O’Grady and Pearlmutter, 2008) have been proposed. The former method
is more attractive due to its lower computational complexity than the latter
one (Sawada et al., 2006; Wang et al., 2009). In this paper, we focus on the
T-F masking approach.

The T-F masking approach can be divided into two categories. One is
based on the binary mask, where the mask value is set as either one or zero
to retain or to reject the mixture energy at each T-F unit. For example,
in (Araki et al., 2003), a binary mask based source separation method is
introduced by clustering the feature of the level ratio and the weighted phase
difference with the K-means algorithm. The other category is based on the
probabilistic (soft) mask, where the mask value is the probability of each
source being active at each T-F point of the mixtures, hence ranging from
zero to one. Examples in this category include the model-based method
in (Mandel et al., 2010) where binaural cues such as the interaural phase
difference (IPD) and interaural level difference (ILD) are estimated from the
mixtures to generate the mask, and the method (Sawada et al., 2007, 2011)
where the mixing vector (MV) cue is used for estimating the T-F mask.
The probabilistic mask can be estimated iteratively using the Expectation-
Maximization (EM) algorithm.

Most of the methods discussed above are performed by using a micro-
phone array together with the estimation techniques developed based on
acoustic pressure information. Different from these traditional microphone
arrays which measure only the acoustic pressure, the soundfield microphone
system (Farrar, 1979; Malham and Myatt, 1995), also known as B-format
microphone, consists of four closely co-located microphones and is able to
measure the full soundfield information, i.e., the pressure gradient at forward,
leftward and upward as well as the acoustic pressure information. Another
system which is named acoustic vector sensor (AVS) (Nehorai and Paldi,
1994; Hawkes and Nehorai, 2000), can also be used to collect the particle ve-
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locity information in three dimensional space as well as the acoustic pressure
information. Both the B-format microphone and the AVS have promising
advantages over the conventional microphones due to the three bidirectional
pick-ups (pressure gradient or the velocity), and show good performance on
several applications, such as sound localization (Hawkes and Nehorai, 1998;
Zhong and Premkumar, 2012) and speech enhancement (Shujau et al., 2010).

Nevertheless, only few works have been conducted in the literature in
dealing with the BSS problem with speech mixtures acquired by the B-format
microphone/AVS. Two typical examples are (Gunel et al., 2008; Shujau et al.,
2011), where the direction-of-arrival (DOA) information obtained from the
B-format microphone/AVS are used to separate the speech sources based on
the T-F masking approach.

In (Gunel et al., 2008), the DOA at each T-F unit is estimated based on
the intensity vector (Nehorai and Paldi, 1994), by exploiting the T-F repre-
sentation of the outputs of the B-format microphone. The soft T-F masking
approach is employed for the B-format mixtures under reverberant environ-
ment, the contribution of a specific source at each T-F point is obtained by
fitting the DOA histogram with the von Mises distribution. The von Mises
distribution can be characterized by the mean direction (x) and the concen-
tration parameter (k). In (Gunel et al., 2008), the mean direction (u) for each
source is estimated by picking the peaks of the DOA histogram. However,
the concentration parameter (k) is searched experimentally over a range of
all possible solutions, which is computationally expensive. In (Shujau et al.,
2011), a binary T-F masking approach is employed for the mixtures recorded
by a single AVS. The peaks of the DOA histogram (which is obtained by the
estimation of the intensity vector, the same as in (Gunel et al., 2008)) are
estimated and regarded as the directions of the source signals. The binary
T-F mask is obtained by comparing the DOAs at each T-F point with the
direction of the target speech, with 1 assigned to the T-F unit where the
DOA is closer to the target signal than the interferences, and 0 otherwise.

There are two main drawbacks with the methods described above. Firstly,
the separation performance of these two methods is strongly dependent on
the accuracy of the DOA information, however, as demonstrated in (Levin
et al., 2010), the intensity based DOA estimation, which is used in these
two methods, produces biased results under reverberant environment, and
the angular error becomes larger with the increase of the reverberation level.
Secondly, the separation performance of the two algorithms is dependent on
the accuracy of the estimation of mean directions, which are identified by the
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histogram peaks. The performance deteriorates when the sources are located
close to each other, since it is difficult to distinguish the mean directions from
the histogram under such a situation.

Several approaches are proposed in this paper to address these problems.
Firstly, the T-F bin-wise MV cue is incorporated with the DOA cue to im-
prove the accuracy of each T-F point of the mixture being assigned to a
specific source under the reverberant environment. Secondly, different from
the above two methods, in which the masks are constructed by the mean di-
rections directly, the mean directions are adopted as the initialization value of
the DOA cue in the EM algorithm, and the parameters of the MV and DOA
cues are updated iteratively at each frequency bin until convergence. Lastly,
the DOA cue is evaluated at each T-F unit and a thresholding method is used
to select the reliable DOA estimates and thus further improve the separation
performance.

The frequency-dependent model parameters for both the DOA and MV
cues are evaluated and refined iteratively by the EM algorithm. In the E-step,
the von Mises and the complex Gaussian probability distributions are applied
respectively to calculate the probability that each source is dominant in each
T-F point of the mixture. In the M-step, the parameters of each source
model are re-estimated according to the T-F regions of the mixtures that
are most likely to be dominated by that source. It is noticed from (Mandel
et al., 2010) that the EM algorithm is sensitive to the initialization value
because of the non-convex characteristics of the total log likelihood, so the
more accurate mean direction used in the initialization has the potential to
improve the separation performance. Moreover, due to the exploitation of
the DOA information, the permutation problem is solved in the first iteration
of the EM algorithm.

Preliminary studies of this work have been presented in (Chen et al., 2013;
Zhong et al., 2013). Different from (Chen et al., 2013; Zhong et al., 2013),
however, we have made the following improvements in this paper. Firstly,
we use the von Mises distribution to model the circular statistics for the
DOA cue, as opposed to the use of the Gaussian distribution in (Chen et al.,
2013; Zhong et al., 2013). This provides a better fit to the statistics of the
DOA cue and more accurate estimate for the source occupation probability
at each T-F point in the EM algorithm, especially for the circular case, when
the mean DOA is close to the estimated DOA, e.g. the mean DOA at around
0° and the estimated DOA at around 360°. In our previous work (Chen et al.,
2013; Zhong et al., 2013), only the semi-circular case, i.e. DOAs from 0° to
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180°, was considered. Secondly, we propose a simple but efficient method
to improve the separation performance under reverberant environment by
selecting only the reliable DOA estimates obtained based on the intensity
information and discarding the un-reliable DOAs caused by reverberations.
Lastly, the separation performance of the proposed method was evaluated
under the over-, even- and under-determined case respectively, as well as
under various reverberation times and configurations.

For performance comparison, we choose four baseline methods, namely,
the two DOA based T-F masking approaches (Gunel et al., 2008) and (Shujau
et al., 2011) as already discussed earlier, the MV cue based T-F clustering
method (Sawada et al., 2011), and a conventional second-order statistics
based convolutive ICA algorithm (Wang et al., 2005).

The remainder of this paper is organized as follows. In Section 2 the B-
format microphone based source separation model and the two DOA-based
T-F masking methods are introduced. In Section 3, the T-F masking based
source separation approach is presented firstly, then the proposed separation
method, which combines the reliability-based DOA classification and the bin-
wise classification based on the EM algorithm, is introduced in detail. The
experimental setup and the results of the proposed method as compared with
the baseline methods are presented in Section 4, and finally Section 5 gives
the conclusions.

2. Background

This section first introduces the T-F masking based source separation
model in which the mixtures are obtained from the B-format microphone
system, and then gives an overview of two previous methods for speech sep-
aration based on the B-format/AVS recordings that will be used as baselines
in our numerical evaluations.

2.1. B-format Microphone based Source Separation Model

The geometry of the B-format microphone array is made up of four com-
pact microphones which are placed at the four non-adjacent corners of a
cube, forming a regular tetrahedron, as shown in Figure 1. The x-, y- and z-
coordinates indicate the forward, leftward and upward direction, respectively.
The four capsules, which show the information at left-front L, left-back Lg,
right-front Ry and right-back Rp respectively, are mounted as closely as pos-
sible to eliminate the phase aliasing (Farrar, 1979). The B-format outputs
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Figure 1: An illustration of the microphone array setup in the B-format microphone.

(Farrar, 1979), which include the pressure (or omnidirectional) component
(po) and the pressure gradient values corresponding to the z-, y- and z-
coordinate (g,, g, and g,), can be obtained from the four raw tetrahedral
capsule outputs as

po(n) Lr(n)+ Lg(n) + Rrp(n) + Re(n)
9:(n) | _ | Lr(n) — Lp(n) + Rr(n) — Rp(n) (1)
gy(n) Lr(n) + Lp(n) — Rp(n) — Rp(n)
9:(n) Lr(n) — Lp(n) — Rr(n) + Rp(n)

where n is the discrete time index.

In this work, we assume that the sources are strictly located at a 2-D
(x — y) plane, i.e., the elevation angle of the sources are zero. Under this
assumption, only the py(n), g.(n) and g,(n) are considered as the outputs of
the B-format microphone.

Assume [ different speech signals s;(n) (i = 1,...,I) are presented in
a noise-free acoustic room environment, the received mixtures from the B-
format microphone array can be written as

po(n) I hg(n)
x(n) = | g=(n) | =Y | hi(n) | @si(n) (2)
gy(n) i=1 h;(n)

where I is the number of sources, ® denotes convolution, hj(n), hi(n) and
hi(n) represent the corresponding room impulse response (RIR) from the
i-th source to py(n), g-(n) and g,(n) respectively, cascading the direct path
as well as the multipath responses. It should be noted that the RIR here is
used for both the acoustic pressure and pressure gradient, representing an



expanded version of the traditional RIR, which is normally related to the
acoustic pressure only.

To realize the frequency-domain separation, the mixture observations
x(n) from the B-format microphone are first converted into frequency-domain
time-series signals X(w,t) by the STFT. It is known that if the frame size
in the STFT approach is long enough to cover the main part of the im-
pulse response, the time-domain convolutive mixture model x(n) can be
approximated as an instantaneous mixture model in the frequency domain

(Smaragdis, 1998)
X(w,t) = Z H; (w)S;(w, t) (3)

where w and t are the frequency bin and time frame indices, respectively.
X(w, t) = [Po(w,t), Go(w, 1), Gy(w, t)]", in which Py(w, t), G.(w,t) and G, (w,t)
are the STFT of po(n), g.(n) and g,(n), respectively. H;(w) = [h§(w), hi(w),
hi(w)]" is the frequency domain representation of the RIR from the i-th
source to the three components of the B-format microphone respectively.
Si(w,t) is the STFT of the i-th source.

The separated signals in the frequency domain Y;(w,t) can be obtained
by the T-F masking as

Yi(w,t) = M;(w, t)Py(w,t) (4)

where 0 < M;(w,t) <1 is the mask for the i-th separated signal.

After the T-F masking approach, the source signals in the time-domain
y;(n) can then be reconstructed by the inverse STFT.

The goal of blind source separation with the B-format microphone system
is to obtain the separated signals y;(n), ¢ = 1,..., I, which corresponds to
the source signals s;(n), i = 1,...,I. The separation approach is performed
only with the mixtures x(n), without knowing RIRs, h{(n), hi(n) and h(n).
To achieve this, the DOA based soft and binary T-F masking techniques are
adopted (Gunel et al., 2008; Shujau et al., 2011), and a brief introduction of
these two approaches is given next.

2.2. DOA based T-F Masking Approaches

The estimation of DOA, which is employed as a cue to estimate the T-F
mask in (Gunel et al., 2008; Shujau et al., 2011), is introduced first based on
the T-F domain intensity vector estimation. In (Nehorai and Paldi, 1994), it



is assumed that the signal behaves as a plane wave at the sensor. With this
assumption, the acoustic particle velocity can be expressed as

1
v(in) =——-g(n)ou 5
(n) =~ g0 )
where v(n) = [vi(n),v,(n)]T is the velocity components along z- and y-

direction, and ® denotes the element-wise product, and pg is the ambi-
ent density of the air, and c¢ is the velocity of sound wave in the air, and
g(n) = [gz(n),g,(n)]" is the pressure gradient value corresponding to the
x- and y- coordinates, and U is an unit vector denotes the direction in z-
and y- coordinates, which points from the sensor towards the source, i.e.,
U = [, dq,)".

The instantaneous intensity vector can then be denoted as the product
of the acoustic pressure and the particle velocity, as follows,

i(n) = po(n) ©v(n) (6)

By taking the STF'T, the T-F representation of the intensity vector I =
[1:(w, t), I,(w, t)]"can be given as

Fo(ent) = = [RP (. )Galr 1)} ™
1w, ) = —p%c (R (w.1)Gy (w0, )}, (8)

where the superscript * denotes conjugation, R{-} means taking the real part
of its argument. The direction of the intensity can thus be obtained by

R{ Py (w, t)Gy(w, 1)} (9)
R{P; (w, )Go(w, 1)}

0(w,t) = arctan

Based on the estimation of #(w,t) over an entire spectrogram, the algo-
rithm in (Gunel et al., 2008), which we refer to as Gunel, creates a histogram
of all the direction value #(w,t) first. Then, the von Mises density function
is utilized to fit the direction histogram and to evaluate the contribution of
a specific source at each T-F point of the mixtures, the probability density
function of the von Mises distribution is given as

exp(kcos(0 — p))
211y (k)

fOlp, v) = (10)
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Figure 2: The direction histogram of three speech sources which are located at (a) 40°,
70° and 100° (b) 40°, 100° and 160° respectively under 0.6 s reverberation.

where 0 < ¢ < 27 is the mean direction, x > 0 is the concentration parame-
ter, and Iy(k) is the modified Bessel function of order zero. The probability
that each T-F point of the mixtures corresponds to the i-th source is obtained

Plwt) = o exp(m(tQ);;OS((zf(o:;;) — 1)) (1)

where o; = 1/(I 4+ 1) is the component weight corresponding to source i,
the superscript ¢ is used to identify the probability estimated in Gunel’s
method. The mean value p; is identified as the direction corresponding to
the i-th largest peak of the DOA histogram. The concentration parameter
k; is estimated by the 6-dB beamwidth 02" as

1
T cos(0PW /2)
For each source, is spanned linearly from 10° to 180° with 10° intervals
and the related &; is calculated by Equation (12). The ; which best fits the
direction histogram is finally chosen as the concentration parameter. The

final mask value of the Gunel’s method M/ is obtained by normalizing p?
across the sources as

(12)

BW
Hi

p; (W, t)
AN
In the algorithm of (Shujau et al., 2011), which we refer to as Shujau, I
largest peaks of the histogram of #(w, t) are found and identified as the DOAs

M (w,t) = (=1,..1) (13)
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corresponding to the I sources. Let d;, for ¢ = 1,..., I denote the estimated
DOAs. The angular difference A6; is calculated by the DOA at each T-F
point §(w,t) with the direction of each source ¢; as

0(w, t) — 6;] —180°, |O(w,t) — &;] > 180°
0(w, t) — 0], otherwise

(i=1,---,1)
(14)

Ab;(w,t) = {

A binary T-F mask is then obtained to separate the sources as

1, AQZ(w,t) < AQj(w,t)

0, otherwise

Mf(w,t):{ (j=1--,1,j#i) (15
where M? is the mask used to recover the source ¢ and superscript s denotes
the mask obtained by Shujau’s method.

3. Proposed Method

Using only the DOA cue based source separation such as the method in
(Gunel et al., 2008; Shujau et al., 2011), the performance deteriorates when
the sources are located close to each other, since the peaks of the DOA his-
togram considered as the direction of the sources are blurred, as shown in
Figure 2. The DOA values in Figure 2 were calculated by Equation (9) with
three speech sources mixed together in the same studio as described in Sec-
tion 4. It has been observed recently in (Alinaghi et al., 2011) that adding
the mixing vector (MV) cue can improve the accuracy of the T-F assignment.
In this paper, to address the above limitation, the MV cue is incorporated
with the DOA cue to improve the estimation of the source occupation like-
lihood at each T-F point based on a maximum likelihood framework. The
proposed system is shown in Figure 3. The T-F masking approach is pro-
posed by combining the DOA classification with the bin-wise classification
based on the EM algorithm, in which the DOA values are estimated from
the intensity information. The DOA based classification process has already
been described in Section 2.2 and therefore is not elaborated any more. In
this section, we present a thresholding approach to reduce the errors of the
intensity-based DOA estimation caused by reverberation, and to further im-
prove the reliability of the DOA cues and hence the separation performance.
The details of the reliability based DOA classification are given later in Sec-
tion 3.4. Next, we first present the bin-wise based classification, followed by
the EM algorithm and its initialization.
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Figure 3: Processing flow for the proposed BSS algorithm with T-F masking.

3.1. Bin-wise Classification

In frequency bin-wise classification, only the x- and y- gradient compo-
nents of the B-format outputs are used to model the mixing vectors, since
it was found experimentally that the performance will degrade when pq is
employed, the similar phenomenon also found in (Shujau et al., 2010). As-
suming that only one source is dominant at each T-F unit, according to
Equation (3), the STFT of the observations of the gradient components at
the t-th frame can be represented as

~ H;(w)Si(w,t),Vie[l,...,]] (16)
where X(w,t) = [Go(w, 1), Gy(w, )", Hi(w) = [H(w), H(w)]". Each obser-
vation vector is then normalized to remove the effect of the source amplitude.
The mixing filter coefficients, H;, are modeled, similar to (Sawada et al.,
2007), by a complex Gaussian density (CGD) function, given as

X 1

T X(w, t)]ai(w), 12 W) = ——

P (X(w, t)]ag(w), 7; (w)) o)
(_wa,w—<a;;<;gix<w,t>>ai<w>||2> -

where a;(w) is the centroid with a unit Frobenius norm ||a;(w)||* = 1, and
v2(w) is the variance corresponding to the i-th source. The CGD function
is evaluated for each observed T-F unit. The orthogonal projection of each
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observation X(w,t) onto the subspace spanned by a;(w) can be estimated
by (af (w)X(w,t))a;(w), where the superscript H denotes Hermitian. The
minimum distance between the T-F unit X(w,¢) and the subspace is thus
| X (w, ) — (af (w)X(w, t))a;(w)|| and represents the probability of that T-F
point of the mixture belonging to the :—th source. The probability of each
T-F unit of the mixture coming from source i can thus be estimated by the
normalization across the sources as p*(w,t) = p*(w,t)/ >_,(pj"(w,t)) where
P (w, t) is estimated by Equation (17).

3.2. EM Algorithm

As mentioned before, the DOA distribution is blurred when the sources
are close to each other, whereas the MV cue is more distinct under the
same situation, as demonstrated by (Alinaghi et al., 2013). To improve
the reliability of allocating each T-F unit to a specific source, we propose to
combine the DOA cue #(w, t) with the MV cue observed from X (w, t), similar
in spirit to (Alinaghi et al., 2011). The EM algorithm is employed to find
the model parameters that best fit the observations {f(w,t), X(w,t)}. The
parameter set © is given by

O = {pi(w), ki(w), ai(w), 77 (w), 1i(w)}

where p;(w) and k;(w) are the mean and concentration parameter of the
DOAs, and a;(w) and v?(w) are the mean and variance of the mixing vector,
and v;(w) is the mixing weight corresponding to the i-th source. Given an
observation set, assuming the statistical independence between the two cues
(Alinaghi et al., 2011), the parameters that maximize the log likelihood

L(®) = m@aleog p((w, t),X(w,)|0)

=max log y [i(w)V(O(w, t)|i(w), kiw))
x N(X(w,t)a;(w), 7} ()] (18)

can be estimated using the EM algorithm (Mandel et al., 2010) by iterating
between the E-step and the M-step until convergence. In Equation (18), V{x}
and N{*} represent the von Mises distribution and the complex Gaussian
distribution, respectively.
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In the E-step, given the parameters, © estimated at the M-step, and the
observations, the posterior probability that the ¢-th source presents at each
T-F unit of the mixture is calculated as

vi(w, 1) o< i(w)V(O(w, ) i), ki(w))
<N (X(w, t)]a;(w), 77 (w)) (19)

where the symbol ¢ o<’ means combing the probabilities obtained by the two
cues followed by the normalization across the sources.

In the M-step, the DOA parameters (u;(w), k;(w)) and the MV param-
eters (a;(w),7?(w)) are re-estimated for each source using the normalized
probability v;(w, t) estimated in the E-step and the observations. As there is
usually no prior information about the mixing filters, for the first iteration,
we set N (X(w, t)]a;(w),72(w)) = 1 in (19) to remove the effect of the mixing
vector contribution. Once the occupation probability v;(w,t) is obtained af-
ter one iteration based on only the information of DOA cue, the parameters
of the mixing vectors, (a;(w),v*(w)), can be estimated from the next M-step
as follows (Sawada et al., 2007)

Ri(w) = Y vi(w, )X (w, )X (w,1) (20)
2 i, DX (w, 1) = (af (W)X (w, 1))a;(w)]|*
’Yi (w> - Zt l/i(w, t) (21>

the optimum a;(w) is the eigenvector corresponding to the maximum eigen-
value of R;(w).

The parameters of the DOA can be updated by the DOAs which are
belong to the set © in the M-step as (Hung et al., 2012)

S v, 1) sin(A(w,t))> (22)
( t

pi(w) = tan™! (
kz(w) _ A—l (Zt Vi(wvt) COS(A W, ) — :uz(w))> (2?))

ilw) = > viw,t) (24)

where é(w,t) represents the reliable DOA values which are included in the
set ), as calculated by Equation (26). In the current work, it was found
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that the best results are obtained when the threshold is set as g = 30°, i.e.
the DOAs which are more than 30° away from all the mean directions are
excluded in the estimation of the DOA parameters. A~! is a function that
can be computed from Batschelet’s table (Batschelet, 1981; Fisher, 1995)
and T is the number of all time frames. After the convergence of the EM
algorithm, the mask is finally obtained as

M;(w,t) = vi(w, t) (25)

3.8. Initialization and Dealing with the Permutation Problem

The EM algorithm can be initialized either from the E-step or the M-
step. As there is usually no prior information about the MVs, similar to
(Alinaghi et al., 2011), we initialize the mask with only the DOA cue. The
parameters of the DOAs, p;(w) and k;(w), are initialized as the peaks of the
DOA histograms and 30° respectively. By using these accurate values in the
initialization approach, the local optimality problem associated with the EM
algorithm can be mitigated.

It should be mentioned that the probabilistic classification in this BSS
method is performed for each frequency bin separately and thus the permu-
tation alignment over all the frequency bins is still required. Rather than
using a posteriori probability based approach as in (Sawada et al., 2007),
due to its high computational cost, we use the information from the DOA
cue to solve the permutation alignment problem in the first iteration of the
EM algorithm, similar to (Alinaghi et al., 2011). As a result, the remain-
ing iterations of the EM algorithm will not be affected by the permutation
problem.

3.4. Reliability-based DOA Classification

It is noticed in (Levin et al., 2010) that the intensity-based DOA esti-
mation method produces biased results under reverberant environment. To
address this problem, a new approach based on thresholding is proposed next.

Under reverberant environments, the direction value at each T-F unit
0(w,t) via Equation (9), may contain the information of the sources or the
reverberation. Obviously, the tail of the histogram of the DOAs will become
broader with the increase of the reverberation level. To mitigate the rever-
beration effect, the un-reliable DOA estimates should be eliminated or play
a less important role for T-F mask estimation.
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The mean directions at each frequency p;(w), ¢ =1,--- , I are estimated
from the peak-finding approach in the first iteration, or from the M-step in
the following iterations of the EM algorithm (as explained in Section 3.2).
The angular difference between 6(w, t) and each mean direction p;(w) is cal-
culated at each frequency bin, the directions which are close to any one of
the mean directions are considered as the reliable ones, otherwise, they will
be deemed as the points belonging to the reverberation. A set € is identified
to collect all the reliable direction values at each frequency bin as

Q= {0(w,t)] cos(O(w,t) — pi(w)) > cos(B), Ji} (26)

where (3 is the threshold of the angular difference between the estimated
DOAs and the mean directions, which is found empirically in our experi-
ments.

Then, the von Mises distribution is employed to model the DOAs which
belong to 2. For the DOA points which are excluded from €2, the probability
of the DOA cue is set identical and will be determined by the MV cue only,
given as

exp(ri(w) cos(B(w, t) — pi(w)))

P (0w, 1) i (w), 1i (w)) = 2wl (ki(w)) Bt e
1/1, otherwise
(27)

where p;(w) and k;(w) represent the mean direction and the concentration
parameter at each frequency corresponding to the i-th source, respectively.
The proposed algorithm is summarized in Algorithm 1.

4. Experiments and Results

To verify the effectiveness of the proposed method, we evaluate its per-
formance with speech mixtures of a varying number of sources. As discussed
in Section 2, although the B-format microphone is composed of four micro-
phones, only three outputs (e.g. po, gz, g,) are used in our tests, and the
output of g, which carries the pressure gradient information at the vertical
direction is discarded since in our experiment the sources and the micro-
phone are placed in the same plane (i.e. with the same height in a three
dimensional space). Thus, in this work, two, three, and four speech sources
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Algorithm 1 soft T-F masking based source separation

Tnput: po(n), 62 (1), 95 (1)
Output: y;(n),i=1,---,I
T-F representation: Py(w,t) = STFT(po(n)), Gz(w,t) = STFT(g(n)),
G, (w,1) = STFT(g, (n))
calculate 0(w, t) {Equation (9)}
X(UJ, t) = [G»U (wv t)v Gy (wv t)}T
X = X/|IX|| {normalization}
X = PreWhitening(X)
Initialization: p; = Peaks(0(w,t)), w =1,--- ,round(length(w)/2),
ki = 30°, ¢;(w) =1/I, B = 30°
for rep =1 — 16 do
fori=1—1do
P 2) = PO, Olpa(w), k(@) {Equation (27).)
~d _ _pi(wt)
pi (w» ) - Zl p?(w,t)’
if rep < 2 then
Pt (w,t) =1
else
D7 (,8) = p(X (@, 1) s (w), 72 () {Equation (17).}
end if m
P (w, t) = %, l=1,---,I {normalization}
Di(w,t) = s (w)pE(w, )PT (w, t)
vi(w,t) = Z’;iéf(f))’t) {normalization}
Update pi(w), ki(w) {Equation (22) and (23).}
if rep > 2 then
Update a;(w), v?(w) {Equations (20) and (21).})
end if
Update ¢;(w) {Equation (24).}
end for
Mi(w7 t) = Vi(w) t)
)/i(wv t) = Mi(wv t)P()(UJ, t)
yi(n) = ISTET(Y; (w, )
end for

l=1,---,I {normalization}

are considered for the over-, even- and under-determined source separation
scenarios, respectively.

As mentioned in Section 1, four methods are implemented and used as
baselines for performance comparison with the proposed method. First, the
two DOA-based separation algorithms (Shujau et al., 2011; Gunel et al.,
2008), denoted as ‘Gunel” and ‘Shujau’, respectively, which we have discussed
in Section 2.2, are employed to show the performance of the DOA cue based
source separation. Then, the bin-wise clustering method (Sawada et al.,
2011), referred to as ‘Sawada’, is adopted to demonstrate the separation per-
formance based only on the mixing vector cue. Finally, the convolutive ICA
method (Wang et al., 2005) by exploiting the second-order statistics in the
frequency domain is included, which we refer to as ‘Wang’. The results by
comparing the mixtures with the original sources are also calculated as ref-
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erences, which we denote as ‘Mixture’. It should be noted that the methods
of ‘Gunel’, ‘Shujau’, as well as the proposed method, are evaluated based on
the outputs of the B-format microphone (po, ¢, g,) directly. However, for
the methods ‘Sawada’ and ‘Wang’, we considered both the B-format micro-
phone recordings, denoted as ‘Sawada-B’ and “Wang-B’, respectively, and the
recordings with a standard 4-microphone tetrahedral array (Lg, Lg, Rp, Rp)
obtained by inverting Equation (1), denoted as ‘Sawada-O’ and ‘Wang-O’,
respectively..

The experimental setup and the evaluation metrics are introduced first,
followed by the separation results for both the synthetic data obtained using a
simulated room model and the real room recordings collected in a reverberant
studio.

4.1. Experimental Setup

To study the effect of room reverberation, we first test the behavior of the
proposed and the baseline methods under various reverberation levels using
a simulated room model. As shown in Figure 4 (a), a shoe-box room with
a dimension of 9 x 5 x 4m? was employed. The B-format microphone was
located at the center of the room, as illustrated in Figure 1. The Lg, Rp,
Lg, Rp of the B-format microphone were collocated at (0.005,0.005,0.005),
(0.005, —0.005, —0.005), (—0.005, 0.005, —0.005), (—0.005, —0.005, 0.005), re-
spectively, where the coordinate unit is in meter. The speech sources were
fixed at a horizontal distance of 1.5 m to the origin (0, 0, 0) of the microphone.
15 utterances, each with a length of approximately 3 s were randomly chosen
from the TIMIT dataset! and then shortened to 2.5 s to avoid the silence
at the end. Note that the utterances selected contain both male and female
speech. Moreover, all the speech signals were normalized before convolving
with the room models which were simulated by using the imaging method
(Allen and Berkley, 1979) with the reverberation time varied from 0 s to 0.6
s with 0.1 s intervals. 15 pairs of mixtures were chosen randomly from the
15 utterances. In each experimental condition, the first signal (s1) was fixed
at 0°, and other sources were located 50° away with the neighboring source,
the position of each source is shown in Figure 4 (a).

ITIMIT dataset, widely used by the speech separation and recognition community,
is generally considered as a dataset of wideband signals and therefore chosen for the
performance evaluation in our work.
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4. 2m

Figure 4: Experimental setup for the B-format recordings in (a) the simulated room model,
(b) the studio with a reverberation time of approximately 0.6 s.

The B-format signals were also collected in a real studio (5.2x4.2x2.1m3)
in University of Surrey with the reverberation time of approximately 0.6 s
depicted in Figure 4 (b). The B-format microphone was kept at the cen-
ter of the studio. Similar to the system setup for the synthetic data, the
loudspeaker was 1.5 m away from the microphone, and also, both the loud-
speakers and the microphone were 1.2 m above the floor to ensure that the
recordings would not be affected by the vertical direction. 15 utterances (in-
clude both the male and female speakers) were chosen randomly from the
same dataset as for the synthetic data, and the first 2.5 s were selected and
played by a loudspeaker (Genelec 1030A). The recordings were collected at
44.1 kHz by a SoundField B-format microphone system (SPS422B), and then
down-sampled to 16 kHz before being processed. Based on the linearity and
time-invariance assumption, the convolutive mixtures were obtained by col-
lecting all the recordings at 0° to 350° with 10° intervals separately, and then
summing several (i.e. two, three, or four) recordings at different directions
together. Before the collection of each recording, all the utterances were
normalized to have the same root mean square energy.

To investigate the effect of source configuration, the speech sources were
located with various azimuths for generating the mixtures. When collecting
the mixtures in the real studio, the first source s; was fixed at 0° for all the
experimental cases, other sources were arranged counter clockwise with the
same angular difference between the neighboring sources, as shown in Table

19



1. The angular difference A# is varied from 10° to 90° with 10° increasing
intervals for the two (i.e. sl, s2), three (i.e. s1, s2 and s3) and four (i.e. sl,
2, s3 and s4) sources case. In Figure 4 (b), an example of the arrangement
of four sources at 60° angular difference is shown.

st | 0° 0> 0° 0° 0° 0° 0° 0° 0°
s2 | 10° 20° 30° 40° 50° 60° 70° 80° 90°
s3 | 20° 40° 60° 80° 100° 120° 140° 160° 180°
s4 | 30° 60° 90° 120° 150° 180° 210° 240° 270°
Af | 10° 20° 30° 40° 50° 60° 70° 80°  90°

Table 1: All the orientations of the sources with different angular difference (A#).

We implemented the baseline methods ourselves and tested them with
the same mixtures as for the proposed method. The frame size of the STFT
of the mixtures is 1024, with 75% overlap between the neighboring frames.
The iteration number of the EM algorithm is chosen as 16 in the Sawada’s
method and the proposed method.

In Sawada’s method, the parameters of the mean value a; and the variance
72 are initialized as 1/I and 0.1 respectively, the same as in (Sawada et al.,
2011). For Gunel’s algorithm, following the work in (Gunel et al., 2008), the
6-dB beamwidth is spanned from 10° to 180° with 10° intervals to calculate
the related concentration parameters k.

4.2. Fvaluation Metrics

In this work, to quantify the quality of the separated sources, both the
signal-to-distortion ratio (SDR) (Vincent et al., 2006) and the perceptual
evaluation of speech quality (PESQ) (Loizou, 2007; Di Persia et al., 2008)
are evaluated.

The SDR is defined as the ratio of the energy in the original signal to the
energy in the interference from other signals and artifacts (i.e. reverberation).
The energy of the target signal can be obtained by the energy in the estimated
signal y; which can be considered as a linear combination of delayed version
of the original signal s;. The remaining energy in the estimated signal which
does not belong to the target is considered as the distortion energy, including
the interference and artifact energy.
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Figure 5: The SDR results in dB for the simulated mixture of (a) two sources, (b) three
sources and (c) four sources versus various reverberation times.

The SDR is calculated as the averaged value for each source

1 ¢ E{(s:)*}
SDR = ; ; 101og,, (m) (28)

where [ is the number of the sources.

We also evaluate the PESQ by using the ITU-PESQ software (Thiede
et al., 2000). The separated signal is compared with the original clean signal
to evaluate the perceptual quality of the separated speech using the Mean
Opinion Score (MOS). As noted in (Mandel et al., 2010), the MOS has the
range from —0.5 to 4.5, with —0.5 and 4.5 indicating the worst and the best
quality of the separated speech, respectively. It is worth noting that PESQ
was originally proposed to quantify the perceptual speech quality of telephone
networks and speech coding. For example, it is often used to measure the
impairment of a speech codec. However, due to its popularity in predicting
subjective quality of a speech signal, PESQ has also been widely used in
speech separation community for perceptual quality evaluation of separated
speech sources.

In order to investigate whether the proposed method shows significant
improvements compared with the baseline methods, the one-way ANOVA
test (Hoel et al., 1960) is also performed with the significance level set at
5%, and the p-values are calculated to determine whether the performance
difference between the methods is statistically significant.

21



10 01

05 06 o 01

05 06 ) 01

0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4
Reverberation Time/s Reverberation Time/s Reverberation Time/s

(a) (b) ()

Figure 6: The PESQ results for the simulated mixture of (a) two sources, (b) three sources
and (c) four sources versus various reverberation times.

4.3. Experimental Results

4.3.1. Results for the synthetic data

Figure 5 shows the SDRs versus Tgps for the mixtures of two, three and
four sources respectively, with the confidence intervals shown as bars sur-
rounding the means in the plots. As expected, the SDR values decrease when
the reverberation level increases. The proposed method (‘Proposed’) per-
forms better than the baseline methods, giving an improvement of 0.47/0.91
dB, 0.43/0.65 dB, and 0.22/0.60 dB, averaged over all the reverberation lev-
els, as compared with ‘Gunel’/‘Shujau’ under the two, three and four sources
cases, respectively. The proposed method based on the reliability information
(‘Proposed-R’) can further improve the separation performance, on average,
giving 1.42/1.87 dB, 0.77/0.98 dB, and 0.94/1.32 dB improvements as com-
pared to ‘Gunel’/‘Shujau’, respectively.

As shown in Figure 5, with the same methods, the separation results
based on B-format microphone recordings (‘Sawada-B’ and ‘Wang-B’) ap-
pear to be better than those based on omnidirectional microphone record-
ings (‘Sawada-O’ and ‘Wang-O’). Note that the omnidirectional microphone
recordings are obtained virtually based on the B-format recordings as dis-
cussed earlier in this section. It can be seen that under anechoic condition,
the ICA method (‘Wang-B’) outperforms the T-F masking based approaches
for B-format recordings. However, with the increase in room reverberation,
the methods of ‘Proposed’/‘Proposed-R’ show on average 1.18/1.86 dB im-
provements as compared with ‘Wang-B’ for the reverberant cases, and giving
an improvement of 0.67/1.35 dB, as compared with ‘Sawada-B’. The corre-
sponding improvements are 4.1/4.6 dB and 5.9/6.5 dB, as compared with
‘Sawada-O’ and ‘Wang-O’, respectively.
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Figure 7: The example masks obtained from B-format recordings by the different algo-
rithms (a) Sawada (i.e. ‘Sawada-B’), (b) Shujau, (c) Gunel and (d) proposed method
with reliability information, with three speakers located at 0°, 50° and 100° under 0.6 s
reverberation. The SDR results in dB corresponding to each method are also shown.

The PESQ results follow the similar trend to the SDR results, as shown
in Figure 6. The avarage improvements of ‘Proposed’/‘Proposed-R’ are ap-
proximately 0.05/0.1, 0.1/0.15, and 0.18/0.22,, as compared with ‘Gunel’,
‘Shujau’, and ‘Sawada-B’, respectively.

Furthermore, the p-value is estimated by the one-way ANOVA test to de-
termine whether the proposed method gives significant improvements com-
pared with the baseline methods. For the significance level at 5%, the results
are considered as statistically significant if the p-value is smaller than 0.05.
The p-value of the SDR results (number of mixtures=315) are 1.42 x 1072,
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Figure 8: The SDR results in dB for the real collected mixture of (a) two sources, (b)
three sources and (c) four sources versus different angular difference (A#).

2.14 x 1071° and 1.48 x 10722, by comparing the proposed method with
‘Gunel’, ‘Shujau’, and ‘Sawada-B’, respectively. Thus the improvements by
the proposed method are statistically significant as compared with the base-
line methods.

It is worth noting that the results of the baseline methods of ‘Sawada-B’
and ‘Wang-B’ are obtained based on the x— and y— gradient components of
the B-format outputs (g, ¢,), as we found that the separation performance
would degrade when the component py is included. To show this, we present a
comparison of the SDR results between discarding and including the pressure
component, denoted as ‘Sawada-B’/‘Sawada-B-3input’, ‘Wang-B’/*Wang-B-
3input’ respectively, which were obtained by 15 pairs of mixtures with two
sources located at (40°,70°), and three sources located at (40°, 70°,100°) and
(40°,100°, 160°) respectively (see Figure 2). The results are shown in Table
2. Due to the common limitation of the ICA algorithms, the separation
results of “Wang-B’ are only shown for two sources case, and hence for the
three-source case, no results (denoted by ‘-’) are shown in this table.

Direction of sources | Sawada-B/Sawada-B-3input | Wang-B/Wang-B-3input
40°,70° 7.58/5.74 dB 5.88/4.93 dB
40°,70°,100° 2.92/2.01 dB —/1.88 dB
40°,100°, 160° 5.10/4.96 dB —/3.92 dB

Table 2: The SDR results in dB of two baseline methods (‘Sawada’, ‘Wang’) by discarding
and including the pressure component of the B-format microphone recordings, respectively.
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4.3.2. Results for the real data

In Figure 7, an example is given to show the T-F mask obtained by the
proposed method with reliability information based on the DOA values in set
2, and three baseline methods, respectively. The SDR results corresponding
to each mask are also shown in the brackets for comparison.

In Figures 8 and 9, the SDR and PESQ results, which are obtained by
averaging over 15 pairs of mixtures at each angular difference, are plotted
against the angular difference between the two, three and four sources, respec-
tively. As can be observed from the SDR and PESQ results, the performance
gradually deteriorates with the increase in the number of sources.

Almost for all angular differences, the proposed method shows better
separation performance than the competing methods. It is because the two
DOA-based methods (‘Gunel’, ‘Shujau’) rely on the mean directions esti-
mated, which become less accurate and reliable when the sources are located
close to each other, especially in highly reverberant environments.

In the proposed method, however, the mean directions are only used at
the initialization stage, the parameters of DOA and mixing vector cues are
updated iteratively at each frequency bin to improve the estimates towards
the true value. The averaged SDR improvements of the proposed method
(without the reliability measure) over all the angle differences are about
0.87/0.80/0.53 dB, 0.76/1.05/1.84 dB, and 0.74/1.05/2.76 dB under two,
three and four sources cases, compared with the methods of ‘Gunel’, ‘Shujau’,
and ‘Sawada-B”, respectively.

The reliability-based approach can further improve the separation per-
formance by removing the un-reliable direction information which is caused
by the reverberation. The corresponding SDR improvements are around
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1.33/1.41/1.14 dB, 1.27/1.66/2.36 dB, and 1.12/1.42/3.14 dB compared with
‘Gunel’/‘Shujau’/‘Sawada-B’, for the mixture of two, three, and four sources,
respectively. The p-value of the SDR results (number of mixtures=405) are
4.09 x 10722, 7.02 x 1072, and 7.20 x 1073°, by comparing the proposed
method with ‘Gunel’, ‘Shujau’, and ‘Sawada-B’, respectively.

The PESQ results follow the trend of the SDR results quite closely. Com-
pared with ‘Gunel’; ‘Shujau’, and ‘Sawada-B’, the proposed method (without
the reliability measure) shows approximately 0.08, 0.11,and 0.23 improve-
ments, under two, three, and four sources case respectively, the corresponding
improvements are 0.13, 0.17, and 0.29 for the reliability-based method.

For the two sources case, the SDR improvements of ‘Proposed’/‘Proposed-
R’ are 0.94/1.55 dB, and the corresponding PESQ results are 0.02/0.05,
compared with the method of ‘Wang-B’.

In addition, we have also added the step of reliability based DOA classi-
fication to the methods of ‘Gunel’” and ‘Shujau’, and the results are denoted
by ‘Gunel-R’ and ‘Shujau-R’, respectively. The SDR results are tested under
the same situation with Table 2. As shown in Table 3, similar to the pro-
posed method, the performance of both baseline methods has been improved
using the reliability based DOA classification.

Direction of sources | Proposed-R/Proposed | Gunel-R/Gunel | Shujau-R/Shujau
40°,70° 10.18/8.23 dB 8.06/7.62 dB 7.98/7.51 dB
40°,70°,100° 4.54/3.36 dB 3.13/2.81 dB 3.07/2.71 dB
40°,100°, 160° 6.70/6.45 dB 5.58/5.31 dB 5.57/5.22 dB

Table 3: The SDR results in dB of the proposed method and two baseline methods with
and without the step of reliability-based DOA classification, respectively.

5. Conclusions

We have presented a new algorithm for the separation of convolutive mix-
tures by incorporating the intensity vector of the acoustic field with proba-
bilistic time-frequency masking. The DOA and mixing vector cues are then
modeled by the von Mises mixture model and complex Gaussian mixture
model respectively, the parameters of which are updated iteratively via the
EM algorithm to estimate and refine the probability of each T-F unit of the
mixture belonging to each source. Based on this, a reliability-based method
is also introduced to improve the performance of source separation in which
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the points that are far away from all the mean directions are considered as
the outliers due to the effect of room reverberation.

The proposed method has been tested extensively for the mixture of two,
three and four speech sources respectively under the simulated room model
with different reverberation level, and also for real recordings acquired in a
reverberant studio with the reverberation time of approximately 0.6 s with
various angular intervals. The proposed method shows better separation
performance in SDR and PESQ as compared with the baseline methods under
almost all the situations tested.
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