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Abstract

In speech processing applications, imposing sparsity constraints on high-order

linear prediction coefficients and prediction residuals has proven successful in

overcoming some of the limitation of conventional linear predictive modeling.

However, this modeling scheme, named sparse linear prediction, is generally

formulated as a linear programming problem that comes at the expenses of a

much higher computational burden compared to the conventional approach. In

this paper, we propose to solve the optimization problem by combining splitting

methods with two approaches: the Douglas-Rachford method and the alternat-

ing direction method of multipliers. These methods allow to obtain solutions

with a higher computational efficiency, orders of magnitude faster than with

general purpose software based on interior-point methods. Furthermore, com-

putational savings are achieved by solving the sparse linear prediction problem

with lower accuracy than in previous work. In the experimental analysis, we

clearly show that a solution with lower accuracy can achieve approximately the

same performance as a high accuracy solution both objectively, in terms of pre-

diction gain, as well as with perceptually relevant measures, when evaluated in

a speech reconstruction application.
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modeling, convex optimization, linear programming, real-time optimization,

speech reconstruction, packet loss concealment.

1. Introduction

Linear prediction (LP) is a well understood technique for the analysis, mod-

eling, and coding of speech signals [1]. The widespread use of LP of speech can

be attributed to its correspondence to the source-filter model of speech produc-

tion [2, 3]. An emitted speech sound can be modeled as a combination of the

excitation process (the air flow) and the filtering process (vocal tract effect).

The vocal tract can, to a large extent, be modeled as a slow varying low-order

all-pole filter, while the air flow can be modeled by a white noise sequence, for

unvoiced sounds, or an impulse train generated by periodic vibrations of the

vocal chords pulses, for voiced sounds [4].

In speech analysis, the purpose of the all-pole model obtained through LP

is to construct a spectral envelope that models the behavior of the vocal tract.

For a segment of unvoiced speech, considering the excitation of the all-pole filter

as white noise, the envelope is the same as its power spectrum of and the LP

model coincides theoretically with the autoregressive (AR) model [5]. However,

for a segment of voiced speech, the connection is more complex. The power

spectrum of the voiced speech signal has a clear harmonic structure that can be

approximated more effectively as a line spectrum [6]. The line frequencies are

located at the multiples of the pitch frequency and their amplitude are given by

the shape of the spectral envelope.

The all-pole coefficients are usually identified by minimizing the mean-squared

(2-norm) error of the difference between the observed signal and the predicted

signal [7]. In the source-filter model, this approach yields the LP all-pole fil-

ter, thus the prediction error (the residual signal) represents the source. Un-

voiced speech lends itself readily to the principles of the 2-norm error criterion

as a means of estimating the model parameters [2]. Furthermore, the 2-norm

is consistent with an i.i.d. Gaussian interpretation of the prediction residual

[8, 9]. The quality of the 2-norm based LP all-pole model in the context of

voiced speech, which is approximately two-thirds of speech, is questionable and,

theoretically, not well-founded. In particular, the all-pole spectrum does not
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provide a good spectral envelope and sampling the spectrum at the line fre-

quencies does not provide a good approximation of their amplitudes [10]. In

general, the shortcomings of LP in spectral envelope modeling can be traced

back to the 2-norm minimization2. In particular, analyzing the goodness of

fit between a given harmonic line spectrum and its LP model, as done in [2],

a major flaw can be derived. The LP tries to cancel the input voiced speech

harmonics causing the resultant all-pole model to have poles close to the unit

circle. Consequently, the LP spectrum tends to overestimate the spectral pow-

ers at the formants, providing a sharper contour than the original vocal tract

response. A wealth of methods have been proposed to mitigate these effects.

Some of the proposed techniques involve a general rethinking of the spectral

modeling problem (notably [13, 10, 14]) while some others are based on chang-

ing the statistical assumptions made on the prediction error in the minimization

process (notably [15, 16]). Many other formulations for finding the parameter

of the all-pole model exist, a special mention is for methods that include per-

ceptual knowledge into the estimation process (e.g., [17, 18]), or account for the

non-linearities in the speech production model, e.g., [19].

Despite the wealth of alternative methods introduced to overcome the defi-

ciencies of the 2-norm criterion, traditional usage of LP methods is, however,

still confined to modeling only the spectral envelope (the vocal tract transfer

function), i.e., the short-term redundancies of speech. Hence, in the case of

voiced speech, the predictor does not fully decorrelate the speech signal because

of the long-term redundancies of the underlying pitch excitation. This means

that the residual will still have pitch pulses present and the spectrum will still

show a clear harmonic structure. The usual approach is then to employ a cas-

caded structure where, after LP is initially applied to determine the short-term

2To the authors’ knowledge, the “original sin” behind the use of the 2-norm in LP, comes

from its first application in speech coding, trying to reduce the entropy of speech for more effi-

cient encoding than simple differential pulse code modulation [11]. The fundamental theorem

of predictive quantization [12] states that the mean-squared reproduction error in predictive

encoding is equal to the mean-squared quantization error when the residual signal is presented

to the quantizer. Therefore, by minimizing the 2-norm of the residual, these variables have a

minimal variance whereby the most efficient coding is achieved.
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prediction coefficients, a long-term predictor is determined to model the har-

monic behavior of the spectrum [4]. Such a structure is arguably suboptimal

since it ignores the interaction between the two different stages [20, 21]. This

is known in the literature and early contributions have outlined gains in perfor-

mance in jointly estimating the two filters (the work in [22] is perhaps the most

successful attempt). The combination of the two filters determines a high-order

linear predictor with a pretty evident sparse characteristics.

In recent work [23, 24], a more general framework for LP was presented

with several benefit by introducing sparsity in the LP minimization framework.

This was renamed sparse linear prediction (SpLP). In particular, while rein-

troducing well-known methods to seek a short-term predictor that produces a

residual that is sparse rather than minimum variance (e.g., [16, 25]), the idea of

employing high-order SpLP (HOSpLP) to model the cascade of short-term and

long-term predictors was also introduced [26, 27]. The application of HOSpLP

was originally introduced for speech processing purposes, however its formula-

tion is intimately related to the regularization of ill-conditioned problems and

to the precise modeling of long-term redundancies, thus it quickly found ap-

plications in diverse fields, such as radar [28], geology [29], video packet-loss

concealment [30], and general signal representations [31, 32].

The SpLP problem can be posed as a linear programming problem, a special

case of convex optimization. In order to be deployed in real-time applications, it

requires its convex optimization core to be embedded directly in the algorithm

that runs online and where strict real-time constraints apply. While convex

optimization problems can be efficiently solved, both in theory, with worst-case

polynomial complexity [33], and in practice, such as [34], it is rarely limited

in its implementation by real-time constraints as discussed in [35]. The real-

time implementation of such schemes calls for application-tailored optimization

methods able to solve instances of the optimization problem at hand in a fast

and reliable way (see, e.g., [36, 37, 38] for application in signal processing).

Convex optimization solvers are usually based on iterative approaches, which is

in contrast to traditional methods relaying on closed-form solutions. This is also

the case for LP and SpLP. The former, has a closed-form solution that, e.g., can

be calculated via the Levinson-Durbin algorithm with time complexity O(N2),
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with N being the prediction order. The latter, when solved with, e.g., interior-

point methods [39, 37], has a time complexity of O(T 2N+T 3) or O(N2T +N3)

depending on the setup where T is the frame size. Thus, considering the high-

order case where N ≈ T , the sparse solution is at least a order of magnitude

more costly to achieve.

To reduce the complexity of solving the SpLP problem, we turn our atten-

tion to two other methods, specifically the Douglas-Rachford (DR) method and

the alternating direction method of multipliers (ADMM). These two methods

applied with a splitting technique that have become popular in recent years for

problems requiring only moderate accuracy, see e.g. the treatment in [40, 41].

The DR method originates from [42, 43], and have recently found applications

in signal processing problems, e.g., [44, 45]. Similar, the ADMM method orig-

inates from [46, 47] and have also found applications in signal processing, e.g.,

[48, 49]. Interestingly, there are known connections among proximal methods,

Bregman iterative regularization, and the DR and ADMM algorithms. Specifi-

cally, ADMM can be understood as the DR method applied to the dual problem

[50, 51, 52].

In this paper, we will show how to reduce the per-iteration time complexity

for an iterative solver for the SpLP problem employing splitting methods rather

than interior-point methods. The splitting methods require solving a subprob-

lem involving a symmetric positive definite Toeplitz coefficient matrix. By ex-

ploiting this particular structure, the time complexity is quadratic (O(N2+T 2))

for the initialization step but linearithmic (O(N logN+T log T )) for all the sub-

sequent iterations. In order to evaluate the approximate solutions, firstly, we as-

sess their performance via prediction gain and, secondly, assess the performance

in terms of perceptual objective quality measures in a speech reconstruction

framework. Despite solving the SpLP problem to a lower accuracy compared to

interior-point methods, the results show that the solutions still achieve similar

performance when employed in typical speech processing applications.

The paper is organized as follows. In Section 2, we present principles of linear

prediction including conventional methods and sparse linear prediction. The

proposed methods for solving the sparse linear prediction problem are presented

in Section 3, and the computational costs are assessed by timings the methods
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in Section 4. Finally, we present experimental results of the performance of

the presented predictors both in objective terms by analyzing their prediction

gains in Section 5.1 and in perceptual terms by employing them to reconstruct

missing data in a speech reconstruction framework in Section 5.2. In Section 6,

we provide additional discussions and conclude our work.

2. Principles of linear prediction

Linear prediction is based on the following model, where a stationary set of

samples of speech x[t], for t = 1, . . . , T , are written as a linear combination of

N past samples [1]

x[t] =

N∑
n=1

αnx[t− n] + r[t], (1)

where {αn} are the prediction coefficients and r[t] is the prediction error. The

optimization problem is then to find the prediction coefficient vector α =

[α1, α2, . . . , αN ]T so that the prediction error in this interval is minimized [5]. If

we rewrite this model for the segment of T samples considered in matrix form

x = Xα+ r, (2)

the optimization problem becomes

minimize
α

‖x−Xα‖pp (3)

where ‖ · ‖p is the p-norm defined as ‖x‖p = (
∑N
n=1 |x(n)|p)

1
p for p ≥ 1 and

[x|X] =


x[T1] · · · x[T1 − n]

...
. . .

...

x[T2] · · · x[T2 − n]

 . (4)

Assuming x[t] = 0 for t < 1 and t > T , the indexes T1 and T2 can be chosen in

various ways which lead to different types of solutions with different properties

[5].

2.1. Conventional linear prediction

In a common case, the starting and ending point of the window used to

determine the set of equation in (3) are chosen as T1 = 1 and T2 = T + N
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and the 2-norm is minimized (p = 2). This leads to the conventional linear

prediction problem

minimize
α

‖x−Xα‖22 (5)

with x ∈ RM×1, X ∈ RM×N , α ∈ RN×1, M = T + N , and an analytic solution

satisfying the normal equation

XTXα = XTx . (6)

This approach is also known as the Yule-Walker method for autoregressive (AR)

spectral estimation or the autocorrelation method [5]. By exploiting the Toeplitz

structure of the autocorrelation matrix R = XTX, the system can be solved

efficiently with, e.g., the Levinson–Durbin algorithm in O(N2) [1].

2.2. Long-term prediction

Generally, linear prediction models only short-term redundancies of speech,

thus is often used in combination with a single-tap or multi-tap long-term pre-

dictor [22]. The speech model for the long-term predictor is

d[t] =

K∑
k=0

φkd[t− Tp − k] + r[t], (7)

where, similarly to (1), {φk} are the prediction coefficients and r[t] is the pre-

diction error. The major difference of the model, other than the relatively small

number of taps K employed gathered around the pitch period Tp is that the

optimization problem is generally done on the (usually weighted) output of the

short-term filter d[t]. Considering the matrix form of (7)

d = Dφ+ r, (8)

we can obtain the coefficients by solving the optimization problem

minimize
φ

‖d−Dφ‖22 . (9)

The method obviously requires an estimate of Tp which can be found with a

variety of methods all with different complexity and accuracy trade-offs [6].
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2.3. Combining short-term and long-term prediction

If we consider the cascade of the long-term and short-term predictor, it is

not hard to see that a sparse high-order filter is obtained. This was noted

already in [22], and used to find short-term and long-term predictors jointly. In

particular, the sparse filter will have two well distinguished nonzero regions: the

first N taps will correspond to the short-term predictor α while the taps after

the pitch period Tp will correspond to the convolution between the short-term

and long-term coefficients % = α ∗ φ.

This gives us the opportunity of seeing the estimation problem as

minimize
v

‖x− Uυ‖22 (10)

where U is a column-wise partition of X accounting only for the nonzero ele-

ments of the combined filter υ =
[
αT %T

]T
. Again, applying the same tradi-

tional linear prediction approach shown in (5), we obtain the normal equations

UTUυ = UTx , (11)

where UTU retains a Toeplitz structure and its size is much smaller than XTX,

as only a fraction of the elements in x is used to estimate the combined predictor

υ.

2.4. High-order prediction

As mention earlier, LP of speech is well known mostly for its modeling capa-

bilities of short-term redundancies, which corresponds to a model of the envelope

of the spectrum. When the LP order increases, the model starts encompassing

more and more details of the spectrum, thus allowing for a more complete fre-

quency representation. This follows directly from the theory, where for N →∞

the spectrum of the predictor matches the one of the signal [2]. This means that

also in the voiced speech case, we can model the signal using just a high-order

LP model without worrying about, e.g., pitch estimation. However, calculating

a high-order predictor generally results in a ill-conditioned problem as the model

order N approaches the length of the frame T [53]. The ill-conditioning can be

easily tracked back to the autocorrelation matrix R = XTX. In particular, the

eigenvalue spread of the autocorrelation matrix corresponds to the ratio between
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maximum and minimum value of the power spectrum of the speech segment an-

alyzed, therefore, except for few exceptions, a high order in LP for speech makes

R easily ill-conditioned and can cause large variance of the estimated model pa-

rameters, leading to spurious peaks in the signal spectral estimate [54]. While

regularization is possible to reduce the eigenvalue spread and thus condition-

ing, this also corresponds to adding a noise floor, affecting the accuracy of the

solution.

2.5. High-order sparse linear prediction

In our recent work [24], we generalized the optimization problem in (3) by

adding a regularization criterion on the solution vector

minimize
α

‖x−Xα‖pp + γ‖α‖ll . (12)

Considering the similarities with conventional high-order LP, imposing sparsity

on the high-order predictor while retaining a 2-norm criterion on the prediction

error, the problem can be seen as a more educated regularization approach that

accounts for the sparsity of the predictor resulting from modeling short-term

and long-term redundancies [26]

minimize
α

‖x−Xα‖22 + γ‖α‖1 . (13)

However, when imposing sparsity on both the residual vector and high-order

predictor, gains can been obtained both in terms of modeling and coding per-

formance [27]

minimize
α

‖x−Xα‖1 + γ‖α‖1 . (14)

For problem (14) we denote a solution α?, objective f(α) = ‖x − Xα‖1 +

γ‖α‖1 and optimal objective f? = f(α?). The regularization term γ in (14) can

be seen as related to the prior knowledge of the prediction coefficients vector α.

While sparsity is often measured by the cardinality card(x) = |{ i |xi 6= 0 }|, we

use the more computational tractable 1-norm ‖ · ‖1, which is known throughout

the sparse recovery literature (see, e.g., [55]) to perform well as a relaxation of

the cardinality measure with equivalence in certain cases.
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3. Solving the sparse linear prediction problem

The objective function in (14), as well as the terms that compose it, is

convex but not differentiable, thus proximal gradients method are not directly

applicable [56, 57, 58]. The optimization can be solved as a general linear

programming problem using interior-point methods [39, 37]. However, solving

(14) using interior-point methods introduces certain diagonal matrices D1, D2

into the problem, such that when using the augmented form approach, it is

required to solve a linear system of equations with the coefficient matrix C =

XTD1X + D2 where D1, D2 change at each iteration. This makes it difficult

to exploit the structure in X and XTX using direct method (see, e.g., [45]).

In [37], the coefficient matrix C is explicit formed and solved via a Cholesky

factorization followed by triangular solves with a per iteration complexity of

O(M2N +M3) or O(N2M +N3) depending on the setup [37].

In the following, it is showed how to exploit the DR and the ADMM meth-

ods to reduce the per-iteration complexity. Specifically, with the use of splitting

combined with ADMM and DR methods, an auxiliary symmetric positive defi-

nite Toeplitz system arises that can be solved with a total per-iteration complex-

ity of O(N logN +M logM) (forming right-hand side and solving the system).

The algorithm for solving the system is described in the subsequent Section 3.3.

The saving in per-iteration complexity of the DR and ADMM methods re-

flects into a slower convergence than interior-point methods. However, when tai-

lored to speech processing applications, a low-accuracy solution of the problem

(14) obtained via the DR or ADMM method is sufficient for practical purposes,

as we will show in Section 5.

3.1. Douglas-Rachford

In the following we will rewrite the SpLP into a form applicable to the DR

algorithm. We will write the problem in (14) as

minimize
α

f1(α) + f2(Xα) (15)

where f1(u) = γ‖u‖1 and f2(u) = ‖x − u‖1. Introducing the variable splitting

h(u1, u2) = f1(u1)+f2(u2) the problem can be reformulated as the optimization
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problem

minimize
u1,u2

h(u1, u2)

subject to u2 = Xu1 .
(16)

Before we proceed, we define two functions. The proximal mapping of a convex

function f is given by (see, e.g., [59] or [60] for a more recent treatment)

proxf (x) = argmin
u

(
f(u) +

1

2
‖u− x‖22

)
. (17)

The Euclidean projection of x onto a set C is PC(x) given by

PC(x) = argmin
y∈C

‖x− y‖22 . (18)

Using the indicator function IC of the set C, we obtain

PC(x) = proxIC(x) . (19)

Let Q = { [u1, u2]T |u2 = Xu1 }, the Douglas-Rachford splitting method applied

to problems of the form

minimize
u∈RU

h(u)

subject to u ∈ Q
(20)

can be written in a number of equivalent forms, including [45, 51, 61]

u(k+1) = proxth(z(k)) (21)

y(k+1) = PQ(2u(k+1) − z(k)) (22)

z(k+1) = z(k) + η(y(k+1) − u(k+1)) (23)

with the iterates u(k), z(k), y(k) ∈ RU×1. Here η ∈ R is a relaxation parameter

0 < η < 2, t ∈ R, t > 0 is a step-size parameter, or, equivalently a scaling of the

problem.

The individual steps for solving the sparse linear prediction problem using

Douglas-Rachford splitting are described in the following. For the update in

(21), notice that proxth(u1, u2) = [proxtf1(u1),proxtf2(u2)]T , i.e., it is sepa-

rable since the binding is done in the constraints. A classical result is that with

f1(u1) = γ‖u1‖1
proxtf1(v) = Stγ(v) (24)

where S is the soft-thresholding function given by

(St(v))i = sign(vi) max(|vi| − t, 0) (25)
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and (·)i denotes the ith element. For f2(u) = ‖x− u‖1 we have

proxtf2(v) = argmin
u

(
t‖x− u‖1 +

1

2
‖u− v‖22

)
= x− argmin

w

(
t‖w‖1 +

1

2
‖w − (x− v)‖22

)
= x− proxt‖·‖1(x− v)

= x− St(x− v) . (26)

So, proxth(u1, u2) = [proxtf1(u1),proxtf2(u2)]T = [St(u1), x − St(x − u2)]T

can be calculated with complexity O(M + N). The projection PQ(v) is given

by

PQ(v) = argmin
u∈Q

‖u− v‖22 (27)

= argmin
u2=Xu1

‖u1 − v1‖22 + ‖u2 − v2‖22 . (28)

This is a convex quadratic problem with the KKT conditions

u1 − v1 −XT ν = 0 (29)

u2 − v2 + ν = 0 (30)

u2 = Xu1 (31)

from which we obtain

0 = u1 − v1 −XT ν (32)

= u1 − v1 −XT (v2 − u2) (33)

= u1 − v1 −XT v2 +XTXu1 . (34)

Hence we obtain the linear systems (I +XTX)u1 = v1 +XT v2 and u2 = Xu1.

The projection is then

PQ(v) =

 I

X

 (I +XTX)−1(v1 +XT v2) . (35)

To compute (35) we need to solve a linear system of equations with coefficient

matrix I + XTX and varying right-hand sides (v1 + XT v2). The coefficient
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matrix is positive definite, symmetric and Toeplitz. Specifically, let

R = XTX =


r0 r1 · · · rN−1

r1 r0 · · · rN−2
...

. . .
...

rN−1 rN−2 · · · r0

 . (36)

and

t0 = 1 + r0 (37)

tk = rk, k = 1, . . . , N − 1 (38)

then the positive definite, symmetric Toeplitz matrix is

I +XTX =


t0 t1 · · · tN−1

t1 t0 · · · tN−2
...

. . .
...

tN−1 tN−2 · · · t0

 . (39)

It is well known that linear systems with a coefficient matrix given as (39) can

be solved efficiently. We will discuss different methods in Section 3.3.

3.2. Alternating Direction Method of Multipliers

A first step in deriving an ADMM algorithm consists in reformulating the

problem in (14) as a basis pursuit problem, following the procedure in [49].

To this end, we first rewrite the unconstrained problem in (14) as an equality

constrained problem

minimize
α,e

‖e‖1 + γ‖α‖1

subject to Xα+ e = x
(40)

where e = x−Xα represents the linear prediction residual. Next, we perform a

change of variables by stacking a scaled version of the linear prediction coefficient

vector and the linear prediction residual in a new parameter vector

z̃ =

γα
e

 . (41)
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This allows to reformulate the problem in (40) using γ‖α‖1 = ‖γα‖1 in terms

of a single parameter vector as follows [49]

minimize
z̃

‖z̃‖1

subject to X̃z̃ = x̃
(42)

where

X̃ =
[
X γI

]
(43)

x̃ = γx . (44)

In a second step, we write the basis pursuit problem in (42) in the ADMM form

as explained in [40]. To this end, we define the set U = {z̃ ∈ Rm+n | X̃z̃ = x̃}

and introduce an variable ỹ ∈ Rm+n such that the basis pursuit problem can

be split over z̃ and ỹ,

minimize
z̃,ỹ

IU(z̃) + ‖ỹ‖1

subject to z̃ − ỹ = 0
. (45)

This problem formulation readily brings us to an ADMM algorithm defined by

the iterations [40]

z̃(k+1) = PU(ỹ(k) − ũ(k)) (46)

ỹ(k+1) = S1/ρ(z̃(k+1) + ũ(k)) (47)

ũ(k+1) = ũ(k) + z̃(k+1) − ỹ(k+1) . (48)

Variables z̃(k) and ỹ(k) denote iterates of the primal variables, ũ(k) denotes

the scaled dual variable, and ρ > 0 is the augmented Lagrangian parameter.

Similarities can then be seen with the DR algorithm in (21)–(23).

We will now focus on the z̃-update in (46), which is the most involved step

of the algorithm. The z̃-update consists in the projection of the point ỹ(k)− ũ(k)

onto the convex set U with the following KKT conditions

z̃ + (ỹ(k) − ũ(k))− X̃Tλ = 0 (49)

X̃z̃ = x̃ . (50)

It is instructive to rewrite these KKT conditions in terms of the original param-

eter vectors α and e by substituting the variable definitions (41), (43), and (44)
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in the KKT system (49)-(50)

γα− (ỹ
(k)
1 − ũ(k)1 )−XTλ = 0 (51)

e− (ỹ
(k)
2 − ũ(k)2 )− γλ = 0 (52)

Xα+ e = x (53)

where

ỹ(k) =

ỹ(k)1

ỹ
(k)
2

 , ũ(k) =

ũ(k)1

ũ
(k)
2

 , (54)

have been partitioned similarly to z̃ in (41). From the KKT conditions we obtain

0 = γα− (ỹ
(k)
1 − ũ(k)1 )−XTλ (55)

= γα− (ỹ
(k)
1 − ũ(k)1 )

− 1

γ
XT (e− (ỹ

(k)
2 − ũ(k)2 )) (56)

= γα− (ỹ
(k)
1 − ũ(k)1 )

− 1

γ
XT (x−Xα− (ỹ

(k)
2 − ũ(k)2 )) . (57)

This results in the following system to be solved for the linear prediction coef-

ficient vector α

(XTX + γ2I)α = XT + γ(ỹ
(k)
1 − ũ(k)1 )−XT (ỹ

(k)
2 − ũ(k)2 )

= XTx−
[
−γI XT

]
(ỹ(k) − ũ(k)) . (58)

The solution α(k+1) to this system in the (k+ 1)th ADMM iteration can be ex-

pressed as the sum of an iteration-independent term and an iteration-dependent

term,

α(k+1) = (XTX + γ2I)−1XTx︸ ︷︷ ︸
, αγ,2

− (XTX + γ2I)−1
[
−γI XT

]
︸ ︷︷ ︸

,

−γI
X

+

(ỹ(k) − ũ(k)) (59)

where (·)+ denotes the Moore-Penrose pseudo-inverse. The iteration-independent

term αγ,2 is the solution to the `2-regularized linear prediction problem in (12)
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with p = l = 2. This system may, e.g., be solved by by applying the Levinson-

Durbin algorithm to the modified autocorrelation sequence {r0 +γ2, r1, . . . , rN}

with rk as defined in (36) for k = 0, . . . , N − 1 and similarly for k = N . The

iteration-dependent term in (59) can be computed by solving a positive definite,

symmetric Toeplitz system similar to the system solved in the DR method.

The ADMM iterations (46)-(48) can hence be rewritten as follows

α(k+1) = αγ,2 −

−γI
X

+

(ỹ(k) − ũ(k)) (60)

e(k+1) = x−Xα(k+1) (61)

ỹ(k+1) = S1/ρ

γα(k+1)

e(k+1)

+ ũ(k)

 (62)

ũ(k+1) = ũ(k) +

γα(k+1)

e(k+1)

− ỹ(k+1) . (63)

Note that with ỹ(0) − ũ(0) = 0, we have α(1) = αγ,2, and the ADMM algo-

rithm can then be interpreted as iterative “sparsification” of the `2-regularized

“classical” linear prediction solution.

3.3. Solving a positive definite symmetric Toeplitz system

A classical algorithm for solving a (positive definite) symmetric Toeplitz sys-

tem is the Levinson algorithm with time complexity O(N2) and space complex-

ity O(N) [62, 63]. Algorithms like the Levinson algorithm with time complexity

O(N2) are called fast algorithms, but there also exist superfast algorithms with

time complexity O(N log2N), see [64, 65]. These algorithms also have the ad-

vantage that the first solution can be obtained in O(N log2N) and any other

solution with the same coefficient matrix but different right-hand side is possible

with linearithmic time complexity O(N logN). There are also algorithms where

there is a one time penalty of O(N2) and again all subsequent solutions with

same coefficient matrix but a different right-hand side only requires O(N logN)

[66, 65]. The constant in the first step of a superfast algorithm is large and

hence there is a break-even point in the number of operations at approximately

N = 256 for N as a base 2 number [65]. Since the experiments in Section 4 and

5 uses N < 256 and that the O(N2) algorithm in the first step is much simpler,

we use the algorithm in [66], see also [65].

16



The inverse of a Toeplitz matrix T̄ can be described by the Gohberg-Semencul

formula

δN−1T̄
−1 = T̄1T̄

T
1 − T̄T0 T̄0 (64)

where

T̄0 =


0 0 · · · 0

ρ0 0 · · · 0
...

. . .
. . .

...

ρN−2 · · · ρ0 0

 , (65)

and

T̄1 =


1 0 · · · 0

ρN−2 1 · · · 0
...

. . .
. . .

...

ρ0 · · · ρN−2 1

 , (66)

and

δN−1T̄
−1 =


1 ρN−2 · · · ρ0

ρN−2
... S

ρ0

 (67)

and S ∈ R(N−1)×(N−1) denotes the remaining submatrix. The variables δN−1

and ρ0, . . . , ρN−2 can be obtained using the Szegö recursion in O(N2) operations

as a one time-cost per system. The solution to the system T̄ x = b is then given

by

x = T̄−1b =
1

δN−1

(
T̄1T̄

T
1 b− T̄T0 T̄0b

)
. (68)

Since T̄0, T̄1 are Toeplitz, a product like T0b can be evaluated via FFTs/IFFTs,

see [66] for an algorithm for fast evaluation of (68) in O(N logN) operations.

So, all subsequent solutions with the same coefficient matrix are available in

O(N logN) operations. Recall that the coefficient matrix is XTX + I = R+ I

for the DR algorithm and XTX+γ2I = R+γ2I for the ADMM algorithm. From

the perspective of signal processing, the coefficient matrices XTX + I = R + I

and XTX+γ2I = R+γ2I are updated for each frame. It is only during each call

of the DR and ADMM algorithms that the coefficient matrix is fixed. For each

call the computation of δN−1 and ρ0, . . . , ρN−2 with appropriate discrete Fourier

transforms (DFTs) of the latter sequence can be seen as an initial caching to
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make subsequent iterations cheaper (as in, e.g., [48]). Note that the diagonal

term provides regularization to the solver.

4. Implementation and empirical computation time

The DR and ADMM algorithms for solving the SpLP problem using the

Levinson algorithm to solve the symmetric positive definite Toeplitz system,

are denoted DR-L and ADMM-L. The DR and ADMM algorithm that are

using the method in [66] to solve the symmetric positive definite Toeplitz system

are denoted DR-GS and ADMM-GS.

The algorithms3 were implemented in C++ using Intel Math Kernel Li-

brary (MKL) [67] for BLAS level 1 routines. The application of matrix-vector

product with X and XT was implemented as FFT filtering using the FFTW3

library [68]. The time from call of the solver to return was measured using

the POSIX function gettimeofday (for the C++ implementations). The tim-

ing was measured over 100 executions of each frame to average out possible

system processes (note that each frame was then static and the solvers then

run with the exact same input). The setting γ = 0.12 was found in Section 5

and fixed for all simulations. The simulations were executed on an Intel(R)

Dual Core(TM) i5-2410M CPU at 2.3 GHz with Ubuntu Linux kernel 3.2.0-32-

generic, MKL 10.3 and Matlab 7.13.0.564. The algorithms implemented with

C++ were compiled using gcc-4.8 and the -Os -march=native optimization

option. We compared the implementation with the general purpose software

Mosek 7.0 [34] and CVX+SeDuMi 1.21 [69, 70]. This problem was too large

to use CVXGEN [71]. Algorithms Cprimal and Cprimal(s/d) are presented

in [37] and were C++ implementations of interior-point methods.

Analytically motivated selections of parameters ρ, t requires that one of the

functions applied to the Douglas-Rachford setup are smooth and/or strongly

convex, see [72]. Since this is not the case, we empirically found η = 1.8 and

t = 0.1 to be useful. For the ADMM based algorithms we empirically found

ρ = 100 to be useful.

3MATLAB and C++ implementations are available from http://kom.aau.dk/~tlj/
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We chose the following stopping criteria. Algorithms ADMM-L and ADMM-

GS were stopped if

1

M +N
‖z̃(k+1) − ỹ(k+1)‖22 ≤ ε (69)

ρ

M +N
‖ỹ(k+1) − ỹ(k)‖22 ≤ ε . (70)

This reflected the primal and dual residual and was (up to a scaling of ρ = 100)

the absolute criteria in [40]. The algorithms DR-L and DR-GS were stopped

if
1

N +M
‖z(k) − z(k−1)‖22 ≤ ε . (71)

For both the DR and ADMM based algorithms we selected ε = 10−6 and also

stopped if a maximum of k = 100 iterations were reached. Such a maximum of

allowed iterations is useful to bound the worst-case execution time.

Here we presented results for T = 320, N = 250 (M = 570) processed on a 2

s speech signal sampled at 16 kHz taken from the testing database. The results

are shown in Table 1.

Methods Timings

CVX+SeDuMi 2467.29 / 1327.29/3619.74

Mosek 224.71 / 145.54/307.60

Cprimal 92.70 / 55.24/180.46

Cprimal(s/d) 63.66 / 33.59/112.09

DR-L 6.62 / 0.65/10.11

DR-GS 2.28 / 0.61/3.26

ADMM-L 2.99 / 0.65/5.14

ADMM-GS 1.29 / 0.61/1.92

Table 1: Timing in milliseconds. Format: Average/min/max. The setting is T = 320, N =

250 (M = 570).

From Table 1 we observed that the splittings methods are orders faster than

general purpose software and one order faster than hand-tailored interior-point

19



methods. It was also clear that using the algorithm [66] for solving the aux-

iliary symmetric positive definite Toeplitz system was faster that the classical

Levinson-Durbin algorithm for these dimensions (otherwise the methods were

equivalent in that the same iterations are generated). The ADMM based meth-

ods converged faster to the used stopping criteria and this was the reason for

being faster than the DR based methods. Specifically, the ADMM based al-

gorithms used on average 13.5 iterations, while the DR based algorithms used

35.3 iterations.

The splitting methods solved the problem to a low accuracy. Specifically,

using the metrics

mDR =
fDR − f?

f?
, mADMM =

fADMM − f?

f?
(72)

we observed than on average mDR and mADMM is 0.14 and 0.12, respectively,

i.e. approximately only a 10−1 sub-optimal solution (f? is approximated via the

solution from Mosek). The impact of this low accuracy was then assessed in

the experimental analysis, presented in Section 5. An example of the different

convergence behaviors of the DR and ADMM algorithms is illustrated in Fig-

ure 1 with the metric f(α(k))−f?

f? using a single frame from the simulations in

Table 1. Notice that the ADMM-L algorithm converges faster the few first

iterations. The endpoint of the graphs illustrates where the stopping criteria

was activated and stopped the iterative algorithms.

Algorithms CVX+SeDuMi, Mosek, Cprimal, Cprimal(s/d) are all

primal-dual interior-point methods, and the accuracy of these methods is all

higher than using the DR and ADMM algorithms. However, the DR and ADMM

algorithms have the advantage that some of the elements in an approximate so-

lution α̂ ≈ α? are exactly 0 due to the soft-thresholding function (25) applied at

(21) and (62). On the other-hand, interior-point methods reformulate the prob-

lem as a constrained problem and approach the solution from the interior but

never exactly reach the bound of the constraints of the reformulated problem,

such that the small magnitude elements in α̂IP ≈ α? are small but not exactly

0.
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Figure 1: Example of the convergence behavior of the algorithms DR-L and ADMM-L.

The endpoints of the graphs illustrates where the stopping criteria has become active and

stopped the iterative algorithm.

5. Experimental analysis

In this section, we outline some of the properties of the different LP mod-

els introduced in Section 2 and, in particular the SpLP method of Section 2.5

equipped with the solvers proposed in Section 3. Firstly, we present their objec-

tive spectral modeling properties by analyzing their prediction gain. Secondly,

we provide a more practical example of their modeling properties in a speech

reconstruction scenario where we also evaluate the goodness of the approximate

solutions of Section 3 through perceptual objective quality measures. The al-

gorithms compared are outlined in Table 2. The splitting methods solvers in

algorithms HOSpLPdr and HOSpLPadmm used the same stopping criteria

as outlined in Section 4. The TIMIT database [73] was chosen for the analysis

because of its manageable size with a sufficiently large number of speakers for

testing speech processing algorithms accuracy. Since our algorithms windows

are in the order of few milliseconds, we can reasonably assume that the con-

clusions of the experimental analysis done with the TIMIT dataset extent to a

larger class of speakers.
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Method Description

LTP
Combined 20 tap short-term LP and 1 tap

long-term LP calculated separately.

LTP3
Combined 20 tap short-term LP and 3 tap

long-term LP calculated separately.

LTP3j
Combined 20 tap short-term LP and 3 tap

long-term LP calculated jointly using (11).

HOLP
High-order LP with 2-norm criterion calcu-

lated with high-order (Section 2.4).

HOSpLPip
High-order sparse LP (14) obtained with inte-

rior point solution.

HOSpLPdr
High-order sparse LP (14) obtained with DR

algorithm.

HOSpLPadmm
High-order sparse LP (14) obtained with

ADMM algorithm.

Table 2: Prediction methods used for comparison.

5.1. Prediction gain

The vowel and semivowel phones [75] from the TIMIT database (sampled

at 16 kHz) were processed, belonging to 3,696 sentences from 462 speakers. We

chose the ones of duration of at least 640 samples (40 ms) for a total of about

40,000 voiced speech frames.

The methods compared are presented in Table 2. In LTP, LTP3, and

LTP3j the short-term predictor had 20 coefficients. For the purposes of com-

parison, the autocorrelation method was used for both the short-term and long-

term predictors. The value of the pitch lag in LTP and LTP3 was chosen such

that the prediction gain was maximized. This was accomplished by an exhaus-

tive search over the allowable range Tp ∈ [34, 231], as used in AMR-WB [76],

effectively covering pitch frequencies belonging to the range [69, 470] Hz. For

LTP3j, the pitch lag found in LTP3 was used in the optimization. Note that,
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while a plethora of methods exist for pitch estimation (see, e.g., [6]), we chose

the exhaustive search to guarantee the prediction performance not to be biased

by a possible erroneous estimation of the pitch lag.

In the methods HOLP, HOSpLP, HOSpLPdr and HOSpLPadmm the

order of the filter was fixed to 250, allowing to cover the above-mentioned pitch

lag range and a related bulk of nonzero coefficients clustered around the maxi-

mum allowable pitch lag. In order to find an appropriate value of the regulariza-

tion parameter, we analyzed a set of voiced speech frames (different from the one

used in the experiments) and determined the point of maximum curvature on

the curve (‖α‖1, ‖x−Xα‖1), a modified version of the L-curve [77], appropriate

to determine trade-offs between the sparsity of the predictor and the sparsity

of the residual. The regularization parameter was then chosen fixed, γ = 0.12.

For a fair comparison, after calculating HOSpLP, HOSpLPdr and HOS-

pLPadmm, only the 21 largest values were retained, this kept the actual spar-

sity of the methods the same as the simple LTP. Note that the actual number of

nonzero samples for LTP would be 40 considering the convolution of short-term

and long-term predictors in the analysis.

The average prediction gains are shown in Table 3. The 95% confidence

intervals showed a clear distinction between the various method as well as a

certain consistency in performance. Clearly, HOLP was the best performing

method. This behavior can be explained from Parsevals theorem and the power

spectrum matching properties of the all-pole spectrum obtained with 2-norm LP

that could approximate the power spectrum of a signal with arbitrarily small

error [2]. The performance of HOLP then determined the upper bound of

performance.

The methods HOSpLP, HOSpLPdr and HOSpLPadmm behaved, in

statistical terms, identically, thus providing further proof of the reliability of

the proposed fast solution, even though the latter two calculated a much less

accurate solution to the problem (14). In general, the sparseness criterion helped

providing a net reduction in the number of nonzero samples while obtaining just

slightly lower performance. The LTP, LTP3, and LTP3j methods provided

proof of the gain in prediction gain given by the joint estimation of short-

term and long-term coefficients provided by the high-order sparse model which
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METHOD card(·)
T

320 640

LTP 21 17.3±0.8 14.2±1.0

LTP3 23 22.3±0.8 19.9±0.9

LTP3j 43 24.2±0.6 22.6±0.8

HOLP 250 32.4±0.6 31.3±0.7

HOSpLPip 21 28.6±1.1 27.8±1.4

HOSpLPdr 21 28.5±1.4 27.6±1.6

HOSpLPadmm 21 28.3±1.7 27.2±1.6

Table 3: Average prediction gains for segments of different length T . A 95% confidence

interval is shown. The number of nonzero elements, card(·), is shown for comparison.

achieves more than 10 dB gain compared to traditional LTP.

A proof of concept example is shown in Figure 2 and Figure 3 for a 640

samples segment of the vowel /a/ uttered by a female speaker where the predic-

tors and related frequency magnitudes are shown. Visually, the dissimilarities

between LTP3j and the sparse methods, which behave very similarly, come

mostly from the lower order short-term predictor necessary to model the en-

velope (around 10 taps versus 20) and the larger cluster of taps around Tp

needed to model the pitch redundancies. This allowed the sparse methods not

to just have a more parsimonious representation, but also allowed for general

better modeling thanks to the sparse criteria imposed both on the predictor and

residual.

5.2. Speech Reconstruction

Considering speech as a slowly-varying process, we can verify the perfor-

mance of the different predictors presented in Table 2 in a statistical cross-

validation framework. In particular, for a given speech segment, we can deter-

mine how accurately the predictors perform in reconstructing a set of unknown

speech samples given the known samples and their prediction model. The prob-
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Figure 2: Magnitude of the frequency response of the different methods proposed. A 640

samples segment of the voiced speech (vowel /a/ uttered by a female speaker) is used for the

analysis.
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Figure 3: A 640 samples segment of the voiced speech (vowel /a/ uttered by a female speaker)

and the calculated predictors for the different methods proposed.
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lem can then be rewritten as a maximum a posteriori (MAP) estimator

maximize
xu

p(xu|xk, α) (73)

where xk represents the known samples and xu represents the unknowns sam-

ples of a given speech segment of length T and the predictor α is calculated

using only the known samples. It is therefore imperative that α is effective in

modeling the underlying statistics without underfitting or overfitting in order

to have the best estimate of xu. This problem is well-known in the statistical

audio processing literature as AR model-based speech reconstruction [74]. Con-

sidering the segment of T speech samples x as partitioned in terms of known

and unknown samples

x = Kxk + Uxu, (74)

where U and K are T × T “rearrangements” matrices that form a columnwise

partition of the identity matrix I, and if we consider the data samples x as

drawn by an AR process with parameters α, we can rewrite the interpolation

error as

e = A(Kxk + Uxu) (75)

where A is the so-called analysis matrix obtained with α [74], thus (75) is just

another way to rewrite the system of equations in (2). If we fit the interpola-

tion error into an i.i.d. Gaussian process, which is reasonable given the limited

knowledge of the reconstruction process, we obtain

p(xu|xk, α) ∝ exp(−‖e‖22) (76)

= exp(−‖A(Kxk + Uxu)‖22).

Maximizing the argument of (76), we obtain

xu = −
(
ATuAu

)−1
ATuAkxk (77)

where Au = AU and Ak = AK. This solution is then equivalent to minimizing

the mean-square error of e of (75). Note that the basic formulation given in

(73) assumes that the AR parameters are known a priori. In practice, there are

ways to obtain a robust estimate during the detection stage [74], however, in

our case we will limit ourselves to estimating α over the known speech samples.

Considering the reconstruction equations (77), it can be seen that traditional LP

27



model might fail to properly reconstruct the pitch periodicity if the estimator

of the model parameters α used to generate A do not account for long-term

redundancies.

We compared the different methods presented in Table 2 in the reconstruc-

tion approach presented in (73) to estimate the predictor used to generate the

matrix A. Differently from Section 5.1, in this section we measured the recon-

struction using the mean opinion score (MOS), as calculated through POLQA

[78], to account for perceptual qualities as well.

In this experiment we targeted both voiced and unvoiced speech, in order to

provide proof of the overall robustness of the sparse linear predictor introduced.

This is different from Section 5.1, where we targeted uniquely voiced speech as

a proof of concept. The comparison was carried out for missing segment length

Tgap of 4, 6, 8, 10, and 20 ms, respectively, 64, 96, 128, 160, and 320 samples

at 16 kHz. We process 1000 sentences coming from several different speakers

with different characteristics (gender, age, pitch, regional accent) taken from

the TIMIT database. We applied a robust speech activity detector to avoid

applying the reconstruction and calculating statistics over silence. For each file,

the losses were produced every 150 ms, the 40 ms (640 samples) before the loss

are used to generate the known vector xk, while the varying length gap forms the

unknown vector xu. The predictor was calculated with the methods presented in

Table 2 on the known vector xk, the unknown segment was then reconstructed

using (77). For comparison, we have also added a traditional low-order method

sLP of order 20.

The results shown in Table 4 gave a different perspective on the performance

of the different predictors. While the prediction gain results of Table 3 showed

HOLP to perform significantly better, in terms of perceptual quality of the

reconstructed signal the higher order did not mean higher quality, unless it has

actually a clear meaning of representing short-term and long-term redundan-

cies of the speech signal. Thus, HOSpLP, HOSpLPdr and HOSpLPadmm

performed better being more accurate and avoiding overfitting the data. It was

interesting to notice that LTP3 and LTP3j also performed fairly closely to

HOLP. The sLP method performance were close to the other 2-norm based

methods for the smallest gap size, however they decay quite rapidly as the gap
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size increased. Finally, we noted that, differently from other interpolation ap-

proaches that involve a Estimation-Maximization (EM) approach to enhance the

estimation of the AR model and reconstructed signal, while a slight increase in

mean-squared error was achieved, no improvement in MOS was actually seen.

METHOD
TGAP [ms]

4 6 8 10 20

sLP 3.92±0.09 3.15±0.15 2.96±0.16 2.30±0.18 1.71±0.22

LTP 4.13±0.07 3.44±0.14 3.17±0.12 2.71±0.09 2.45±0.13

LTP3 4.17±0.07 3.53±0.09 3.22±0.13 2.92±0.12 2.63±0.09

LTPj 4.12±0.05 3.63±0.12 3.31±0.12 3.00±0.11 2.75±0.16

HOLP 4.27±0.04 3.55±0.06 3.34±0.08 2.91±0.09 2.61±0.11

HOSpLPip 4.34±0.03 3.75±0.05 3.56±0.08 3.27±0.09 3.12±0.15

HOSpLPdr 4.34±0.02 3.74±0.08 3.55±0.07 3.27±0.11 3.12±0.12

HOSpLPadmm 4.31±0.04 3.69±0.07 3.54±0.07 3.24±0.08 3.11±0.11

Table 4: Average MOS for speech reconstruction with different gap size losses. The 40 ms

before the loss are known and used in the reconstruction framework (77). A 95% confidence

interval is shown.

6. Discussion and Conclusions

We presented algorithms suitable for finding approximate solutions to the

high-order sparse linear prediction problem in speech applications. In particular,

we pointed out that a lower accuracy and slower convergence did not affect the

overall performance of the predictors when applied in realistic applications that

required both objective and subjective quality metrics to be met. The resilience

to this approximation could be explained from the actual solution needed by

the problem being actually different from the “true” 1-norm solution found by

the interior point method. We are indeed looking for a residual and predictor

that are “small” and with sparse structures and not particularly for the 1-

norm solution. Thus, further work can include better sparse approximations,
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rather than seeking more accurate convergence methodologies, as done with,

e.g., interior point methods.
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