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Highlights

• Develop a novel cascade feature extraction method for audio-visual
speech recognition

• Firstly show the depth visual information can significantly boost visual
speech recognition

• Firstly experimentally reveal different characteristics of grey and depth
visual features

• Introduced the first large-scale audio-visual speech corpus that contains
depth information.
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Abstract

Although stereo information has been extensively used in computer vision
tasks recently, the incorporation of stereo visual information in Audio-Visual
Speech Recognition (AVSR) systems and whether it can boost the speech ac-
curacy still remains a largely undeveloped area. This paper addresses three
fundamental issues in this area: 1) Will the stereo features benefit visual and
audio-visual speech recognition? 2) If so, how much information is embed-
ded in stereo features? 3) How to encode both planar and stereo information
in a compact feature vector? In this study, we propose a comprehensive
study on the characteristics of both planar and stereo visual features, and
extensively analyse why the stereo information can boost the visual speech
recognition. Based on the different information embedded in planar and
stereo features, we present a new Cascade Hybrid Appearance Visual Fea-
ture (CHAVF) extraction scheme which successfully combines planar and
stereo visual information into a compact feature vector, and evaluate this
novel feature on visual and audio-visual connected digit recognition and iso-
lated phrase recognition. The results show that stereo information is capable
of significantly boosting the speech recognition, and the performance of our
proposed visual feature outperforms the other commonly used appearance-
based visual features on both the visual and audio-visual speech recognition
tasks. Particularly, our proposed planar-stereo visual feature yields approxi-
mately 21% relative improvement over the planar visual feature. To the best
of our knowledge, this is the first paper that extensively evaluates the dif-
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ferent characteristics of planar and stereo visual features, and we first show
that using the stereo feature along with the planar feature can significantly
boost the accuracy on a large-scale audio-visual data corpus.

Keywords: Audio-visual speech recognition, planar-stereo visual
information, hybrid-level visual feature

1. Introduction

Speech has long been acknowledged as one of the most effective and nat-
ural means of communication between human beings. In recent decades,
continuous and substantial progress has been made in the development of
Automatic Speech Recognition (ASR) systems. However, in most practical
applications the accuracy of ASR systems is negatively affected by expo-
sure to noisy environments. Research on audio-visual speech recognition has
been undertaken to overcome the recognition degradation that occurs in the
presence of acoustic noise [1]. Despite the promising application perspective,
state-of-the-art audio-visual speech recognition systems still cannot achieve
adequate performance in practical applications, because most Visual Speech
Recognition (VSR) systems use grey or colour information which is highly
sensitive to a number of variables, such as varying illumination and head
poses.

Given the limitations of the current texture information based VSR sys-
tems, exploiting stereo information can be an effective option in overcoming
these challenges. Furthermore, with the availability of affordable stereo cam-
eras, the utilisation of 3D information has led to some great successes in
the computer vision community [2, 3, 4]. However, using 3D visual informa-
tion on VSR to boost speech recognition accuracy has not been sufficiently
studied. Motivated by the encouraging performance of 3D computer vision
based methods, this paper proposes a visual and audio-visual speech recog-
nition system that combines planar and stereo information to boost visual
and audio-visual speech accuracy.

This paper makes the following two major contributions:

• First, it develops a novel cascade feature extraction method that can
effectively encode both planar and stereo visual information into a com-
pact visual feature. Moreover, this new visual feature carries both
global and local appearance-based visual information, and our paper
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shows that both local and global appearance-based visual information is
able to contribute to speech recognition. Experimental results demon-
strate that the performance of this proposed feature extraction method
achieves promising accuracy in different speech recognition tasks.

• To the best of our knowledge, this is also the first comprehensive
work that experimentally demonstrates the efficacy of stereo visual fea-
tures for speaker-independent continuous speech recognition on a large-
scale (162 speakers) audio-visual corpus. The experimental results also
demonstrate an improved performance with the integration of planar
features. Since using stereo visual information for VSR is still a largely
undeveloped area but has promising potential applications, this paper
is expected to provide the community a new perspective to overcome
the limitations of planar visual speech features.

The rest of this paper is organised as follows: Section 2 introduces some
related works. Section 3 introduces two widely used appearance-based fea-
ture extraction methods, followed by an introduction of our proposed feature
extraction scheme. The system performance is extensively evaluated in Sec-
tion 4. Finally, Section 5 sets out the relevant conclusions that can be drawn
from this research.

2. Related Works

In this section, a brief and up-to-date overview of some recent works
relating to visual and audio-visual speech recognition is presented. A more
comprehensive review can be found in [1, 5, 6].

The visual features used in visual and audio-visual speech recognition can
be divided into three main categories: i) lip appearance-based features; ii) lip
shape-based features; and iii) lip motion-based features [7]. In most visual
and audio-visual speech recognition systems, lip motion-based features work
collaboratively with the first two types of visual features to represent both
temporal and spatial information of the lips.

Appearance-based visual feature extraction methods usually consider the
whole lip or the lower face region as the most informative region for visual
speech recognition. Among appearance-based visual features, the Discrete
Cosine Transform (DCT) is the most widely used [8, 9, 10]. In terms of
the utilisation of depth information, Galatas et al. [11, 12] have conducted
encouraging pioneering research that employs depth DCT information for
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visual and audio-visual speech recognition. However, the integration of the
depth and planar DCT features did not show significant improvement over
the planar DCT features. Wang et al. [13, 14] also conducted a similar re-
search using 3D data acquired using a Kinect. However, these works used a
small audio-visual data corpus limited in both speaker number and speech
content. Furthermore, the differences between stereo and planar features
were not analysed. Given the current limitations of the stereo based visual
speech recognition research, in our work, we analysed the different charac-
teristics of planar and stereo visual features, and we propose a new feature
combination method that can integrate both planar and stereo features into
a compact feature vector, and show that the use of stereo information is
able to significantly boost speech accuracy on a large-scale audio-visual data
corpus.

In addition to DCT features, Local Binary Pattern (LBP) features have
also been widely used in the computer vision community. This feature rep-
resentation method has been shown to boost accuracy on various computer
vision tasks [15, 16]. Based on the success of the LBP feature, Zhao et al. [17]
introduced an LBP based spatio-temporal visual feature, called LBP-Three
Orthogonal Planes (LBP-TOP), and this feature achieved impressive results
in both speaker-independent and speaker-dependent visual speech recogni-
tion tasks.

Given the great success of the LBP-TOP features, numerous graph based
methods have been proposed in recent years [18, 19, 20, 21, 22, 23]. These
methods were able to non-linearly map the original LBP-TOP feature to a
more compact and discriminative feature space and achieved very promising
classification results. However, it should be noted that none of these graph-
based methods have been tested for continuous speech recognition. Zhou et
al. [24] reported that their method achieved promising results on classifying
visemes; however, it is still unclear whether the graph based method can
be used for continuous speech recognition. On the other hand, this paper
proposes a method that embeds LBP-TOP features into a compact feature
vector and experimentally shows that it is effective for continuous speech
recognition tasks.

For lip shape-based features, the lip contours of speakers are first ex-
tracted from an image sequence and a parametric or statistical lip contour
model is obtained. The parameters of the lip model are then used as visual
features; typical methods used in this category include the Active Contour
Model (ACM), the Active Shape Model (ASM) and the hybrid appearance
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and shape model, i.e., Active Appearance Model (AAM) [25, 26]. These
shape-based visual features are able to explicitly capture the shape varia-
tions of the lips; however, it should be noted that the training process of the
shape-based features is very time-consuming, as a large number of lip land-
marks need to be laboriously labelled. This manual labelling process becomes
infeasible when the corpus has a large number of recordings. Furthermore,
speech accuracy degrades if the model is not appropriately and sufficiently
trained [1]. Conversely, appearance-based feature extraction methods are
computationally efficient and do not require any training processes. Thus,
appearance-based methods are more suitable for robust visual and audio-
visual speech recognition tasks with a large number of speakers. Given the
advantages of the appearance-based visual features mentioned above, a new
framework is presented in this paper that successfully includes both pla-
nar and stereo appearance-based features. This approach is shown to boost
speech accuracy for visual and audio-visual speech recognition systems.

3. Visual Feature Extraction

In this section, two of the most widely used appearance-based visual fea-
tures of recent years are reviewed [8, 9, 10, 17, 18, 19, 20, 27, 24], (i.e., DCT
and LBP-TOP). Then, the different information types embedded in these two
appearance-based visual features are discussed. This provides a justification
for the motivation behind the proposed approach. Motivated by the differ-
ent characteristics of appearance-based features, a proposed Cascade Hybrid
Appearance Visual Feature (CHAVF) is also introduced in this section.

3.1. DCT

The DCT has been widely used in many visual and audio-visual speech
recognition systems, as it can preserve speech relevant information in a fea-
ture vector of low dimension. In this study, this is applied to a sequence of
frames of the mouth region. The DCT definition of one frame of the mouth
region video is given by:

K(i, j) =
N−1∑

y=0

N−1∑

x=0

f(x, y) cos
(π(2y + 1)j

2N

)
cos

(π(2x+ 1)i

2N

)
, (1)

for i, j, x, y = 0, 1, 2, ..., N −1, where N is the width and height of the mouth
ROI. The function f(x, y) is the planar and stereo intensity values of the
mouth ROI.
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To reduce the computational cost and retain feature discrimination, 32
low-frequency DCT coefficients were selected in a Zig-Zag left to right scan-
ning pattern. Each of these 32 DCT coefficients lie in the even columns of
the DCT images, due to the lateral symmetry of the mouth region [28]. The
32 first and 32 second temporal derivatives were computed to capture the
dynamic information of the utterances. For both planar and stereo DCT
features, these static and dynamic features were used to constitute a 96
dimensional feature vector to represent the speech-related information. Fur-
thermore, a feature mean normalisation at an utterance-level was used to
compensate for illumination variations.

3.2. LBP-TOP

Figure 1: Lip spatio-temporal feature extraction using the LBP-TOP feature extraction.
(a) Lip block volumes; (b) Lip images from three orthogonal planes; (c) LBP features
from three orthogonal planes; (d) Concatenated features for one block volume with the
appearance and motion.

As an alternative to DCT, Zhao et al. [17] introduced a spatio-temporal
local texture feature extraction based on LBP and used it for visual speech
recognition. This feature extraction method extracts LBP information from
both the spatial and the temporal domains (i.e., Three Orthogonal Planes
(TOP)). It is referred to as the LBP extracted from TOP or LBP-TOP.

Unlike the basic LBP for static images, LBP-TOP extends feature ex-
traction to the spatio-temporal domain, which makes LBP an effective dy-
namic texture descriptor. Given the 2D spatial coordinates and the temporal
coordinates, X, Y at time, T , a histogram is generated to accumulate the
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presence of different binary patterns across the XY , XT and Y T planes (see
Figure 1). Once the LBP histograms are generated from the three planes, a
feature vector is constructed by concatenating the three histograms to rep-
resent both the lip appearance and its motion. Uniform patterns [29] were
used in this study to reduce the dimension of the LBP-TOP feature vector,
and the dimensionality of the LBP-TOP feature is 177.

To improve speech recognition performance, the mouth region was further
divided into several subregions, as elaborated in [17], to extract LBP-TOP
features from each subregion and concatenate the respective features. We
experimentally found that the mouth image needs to be divided into 2 × 5
regions (see Figure 2) to achieve the best results. Hence, extracting the
planar and stereo LBP-TOP features from the 2×5 regions results in a 1770-
dimensional feature (177× 2× 5), and a 3540-dimensional hybrid feature is
formed after concatenating planar and stereo features.

Figure 2: The mouth region is divided into 10 subregions.

3.3. Cascade Hybrid Appearance Visual Feature Extraction

Comparing two most commonly used appearance features (i.e., DCT and
LBP-TOP) introduced above, one can note that these two feature methods
extract features from two different information representation perspectives.
As detailed in Eq. 1, each component Y (i, j) of the DCT feature is a rep-
resentation of the entire mouth region at a particular frequency. Thus, the
DCT is a global feature representation method. Conversely, the LBP-TOP
feature uses a descriptor to represent the local information in a small neigh-
bourhood. Therefore, the LBP-TOP is a local feature representation. Also,
as experimentally analysed in Section 4, these two types of features carry dif-
ferent kinds of information. Therefore, finding a way to embed both global
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and local information into a compact visual feature vector should achieve
better speech accuracy compared to the individual application of these two
widely used visual features. However, simply concatenating these two types
of features is not practical for speech recognition, as the feature vector would
be too large and make the system succumb to the curse of dimensionality.
Hence, a feature dimension reduction process is essential to represent both
local and global information in a single compact feature vector. The above
analysis motivated the development of a cascade feature extraction frame-
work that was able to combine both global and local information using a
compact feature vector.

Figure 3: Cascade Hybrid Appearance Visual Feature (CHAVF) extraction.

Figure 3 provides an overview of the proposed system. In the first stage,
the mouth image sequence is fed into the feature extraction block that con-
sisted of two parallel procedures; that is, global appearance-based and local
appearance-based feature extraction. The global appearance-based feature
extraction uses DCT to preserve speech relevant information with a 192 di-
mensional feature vector (see Section 3.1). LDA is then used to reduce the
dimensionality of the DCT feature vector.

However, it was found that LDA usually fails to obtain a proper trans-
formation for feature reduction when the raw 3540-dimensional LBP-TOP
feature was applied on large-scale continuous speech recognition. Consider
the continuous digit sequence recognition introduced in Section 4; in this
experiment, HMMs were employed to model each of the 11 digits (two pro-
nunciations for zero). Thus, the total target classification for LDA was 330
(i.e., 30 × 11). However, modelling LDA on 3540-dimensional features for
330 classes would require an extremely large amount of video data. The data
corpus used in this work is one of the largest digit sequence corpus avail-
able; however, the amount of data (approximately 300,000 frames) was still
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insufficient for LDA modelling.
Besides the conventional LDA, a kernel LDA [30] that nonlinearly maps

the original LBP-TOP features to a feature space using the kernel trick could
solve this insufficient data problem, a kernel LDA is computationally expen-
sive and, in this case, would have been intractable, as the number of training
examples would have been too large for a kernel LDA to process. Yu and
Yang [31] proposed a direct LDA to overcome the training difficulty when
the number of training samples is smaller than the feature dimension. In our
work, we compared our proposed method with the direct LDA based method,
and report the results in Section 4.2.

In addition to LDA and its variants, in recent years, numerous graph-
based feature reduction methods for LBP-TOP have been proposed [18, 19,
20, 21, 22, 23]; however, all of these works focus on the speech classification
problem that represents a simpler data reduction problem than the one used
for the continuous speech recognition task. Furthermore, the high computa-
tional requirements limit its applicability to this task. Fortunately, Gurban
et al. [8] proposed less computationally demanding methods, called Mutual
Information Feature Selectors (MIFS) for visual speech recognition. The
MIFS for LBP-TOP feature reduction was chosen for two reasons. First,
MIFS has a strong theoretical justification that comes from the Fanos in-
equality [32]. The Fano’s inequality gives a lower bound probability of error
in the system. Thus, a feature with high mutual information of classes is
more helpful for classification. Second, the MIFS is computationally efficient
because no complex training process is required. Thus, given the amount of
data in the corpus and the task being performed, MIFS is an effective option
for solving this problem, as it creates a good balance between the quality of
features and the computational time.

Among the different types of MIFSs, the simplest method for selecting
feature components is the Maximum Mutual Information (MMI). Let xi

M be
the visual feature of the frame i (i = 1, 2, ..., n) in the M -dimensional space,
SM (in our system, M is the dimension of the raw LBP-TOP feature, i.e.,
3540). Here n is the total number of frames over the entire collection of
video sequences used for training. A feature subset Sk (k ≤M , in this work,
k = 310) is selected using MMI:

Sk = Sk−1 ∪ { arg max
xj∈(SM\Sk−1)

I(xj;C)}, (2)

where C is one of the 330 classes used in this work, and xj ∈ (SM \ Sk−1)
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means that xj is in the feature space SM , but does not belong to the subset
Sk−1. The mutual information I(xj;C) can be estimated as:

I(xj;C) =
∑

x∈xj

∑

c∈C
p(x, c) log

p(x, c)

p(x)p(c)
, (3)

where p(x, c) = p(xj = x,C = c) is the joint probability density function
of xj and C. In our system, a histogram with 100 bins is used to compute
the mutual information. Therefore, p(x) can be estimated using the total
number of training samples and the total number of training samples that
falls into the interval bxc ≤ x ≤ dxe.

Obviously, MMI (Eq. 2) finds the k most informative feature dimen-
sions from the original space in the information theoretic sense. However,
it does not necessarily follow that this set of k feature components is the
most informative feature set for target classification; rather, this feature set
could have a rich redundancy. Peng et al. [33] proposed another type of
MIFS called minimal-Redundancy-Maximal-Relevance (mRMR) that takes
the feature redundancy into consideration:

Sk = Sk−1 ∪ { arg max
xj∈(SM\Sk−1)

[I(xj;C)− 1

k − 1

∑

xl∈Sk−1

I(xj;xl)]}, (4)

where I(xj;xl) is the mutual information between the feature components
xj and xl, which can be calculated using Eq. 5. I(xj;xl) acts as a penalty
term to approximate the feature redundancy between different feature com-
ponents.

I(xj;xl) =
∑

x1∈xj

∑

x2∈xl

p(x1, x2) log
p(x1, x2)

p(x1)p(x2)
, (5)

Another MIFS which has been widely used is the Conditional Mutual
Information (CMI) [34]. It uses the relevant redundancy between features
when the class labels are given:

Sk = Sk−1 ∪ { arg max
xj∈(SM\Sk−1)

[I(xj;C)− max
xl∈Sk−1

I(xj;xl|C)]}, (6)

where the penalty term I(xj;xl|C) takes the class into account, and is given
by:

I(xj;xl|C) =
∑

x1∈xj

∑

x2∈xl

∑

c∈C
p(x1, x2, c) log

p(c)p(x1, x2, c)

p(x1, c)p(x2, c)
, (7)
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Comparing Eq. 4 with Eq. 6, the CMI appears to be more pertinent
to the classification task than mRMR, as the penalty term of CMI would
be relevant to the classification task. However, calculating the penalty term
I(xj;xl;C) would require a much larger amount of data compared to the
estimation of the penalty term I(xj;xl) of mRMR [8].

As explained in Section 4, it was found that mRMR performs much bet-
ter on the LBP-TOP feature than MMI and CMI. Consequently, mRMR was
chosen as the feature selector for the proposed CHAVF. After the extraction
of the relatively compact DCT and LBP-TOP features, their concatenation
remained very large for the classifier to process. Thus, LDA was again used
to further reduce the dimensionality of the features. With the application of
the proposed novel cascade feature extraction framework, information rep-
resenting different characteristics (i.e., global and local) and modalities (i.e.,
texture and stereo) was successfully embedded into a compact feature vector.
To the best of our knowledge, this is the first compact visual feature type
that can represent speech relevant information from multiple information
representation aspects.

4. Performance Evaluation and Results

Two data corpora were used in this work. The AusTalk (see Section
4.1.1) was used for speaker-independent visual speech recognition (Section
4.2) and speaker-independent audio-visual speech recognition (Section 4.4).
The OuluVS (see Section 4.1.2) was used for the speaker-independent visual
phrase classification experiments (Section 4.3)

4.1. The AusTalk and OuluVS Corpora

4.1.1. AusTalk

Since this paper mainly focuses on how to employ stereo visual informa-
tion for speech recognition, a suitable corpus that contains stereo data needs
to be used. In terms of existing corpora which contain stereo data, the data
from AV@CAR [35] only contains stereo facial expression information and
does not have any 3D visual speech related content. Hence, it cannot be
used for stereo visual speech recognition. Although the WAPUSK20 [36] and
the AVOZES [37] contain 3D speech data, these data corpora are limited in
either the number of speakers or speech content. Hence, we used a recently
developed data corpus that addresses these limitations.
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Figure 4: The recording environments and devices used to collect the AusTalk data.

The main data corpus used in this paper was collected by an Australia
wide research project called AusTalk, funded by the Australian Research
Council [38, 39, 40, 41]. This research project involved more than 30 scientists
from 11 Australian universities and resulted in the creation of a large-scale
data corpus that can be used in audio-visual speech recognition research.
The AusTalk corpus consists of a large 3D audio-visual database of spoken
Australian English recorded at 15 different locations in each of Australias
states and territories; the contemporary voices of 1,000 Australian English
speakers of all ages were recorded to capture variations in accents, linguistic
characteristics and speech patterns. To satisfy a variety of speech driven
tasks, several types of data was recorded, including isolated words, digit
sequences and sentences.

To collect the AusTalk data, a Standard Speech Science Infrastructure
Black Box (SSSIBB) was designed [40]. The recording equipment includes
head-worn and desktop microphones, digital audio acquisition devices and
a stereo camera (see Figure 4). A Bumblebee stereo camera, mounted ap-
proximately 50cm from the speakers, was used to collect the 3D information
of the speakers in addition to the texture (RGB) information. Although the
accuracy of this stereo camera is not as high as some more expensive cameras
used in other 3D driven tasks (e.g., those used by the 3dMD company [42]
for precise surface imaging based applications), it is a low cost stereo camera
which can be used in a much wider range of real-life applications. The details
for the extraction of the audio and visual features can be found in [41] and
the configuration parameters of the Bumblebee camera are listed in Table 1.
Figure 5 represents a few video data samples.

To generate the required planar-level and stereo-level information, face
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Table 1: Bumblebee camera configuration used for building our system.

Attribute Value
Resolution 640× 480

Disparity Range [41, 137]
Stereo Mask 11

Edge Correlation On
Edge Mask 7

Sub-pixel Interpolation On
Surface Validation On

Surface Validation Size 400
Surface Validation Difference On

Uniqueness Validation On
Uniqueness Validation Threshold 1.44

Texture Validation On
Texture Validation Threshold 0.4

Back Forth Validation On

Figure 5: Sample RGB images and meshes from the AusTalk visual dataset.
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detection is first performed, and the face ROIs are cropped from the original
stream using the Haar features and Adaboost [43]. In order to align the
face to the same position and to correct the head pose, the Iterative Closest
Point (ICP) algorithm [44] is applied on the depth data. To reduce the
computational load of the face alignment, only the upper faces are used,
because the upper face can be considered as rigid and is therefore less affected
by facial expressions [45]. The upper face of the first frame is used as the
reference model, and the upper faces of the remaining frames are registered
to the reference model. Then, a cubic interpolation is performed to fill in
holes and reduce noise (e.g., spikes). Given the aligned point cloud faces, the
mouth region can then be easily cropped by applying the Haar features and
Adaboost. We use a square of 50mm × 50mm centred at the mouth centre
to crop the mouth. Since there is a one-to-one correspondence between the
points in the face point cloud and the pixels in its corresponding texture
image, the 2D mouth images (50× 50) can be extracted in this step as well.

To show the effectiveness of the proposed method in a large-scale, speaker
independent, continuous speech recognition task, experiments were conducted
using the digit sequence session of the AusTalk data corpus. In this session,
12 4-digit sequences were collected from each of the speakers (see Table 2).
For digit ‘0, two pronunciations (i.e., zero and oh) were used to capture the
different speech habits. This set of digit strings was carefully designed to en-
sure that each digit (i.e., 0-9) occurred at least once in each serial position.
Take digit ‘1’ for example, as listed in Table 2, it occurs in the 4th recording
‘123z’ (in the first position), the 1st recording ‘z123’ (in the second posi-
tion), the 10th recording ‘3z12’ (in the third position), and the 7th recording
‘23z1’ (in the fourth position). The digits in the data corpus were read in
a random manner without any unnatural pause to simulate PIN recognition
and telephone dialing tasks. This configuration differs to the popular audio-
visual data corpus like CUAVE [46] that reads digits in a sequential manner
with a relatively long pause between digits. The random digit sequences that
were recorded in AusTalk made the recognition task more difficult; moreover,
this configuration also ensured that the digit recording of the data corpus
was more balanced. To capture any within-speaker variability over time,
each participant speaker was encouraged to attend two separate recording
sessions. There was at least a one-month gap between the two recording
sessions; however, the speech contents recorded in these two sessions were
identical. As not all speakers attended a second session, some recordings
only contain data from the first session. In this study, data recordings from
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162 speakers (around 1,900 utterances) were used. Of these 162 speakers,
148 speakers attended one recording session and 14 speakers attended both
recording sessions. However, a small number of recordings were not used for
speech recognition due to several technical issues. For example, the speakers
involuntarily moved their head and body during the recording, so that the
stereo camera failed to extract useful depth information. Given the large
amount of data that we used in this research, it is not feasible to manually
crop the mouth region from the image. Hence, an Adaboost based face and
mouth detection algorithm was used, and in some cases the face and mouth
detection failed to detect the mouth from the videos. Like some other works
that have had similar issues [17, 18, 19, 20, 24], these recordings are removed
from the data corpus, and 1861 (out of 1992) recordings were used in our
experiments.

Table 2: Digit sequences in the AusTalk data corpus. For the digit ‘0’, there are two
possible pronunciations: ‘zero’ (‘z’) and ‘oh’ (‘o’).

No. Digits No. Digits No. Digits
01 z123 02 942o 03 6785
04 123z 05 7856 06 2o94
07 23z1 08 49o2 09 8567
10 3z12 11 5678 12 0429

In the proposed work, the Hidden Markov Toolkit (HTK) [47] was used to
implement HMMs for digit sequence recognition. In this experiment, the digit
recognition task was treated as a connected word speech recognition problem
with a simple syntax (i.e., any combination of digits and silence was allowed
in any order). With respect to the HMM model, 11 word models were used
with 30 states to model 11 digit pronunciations, a 5-state HMM was used
to model the silence of the beginning and the end of the recording, and a 3-
state HMM was used to model the short pause between the digit utterances.
Each HMM state was modelled by nine Gaussian Mixtures with diagonal
covariance. In relation to the experimental setup, the 162-speaker digit data
recordings were divided into 10 groups; the speakers in the different groups
did not overlap. A 10-fold cross validation was then employed to increase
the statistical significance of the results. The average speech accuracy of 10
runs was then reported.
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4.1.2. OuluVS

In recent years, the majority of high-quality work in this area has focused
on speech classification [6]. OuluVS [17] was used to compare the proposed
CHAVF with other state-of-the-art systems. OuluVS, a widely used data
corpus that performs speech classification, is a visual-only data corpus com-
prising of 10 English phrases (see Table 3) uttered by 17 male speakers and 3
female speakers. The data in this corpus was collected using a SONY DSR-
200AP 3CCD-camera with a frame rate of 25 fps. Each phrase was repeated
nine times by each speaker. As in Zhao et al. work [17], 817 sequences from
20 speakers were used in our experiments. The second degree polynomial
kernel Support Vector Machine (SVM) was used as the classifier. This is the
same classifier as the one used in [17, 18]. In terms of the verification process,
a leave-one-speaker-out approach was adopted, such that the recordings of
19 speakers was used for the training dataset and the left out speaker was
used to test the data for each of the 20 runs.

Table 3: The 10 phrases in OuluVS data corpus.

No. Phrase No. Phrase
01 Excuse me 02 Goodbye
03 Hello 04 How are you
05 Nice to meet you 06 See you
07 I am sorry 08 Thank you
09 Have a good time 10 You are welcome

4.2. Speaker-Independent Visual Speech Recognition

To examine the amount of relevant information for planar and stereo
visual features, the mutual information (see Eq. 3) of the different visual
components are plotted in Figure 6. In relation to the DCT features, Fig-
ures 6a and 6b show that the amount of information carried by planar and
stereo is quite different. This is an interesting observation firstly revealed
by this work, and explains why the integration of planar and stereo features
by our proposed method is capable of boosting speech recognition accuracy.
Furthermore, these two kinds of visual features also share a common char-
acteristic. The DCT static coefficients had more discriminative information
about the classes (i.e., the states of digit HMM models) than the dynamic
coefficients. Previous studies found similar results for the hVd words recog-
nition from a linear discriminative perspective [48]. The hVd words are a set
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of words starting with the letter ‘h’, a vowel in the middle and ending with
the letter ‘d’ and they are important for acoustic-phonetic analysis. Both
works show that the DCT static features were more discriminative than the
dynamic ones.

In this study, it was found that the mutual information of feature com-
ponents that contribute to both visual and audio-visual speech recognition
is usually larger than 0.3. Figure 6a and Figure 6b show that the number of
stereo DCT components that have considerably large mutual information I
(I ≥ 0.3) was much smaller than the planar counterpart (31 vs. 10). The dif-
ference between the planar and the stereo features does not necessarily mean
that the planar features were more informative than the stereo features, as
high information redundancy may exist in the planar features.

For the LBP-TOP features, the mutual information of each mouth subre-
gion (see Figure 2) has been listed in Figures 6c and 6d. From these figures,
it can be observed that the planar LBP-TOP components of the lower mouth
regions (i.e., region VI to region X in Figure 2) were more informative than
the components of the upper mouth regions (i.e., region I to region V in
Figure 2). This is consistent with the observation that in human speech
production most movements for talking occur in the lower lip and the jaw.
An experiment on LBP-TOP features was also carried out (see Table 4 for
the results). As displayed in Table 4, the accuracy was about 10% higher
after the mouth region was divided into 2 × 5 blocks. Thus, the mouth re-
gion subdivision scheme introduced in Section 3.2 boosted speech accuracy.
Interestingly, unlike the DCT feature introduced above, for the LBP-TOP
features, the temporal features (i.e., the features extracted from the XT and
YT planes) were generally more informative than the spatial features (i.e., the
features extracted from the XY plane). These complementary behaviours of
DCT and LBP-TOP features explain why our proposed method is effective,
as our method is able to automatically obtain more static speech-relevant
information from the DCT, while incorporating more dynamic information
from the LBP-TOP.

Figure 7 shows the visual-only speech recognition results using the hybrid-
level, planar (grey-level) and stereo (depth-level) DCT and LBP-TOP fea-
tures with LDA and the MIFS selection methods (i.e., MMI, mRMR and
CMI). For the DCT visual features, the use of LDA achieved the highest
accuracy for planar, stereo and hybrid-level features (i.e., 54.66%, 55.19%,
and 64.93%, respectively). Also, it is interesting to note that with the appli-
cation of LDA, the accuracy achieved by the stereo DCT feature was almost
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Figure 6: The comparison of the amount of relevant information (I(xj ;C)) embedded in
different types of feature dimensions. 19
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Figure 7: The performance of visual-only speech recognition using various feature types
and feature reduction techniques: planar (gray-level) DCT (Figure 7a), stereo (depth-level)
DCT (Figure 7b), hybrid-level DCT (Figure 7c), planar (gray-level) LBP-TOP (Figure 7d),
stereo (depth-level) LBP-TOP (Figure 7e), hybrid-level LBP-TOP (Figure 7c).
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Table 4: Planar LBP-TOP feature. The superscript 1 × 1 which represents the entire
lip region are fed into the feature extraction procedure without subdivision, while the
superscript 2×5 which represents the mouth region is divided into 10 subregions as shown
in Figure 2. The subscript represents the radii of the spatial and temporal axes (i.e., X,
Y and T ) and the number of neighbouring points in these three orthogonal planes are 8
and 3, respectively.

Feature Type Feature Extraction Visual Speech Accuracy

Planar
LBP − TOP 1×1

8,3 46.78%
LBP − TOP 2×5

8,3 53.06%

Stereo
LBP − TOP 1×1

8 3 35.31%
LBP − TOP 2×5

8,3 45.28%

the same as that achieved by the planar DCT feature (i.e., 55.19% versus
54.66%). This indicates that while the stereo images were quite noisy and
the stereo lip regions were barely visible to human eyes (see Figure 5), the
stereo DCT feature was still capable of representing relevant geometrical in-
formation. One reason for the promising accuracy yielded by the low quality
stereo image sequences is that the stereo DCT is a global feature represen-
tation method that is insensitive to image noise. In relation to the hybrid
DCT feature that combines both planar and stereo global information, the
visual speech accuracy was approximately 10% higher than either of the cor-
responding planar and stereo features.

In relation to the LBP-TOP visual feature, with the application of mRMR,
the 290-dimensional planar, 310-dimensional stereo and 310-dimensional hybrid-
level features yielded 53.06%, 45.28% and 52.04%, respectively accuracy (see
Figure 7). Note that the stereo LBP-TOP feature did not perform as well
as the planar LBP-TOP feature. As illustrated in Figure 5, the quality of
the stereo images was much worse than the quality of the RGB images. As
the LBP-TOP is a local information representation method, it is sensitive
to the noise of the image. Thus, the performance of the planar LBP-TOP
feature was better than that of its stereo counterpart. As can be seen in
Figure 7, the different speech recognition performance demonstrated by pla-
nar and stereo features explains the superiority of our proposed method, i.e.,
to boost speech recognition accuracy, our method can automatically encode
more planar information using a global extraction method, while encoding
less stereo information from a local perspective.

As explained in Section 3.3, after MIFS was applied to select the most in-
formative components from the raw LBP-TOP feature, LDA was used to fur-
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Figure 8: The visual-only speech recognition performance of the mRMR selected LBP-
TOP features followed by LDA for further feature dimension reduction.

ther reduce the feature dimensionality. In relation to MIFS, mRMR achieved
the highest visual speech accuracy for the hybrid-level LBP-TOP with a fea-
ture dimension of 310 as evident in Figure 7. Thus, a 310-dimensional hybrid
LBP-TOP feature vector was used that was selected by mRMR for further
dimensionality reduction. Figure 8 shows the visual-only speech recognition
performance of the mRMR selected LBP-TOP features followed by LDA for
the further feature dimension reduction. As shown in Table 5, the accuracy
of the planar, stereo and hybrid-level LBP-TOP features with mRMR were
53.06%, 45.28% and 53.54%, respectively. Using LDA for further feature
reduction, the visual speech accuracy for the planar, stereo and hybrid-level
features were 57.23%, 52.17%, 59.11%, respectively. These results show that
the novel cascade feature reduction framework proposed in this paper is very
effective for visual speech recognition.

As summarised in Table 5, for the planar features, both the DCT and the
LBP-TOP feature achieved promising accuracy and the LBP-TOP feature
(at 57.24%) performed better than its DCT counterpart (at 54.66%). Zhao
et al. [17] also found that the planar LBP-TOP feature was superior to the
DCT feature. In relation to the stereo visual features, unlike their planar
counterparts, the DCT feature outperformed the LBP-TOP feature (55.19%
versus 52.17%), as the global information representation (i.e., DCT) was
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features and our proposed method.

Modality Feature Dimension Accuracy

Planar

DCT + MMI [8] 60 52.32%
DCT + mRMR [8] 60 52.21%

DCT + CMI [8] 80 51.14%
DCT + LDA 20 54.66%

LBP-TOP [17] + MMI [8] 290 52.46%
LBP-TOP [17] + mRMR [8] 310 53.06%

LBP-TOP [17] + CMI [8] 310 37.06%
LBP-TOP + mRMR + LDA 40 57.24%

Stereo

DCT + MMI [8] 30 50.98%
DCT + mRMR [17] 20 50.04%

DCT + CMI [8] 20 48.89%
DCT + LDA 10 55.20%

LBP-TOP [17] + MMI [8] 310 44.60%
LBP-TOP [17] + mRMR [8] 310 45.28%

LBP-TOP [17] + CMI [8] 310 34.74%
LBP-TOP + mRMR + LDA 30 52.17%

Hybrid

DCT + MMI [8] 70 59.98%
DCT + mRMR [8] 50 60.82%

DCT + CMI [8] 80 58.18%
DCT + LDA 20 64.93%

LBP-TOP [17] + CCA [49] 294 41.53%
LBP-TOP [17] + MMI [8] 310 53.54%

LBP-TOP [17] + mRMR [8] 310 54.28%
LBP-TOP [17] + CMI [8] 310 37.06%

LBP-TOP [17] + direct LDA[31] 40 52.32%
LBP-TOP + mRMR + LDA 30 59.11%

CHAVF using CCA 40 64.34%
CHAVF 50 69.18%
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more suitable to extracting information from noisy stereo images.
Obviously, the planar, the stereo DCT and LBP-TOP visual features

contained considerable speech related information. Thus, combining these
information sources to form a more discriminate visual feature should have
boosted speech accuracy. It is clear that for both DCT and LBP-TOP fea-
tures the integration of the planar and the stereo information yielded better
speech accuracy as compared to any of the single modalities (see Table 5).
Specifically, the accuracy obtained by the hybrid DCT feature was 64.93%
(i.e., 10 % higher than the standard planar DCT feature that was 54.66%).
The stereo LBP-TOP feature did not perform as well as its planar coun-
terpart; however, the integration of the stereo local information with the
planar local information still yielded a better accuracy (i.e., 59.11%) and
was approximately 2% higher than the standard planar LBP-TOP feature
(i.e., 57.24%). This confirms one significant aspect of this study; that is,
even low quality stereo visual data can be used for speech recognition. Fur-
thermore, visual speech accuracy significantly increases by integrating both
stereo and planar visual features.

As introduced in Section 3.3, the conventional LDA cannot be used for the
LBP-TOP feature because of the high dimensionality of LBP-TOP. Hence,
in our experiments we compared our method with an LDA variant, i.e., the
direct LDA. Our proposed cascade feature reduction scheme showed superi-
ority over the direct LDA method (59.11% vs 52.32%). Since the direct LDA
is a special case of LDA, it only works well in applications with well-separated
classes [50], and therefore did not outperform our proposed method.

In relation to the proposed hybrid visual feature extraction scheme, it not
only combined two separate information resources (i.e., the planar modality
and the stereo modality), it also took into account two complementary infor-
mation representation methods (i.e., local and global information). Thus, the
proposed feature extraction framework was able to produce an even higher
level of speech accuracy. The visual speech accuracy of the proposed feature
(i.e., CHAVF) was 69.18% and outperformed all the listed visual features (see
Table 5,). Compared with the DCT+LDA, the proposed CHAVF yielded an
overall improvement of approximately 4.25% .

The major contribution of our work is a feature extraction scheme that
can represent visual speech information from different views. We also com-
pared our results with Canonical Correlation Analysis (CCA), which is one
of the most popular techniques used for multi-view feature learning [51]. The
same with the LDA training, introduced in Section 3.3, 330 HMM states for

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

11 digits were used as targets in the classification for CCA. After employing
CCA, two 20-dimensional feature vectors were produced for each of the DCT
and LBP-TOP features. Concatenating these two feature vectors results in
a 40-dimensional feature, which constitutes the hybrid CCA based feature.
The first experiment we performed used CCA on planar and stereo LBP-
TOP features to learn a hybrid LBP-TOP feature. Experimental results
showed that the hybrid LBP-TOP feature with our proposed cascade feature
dimension reduction scheme yielded a significantly better result compared
with the CCA learning scheme (59.11% vs 41.53%). The second experiment
used CCA to learn a combined local-global hybrid feature. We replaced the
LDA at the second stage of our proposed scheme (as shown in Fig. 3) with
CCA, and our proposed method with LDA outperformed the CCA variants
(69.18% vs 64.34%).

To gain insight into why the proposed feature outperformed other visual
features, a recently introduced visualisation method called t-SNE [52] was
used to produce 2D embeddings of visual features. Data points close in the
high dimensional feature space are also close in the 2D space produced by
t-SNE. Figure 9 shows the 2D mapping of the proposed method and several
features that achieved the best visual speech accuracy in their corresponding
categories. The data points in Figure 9 represent video frames and different
colours correspond to different classes (i.e., the different states of the HMM
models). For clarity, the fifth state of each digit HMM model for visuali-
sation was randomly chosen. Figure 9 shows the integration of planar and
stereo features were more visually distinctive compared to conventional pla-
nar visual features (see Figures 9e and 9f) that exhibited more dispersion
(see Figures 9a to 9d). Thus, from the data visualisation perspective, Figure
9 highlights a key finding of this study; that is, the quality of a visual feature
can be improved by the integration of both stereo and planar visual features.

In addition to comparing our proposed method with other feature-level
fusion methods, we also compared our method with classifier-level fusion
methods. In this work, the Multi-Stream HMM (MSHMM) was used to fuse
the classification results from the DCT and LBP-TOP features. The HMM
training for DCT and LBP-TOP features was conducted separately. In the
test step, the emission likelihood was computed as:

log bj(o
fuse
t ) = λdct log bj(o

dct
t ) + λlbp log bj(o

lbp
t ), (8)

where bj(o
fuse
t ), bj(o

dct
t ) and bj(o

lbp
t ) are the joint emission probability, the

DCT stream emission probability and the LBP-TOP stream emission prob-
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Figure 9: 2D t-SNE visualisation of different visual features with various feature reduction
techniques. Figure 9a: Planar DCT+LDA; Figure 9b: Planar LBP+mRMR+LDA; Figure
9c: Stereo DCT+LDA; Figure 9d: Stereo LBP+mRMR+LDA; Figure 9e: Hybrid-level
DCT+LDA; Figure 9f: Our proposed CHAVF.
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ability, respectively. The λdct and λlbp are the weights of the DCT and the
LBP-TOP streams, and λdct + λlbp = 1. The transition probability of the
MSHMM was estimated by the weighted sum of the transitions for each
stream. In our experiments, the weight of each stream was carefully ad-
justed to ensure the best performance can be achieved.

In our experiment, we used the hybrid DCT+LDA (64.93%) and the
hybrid LBP-TOP+mRMR (54.28%) as the two streams of the MSHMM,
because they achieved the best results on the VSR task using a single-
stream HMM. After feeding these into multi-stream HMM using suitably
adjusted weights, this yielded an accuracy of 65.24%. Next, we employed
the same multi-stream HMM for DCT + LDA and LBP-TOP with our
proposed cascade feature extraction scheme, and achieved a very promis-
ing result (66.49%). This indicates that our proposed scheme cannot only
be used for feature-level VSR, but is also effective for classifier-level VSR.
Despite the impressive accuracy from the classifier-level fusion, our proposed
CHAVF achieved a better result (69.18% vs 66.49%).

Table 6: Comparison between our proposed method and the classifier-level fusion methods

Feature Weight Accuracy
DCT + LDA (64.93%) 0.9

65.24%
LBPTOP + mRMR (54.28%) 0.1

DCT + LDA (64.93%) 0.8
66.49%

LBPTOP + mRMR + LDA (59.11%) 0.2

Proposed CHAVF 69.18%

4.3. Speaker-Independent Visual Phrase Classification

To compare the proposed CHAVF with the state-of-the-art systems, a
visual phrase classification task was performed using an SVM classifier on
the popular OuluVS data corpus. In the previous continuous visual speech
recognition task (see Section 4.2), both DCT and LBP features were ex-
tracted and fed into an HMM recogniser frame by frame. However, in this
speech classification task, the visual features were extracted from each frame
of each video, and average pooling, i.e., the mean vector of all features, was
used to ensure that the visual feature has a fixed length.

Table 7 lists the classification results on the OuluVS dataset comparing
the proposed method to some of the state-of-the-art systems. It shows that
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the proposed CHAVF was able to outperform the LBP-TOP feature [17] and
sequential pattern boosting [19]. The latent variable models [24] achieved
a better accuracy than the proposed method; however, the training process
was more computationally complex than that of the proposed method. Fur-
thermore, this method could not be used on the continuous visual speech
recognition task. The proposed method also had an accuracy level similar to
that of the transported square-root vector field [23]. However, that method
was tested using a speaker-dependent condition [23] and the proposed method
was tested using the more difficult speaker-independent condition.

Table 7: Visual speech classification comparison on the OuluVS data corpus. ‡ The results
is reported in terms of speaker-dependent speech classification.

Method Results
LBP-TOP (TMM2009 [17]) 62.4%

Sequential Pattern Boosting (BMVC 2011 [19]) 65.6%
Transported Square-Root Vector Field (CVPR 2014 [23])‡ 70.6%

Latent Variable Models (PAMI2014 [24]) 76.6%
Our proposed-CHAVF 68.9%

4.4. Speaker-Independent Audio-Visual Speech Recognition

To show that the proposed visual features could boost audio-only speech
recognition, audio-visual speech recognition experiments were performed un-
der varying noise levels. The MSHMM was used to model the audio and
visual signals. The training of the MSHMM was conducted separately for the
audio and visual stream under clean acoustic conditions. The test conditions
were conducted under various SNR conditions representing the degradation
of the audio stream.

In this study, different levels of additive white noise were used to demon-
strate the robustness to audio degradation of the audio-visual speech recogni-
tion system. The proposed CHAVF and the most commonly used DCT+LDA
planar (grey-level) features were used for the experiment and the correspond-
ing audio-visual speech recognition results are listed in Figure 10.

It should be noted that the main aim of this paper was to prove the
superiority of the hybrid visual features. The automatic selection of the
weights for the audio and visual streams according to different noise levels
was beyond the scope of this paper. Thus, the audio and visual weights
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(listed in Table 8) were empirically chosen to ensure that the best audio-
visual fusion results were achieved.

Table 8: The Audio Weight (AW) and the Video Weight (VW) of the MSHMM.

SNR AW VW SNR AW VW
clean 0.9 0.1 10dB 0.6 0.4
30dB 0.8 0.2 00dB 0.2 0.8
20dB 0.8 0.2 -5dB 0.1 0.9

In an acoustically clean environment (i.e., 30dB), the audio-visual fusion
results were equivalent to those obtained by audio features only. However,
assigning a small weight (i.e., 0.1− 0.2) to the visual stream audio-visual fu-
sion results (i.e., 96.87%) still led to slightly better results than that achieved
by the audio-only results (i.e., 96.52%). With an increase in the noise level,
the recognition performance using audio-only features degraded significantly
from 96.52% (i.e., 30dB) to 17.08% (i.e., -5dB). Conversely, the audio-visual
fusion recognition performance experienced a relatively small decrease due
to the utilisation of the video signals. Furthermore, it should be noted that
under very noisy environments the audio-visual speech accuracy was only
slightly above visual-only accuracy, as the visual modality then took on the
dominant role in the recognition process.

Encouragingly, this can achieve an improvement of more than 10% with
audio-visual recognition over any individual modality using the correct choice
of audio and visual weights; for example, with the proposed CHAVF features,
the audio-only and visual-only speech accuracy was 67.86% and 69.18%, re-
spectively. However, the combined audio-visual system yielded an impressive
accuracy (i.e., 80.49%) under the 10dB SNR condition. Thus, confirming that
the complementary information provided by the visual features could be used
to improve the overall recognition performance in moderate noise conditions
(i.e., between 20dB and 0dB SNR).

5. Conclusion

This study investigated the integration of stereo visual features with tradi-
tional planar features to boost audio-visual speech accuracy. Notably, it was
shown that the proposed novel feature extraction scheme that successfully
combined planar and stereo visual information outperformed the state-of-
the-art appearance features. We also showed that, even with the application
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Figure 10: Multistream HMM audio-visual digit classification results with various white
noise SNR levels for different types of visual features.

of low-quality stereo visual features, integrating both stereo and planar visual
features led to a significant increase in visual speech accuracy.

This study also showed the different characteristics of planar and stereo
features using information theoretic techniques and explained how these char-
acteristics could benefit speech recognition. Furthermore, an analysis of the
different characteristics of the planar and stereo features revealed the reasons
why the stereo visual features significantly boosted the visual and audio-
visual speech recognition results. After the fusion of the audio and visual
signals, the experimental results showed that the proposed visual features
markedly improve the audio-visual speech recognition performance in the
presence of additive white noise interference.

It appears that this is the first paper to comprehensively analyse the
benefits of using the hybrid (i.e., a combination of planar and stereo) visual
features for the audio-visual speech recognition task on a newly collected
large-scale 3D audio-visual corpus. Thus, this study provides a new perspec-
tive that effectively solves the low visual speech accuracy problem in the area
of visual and audio-visual speech recognition.
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