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Abstract

In the last decade, i-vector and Joint Factor Analysis (JFA) approaches

to speaker modeling have become ubiquitous in the area of automatic speaker

recognition. Both of these techniques involve the computation of posterior

probabilities, using either Gaussian Mixture Models (GMM) or Deep Neural

Networks (DNN), as a prior step to estimating i-vectors or speaker factors.

GMMs focus on implicitly modeling phonetic information of acoustic fea-

tures while DNNs focus on explicitly modeling phonetic/linguistic units. For

text-dependent speaker verification, DNN-based systems have considerably

outperformed GMM for fixed-phrase tasks. However, both approaches ignore

phone sequence information. In this paper, we aim at exploiting this infor-

mation by using Dynamic Time Warping (DTW) with speaker-informative

features. These features are obtained from i-vector models extracted over

short speech segments, also called online i-vectors. Probabilistic Linear Dis-

criminant Analysis (PLDA) is further used to project online i-vectors onto a

speaker-discriminative subspace. The proposed DTW approach obtained at
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least 74% relative improvement in equal error rate on the RSR corpus over

other state-of-the-art approaches, including i-vector and JFA.

Keywords: Text-dependent speaker verification, DNN posteriors, Dynamic

Time Warping

1. Introduction

Text-independent Speaker Verification (SV) is concerned with the verifi-

cation of a claimed identity against a speech recording without constraints.

For several years, the i-vector framework (Dehak et al., 2011) has been con-

sidered as state-of-the-art approach in text-independent SV. Together with

discriminative techniques such as Linear Discriminant Analysis (LDA) and

Probabilistic Linear Discriminant Analysis (PLDA), i-vectors are able to

compactly and efficiently represent speaker identity from speech recordings.

However, the performance obtained by i-vector systems is still not satis-

factory in many conditions, especially for short recordings (Motlicek et al.,

2015). Another considerable drawback is the need for enormous amounts of

data for training models. Nevertheless, by constraining the speaker to utter

a specific content, also called text-dependent mode of authentication, the

performance can be expected to increase considerably.

Phrase-based text-dependent SV involves the authentication of a claimed

identity against a speaker speaking a known phrase. This phrase can be

speaker-specific or common to all speakers and the phrase spoken by the

speaker during enrollment phase may be different from the test phrase. In

this work, we consider the scenario where the phrases chosen by the system

during testing have already been uttered by the speaker during enrollment.
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Accepting a claim involves recognizing both the speaker (based on its acoustic

characteristics) and the phrase content of a speech utterance. In other words,

impostor trials can be divided into three categories: (i) the content (phrase)

does not match, (ii) the speaker does not match, and (iii) neither the speaker

nor content matches.

State-of-the-art text-dependent SV systems are able to exploit text con-

straints to obtain high recognition accuracy (Kenny et al., 2014a; Dey et al.,

2016a). These systems are inspired by text-independent techniques such

as i-vector and Joint Factor Analysis (JFA) (Kenny et al., 2014b; Novoselov

et al., 2014; Zeinali et al., 2015) being tailored to the text-dependent SV task.

Besides intra-speaker and inter-session variabilities, text-dependent SV sys-

tems also need to deal with content variability. Short utterance durations

pose common problems as well.

Content or linguistic information is relevant to text-dependent SV sys-

tems as accept/reject decisions are directly linked to it. Content informa-

tion has been introduced into conventional SV systems in different ways.

Phoneme-dependent Gaussian Mixture Model - Universal Background Mod-

els (GMM-UBM) were used to extract speaker-adapted mean supervectors

that were later classified using Support Vector Machines (SVM) (Zhang

et al., 2007). Recent work uses Deep Neural Network (DNN) based Suffi-

cient Statistics (SS) to compute i-vectors (Lei et al., 2014). Unlike conven-

tional GMM-UBM, DNNs are trained in a supervised manner using phonetic

classes obtained after forced alignment of the training data usually with

Hidden Markov Model (HMM)/GMM acoustic models of Automatic Speech

Recognition (ASR) system.
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Motivated by the above results, our recent work explored various model-

ing frameworks such as i-vectors and JFA by applying SS extracted using a

DNN for text-dependent SV (Dey et al., 2016a). Experimental carried out

on the RSR database (Larcher et al., 2014) indicate superior performance

of the JFA approach (Dey et al., 2016a). Even though JFA explicitly mod-

els phonetic content for text-dependent task, sequence information for the

content variability is still ignored. Considering that content information can

be decomposed into phonetic units (PU) and its sequence, i.e. the phone

sequence information (PSI), standard i-vector and JFA systems obtain the

same verification score for any permutation of the PSI. For the phrase “OK

Google”, which comprises the sequence of phones /@U"keI’gu:g@l/, the permu-

tation /"gu:g@l@U"keI/ would be expected to obtain the same score. This is

due to the fact that SS depend only on the average feature characteristics in

the i-vector and JFA frameworks. In this paper, we aim at exploiting both

PU and PSI.

In Su and Wegmann (2016), sequence information is partially used in an

i-vector system by computing SS from the HMM/DNN based ASR decoder

(employing a Language Model (LM) in addition to acoustic modeling). The

posteriors obtained after decoding, which is designed to model long-term

temporal information of the speech signal, are more sparse than the posteriors

directly estimated by DNN acoustic model.

An alternative to exploit sequence information explicitly using template

matching technique, i.e. Dynamic Time Warping (DTW), which has shown

to perform well for text-dependent SV (Jelil et al., 2015; Dey et al., 2016a).

Compared to applying conventional spectral features in the DTW algorithm,
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posteriors extracted from DNN and GMM-UBM have been successfully used.

It has been observed that DTW using DNN posterior features provides

good performance in the “content-mismatch” conditions (Dey et al., 2016a).

However, this system performed poorly in the “speaker-mismatch” condi-

tion, probably due to content-discriminative features being computed using a

DNN. In this condition, the i-vector and JFA systems performed better (Dey

et al., 2016a).

In this paper, we extend our earlier work on DTW-based systems (Dey

et al., 2016a) and propose to incorporate speaker-informative features gener-

ated by an i-vector system. Although conventional i-vector systems are usu-

ally applied over long utterances (2.5 mins) in SV tasks, it has been shown

that computing i-vectors from short segments of speech (also termed as on-

line i-vectors) can also contain sufficient speaker information for the speaker

diarization task (Madikeri et al., 2015). In this work, we propose to use

online i-vectors for text-dependent SV by estimating sequences of online i-

vectors computed over the whole utterance. The DTW algorithm is used as a

backend, matching enrollment and test online i-vector sequences. Since both

PU and PSI are incorporated in this approach, better speaker recognition

performance is expected compared to baseline systems exploiting PU only.

PLDA model is further trained to discriminate the speaker-content variabil-

ity of the online i-vectors. The model was used to obtain speaker-content

projected i-vectors to be used in the DTW algorithm. These techniques are

evaluated on the fixed-phrase parts of the RedDots (Lee et al., 2015) and

RSR (Larcher et al., 2014) corpora, both designed for text-dependent SV.

In this paper, two different approaches to text-dependent SV (model-
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based and sequence-based) are described. The paper is organized as follows:

model-based SV approaches, (i-vector, JFA) are described in Section 2. DTW

approaches are described in Section 3. Section 4 introduces the experimental

setup for evaluating the SV systems and Section 5 presents the results for

the proposed systems. Finally, conclusions are presented in Section 6.

2. Speaker Modeling approaches

The conventional approaches to text-dependent SV system for charac-

terizing speakers is based on GMM based techniques. It assumes that the

speaker data is generated from a GMM. In this work, we describe three

techniques to model speakers, namely, (i) Maximum-a-Posteriori (MAP), (ii)

i-vector, and (iii) JFA, which are referred to as model-based SV systems. The

MAP models speaker by a set of Gaussians, which are obtained by adapt-

ing the UBM. The subspace approaches (i-vector and JFA) assume that the

invariant speaker characteristics to lie in a low dimensional subspace. The

speakers are represented by a fixed-dimension vector in the subspace.

2.1. GMM based baseline system

The model-based SV techniques (MAP, i-vector and JFA) computes SS

from a GMM. The zeroth order (Nk) and first order (fk) statistics of an

utterance O = { o1, o2, · · · , oM} are given by the following equations

Nk =
∑
t

γk,t (1)

fk =
∑
t

γk,tot, (2)
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where γk,t is the posterior probability of kth Gaussian unit given feature

ot. These SS are then used by the MAP, i-vector and JFA approaches for

estimating the parameters of the respective models.

2.1.1. MAP

In the MAP framework, a GMM, also referred to as the UBM, is estimated

by pooling data from all the speakers (Reynolds et al., 2000). To enroll a

speaker, the training data is used to adapt the parameters of the UBM with

respect to the MAP criterion. In practice, adapting only the means has been

shown to be sufficient. The mean of the adapted-GMM is a linear interpola-

tion of UBM mean supervector and first order statistics (fk from Equation 2).

To verify a claim against a speaker the likelihood of the utterance is computed

with respect to the adapted-GMM. This technique can be effective in condi-

tions where there is limited or no speaker labels to estimate parameters of

PLDA (in the i-vector system) or JFA models. However, the MAP technique

using GMM-UBM does not capture the sequence information of the speech

signal. To exploit the text constraints of the task, we consider MAP using

HMM/GMM (Shinoda, 2011) (denoted to as HMM/GMM-MAP) as one of

the baseline systems. In this approach, monophone or context-dependent

phone system is trained in a supervised manner. The alignment of the en-

rollment data is used to adapt the HMM/GMM model. The details of the

system can be found in Matsui and Furui (1993).

2.1.2. I-vector system

In the i-vector framework, the mean supervector of an utterance is trans-

formed using a low dimension total variability matrix, as given by the fol-
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lowing equation

s = µ + Tw, (3)

where s is the mean supervector, µ is the mean supervector of the UBM.

The matrix T defines a low rank projection of the mean supervectors. The

low-dimensional projections, w, are called i-vectors.

Estimating the i-vector representation of an utterance involves comput-

ing the zeroth and first order statistics with respect to the UBM (Glembek

et al., 2011) (Equations 1 and 2). The statistics accumulate information

over the entire speech recording thereby losing much of the content infor-

mation that can be important for text-dependent speaker verification. The

content variability is modelled by explicitly training a back-end classifier,

usually a PLDA model, with multiple examples of speaker-phrase combi-

nations (Larcher et al., 2014; Dey et al., 2016a). In a simplified PLDA

model (Romero and Wilson, 2011), an i-vector (w) can be decomposed into

speaker factors (h) and channel effects as follows:

w = m + Vh + ε, (4)

where m is the mean of the i-vectors, V is the speaker subspace and ε is the

residue term that captures inter-session variabilities.

Data used to train the PLDA plays a critical role in determining the

performance of the speaker verification system. Modeling PLDA requires

multiple speaker-phrase combinations from many speakers. Moreover for the

models to be generalizable, data consisting of a large variety of speaker-

phrases are required. Otherwise, the model can overfit to a specific set of

speakers or phrases.
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2.1.3. JFA system

JFA can be used as an alternative to the i-vector-PLDA approach men-

tioned earlier for text-dependent speaker verification by explicitly modeling

the content variability as a separate factor (Kenny et al., 2014c,a). The JFA

model is given as follows

s = µ + Dz + Ux , (5)

where D is a diagonal matrix capturing the speaker variabilities, z is the cor-

responding latent vector representing the speaker-phrase, U is the Eigenchan-

nel matrix and x is the corresponding channel factor representing the channel

effects of a speech recording. The hyperparameters, D and U, are estimated

based on the Expectation Maximization (EM) algorithm (Kenny et al., 2005).

Given the hyperparameters, we use the Gauss-Seidel approach (Vogt et al.,

2005; Vogt and Sridharan, 2008) to obtain estimates of z and x for a speech

recording.

2.2. DNN based system

The parameters and latent factors in the i-vector and JFA models are

estimated using the posteriors from a GMM. In the past, several studies

have suggested that integrating linguistic information into speaker recogni-

tion systems can be useful (Lei et al., 2014; Motlicek et al., 2015; Park and

Hazen, 2002; Sturim et al., 2002; Baker et al., 2005). In HMM/DNN auto-

matic speech recognition (Lei et al., 2014), state posterior probabilities are

obtained at the output of the DNN acoustic model. These are used to com-

pute SS using the feature vectors of an utterance. This approach achieved
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significant improvements over a baseline i-vector system (Lei et al., 2014).

This suggests that i-vectors benefit from the acoustic space being partitioned

by well-defined linguistic units. Clearly, this is difficult to achieve using un-

supervised training, as used for GMM-UBM estimation.

After the successful integration of DNNs in the i-vector text-independent

system, we explored its application to text-dependent systems. Indeed, the

same approach could be readily applied to JFA systems as well. The use

of DNN in the MAP approach has not been studied in the literature. It is

beyond the scope of this paper to explore techniques for incorporating DNN

in the MAP framework for SV.

2.2.1. HMM/DNN ASR system

In ASR, the acoustic models are context-dependent tied states (Povey

et al., 2011) (also called senones), obtained using a decision tree based on

contextual and data-driven criteria. A HMM/GMM system provides the

state alignment for the training data, used to extract state labels for DNN

training. The DNN uses a final softmax output layer aims at estimating the

posterior probabilities of such tied states from input features. Given the large

number of DNN outputs, the estimated posterior vectors tend to be sparse.

A major drawback of training such a DNN is the need for a large amount

of transcribed data. On the other side, posteriors for well defined linguistic

units are obtained.

Although HMM/DNN system provides state-of-the-art ASR performance

in matched condition, there is still a significant gap in performance for mis-

matched conditions (Huang et al., 2014). In literature, to address the do-

main mismatch problem (Gemello et al., 2006; Li and Sim, 2010), the acous-
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tic model is adapted to the evaluation condition using a small amount of

transcribed data. In a DNN framework, it is usually done by adapting the

weights of one of the layer keeping others layers fixed. The weights of the

last layer of the DNN are adapted using a limited amount of transcribed do-

main data with the senone-discriminative backpropagation algorithm. The

adapted-DNN provides better ASR results on the evaluation data than the

DNN trained in resource rich domain. Thus we believe that the better ASR

system will help in SV process.

3. Template matching

DNN-based approaches to i-vector/JFA modeling use PU information as

target classes. However, the PSI of the phrase is ignored. We believe that

exploiting the PSI in addition to PU will further improve performance, as text

constraints for the task are being considered. One approach to implicitly use

PSI in i-vector system is by estimating senone posteriors obtained after ASR

decoding. These posteriors capture the long term context of speech signal as

it is computed from decoded output (using LM and lexical model) (Su and

Wegmann, 2016).

An alternative method to use the PSI is to model the idiosyncrasies of

the speaker. A speaker not only has distinctive acoustic features but uses

language in a characteristic manner, also called idiosyncrasies (Amino et al.,

2006)). These distinctive patterns of the speaker are usually expressed in

terms of usage of words, phonemes (Shriberg, 2007; Campbell et al., 2003).

In Campbell et al. (2003), PSI was used to estimate phone N-gram frequency.

However, these approaches are mainly used as a source of high-level speaker-
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Figure 1: Extraction of online i-vectors.

dependent features. As such, they have been used to enhance the perfor-

mance of acoustic-based SV systems.

In a different direction, the spectral vectors of the speech signal, consist-

ing of a specific phone sequence, have been used with DTW algorithm (Dey

et al., 2016a; Jelil et al., 2015). This approach was shown to be effective for

matching sequence of features and outperforms the model-based SV systems

in content-mismatch conditions (Dey et al., 2016a), while in speaker mis-

match condition, it provides reasonable accuracy. Motivated by the achieved

results and the fact that DTW has not been investigated well enough after

the emergence of subspace based techniques, we intend to further explore the

DTW technique to address the text-dependent SV problem.

3.1. DTW system

The DTW algorithm is a dynamic programming technique to compute the

distance between two sequences of spectral vectors of arbitary length, and is

commonly applied in query-by-example spoken term detection and other data

mining tasks (Rodriguez-Fuentes et al., 2014; Keogh and Ratanamahatana,

2005). Being a non-parametric approach, it is well-suited for limited- or zero-
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resource tasks (Versteegh et al., 2015). The algorithm takes two sequences of

features as input and finds the minimum cost mapping between them. The

procedure involves computing all possible local distance between the two

sequences (within a given range) and then back-tracking along the optimal

path in terms of minimum distance (Brown and Rabiner, 1982). The DTW

system performs well for the text-dependent SV task, especially for content-

mismatch trials, due to the constraint in the spoken phrase (Dey et al.,

2016a).

In a conventional DTW system, MFCCs are used as input features to the

DTW algorithm for performing text-dependent SV (Ramasubramanian et al.,

2006). Besides MFCCs, senone posteriors have also been used as features to

the algorithm (Dey et al., 2016a) by replacing Euclidean distance by the

Kullback-Leibler (KL) divergence measure. Impressive gains were obtained

with respect to a state-of-the-art i-vector system on content-mismatch con-

ditions, while on speaker-mismatch trials, the system performs reasonably

well (Dey et al., 2016a). As expected, the results indicate that these fea-

tures might not contain enough speaker information to address a speaker

recognition task. In the speaker-mismatch condition, the i-vector and JFA

approaches performed considerably better than the DTW system. In view

of these results, we propose to introduce speaker-informative features in the

DTW algorithm. An i-vector system is used to extract these features. As

opposed to the conventional approach of estimating i-vector for a whole ut-

terance (2.5 mins for text-independent and 3 s for text-dependent systems),

we propose to compute i-vectors on short segments of speech around 200ms.

These features have also been referred to as online i-vectors (Peddinti et al.,
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2015; Madikeri et al., 2015).

3.1.1. Online i-vector features

The online i-vector features have been recently used for speech recognition

and speaker diarization tasks, where it has shown promising results (Peddinti

et al., 2015; Madikeri et al., 2015). In ASR, online i-vectors have been used for

the purpose of adapting neural networks to speakers (Peddinti et al., 2015).

In this case, online i-vectors are used as an input to the neural network, in

addition to spectral features, to enhance speaker-specific information. The

results obtained by this approach indicate that online i-vectors contain suf-

ficient speaker information to improve ASR performance.

Online i-vectors have also been applied for the speaker diarization task

within the Information Bottleneck (IB) framework for speaker clustering (Madik-

eri et al., 2015; Vijayasenan et al., 2011; Tishby et al., 2000). In this work,

online i-vectors were appended to MFCC features to be fed into the speaker

clustering algorithm. The additional gain in performance obtained by this

approach compared to using only the spectral features suggests that the on-

line i-vector representation carries speaker information as well. Motivated

by the progress in content and speaker oriented tasks, we propose using on-

line i-vectors as features for DTW systems. We now proceed to describe the

method to apply online i-vectors.

Figure 1 illustrates the process of extracting online i-vectors from the

speech signal. Let the speech utterance contains ‘M’ frames of speech given

by O = {o1, · · · , oM}, where ot is the tth speech frame. The online i-vector

corresponding to tth speech frame of an utterance is computed with a context

size of L frames. The SS are computed on the sequence of speech frames,
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starting from t - L to t + L, for obtaining tth feature vector. For a context

size L = 10 frames, a sliding window of 21 frames is used with a shift step of 1

frame. Windows are centered at each frame in the utterance, which results in

fewer frames being considered at the utterance boundaries. The correspond-

ing sequence of online i-vectors is represented by W = {w1,w2, · · · ,wM}

for an utterance. To compare two sequences of online i-vectors, the DTW

algorithm is used with the cosine distance metric as given by the following

equation

d(wi,wj) = 1− w′iwj

||wi|| ||wj||
,

where wi and wj are two i-vectors, d(wi, wj) is the cosine distance between

them and ||.|| represents the vector norm.

DTW scores computed on online i-vectors are expected to reflect both

content and speaker similarities between enrollment and test templates. A

window length of 200ms, corresponding to average syllable duration, is able

to capture both types of information.

3.1.2. PLDA projection features

A channel compensation model, such as PLDA, is usually applied on

top of i-vectors in text-independent SV systems. The PLDA model produces

verification scores by comparing two i-vectors. We apply the PLDA model on

top of online i-vectors as we believe that it will help to factor out unnecessary

channel information from the features. Training a PLDA model for the SV

task uses speaker labels to define a set of classes to be discriminated. It

is common to have multiple instances of speaker labelled i-vectors available

for large text-independent datasets (Romero and McCree, 2014; Lei et al.,
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2014). For a text-dependent scenario, the outcome of the task is linked to

identifying content and speaker. This motivates the use of speaker-content

classes for PLDA training (Dey et al., 2016a; Larcher et al., 2014). Besides

labeling content as whole phrases, phone classes can be obtained from a

forced alignment of the data against given transcripts as well. Speaker labels

are typically available as meta-data provided as part of the dataset. In this

work, we experiment with both speaker-phrase and speaker-phone labels for

training the PLDA hyperparameters on online i-vectors. PLDA is usually

trained with speaker-phrase labels for text-dependent SV task (Dey et al.,

2016a; Larcher et al., 2014). We now describe the training procedure for

PLDA with speaker-phone labels only.

The sequence of online i-vector features is extracted for qth utterance

of speaker sk, which is represented by Wsk
q = {wsk

1,q,w
sk
2,q, · · · ,w

sk
M,q}. The

HMM/DNN based ASR system is used to align the speech signal with respect

to the senone classes, which are then mapped to obtain the phone labels. We

create a set of P phone classes for the speaker (sk) ({Dsk
1 , Dsk

2 , Dsk
3 , · · · ,

Dsk
P }) for training the PLDA model, with the online i-vector wsk

t ∈ Dsk
r if tth

MFCC feature of the utterance is aligned to rth monophone. In a database

with S speakers, we have S×P classes for training the PLDA model.

DTW uses online i-vectors after projection onto the inter-class PLDA sub-

space, also called PLDA projections. The cosine distance between enrollment

and test templates is used for this purpose. In this process, PLDA compen-

sates for variabilities other than speaker-content, such as channel variability.

The PLDA projections have been successfully used in related speech pro-

cessing tasks such as speaker diarization and domain adaptation (Dey et al.,
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2016b; Madikeri et al., 2015). A reasonable gain in performance for speaker

diarization is observed as compared to the system using only i-vector, which

suggests that the PLDA model has enhanced the speaker representation of

i-vectors (Madikeri et al., 2015).

The PLDA projection features are obtained as follows. From the PLDA

model of Equation 4, the probability distribution of the speaker factor is

given by the following equation

p(h|w) = N (m
′
,C), (6)

where the m
′

is the mean and C is the covariance matrix of the Gaussian

distribution. The mean is given by

m
′
= CVΣ−1(w −m), (7)

where Σ is the covariance matrix of the error term of Equation 4 and I is

the identity matrix. The covariance matrix (C) is given by

C = (I + V′Σ−1V)−1.

In this work, we refer the mean of the Gaussian distribution (m
′
) as the

PLDA projection feature (the point estimate of the posterior distribution of

the speaker factor), which is subsequently applied in the DTW framework.

The PLDA projection vector of a frame of speech is obtained by first com-

puting the online i-vector and then projecting in the PLDA subspace as given

by the Equation 7. Thus for an utterance, the number of PLDA-projection

features is same as the speech frames.
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4. Experimental Setup

In this section, we describe the experimental setup for the baseline and

the proposed systems, the configurations of the i-vector PLDA, JFA and the

HMM/DNN based ASR systems. The systems are evaluated on RSR and

RedDots database according to the protocol in Larcher et al. (2014); Lee

et al. (2015). Following the setup in Larcher et al. (2014); Dey et al. (2016a),

the system performance is evaluated on three conditions, labeled as Cond1,

Cond2, Cond3 and an additional condition (Cond-all) with the trials from all

three conditions put together. In condition 1, each trial is associated with de-

termining if the phrases are the same or different. In condition 2, the system

is required to differentiate speakers pronouncing the same content. In con-

dition 3, both the speaker and the phrase can be different. Performance for

the systems are presented in terms of Equal Error Rate (EER) and minimum

Decision Cost Function (minDCF) with the probability of target being 0.01,

cost of false alarm error probability being 1 and cost of miss error probability

being 10.

4.1. Training and Evaluation data

4.1.1. Experimental setup on the RSR dataset (female)

The training data is drawn from Fisher English (∼120 h) female. This

subset of data contains 1.2k utterances with an average duration of 5 min-

utes per utterance. The choice of Fisher database as a training set was

primarily motivated by the requirement of a well-transcribed and standard-

ized data. Following the setup in Dey et al. (2016a); Larcher et al. (2014), the

PLDA and JFA models are trained on development set of RSR (female). The

18



Part1 (female) part of RSR data contains 143 female speakers pronouncing

30 fixed passphrases spreading over nine sessions. Speakers are divided into

three parts, background, development and evaluation portions. Data is col-

lected from six different mobile devices with an average duration of 3 s. The

development data contains 49 speakers with 12’661 utterances. Evaluation

data contains enrollment utterances which are recorded from a fixed mobile

device while the test data comes from other devices. The number of speakers

in the evaluation part is 47 with 8’810 test utterances. All speech files are

down-sampled to 8 kHz for compatibility with other datasets used for system

development.

4.1.2. Experimental setup on the RedDots dataset (male)

The training data for experiments on the RedDots is drawn from the

Fisher male (∼120 h), similar to the above experimental setup. Since no

development data was available for the experiments on RedDots, we choose

the RSR, male data from Part1. The Part1 portion (male subset) of the

RSR dataset is used as the development data with 42’305 utterances from

157 speakers. We evaluated our systems on the Part4 portion of RedDots

database (Lee et al., 2015). The evaluation data of this dataset was dis-

tributed during the Interspeech 2016 Special session (RedDots, 2016). Com-

pared to RSR, the RedDots contains more sessions of recording of speech

data from each speaker. The dataset contains 52 sessions per speaker, with

one session per week. Thus the challenge of the systems is to compensate for

the long term intra-speaker variability (in addition to inter-speaker variabil-

ity). We evaluated our system only on the male set of the database (Part4

text-dependent task only). The Part4 consists of 35 speakers pronouncing
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fixed passphrases (which are different from the phrases of the RSR dataset).

It contains a total of 5’696 target trials and 5’229’952 impostor trials, out of

which conditions 1, 2 and 3 contain 131’002, 99’264 and 4’999’686 impostor

trials, respectively. Similar to previous experimental setup, the speech files

are downsampled to 8 kHz for compatibility with other datasets.

4.2. Feature Extraction and Voice Activity Detection

MFCC features of 20 dimensions are extracted from 25 ms of frame of

speech signal with 10 ms sliding window, appended with the delta and double

delta features. Short-time gaussianization is applied to the features using a

3 s sliding window (Pelecanos and Sridharan, 2001). The Hungarian phoneme

recognizer is used to detect voice activity by comparing the sum of posteriors

over phone classes with the posterior of silence class to classify each frame as

speech or non-speech. This is used to mark the start and end points of the

speech region in the utterance (Brummer et al., 2010).

4.3. i-vector and JFA configurations

We implemented two gender-dependent UBMs (one male and another

female) comprising of 1’024 components using the training data. The pa-

rameters of i-vector extractors are estimated with the similar training data

as used for UBMs. The dimension of extractors is fixed to 400. The param-

eters of the JFA systems are estimated with speaker-phrase labels using the

development data (as mentioned in the Sections 4.1.1 and 4.1.2). The rank

of the eigenchannel matrix U (of Equation 5) is fixed to 50.
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Table 1: Performance of the DNN and adapted-DNN (female) based ASR system on RSR

and Fisher subset in terms of WER(%).

Systems/Conditions Fisher RSR

DNN 24.5 85.0

adapted-DNN 28.2 17.1

4.4. HMM/GMM-MAP system configurations

In order to use HMM/GMM system in a MAP framework which has

comparable number of parameters as GMM-UBM system, we implemented

monophone based ASR system. Compared to the state-of-the-art context-

dependent based ASR that typically uses more than 100k Gaussians (Povey

et al., 2011), our implementation of HMM/GMM monophone based ASR

uses only 1.9k Gaussians. Two separate HMM/GMM acoustic models (male

and female) using 43 monophone units are trained in a supervised manner

with their respective training data as described in Sections 4.1.1 and 4.1.2.

4.5. HMM/DNN system configurations

The DNN, usually trained in ASR fashion, is employed to compute the

posteriors of the senone units, which is then used in the DNN-based i-vector

and JFA systems parameters estimation process. These posteriors are also

used as feature streams in DTW systems. Two gender dependent ASR sys-

tems are trained for experiments, one male and another female, with their

respective training data (as mentioned in the Sections 4.1.1 and 4.1.2).

We now proceed to describe the ASR setup as used in the paper. Since

the parameters of the two ASR systems are the same, we describe the con-
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figuration of one system (female) only. The HMM/GMM system (female)

uses 1.5k context-dependent states (senones) and 300k Gaussians (the male

HMM/GMM system uses only 12k Gaussians). This system is used to obtain

senone alignments to train the DNN model. The DNN is trained with MFCC

input features and a context size of 5 frames. It comprises 4 hidden layers

with 1.2k sigmoid units per layer. The output of the DNN is represented by

softmax function. It is trained with stochastic gradient descent algorithm to

minimize the cross-entropy function between the class labels (senone align-

ments) and the network output. After the convergence of the algorithm, the

posterior probabilities of the senone units corresponding to an input speech

frame are obtained at the output of the DNN.

4.5.1. ASR performance

The conventional hybrid ASR system uses DNN to estimate acoustic

posterior probabilities plugged into the ASR decoder by employing LM.

The performance of the female ASR system is evaluated on two batches

of data, namely, (i) Fisher female subset with 200 utterances and, (ii) Part1,

RSR female subset consisting of 1k utterances. The ASR system employs

a CMU dictionary with 42k words and a tri-gram LM for decoding with

word LMs (Motlicek et al., 2015). The Word Error Rates (WER) on both

the set are presented in Table 1. The WER of the female DNN is 24.5%

on the Fisher subset. Poor performance on the RSR subset is possibly due

to acoustic mismatch between the RSR and the training dataset (channel,

accent mismatch).

In order to cope with large differences in performance of WER, we adapt

the DNN with a small amount of data (∼1 h) from RSR database. The
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adapted-DNN performs roughly equally well in both the databases (row 2 of

Table 1) with absolute improvement of ∼68% in terms of WER on the RSR

dataset. The DNN and the adapted-DNN (trained on the female portions)

are then used for SV experiments on RSR Part1, female evaluation set only.

The performance of the male-DNN is evaluated only on a Fisher male

subset (200 utterances). The WER of this DNN is 30.5%. Since no develop-

ment data is available from RedDots dataset, the adaptation of DNN could

not be done.

4.6. Online i-vector configurations

Two online i-vector systems are developed (for male and female) using the

training data as described in Sections 4.1.1 and 4.1.2. Since the parameters

of both the systems are similar, we describe the configurations of the female

system only. The SS, required to estimate online i-vectors, are computed from

short segments of speech signal of duration 200 ms. The i-vector extractor is

400 dimensional. To train the speaker-phone PLDA model, the ASR system

developed in the previous subsection is used to obtain senone alignments.

The senones are then mapped to one of 43 monophones to get the phone

alignment. The PLDA is trained on the online i-vectors by assigning speaker-

phone pair labels to each of the speech frames. The Part1 of RSR dataset

is used to train the PLDA. There are a total of 2k classes (speaker-phone

pairs) in the development set.

5. Experimental Results

In this section, we describe the results obtained with various systems de-

scribed in Sections 2 and 3. We first present the results on the RSR dataset
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(Part1, female) and then proceed to RedDots (Part1, male). The conven-

tional approaches include the DTW and model-based SV systems (MAP,

i-vector and JFA) both employing GMM posteriors. Since it has been con-

sistently reported in literature that MAP technique outperforms other ap-

proaches for text-dependent SV task (Kenny et al., 2014a,c), we consider the

MAP system to act as the baseline system in both the experiments on RSR

and RedDots. In all the experiments involving PLDA, the input vectors to

the model are length normalized. For the MAP, JFA and DTW systems, T-

norm score normalization is applied (Barras and Gauvain, 2003; Dey et al.,

2016a; Kenny et al., 2014c,a). In our experiments involving i-vectors, we

observed that dimensionality reduction technique, like LDA, degraded the

performance of the speaker recognition system. Thus, we do not report the

performance of the systems using LDA transform.

The various systems considered in this paper are as follows:

� MAPGMM: the speaker models are obtained from GMM-UBM by MAP

adaptation.

� MAPHMM: the speaker-models are obtained from HMM/GMM model

using MAP adaptation, as described in Section 2.1.1. For scoring, we

use the transcripts to obtain alignments of the test data, which are

later used to derive likelihood scores.

� IvecPLDA: the conventional i-vector system for speaker recognition ob-

tained using GMM or DNN SS, which are referred to as IvecGMM
PLDA or

IvecDNN
PLDA respectively. The system with adapted-DNN SS is labeled as

IvecDNN-adp
PLDA .
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� JFA: this system represents Joint Factor Analysis model. The JFA

using GMM SS is referred to as JFAGMM while the system using DNN

and adapted-DNN SS are referred to as JFADNN and JFADNN-adp re-

spectively.

� DTW: raw speech features (MFCCs) and posteriograms obtained from

the GMM or DNN are compared using the DTW algorithm in this sys-

tem. The systems with MFCCs, GMM posteriors, DNN and adapted-

DNN posteriors are referred to as DTW-MFCC, DTW-postGMM,

DTW-postDNN and DTW-postDNN-adp respectively.

� DTW-onIvec: this system uses i-vector (estimated over short seg-

ments) as input to DTW algorithm. The i-vectors are computed us-

ing SS either from GMM or DNN, which are referred to as DTW-

onIvecGMM and DTW-onIvec DNN respectively.

� DTW-onIvecPLDA: this system uses PLDA projection (as explained

in Section 3.1.2) as input to the DTW algorithm. PLDA is trained

either with speaker-phone or speaker-phrase as class definition. DTW

system with PLDA (trained with speaker-phone labels) projection ob-

tained using GMM posteriors (for online i-vector extraction) is referred

to as DTW-onIvecGMM
PLDA, phn while with DNN is referred to as DTW-

onIvecDNN
PLDA, phn. The systems, with PLDA trained using speaker-phrase

classes are referred to as DTW-onIvecGMM
PLDA, phr and DTW-onIvecDNN

PLDA, phr.
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Table 2: Performance of the various GMM based baseline systems on RSR dataset in

terms of EER(%). The MAPGMM outperforms other baseline systems in Cond-all.

No. Systems/Conditions Cond1 Cond2 Cond3 Cond-all

1 MAPGMM 0.83 2.15 0.21 0.69

2 MAPHMM 0.80 5.97 0.53 1.82

3 IvecGMM
PLDA 1.24 2.82 0.32 0.91

4 JFAGMM 1.42 2.34 0.41 0.71

5.1. Experiments on the RSR data (female)

The experiments are conducted with the training and evaluation data as

detailed in Section 4.1.1. We first describe the model-based SV systems using

GMM and DNN posteriors and then move on to DTW systems.

5.1.1. Model-based SV systems with GMM posteriors

Table 2 compares the performance of various model-based SV systems

exploiting GMM posteriors. It is to be noted that the results presented here

are comparable or better than those published in Larcher et al. (2014); Kenny

et al. (2014c). The simple MAP technique, MAPGMM (row 1) achieves the

best results among the model-based SV systems, which is consistent with the

results published in the literature. T-norm is applied on MAPGMM scores

with improvement of 24% relative EER (from 2.85% to 2.15% absolute) for

condition 2. The MAPHMM performs worse than the MAPGMM in Cond-all,

however in Cond1, the former system outperforms the latter system due to

the ability of the HMM to capture sequential information.

In text-independent SV scenario, the IvecGMM
PLDA system outperforms MAPGMM

26



Table 3: Performance of the various DNN-based SV systems on RSR dataset in terms of

EER(%). The JFA system is the best performing system.

No. Systems/Conditions Cond1 Cond2 Cond3 Cond-all

1 IvecDNN
PLDA 0.71 2.52 0.21 0.73

2 JFADNN 0.12 0.84 0.02 0.21

as evident by the success of the technique in past SV evaluations. However,

in text-dependent scenario, the IvecGMM
PLDA system (row 3 of Table 2) performs

worse, which may be due to the duration of the test utterances.

We explored JFA system as well, as it has shown to be a dominating

modeling technique for text-dependent SV scenario. The latent factor (z)

of the JFA model (Equation 5), which characterizes the speaker-phrase, is

used to compute the cosine distance between the enrollment and test utter-

ances. T-norm is applied to the scores produced by the JFA model. This

system (JFAGMM) performs better than the IvecGMM
PLDA in condition 2 (com-

pare rows 4 and 3), thus showing that the matrix D is able to model the

speaker-phrase characteristics better than the matrix V of the PLDA model

of Equation 4. The JFA system can be built with only the development data

of RSR database without the need of any Fisher database.

5.1.2. Model-based SV systems with DNN posteriors

As explained in Section 2, the IvecPLDA and JFA systems benefit by

incorporating linguistic information from HMM/DNN. The DNN acoustic

model is employed to estimate the senone posteriors, which is then subse-

quently fed to i-vector extraction process. The 10 top scoring DNN posteriors
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Table 4: Performance of the various DTW systems on RSR dataset in terms of EER(%).

The DTW system using DNN posterior features performs better in content-mismatch

conditions.

No. Systems/Conditions Cond1 Cond2 Cond3 Cond-all

1 DTW-MFCC 0.38 4.52 0.11 1.23

2 DTW-postGMM 0.13 4.51 0.11 1.22

3 DTW-postDNN 0.04 4.61 0.02 1.05

are used to estimate the parameters of the i-vector and JFA models as given

by Equations 3 and 5 respectively. The back-end classifier of the i-vector

model (PLDA) is trained with multiple instances of speaker-phrase classes

(from development data).

Table 3 shows the performance of the model-based SV systems with DNN

posteriors. We observe that integrating DNN posteriors in the IvecPLDA and

JFA systems consistently improves the performance (compare rows 1, 2 of

Table 3 with rows 3, 4 of Table 2). In particular, IvecDNN
PLDA improves upon

IvecGMM
PLDA by 22% relative EER (from 0.91% to 0.73% absolute) for Cond-

all condition. The JFADNN achieves good results and clearly outperforms

the JFAGMM, this system performs better than the MAPGMM across all

conditions by 66% relative EER (from 0.69% to 0.21% absolute) for Cond-

all. This validates the hypothesis that linguistic units of the speech signal

are important for the i-vector and JFA SV approaches.
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Table 5: Performance of the various adapted-DNN based systems on RSR dataset in terms

of EER (%). The JFA system is the best performing system.

No. Systems/Conditions Cond1 Cond2 Cond3 Cond-all

1 IvecDNN-adp
PLDA 0.15 2.17 0.02 0.52

2 JFADNN-adp 0.11 0.71 0.02 0.21

3 DTW-postDNN-adp 0.02 14.52 0.01 2.61

5.1.3. DTW systems

The DTW-MFCC technique has been explored for text-dependent SV

task in the past. It assumes that MFCCs contain speaker and content dis-

criminating information, to be exploited by DTW algorithm. Furthermore,

we experimented with GMM (DTW-postGMM) and DNN posteriors (DTW-

postDNN) constituting input to DTW. It can be observed from Table 4 that

all the DTW techniques achieve better results than the baseline MAPGMM

for content-mismatch conditions. However, for condition 2, the performance

is significantly worse than MAPGMM. It can be observed from Table 4 that

DTW-postDNN (row 3) outperforms the MAPGMM for conditions 1 and 3

by 95% relative EER (from 0.83% vs 0.04% absolute) and 90% relative EER

(from 0.21% to 0.02% absolute) respectively.

5.1.4. Systems using Adapted-DNN

Table 5 shows the performance of various systems (i-vector, JFA and

DTW) exploiting posteriors obtained at the output of adapted-DNN. The

main motivation of adaptation is to obtain better alignment of the evalu-

ation data. The IvecDNN-adp
PLDA performs better than IvecDNN

PLDA (compare row
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1 of Table 3 and row 1 of Table 5) across all conditions. This system per-

forms better than the MAPGMM by 26% relative EER (from 0.69% to 0.52%

absolute) for Cond-all.

The senone posteriors of the adapted-DNN are used to estimate the pa-

rameters of the JFA model as given by Equation 5 (matrices D and U) and

subsequently the latent variable z (during enrollment and testing phase).

From Table 5 we observe that JFADNN-adp further improves upon JFADNN

(compare row 2 of Table 3 and row 2 of Table 5), particularly for Cond2, in-

dicating that the DNN adaptation is useful in the i-vector and JFA systems.

The senone posteriors from the adapted-DNN are used as features for

the DTW algorithm. We observe that DTW-postDNN-adp performs better

than IvecDNN-adp
PLDA and JFADNN-adp for content-mismatch conditions while

significantly degrading performance for condition 2. This degradation in

performance is due to the content-discriminating features. We attempt to

solve this problem by extracting speaker-discriminating features for DTW

algorithm.

5.1.5. DTW systems with online i-vectors

The DTW-onIvec extracts i-vectors on short segments (online i-vectors),

which are then used as input features to DTW algorithm. It can be observed

from Table 6 that the DTW-onIvecGMM and DTW-onIvecDNN outper-

form the baseline MAPGMM by about 35% relative EER (from 0.69% to

0.45% absolute) and 67% relative EER (from 0.69% to 0.23% absolute) for

Cond-all condition. This indicates that online i-vectors represent speakers

sufficiently well. The DTW algorithm plays an important role in achiev-

ing good performance by the DTW-onIvec system. Therefore, without the
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Table 6: Performance of the various DTW systems using online i-vector features on RSR

database in terms of EER(%). TheDTW-onIvecDNN
PLDA, phn is the best performing system.

No. Systems/Conditions Cond1 Cond2 Cond3 Cond-all

1 DTW-onIvecGMM 0.21 1.52 0.05 0.45

2 DTW-onIvecDNN 0.03 0.75 0.02 0.23

3 onIvecGMM
PLDA 4.41 6.49 1.03 1.93

4 onIvecDNN
PLDA 1.62 4.42 0.39 1.06

5 DTW-onIvecGMM
PLDA, phn 0.15 1.21 0.02 0.35

6 DTW-onIvecDNN
PLDA, phn 0.02 0.65 0.01 0.18

7 DTW-onIvecDNN
PLDA, phr 0.05 0.86 0.03 0.24

sequence matching capability (of the DTW algorithm), the online i-vector

system performing an averaging operation instead of preserving the sequen-

tial information is expected to provide worse results than DTW-onIvec.

To test this hypothesis, we conducted an experiment by building a system

(similar to IvecPLDA) as follows. A sequence of online i-vectors is extracted

which is then averaged to obtain a representative i-vector of the utterance.

The PLDA is trained using these averaged online i-vectors as features assum-

ing speaker-phrase as classes. The distance between the enrollment and test

speech signal is computed using the PLDA model with the averaged online

i-vectors. We built two systems applying this strategy, one with GMM poste-

riors and another with DNN posteriors, which are referred to as onIvecGMM
PLDA

and onIvecDNN
PLDA respectively in Table 6. We observe that onIvecGMM

PLDA and

onIvecDNN
PLDA performs worse than DTW-onIvec (compare rows 3, 4 vs rows
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Table 7: Performance of the various systems on RSR database in terms of

EER(%)/minDCF(%) in Cond-all condition.

No. Systems/Conditions Posteriors Cond-all

1 MAPGMM (Table 2) GMM 0.69/0.329

2 JFADNN-adp (Table 5) DNN 0.21/0.129

3 IvecDNN-adp
PLDA (Table 5) DNN 0.51/0.339

4 DTW-onIvecDNN
PLDA, phn (Table 6) DNN 0.18/0.094

1, 2 of Table 6). This result highlights the significance of DTW algorithm,

in addition to the online i-vectors, in obtaining low error rates.

From Table 6, it can be observed that applying PLDA on top of the online

i-vector features further improves the performance. The DTW-onIvecDNN
PLDA, phn

improves over the MAPGMM baseline system by 74% relative EER for Cond-

all. In Section 3, we discussed the two possible methods of defining classes in

the PLDA model with online i-vector features, which are speaker-phrase and

speaker-phone. We observe that both the systems, DTW-onIvecDNN
PLDA, phn

and DTW-onIvecDNN
PLDA, phr, perform similar for all conditions. We did not

obtain better results of DTW-onIvec using adapted-DNN than DNN and

thus we are not presenting the results.

5.1.6. Summary of experiments on RSR database

The minDCF and DET plot of some of the best performing systems are

presented in Table 7 and Figure 2 respectively for Cond-all condition only.

These systems include, (i) the MAPGMM baseline, (ii) IvecDNN-adp
PLDA, (iii)

JFADNN-adp and, (iv) DTW-onIvecDNN
PLDA, phn. It is to be noted that DTW-
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Figure 2: DET curve of the systems presented in Table 7 on RSR database.

onIvecDNN
PLDA, phn improves by 71% relative minDCF (from 0.329% to 0.094%

absolute) compared to the baseline MAPGMM.

5.2. Experiments on the RedDots database (male)

Table 8 compares the performance of all systems on RedDots dataset

across all the conditions. We consider the MAP system (MAPGMM) using

GMM posterior as the baseline since it has shown to provide good perfor-

mance in Zeinali et al. (2016). The model-based SV systems perform worse

on the RedDots database compared to RSR database (Dey et al., 2016a).

As it has been observed from the experiments on RSR database, the model-

based SV approaches with DNN acoustic model outperform those employing

GMM. Thus, only the results of DNN based i-vector and JFA systems are

reported on the RedDots database.
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From Table 8, it can be observed that MAPGMM provides EER of 1.23%

for Cond-all. The performance of the MAP system is worse on the RedDots

than on the RSR database across all conditions, possibly due to long-term

intra-speaker variability. The MAPHMM outperforms MAPGMM on this

part of the database by 11% relative EER (from 1.23% to 1.09% absolute)

on Cond-all.

The IvecDNN
PLDA and JFADNN systems do not achieve good results as com-

pared to MAPGMM. The poor performance of i-vector and JFA systems can

be possibly attributed to the fact that factoring out the content-variability

with speaker-phrase data from RSR is not a good choice.

The DTW-postDNN (row 5 of Table 8) performs better than model-based

SV systems in content-mismatch trials (conditions 1 and 3) as it explicitly

matches the content. In speaker-mismatch trials, even the DTW-postGMM

(row 6) performs better than DTW-postDNN.

The DTW-onIvecDNN performs better than MAPGMM by 55% relative

EER (from 1.23% to 0.55% absolute) for Cond-all. Thus, on this database as

well, the online i-vector representation with DTW algorithm achieves better

results than IvecDNN
PLDA, JFADNN and MAPGMM. We experimented with using

PLDA on top of online i-vectors. We observe that DTW-onIvecDNN
PLDA, phn

further improves upon DTW-onIvecDNN with improvement of 3% relative

EER (from 2.69% to 2.61% absolute) for Cond2. However, it can also be

observed from Table 8 that training the PLDA with speaker-phrase labels

degrades the performance. An explanation of the performance degradation is

possibly due to training PLDA with speaker-phrase classes from RSR dataset

(which do not match the evaluation phrases of RedDots).
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Table 8: Performance of all the systems on RedDots (Part4) database in terms of

EER(%). The Cond-all refers to the system performance across all the 3 conditions.

No. Systems/Conditions Cond1 Cond2 Cond3 Cond-all

1 MAPGMM 5.62 4.04 0.90 1.23

2 MAPHMM 3.75 4.14 0.78 1.09

3 IvecDNN
PLDA 6.10 3.03 0.97 1.29

4 JFADNN 7.21 4.43 1.34 1.85

5 DTW-postDNN 0.62 7.62 0.54 1.13

6 DTW-postGMM 0.89 4.92 0.76 0.96

7 DTW-onIvecDNN 0.99 2.69 0.44 0.55

8 DTW-onIvecDNN
PLDA, phn 0.81 2.61 0.38 0.55

9 DTW-onIvecDNN
PLDA, phr 1.24 2.85 0.51 0.62

6. Conclusions

In this paper, we presented model- (MAP, i-vector and JFA) and DTW-

based techniques for performing text-dependent SV with fixed phrases. We

validated the techniques on two databases, female part of RSR and male part

of RedDots. We experimented with model-based SV systems using GMM and

DNN posteriors. From results, we observed that MAPGMM performs the best

among the model-based SV approaches exploiting GMM posteriors in RSR

database. The MAPGMM performs better than MAPHMM in RSR dataset,

while MAPHMM outperforms MAPGMM in RedDots database. Integrating

DNN posteriors in the i-vector and JFA systems achieves good results across

all the conditions, with JFA improves upon MAPGMM by 66% relative EER
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for Cond-all in RSR dataset. This gain in performance is consistent with

the results published for text-dependent and text-independent SV scenarios.

Additional gain in performance is obtained with adapted-DNN, more partic-

ularly by the JFA technique. It clearly shows that obtaining better alignment

for the evaluation data results in better performance.

The DTW algorithm offers an easy method to match the sequential pat-

terns of the train and test templates. Being a non-parametric method, it

does not require any training data for the development. We experimented

with different input features for the DTW algorithm, namely MFCCs, GMM

and DNN posteriors. In content-mismatch conditions, the DTW systems

provide better results than the model-based SV systems. In particular, the

DTW algorithm using DNN posteriors outperforms MAPGMM in condition

1 by 95% relative EER in RSR dataset.

However, DTW system using DNN posteriors performs worse than MAPGMM

in speaker-mismatch condition. This degradation in performance is due to

content-discriminating features. In this paper, we address this problem by

extracting speaker specific information by employing i-vector system. We

extract online i-vectors (for short segments) using the i-vector extractor of

the speech utterance resulting in sequences of online i-vectors extracted from

enrollment and test utterances. The DTW algorithm is then used to match

the train and test templates of online i-vectors. We found that this approach

outperforms MAPGMM by 67% relative EER for Over-all condition in RSR

database.

The PLDA is usually applied in state-of-the-art SV systems as a channel

compensation model. In this paper, we experimented with two different
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definition of class labels, namely, (i) speaker-phrase, and (ii) speaker-phone

for training the PLDA. Although on RSR database, we obtained similar

performance with both the strategies for defining classes, but on RedDots we

obtained considerable performance benefit with speaker-phone labels.
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