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Abstract

The usage of biometric recognition has become prevalent in various verification processes, ranging from unlocking mobile
devices to verifying bank transactions. Automatic speaker verification (ASV) allows an individual to verify its identity towards
an online service provider by comparing freshly sampled speech data to reference information stored on the service provider’s
server. Due to the sensitive nature of biometric data, the storage and usage thereof is subject to recent EU regulations introduced
as means to protect the privacy of individuals enrolled in an automatic biometric verification system. Stored biometric data need to
be unlinkable, irreversible, and renewable to satisfy international standards. Preserving privacy in ASV is also important because,
contrary to other biometric characteristics such as fingerprints, speech data can be used to infer a lot of sensitive information about
the data subject. As a result, some architectures have been proposed to enable privacy-preserving ASV in the encrypted domain.
Recently, homomorphic encryption (HE) was proposed to protect both subject features and vendor models in an embedding-based
ASV. This architecture improves on previous privacy-preserving ASV by using (probabilistic) embeddings (i-vectors) and by
additionally protecting the vendor’s model. However, the usage of HE comes with a rather heavy overhead and significantly slows
down the verification process.

In this work, we align the cryptographic notion of outsourced secure two-party computation to embedding-based ASV. Our
architecture protects biometric information in ASV and can also be used for any automatic biometric verification task. We show that
unlinkability, irreversibility, and renewability are granted. Compared to the HE solution, our architecture results in considerably
lower communication and computation overhead. Our architecture has been implemented and is experimentally evaluated on the
NIST i-vector challenge 2014 using the cosine distance and log-likelihood ratio (LLR) scores from probabilistic linear discriminant
analysis (PLDA) and two-covariance (2Cov) comparators. The results show that verification accuracy is retained while e�ciency
is improved. For instance, a PLDA verification with an embedding dimension of 200 takes about 77 milliseconds over a LAN.
This is an improvement of more than 3000⇥ over the HE-based solution and shows that privacy of subject and vendor data can be
preserved in ASV while retaining practical verification times. Moreover, our system is secure against malicious client devices.
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1. Introduction

In the past few years, the convenience and increased accuracy of automatic biometric verification architectures
resulted in widespread use of popular systems like, e.g., automated passport controls or Apple’s FaceID. After an
initial enrolment of the individual’s biometric reference information, the identity of the data subject can be verified
by comparing a freshly extracted probe vector with the reference stored on a remote authentication server. Such5

verification systems provide strong and usable authentication guarantees even for online services that are invoked from
a variety of devices, as the information required for the verification itself does not need to be stored on any device. Due
to the unchangeable nature of biometric characteristics, security against impersonation can no longer be guaranteed
once biometric information is leaked 1. Thus, biometric data embody especial sensitive personal information and
need to be protected even from service providers when used in automatic verification systems. This prevents not10

only the leakage of biometric information in the case of data breaches through targeted attacks or negligence, but
also preserves the privacy of data subjects within the system. Automatic speaker verification (ASV), the case where
verification relies on speech data, is a sought-after concept for critical use cases like, e.g., a bank that wants to
verify the identity of a user via telephone or VoIP without the inconvenience of requiring the user to remember a
secure password or requiring a device-specific cryptographic key. For the speech data used in ASV, additional unique15

privacy concerns arise because speech not only uniquely identifies a speaker, but can also be used to infer a wide range
of sensitive information about, among others, the subject’s gender (Harb & Chen, 2005), age (Garcı́a et al., 2015), or
health status (Gómez-Vilda et al., 2009).

Recently, the privacy concerns of outsourced biometric data were addressed in current EU privacy regulations (Eu-
ropean Council, 2016) and, as a result, the need to preserve privacy by properly protecting biometric information20

became more prominent in research as well as in industry. Biometric information protection is achieved by three
properties as requested by the ISO/IEC 24745 standard (ISO/IEC JTC1 SC27 Security Techniques, 2011):

1. Unlinkability: Given only protected biometric information, it is not possible to say whether two protected
biometric sample representations belong to the same subject. This prevents cross-comparisons of databases
from di↵erent applications and ensures the privacy of the subject.25

2. Renewability: If a protected biometric reference is leaked or lost, the reference data can be revoked and renewed
from the same biometric trait without the need to re-enroll.

3. Irreversibility: Recovering biometric data from leaked protected biometric information is impossible without
knowing the secret used to protect the biometric information. The restoration of valid biometric features or
samples is prevented.30

In addition, the recognition performance of unprotected systems should be preserved.
State-of-the-art speaker recognition systems rely on embeddings, namely intermediate-sized vectors (i-vectors)

(Dehak et al., 2011), here referred to as probabilistic embeddings; and x-vectors (deep learning embeddings) (Snyder
et al., 2016), here referred to as discriminative embeddings. Conventionally, either are compared by probabilistic
linear discriminant analysis (PLDA) (Prince & Elder, 2007; Garcia-Romero & Epsy-Wilson, 2011). Seeking fast35

comparisons, one can employ cosine comparison, however comparisons carried out in a (lower dimensional) biomet-
ric subspace promise better biometric discrimination performance. Moreover, comparisons carried out in biometric
subspaces and resulting in probabilistic comparison scores (such as log-likelihood ratios; LLRs) are coherent within
decision frameworks based on information theory and decision cost risks. One of the goals of our work is to preserve
these LLR score properties. When the subspace is of the same dimension as the embedding feature space, PLDA sim-40

plifies to the two-covariance model (2Cov) (Cumani & Laface, 2014). We will refer to i-vectors in our experiments,
as the comparator technology is independent of whether probabilistic or discriminative embeddings are employed.

Privacy preservation has been in the focus of research for some time, though ASV itself has not received a level of
attention that is equivalent to other biometrics. Approaches tackling biometric information protection can be classified

1This is because changing the way biometric information is extracted is not su�cient to prevent linkability. For instance, Glembek et al.
(2015) show how i-vectors (probabilistic embeddings) from di↵erent speaker recognition systems can be linked. Also, research has proven that it is
possible to recover biometric samples from templates for other modalities such as finger (Cappelli et al., 2007), face (Adler, 2003), or iris (Galbally
et al., 2013).
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into three main categories: i) cancelable biometrics (Patel et al., 2015), where samples or biometric information rep-45

resentations are irreversibly transformed, ii) cryptobiometrics (Campisi, 2013), where a key is either extracted from or
bound to the biometric data, and iii) biometrics in the encrypted domain (Aguilar-Melchor et al., 2013), where tech-
niques such as homomorphic encryption (HE) are applied to protect biometric data. However, the first two categories
usually report some accuracy degradation (Rathgeb & Uhl, 2011) while for biometrics in the encrypted domain the
operations are equivalent to plaintext ones. Only biometrics in the encrypted domain can provide biometric informa-50

tion protection while sustaining biometric recognition performance (without diminishing accuracy for compensations
in computational speed or privacy).

An Architecture using HE for privacy-preserving embedding-based ASV with PLDA/2Cov comparisons in the
encrypted domain was recently proposed in the speech community by Nautsch et al. (2018). This architecture not
only protects the speaker’s embedding, but also the vendor’s model used during verification. However, it relies on55

asymmetric (public-key) cryptography, which requires a relatively large key size and is computationally expensive.
Another issue is that this architecture is vulnerable (in terms of security, not in terms of privacy) to authentication by
a malicious client device.

We tackle these issues by aligning secure two-party computation (STPC) protocols to embedding-based ASV in
the encrypted domain. STPC is a cryptographic notion di↵erent to HE that allows participating parties to compute any60

functionality without revealing anything else about a party’s input. As such, STPC seems like a promising candidate
for practical biometric verification in the encrypted domain. In fact, privacy-preserving computation of biometric
distances has been a popular benchmarking application in the STPC literature (Sadeghi et al., 2009; Osadchy et al.,
2010; Blanton & Gasti, 2011; Blanton & Aliasgari, 2012; Bringer et al., 2014). The results show that certain biometric
distances, as they are computed in various comparison subsystems, e.g., for face, fingerprint, or iris identification, can65

be e�ciently computed in a privacy-preserving manner. However, the secure evaluation of speech data has not been a
prominent subject of the cryptographic community as it usually relies on less e�cient floating point arithmetic. Bio-
metric information protection is also rarely achieved in those works: the outsourced reference data is usually known
in plain to the server like in the classical STPC client-server setting. To the best of our knowledge, only the iris iden-
tification architecture by Blanton & Aliasgari (2012) and the speaker recognition architecture by Aliasgari & Blanton70

(2013) achieve biometric information protection solely by employing secure multi-party computation protocols be-
tween multiple servers. This technique will be referred to as outsourced STPC in this work and is based on the work
of Kamara & Raykova (2011) who presented a transformation of any STPC protocol into an outsourced one.

In this work, we close the aforementioned gaps between the STPC and the speech communities by applying
outsourced STPC to embedding-based ASV with biometric information protection for PLDA/2Cov comparators. Our75

main contributions are as follows:

• We propose a general architecture for protecting sensitive data in any automated biometric verification system.
Our architecture is based on the outsourced STPC construction of Kamara & Raykova (2011) and is similar to
the one of Blanton & Aliasgari (2012) while making no additional assumptions compared to the previous work
of Nautsch et al. (2018). We show that it achieves biometric information protection according to the ISO/IEC80

IS 24745 standard (ISO/IEC JTC1 SC27 Security Techniques, 2011).

• Using the general architecture, we show how to protect speaker embeddings and vendor models in ASV, using
probabilistic embeddings (i-vectors) as an example. Our solution relies on a mix of di↵erent STPC protocols,
employing very e�cient protocols for various steps of the verification. In contrast to the previous solution
of Nautsch et al. (2018), it is also secure against malicious clients.85

• We implement our ASV architecture using the state-of-the-art STPC framework ABY of Demmler et al. (2015b)
and evaluate it on the NIST i-vector challenge (Bansé et al., 2014) phase III database (i.e., with labeled devel-
opment data). The results show that compared to the approach of Nautsch et al. (2018) in a comparable setting,
our architecture is more practical while retaining biometric performance and level of security (through equiva-
lent security parameters). Notably, our implementation scales and truncates float inputs to improve e�ciency,90

thereby limiting threshold precision to a reasonable extend. However, our evaluation shows that this does not
degrade biometric recognition performance. Even for high embedding dimensions, PLDA/2Cov verifications
are computed in about half a second. Lower dimension PLDA/2Cov verifications as well as higher dimension
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cosine verifications require only a few milliseconds. This is an improvement of up to 4000⇥ over Nautsch et al.
(2018).95

The rest of the paper is structured as follows. We review related work in Section 2 and present the generative
speech models used as the basis for our privacy-preserving ASV in Section 3. Section 4 gives a high-level overview
of STPC as well as a lower-level description of the STPC protocols we employ in our architecture. We outline our
general biometric as well as our specific embedding-based ASV architecture in Section 5 and thoroughly evaluate its
implementation on the NIST i-vector challenge in Section 6. In Section 7, we conclude our work and give potential100

future work.

2. Related Work

Homomorphic encryption (HE) enables operations on encrypted data without requiring a decryption key, while
secure two-party computation (STPC) allows two parties to interactively compute any functionality in a secure manner.
In order to preserve privacy in biometric applications, the e�cient and secure computation of biometric distances has105

been a popular use case of these advanced cryptographic mechanisms. Plenty of solutions exist for, e.g., privacy-
preserving iris (Blanton & Gasti, 2011; Blanton & Aliasgari, 2012; Bringer et al., 2014), face (Erkin et al., 2009;
Sadeghi et al., 2009; Osadchy et al., 2010; Bringer et al., 2014; Hu et al., 2018), and fingerprint (Blanton & Gasti, 2011;
Evans et al., 2011; Hu et al., 2018) computations. For the most part, the literature is focused on identification rather
than verification: the task is to identify a client based on a comparison of the freshly extracted biometric information110

(the probe) and a database of stored reference data without revealing information about the probe vector to the server
and without revealing information about the reference database to the client. Naturally, secure computation techniques
like HE and STPC can be employed to guarantee those privacy goals. However, the setting of biometric verification,
where the identity of the data subject is already determined and needs to be authenticated via biometric characteristics,
has received far less attention. The transformation of existing identification into verification architectures is not115

trivial due to the additional goal of protecting biometric information being violated by the server usually knowing
the reference database in plaintext. Of the mentioned solutions, only the architectures of Blanton & Aliasgari (2012);
Chun et al. (2014); Hu et al. (2018) protect stored biometric data via HE and/or STPC. STPC has also been considered
to securely compute the combination of multiple biometrics for the authentication process (Toli et al., 2016; Toli,
2018).120

In Bringer et al. (2013) and Barni et al. (2015), the authors provide an overview of several biometric information
protection schemes based on HE and STPC. Barni et al. (2010) present a way to protect fixed-length fingercodes (Jain
et al., 1997) using HE. This system was modified in Bianchi et al. (2010) to accelerate the process by reducing the
size of the fingercode. However, a reduction of information also leads to a degradation of biometric recognition per-
formance. An anonymous biometric access control (ABAC) system (Ye et al., 2009) is presented for iris recognition125

such that the system setup verifies only whether a subject is enrolled without revealing the identity and thus granting
anonymity towards the subjects. Another ABAC protocol is proposed in Luo et al. (2009) based on a secure similarity
search algorithm for anonymous authentication.

Privacy-preserving speech technology was first considered in Smaragdis & Shashanka (2007) using STPC and
hidden Markov models (HMMs) in a client-server setting. Yao’s garbled circuit STPC protocol (Yao, 1986) has130

been applied to Gaussian mixture models (GMMs) in Portêlo et al. (2014). While these approaches solely rely on
STPC, they require that the server knows the HMM or GMM of the subject in plain, leaking a characterization of
the subject’s voice to the server. For ASV in the encrypted domain based on HMMs and GMMs, a series of im-
plemented systems that also protect the subject’s model on the server via HE and allow for verification via HE and
STPC have been proposed (cf. Pathak (2012) and Pathak et al. (2013)). Pathak et al. (2011) outline how to perform135

inference and classification of encrypted HMMs using HE and STPC while Pathak & Raj (2011) and Pathak & Raj
(2013) extend these techniques for GMM-based speaker verification and identification. Aliasgari & Blanton (2013)
present methods of securely computing HMMs, either in a client-server setting by also homomorphically encrypting
the model, or in an outsourcing scenario where three or more computational parties share and securely evaluate the
model, thereby not requiring the client to keep a secret key for an encryption scheme. They provide full floating140

point operations and evaluate an implementation in Aliasgari et al. (2017), demonstrating that the multi-party out-
sourcing scenario significantly decreases workload compared to using HE. Their outsourcing setting is very similar
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to ours for embedding-based ASV, but we use a mix of STPC techniques between two servers that are not allowed to
collude, while their technique requires three or more parties of which a majority are required to not collude. Com-
pared to the STPC protocols that we employ, their honest majority multi-party protocol does not have the possibility145

of pre-computing input-independent parts of the verification, which significantly improves on transaction costs (cf.
Section 4). The literature for privately evaluating HMMs and GMMs outlined here shows that a secure verification
using these models can be e�ciently performed in a matter of seconds or minutes.

In the domain of privacy-preserving ASV based on (probabilistic/discriminative) embeddings that we address in
this work, e�cient STPC tools still lack deployment. The recent work of Nautsch et al. (2018) uses HE to protect150

biometric information in an outsourced embedding-based ASV infrastructure with two non-colluding servers called
DBcontroller and ASoperator. During enrolment, the reference vector is encrypted using the public key of the authen-
tication server ASoperator and is stored on the database server DBcontroller. The encrypted vector is sent to the client
device for the process of verification and is used to homomorphically compute the comparison score in the encrypted
domain. This encrypted score is then sent to ASoperator, which decrypts the score and decides whether the client should155

be accepted by comparing the score to a threshold. The biometric data is protected if one assumes that DBcontroller and
ASoperator do not collude, i.e., DBcontroller does not share its information with ASoperator and ASoperator does not share
its secret key with DBcontroller. This assumption can be seen as realistic, given that DBcontroller could be an independent
provider of privacy services that relies on a reputation of acting honestly. The usage of HE comes with a high over-
head that makes this solution impractical when considering computationally limited devices like, e.g., mobile phones.160

Also, this method is not secure against a malicious user that can just send the encryption of an accepting score to
ASoperator. Another solution by Rahulamathavan et al. (2019) does not rely on HE but uses randomization of feature
vectors in combination with a privacy-preserving scalar product protocol (Lu et al., 2014). However, this architecture
is completely insecure because the protocol of Lu et al. (2014) was irreparably broken in Schneider & Treiber (2019).
To the best of our knowledge, embedding-based ASV for state-of-the-art PLDA/2Cov comparators solely using STPC165

protocols has not been addressed by the literature to date. In this work, we demonstrate that a mix of outsourced STPC
protocols can significantly reduce practical verification times for device-independent embedding-based ASV.

The usage of distance-preserving hashing techniques for privacy-preserving ASV (Pathak & Raj, 2012; Pathak
et al., 2012; Portêlo et al., 2013; Jiménez et al., 2015; Jiménez & Raj, 2017a,b) is an alternative approach from
cancelable biometrics. Additionally, the usage of trusted execution environments like Intel SGX (McKeen et al.,170

2013) for privacy-preserving speech processing using, among others, i-vectors has been explored by Brasser et al.
(2018). However, this requires trusting the remote attestation feature that is built into Intel CPUs. One also has to take
additional measures against side-channel vulnerabilities when employing SGX (Xu et al., 2015; Costan & Devadas,
2016).

3. Speaker Verification using Cosine and PLDA Comparison175

Cosine and PLDA comparisons of two embeddings X = {x1, . . . , xF},Y = {y1, . . . , yF} (biometric probe and refer-
ence of dimension F) are typically carried out on length-normalized embeddings, approximating radial Gaussianiza-
tion of the biometric data before comparison (Garcia-Romero & Epsy-Wilson, 2011). In other words, embeddings are
observed to scale in their length with increasing voice sample data; by length-normalization, embeddings are projected
onto the unit sphere. Then, cosine comparison scores S cos(X,Y) are computed as:180

S cos(X,Y) = X> Y =
FX

f=1

x f y f . (1)

PLDA comparison scores S PLDA(X,Y) are computed in terms of log-expectations, examining to what extent refer-
ence and probe data originate from the same speaker. If so, stacked embeddings correlate in terms of within class vari-
ance ⌃within, whereas if they stem from di↵erent speakers, solely the total variability ⌃total is modeled (i.e., ⌃within = 0).
For centered data (i.e., with zero mean µ = 0), PLDA scores are computed as (Garcia-Romero & Epsy-Wilson, 2011):
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S PLDA(X,Y) = XT Q X + YT Q Y + XT P Y + YT P X + const

with Q = ⌃�1
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⇣
⌃total � ⌃within ⌃
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⌘�1
, P = ⌃�1
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⇣
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�1

total ⌃within
⌘�1
, (2)

where a constant term summarizes the normalization terms of the log-likelihood functions. In PLDA, the ⌃within,⌃total
parameters are derived from the underlying subspace model. If the subspace dimension is equal to the dimension
of the observed feature/embedding space, PLDA simplifies to the 2Cov model (di↵ering in the estimation of model
parameters). During score computation, PLDA and 2Cov carry out the same matrix operations. By employing the
Frobenius inner product (denoting the operation xT A y = vec(A)T vec(x yT) with the operator vec(·) stacking matrices
into vectors), the PLDA/2Cov score is expressed in terms of a dot product (Cumani et al., 2013) with within and
between covariances W�1 and B�1 and the mean value µ not necessarily being equal to 0 (features/embeddings are
not centered):
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,

⇤̃ = (B + 2 W)�1 , �̃ = (B +W)�1 , k̃ = 2 log |�̃| � log |⇤̃| � log |B| + µT Bµ . (3)

Utilizing the Frobenius inner product, PLDA/2Cov scores are computed with a segregated comparison model and
biometric data terms (Cumani et al., 2013):

S 2Cov (X,Y) =

2
6666666666664

vec(�)
vec(⇤)

c
k

3
7777777777775

T 2
6666666666664

vec(X XT + Y YT)
vec(X YT + Y XT)

X + Y
1

3
7777777777775
. (4)

For the sake of readability concerning the secure computation of these scores, we will refer to cosine scores as S cos,
and to PLDA/2Cov scores simply as S PLDA, since 2Cov is a PLDA special case and both are computationally identical
during comparison. The notation S 0

PLDA indicates centered data before score computation and S µPLDA indicates non-
centered data.

In the Bayesian decision framework (Brümmer, 2008; Meuwly et al., 2017), log-likelihood ratio (LLR) scores are185

compared to a Bayesian threshold ⌘. Bayesian thresholds are denoted in a formal way based on beliefs in prior class
probability and cost parameters, setting the required weight of evidence a LLR needs to support to decision mak-
ing. PLDA/2Cov scores directly result in LLRs, whereas cosine comparison scores need to be transformed to satisfy
LLR properties (Brümmer & de Villiers, 2010; Brümmer et al., 2014). In biometric systems for identity verification,
sustaining LLR score properties in privacy-preserving computations is paramount, especially when performance as-190

sessment aims at increasing information gains and lowering decision cost risks. We will demonstrate how to employ
secure two-party computation to sustain LLR score properties in the encrypted domain.

4. Secure Two-Party Computation

Secure two-party computation (STPC) allows two parties P0 and P1 with respective inputs x and y to securely
evaluate a function f without revealing any information except f (x, y) to any party. The many practical implementa-195

tions (Hastings et al., 2019) of various STPC protocols show that, nowadays, STPC is far from being just a theoretical
concept. However, widespread deployment by non-experts still faces some hurdles, most importantly because the
e�ciency of di↵erent protocols highly depends on the data type, network properties, and the function that is securely
evaluated. In this section, we give a brief overview of how STPC protocols work in general before providing more
details on the protocols we use in our ASV architecture.200

At a high level, such protocols do not operate on plain or on encrypted data, but instead on data that has been
secretly shared between the parties. Secret sharing is a cryptographic notion that allows to split a value x into multiple
values called shares. The shares can be distributed among parties and can be used to reconstruct the original secret x
under the constraint that a party obtained a su�cient number shares. Since we will only consider the case of secure
computation between two parties in this work, we will hereafter denote a secret sharing of x by the notation hxi0205
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and hxi1 (representing the first and second secret share of an input x). P0 will be in possession of hxi0 while P1
will hold hxi1. One share alone reveals no information about x, as both hxi0 and hxi1 are necessary to reveal the
original secret x using a publicly known function Reconstruct. Thus, a STPC party could only reconstruct an input if
it somehow obtains the share of the other party. In STPC, the function f is usually represented as a circuit, where basic
functionalities called gates (e.g., a Boolean AND gate) compute outgoing values based on incoming values. Every210

gate in the circuit representation of f is computed by a party only on the secret shares it possesses, possibly involving
some communication among both parties. The computation reveals nothing about the other party’s input. At the end
of the computation, the overall result can be revealed by sending the resulting output shares to the party that should
obtain the output.

Compared to HE, STPC mostly uses symmetric cryptography such as AES. Thus, computation requirements are215

usually lower than for HE, though some rounds of communication may be required. Another advantage of STPC is the
property of dividing the secure computation of a function into a setup and an online phase. In the setup phase, input-
independent pre-computation is performed that is later on used for the input-dependent online phase. This method
greatly reduces the time needed for the actual time-critical online phase, considering that the setup phase for potential
future evaluations could be performed during idle times when computation and communication are possible, e.g., over220

night or during weekends.
In the following, we will use the STPC notation of the ABY framework by Demmler et al. (2015b) and summarize

the relevant protocols described and implemented in that framework. The authors distinguish three common STPC
protocols denoted by their sharing type and identified by the first letter of the type: arithmetic (A), Boolean (B),
and Yao (Y, commonly known as Yao’s garbled circuits). A sharing type determines not only how a secret share is225

created, distributed, and reconstructed, but also which STPC protocol is used to securely compute a function on the
shares. In the notation employed here, hxiTi refers to the sharing of type T 2 {A, B,Y} of x held by party Pi2{0,1}. We
rely on arithmetic as well as Yao sharing in our architectures because Boolean sharing would result in a higher round
complexity. We also assume honest-but-curious (also known as semi-honest) parties P0 and P1 (i.e., parties, while not
trusted, are not allowed to deviate from the protocol description).230

4.1. Arithmetic Sharing
In arithmetic sharing, all operations occur in the algebraic Ring Z2l for l-bit inputs. The protocol was first proposed

by Ben-Or et al. (1988) in the setting of multiple parties. Here, we present the case for two parties using additive
arithmetic secret sharing in the style of the protocol for Boolean sharing (Goldreich et al., 1987), as described by
Demmler et al. (2015b). Party Pi2{0,1} can share its input x by choosing r 2R Z2l uniformly at random, and setting235

hxiAi = x � r mod 2l and hxiA1�i = r. Pi’s arithmetic share of x is hxiAi , while hxiA1�i is sent to P1�i and serves as its
arithmetic share. For reconstructing the secret x, one simply adds hxiAi and hxiA1�i, as x = hxiAi + hxiA1�i mod 2l. One
secret share alone does not leak anything about the input because r is sampled uniformly at random; the secret can
only be revealed if both parties exchange their shares. This step occurs at the end of the protocol, in order to reveal
just the result of the computation to one or to both parties.240

After the initial sharing, each party is in possession of its shares hxiAi and hyiAi of both inputs. With this type of
sharing, each Pi only has to perform a local addition of its shares hziAi = hxiAi + hyiAi mod 2l in order to compute a
sum z = x + y mod 2l. hziAi is a valid share of the sum

hziA0 + hziA1 = hxiA0 + hyiA0 + hxiA1 + hyiA1 mod 2l

= x � rx + ry + rx + y � ry = x + y mod 2l, (5)

which will only be revealed if sent to the other party. Addition is very e�cient here, as the parties only have to perform
one local addition in Z2l without any communication.

Since every arithmetic circuit can be displayed with just addition and multiplication gates, the parties also need
to be able to securely compute multiplications using just their shares. In contrast to addition, multiplication gates
require interaction between the parties. They rely on multiplication triples (Beaver, 1991) of the form hciA0 + hciA1 =245

(haiA0 + haiA1 ) · (hbiA0 + hbiAi ) mod 2l, which can be pre-computed independent of the input prior to protocol execution.
The evaluation of a multiplication gate z = x · y mod 2l works as follows:

1. Party Pi sets heiAi = hxiAi � haiAi mod 2l and h f iAi = hyiAi � hbiAi mod 2l.
7
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2. Party Pi sends heiAi and h f iAi to party P1�i and, upon receiving the shares of the other party, reconstructs e and f
by adding the respective shares.250

3. To compute the output of the multiplication gate, party Pi sets hziAi = i · e · f + f · haiAi + e · hbiAi + hciAi .

Hence, the resulting share is a valid share of the product

hziA0 + hziA1 = f · haiA0 + e · hbiA0 + hciA0 + e · f + f · haiA1 + e · hbiA1 + hciA1 mod 2l

= f · a + e · b + c + e · f = x · y mod 2l. (6)

Generation of the multiplication triples in the setup phase can be done with an e�cient implementation of oblivious
transfer (OT) (Asharov et al., 2013). These cryptographic operations are performed in the setup phase while the
online phase only requires sending two shares and locally performing seven additions and four multiplications in Z2l

per party. With the steps to compute additions and multiplications outlined above, two parties can compute any255

arithmetic functionality by securely evaluating every addition or multiplication gate in the circuit, and reconstructing
the secret using the resulting share of the output. It follows that the protocol requires a number of rounds linear in the
multiplicative depth of the circuit.

4.2. Yao’s Garbled Circuits (GC)
Probably the most widely known STPC protocol is Yao’s garbled circuits (GC) protocol (Yao, 1986; Lindell &260

Pinkas, 2009). It enables the secure evaluation of f by evaluating its garbled Boolean circuit representation. The first
party, called the garbler, creates random labels kw

0 , k
w
1 2R {0, 1} for every wire w in the circuit, where  is the security

parameter (e.g.,  = 128 for today’s recommended security level of 128 bits). Then, it garbles every gate in the
circuit by encrypting the labels corresponding to the plaintext value of the output wire using the labels corresponding
to the values of the input wires. Suppose that a gate g has two input wires w0 and w1 with bit values a and b, and265

one output wire w2 with the resulting bit value g(a, b), then, for each possible input value combination, the entry
enckw0

a
(enckw1

b
(kw2

g(a,b))) is added to the garbled gate g̃, using a symmetric encryption function enc (e.g., based on AES).
Finally, the garbler also randomly permutes the entries in g̃. Given g̃, kw0

a , and kw1
b , one can evaluate the garbled

gate by trying to decrypt every entry and eventually obtaining kw2
g(a,b), the label corresponding to the plaintext gate

output corresponding to the evaluated inputs. 2 In Yao’s protocol, the garbled circuit of f is transmitted to the second270

party, which is called the evaluator. The labels are transferred using oblivious transfer so that the evaluator does not
obtain any knowledge about the label-value assignments and that the garbler does not obtain any knowledge about the
evaluator’s input. Using the garbled circuit and the labels, the evaluator can securely evaluate the entire circuit and
obtain the labels corresponding to the circuit output when run on both parties’ inputs. To reveal the output, the garbler
communicates the assignments of the output labels to the evaluator. Thus, Yao’s protocol requires a constant number275

of communication rounds.
After a fruitful line of research into protocol optimizations (Kolesnikov & Schneider, 2008; Zahur et al., 2015)

and OT improvements (Ishai et al., 2003; Asharov et al., 2013), Yao’s GC requires no communication per XOR
gate (Kolesnikov & Schneider, 2008) and just 2 bits of communication per AND gate (Zahur et al., 2015). In the
notation of Demmler et al. (2015b), an execution of Yao’s GC can also be seen as operating on secret shares. Basically,280

Yao sharing of a secret bit a depends on the corresponding labels, with haiY0 = (k0, k1) and haiY1 = ka. The sharing
procedure itself is based on OT, and the original bit a can be e�ciently reconstructed from haiY0 and haiY1 .

4.3. Mixed Protocols
The di↵erent STPC protocols vary in e�ciency for di↵erent types of data and applications. For example, GC only

has a constant number of rounds while computation in arithmetic sharing has rounds linear in the multiplicative depth285

of the circuit, making GC a better choice in settings with high latency. Also, comparisons usually are more e�cient
in Yao sharing. On the other hand, computing arithmetic operations in arithmetic sharing results in a relatively low

2The encryption scheme needs to have the special property to check for correct decryption or additional techniques like point-and-
permute (Beaver et al., 1990) are employed.

8



Treiber et al. / Speech Communication 00 (2019) 1–18 9

P0

hYiA0

P1

hYiA1
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5

1. Client extracts probe X.

2. Client shares X = hXiA0 + hXiA1 .

3. Client sends hXiA0 to P0 and hXiA1 to P1.

4. Servers P0 and P1 securely compute:

4.1. hS cos(X,Y)iA

4.2. hS cos(X,Y)iY = A2Y(hS cos(X,Y)iA)

4.3. hyes /noiY = >̃(hS cos(X,Y)iY , ⌘)

5. P1 performs Reconstruct(hyes /noiY )!yes /no.

Figure 1. Our architecture of ASV between a client device and two servers P0 and P1 based on cosine similarity for length-normalized features.
The data subject is already enrolled with reference embedding share hYiA0 stored on P0 and reference embedding share hYiA1 stored on P1.

communication overhead. Therefore, it is a good idea to use multiple primitives during the secure evaluation of a func-
tion, harnessing the optimal protocol for di↵erent parts of the computation. For this, the ABY framework (Demmler
et al., 2015b) provides functionalities to convert a sharing of one type to a valid sharing of another type. For ex-290

ample, the A2Y function converts an arithmetic sharing to a Yao sharing: hxiY = A2Y(hxiA). Afterwards, the rest
of the function can be evaluated as a GC. We will make use of A2Y in our architecture by first computing the score
in arithmetic sharing and then converting it to Yao sharing to perform the threshold comparison. For an l-bit x and
security parameter , A2Y incurs costs of 13l symmetric encryption operations and 5l bits of communication in two
messages.295

5. Our STPC Architecture for Automatic Biometric Verification

Our goal is to achieve biometric information protection (BIP) in ASV using STPC. Although STPC lets us securely
compute any kind of biometric distance, the adaption of STPC to BIP is not straightforward. The issue is that in the
STPC setting, the inputs x and y are assumed to be available in plain to the corresponding party. While the input is
hidden from the other party, we additionally require that the reference data Y is protected on the server and is thus not300

available as an input to an STPC protocol. Our proposed architecture operates in the same setting as the previous work
of Nautsch et al. (2018) by assuming that two servers P0 and P1 perform the verification without colluding. In Nautsch
et al. (2018), the server DBcontroller is used as a storage service for the encrypted embedding while the server ASoperator
is in possession of the secret key used to decrypt the final score. Conversely, in our solution, P0 and P1 both participate
in a STPC protocol to perform the verification, with an authenticating server P1 obtaining the verification decision at305

the end of the computation. We consider this to be a realistic setting, given that P0 could be seen as an independent
provider of privacy-preserving computation services that is employed to assist with the verification procedure of P1.
As such, preserving trust in the provided service is of importance to P0, resulting in an economic incentive to not
collude with P1.

Our architecture is based on the outsourced STPC construction of Kamara & Raykova (2011) and aligns STPC to310

biometric verification by pre-sharing X and Y between P0 and P1. Similar to Blanton & Aliasgari (2012) in the context
of iris identification using Boolean sharing, the client device secretly shares the reference hYii = {hy1ii, . . . , hyFii}
during enrolment, and sends hYi0 to P0 and hYi1 to P1. This setup satisfies the three ISO/IEC IS 24745 requirements
of unlinkability, irreversibility, and renewability. The data is secretly shared and, hence, it is impossible to retrieve
any information about the original input, granting irreversibility. For the same reason, the shares of subjects’ samples315

do not reveal any information about the subject, making it impossible to detect whether the samples belong to the
same subject, guaranteeing unlinkability. Since adding a fresh sharing of the neutral element to an existing sharing
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·
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·
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x2
+ A2Y > yes /no

⌘

Figure 2. Example of a length-normalized cosine verification circuit for an embedding dimension of F = 2.

yields a new valid share in arithmetic or Boolean sharing, our setup is easily renewable without the need to re-enroll.
This concept allows information protection for any biometric verification system, as the verification itself can then be
computed by invoking STPC protocols on the shares. Of course, communication between the client and the servers320

needs to be encrypted and authenticated, e.g., by using a secure channel via TLS. Otherwise, an adversary with access
to the network could just reconstruct the biometric reference data by observing both shares sent to the di↵erent servers.
In the following, we present a mixed-protocol STPC verification system optimized for embedding-based ASV.

5.1. Cosine Verification
Our architecture as well as the verification process is illustrated in Figure 1 for the special case of ASV using a325

cosine comparison score on length-normalized embeddings. Prior to verification, the data subject enrolls its length-
normalized embedding hYiA0 to P0 and hYiA1 to P1. Then, during verification, the client device shares the probe vector
hXiAi = {hx1iAi , . . . , hxFiAi } (step 2), and sends hXiA0 to P0 and hXiA1 to P1 (step 3). In step 4, P0 and P1 engage in a
mixed STPC protocol to compute the verification on the already shared inputs. Even though P0 and P1 did not share
the inputs themselves, they can still securely compute the verification function as long as their shares are valid.330

More specifically, P0 and P1 first securely compute S cos(X,Y) in step 4.1 by using hXiAi and hYiAi . Subse-
quently, in order to perform the comparison, the parties switch from arithmetic to Yao sharing and compute hS cosiYi =
A2Y(hS cos(X,Y)iAi ) in step 4.2. In step 4.3, the threshold comparison is computed. A greater than gate > is garbled
into >̃ and the servers evaluate >̃(S cos, ⌘) on the Yao-shared S cos and a previously-shared or just publicly known
threshold value ⌘. Finally, P0 sends its share of the decision to P1, which is then able to recover the decision value by335

combining both shares using Reconstruct in step 5. Based on this, the data subject is either accepted or denied. The
resulting circuit that is securely evaluated during the evaluation is shown in Figure 2 for a dimension of F = 2.

A complexity analysis of the HE solution of Nautsch et al. (2018) and our cosine architectures is presented in
Table 1. At the cost of just two additional rounds stemming from the A2Y conversion, the outsourced STPC solution
achieves significantly smaller bandwidth and storage costs while replacing the expensive exponentiations of homo-340

morphic cryptography with simple products and symmetric cryptography. For contemporary CPUs, symmetric AES
operations are much more e�cient because AES is computed via native CPU instructions. Also, the entirety of com-
putation and communication takes place between two servers, which we assume to possess hardware with reasonable
performance and a low-latency network connection. This is not the case for the HE solution, which necessitates that
the client, which may even be a mobile device with power and bandwidth restrictions, does most of the computation.345

Apart from e�ciency improvements, we designed our architecture to additionally protect the score and threshold val-
ues as well as to grant security against a malicious client that would deviate from the protocol specification. The last
advantage stems from the fact that in the HE solution (Nautsch et al., 2018), a malicious client could just encrypt an
accepting score S 0cos and ASoperator would accept it. The reason for this security risk is that the designed protocol has
no way to prove whether the score was computed in the specified way. In contrast, in our outsourced STPC-based350

solution all secret shared inputs, and even maliciously chosen inputs, correspond to a valid speech input of the client
and therefore our protocol provides security against a malicious client. The score computation takes place between
both semi-honest servers without involving the potentially malicious client. Contrary to the servers, the client has no

10
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Cosine PLDA/2Cov
(Nautsch et al., 2018) Ours (Nautsch et al., 2018) Ours

Computation

#asymmetric crypto 1 0 3F2 + 1 0
#exponentiations F 0 4F2 0
#symmetric crypto 0 15l 0 15l
#products F � 1 8F 5F2 � 1 8(4F2 + 5F)
#additions 0 16F � 2 0 64F2 + 74F

Communication

Between client & servers 2�(F + 1) 2lF 2�(5F2 + F + 1) 2lF
Between servers 0 l(4F + 5) 0 l(16F2 + 20F + 5)
Total ⇡ 193KB ⇡ 17.1KB ⇡ 240.2MB ⇡ 8MB
#rounds 1 3 2 4

Storage
Protected template size

2�F lF 2�(F2 + F) lF
⇡ 192KB ⇡ 2KB ⇡ 48.2 MB ⇡ 2 KB

Protected model size
4�F2 l(2F2 + F + 1)
⇡ 96 MB ⇡ 1 MB

Table 1. Complexity analysis for the cosine and PLDA-style comparators during online verification, assuming F = 250 dimensional features,
feature size l = 64 bits and long-term (recommended use until 2030 and beyond) secure key sizes as recommended by Barker (2016) (symmetric
security parameter  = 128, and public-key security parameter � = 3072).

incentive to behave honestly and is not under public scrutiny. Thus, in addition to preserving the subject’s privacy, we
consider security against malicious clients to be another important property in automatic biometric verification.355

5.2. PLDA Verification
PLDA comparators examine the similarity and dissimilarity of a reference – probe pair in a latent biometric sub-

space (in terms of a log-likelihood ratio score), considering within and between variabilities of the biometric data.
That is, not in the observed data domain but in the inferred biometric domain, where the actual biometric compar-
ison is carried out. By contrast, cosine comparators solely examine the data correlation: extracted features need to360

be representative regarding the biometric verification task in order to sustain a biometric performance competitive to
PLDA. More accurate embedding verification systems rely on PLDA/2Cov comparators. The HE solution of Nautsch
et al. (2018) was also extended to securely evaluate the PLDA/2Cov score. Compared to S cos, those scores rely on
trained models provided by a vendor. Since these models usually encompass intellectual property that is very valuable
to the vendor, the protection of those models is considered an important goal and has been realized by the previous365

solutions. However, adapting the basic version for securely computing cosine S cos to PLDA/2Cov scores S PLDA comes
with significant changes in the HE-based architecture: Nautsch et al. (2018) introduce two additional servers AS vendor
and DBvendor, requiring an additional asymmetric key pair. We use the advantages of STPC and can easily adapt our
cosine solution by just securely evaluating a circuit that performs the S PLDA instead of the S cos computation, with an
additional model input coming from the vendor. This vendor data can be protected in the same way as the subject370

embedding by pre-sharing it between P0 and P1. Thus, PLDA/2Cov scores for centered data hS 0

PLDAiA can be easily
computed on pre-shared hXiA, hYiA, hPiA, hQiA, and hconstiA as specified in Section 3. Analogously, PLDA/2Cov
scores for non-centered data hS µPLDAiA can be easily computed on hXiA, hYiA, h⇤iA, h�iA, hciA, and hkiA. The threshold
comparison in Yao-sharing then stays the same as in the cosine solution.

Table 1 also provides an overview of the complexities of the PLDA-style solution of Nautsch et al. (2018) and375

ours. Compared to theirs, our outsourced STPC approach greatly reduces bandwidth and storage requirements. In
the case of F = 250 and standard key sizes, our bandwidth of 8 MB is more practical than the 240 MB of the HE
solution. Also, our computational costs are much smaller, requiring no exponentiations. Our solution requires two
additional rounds but these costs are insignificant since we assume a low latency network between the two servers,
which is often not the case in the setting of the other architecture, where the client is directly involved in the secure380

score computation.
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6. Evaluation

We evaluate our proposed ASV architecture on the NIST i-vector machine learning challenge (National Insti-
tute of Standards and Technology (NIST), 2014). The data comprises 1 306 reference identities (each with five
reference samples) and 9 634 probes, forming a progress and an evaluations set. Comparison models are trained385

on a segregated development set (with 64-bit float values). We report on the evaluation set with 7 542 271 com-
parisons. The i-vectors (probabilistic embeddings) are distributed with 5-digit precision; our computational com-
parisons assume pre-processed embeddings, e.g., after linear discriminant analysis (LDA), whitening, and length-
normalization. Our C++ implementation of the privacy-preserving cosine and PLDA/2Cov verification procedures
is based on the ABY framework (Demmler et al., 2015b) which provides a state-of-the-art implementation of the390

arithmetic, Boolean, and Yao STPC protocols. Our implementation is available online as open source at https:
//encrypto.de/code/PrivateASV. Using our prototype, we evaluate the real-world runtime and biometric perfor-
mance of our architecture and compare the results to the HE-based solution of Nautsch et al. (2018), which is set in
the same context of two-server device-independent embedding-based ASV.

6.1. Implementation Details395

For the secure computation of a functionality, ABY requires a specification of the circuit of the functionality to be
computed securely. Our program provides circuit descriptions of the cosine and PLDA/2Cov score computations. For
Boolean and Yao sharing, floating point inputs and operations are provided by ABY (Demmler et al., 2015a), whereas
arithmetic sharing operates on integer inputs. While we will also report results for a full floating point solution in
Boolean sharing, we focus on the more e�cient arithmetic sharing in Z264 by scaling the floating point inputs into the400

integer space in order to obtain practical runtimes. In this scaled solution, we multiply the floating point values by 105

and we will show in Section 6.2 that this does not represent a loss in verification accuracy.
Additionally, for our scaled solution, we need to represent negative values in Z2l . Using the two’s complement,

we are able to represent negative integers in Z2l without adapting the secure computation of multiplication or addition
gates. However, we had to modify the greater-than comparator in Yao sharing invoked during the threshold comparison405

after the A2Y operation is performed on the computed score. Adopting the optimizations for three-input functionalities
of Pinkas et al. (2009); Schneider (2012) yields a two’s complement greater-than comparator circuit requiring just one
additional AND gate compared to the comparison circuit for unsigned integers (Kolesnikov et al., 2009).

Furthermore, we use single instruction multiple data (SIMD) operations, enabling the parallel execution of one
operation on multiple data items like, e.g., a multiplication to realize a vector product. This can greatly speed up the410

evaluation time of the verification circuit.

6.2. Biometric Performance
Figures 3 and 4 depict detection error trade-o↵ plots (Martin et al., 1997) (implementation based on Nautsch

et al. (2017)), comparing the biometric verification performance on di↵erent feature dimensions of cosine, PLDA,
and 2Cov comparators as well as on the plaintext and the proposed scaled STPC implementations (the full floating415

point implementation has no degradation compared to the plaintext execution). Though our STPC implementation
of PLDA/2Cov for centered and non-centered data is the same for both PLDA and 2Cov comparators (only the es-
timation of model parameters given as inputs vary), the biometric performances di↵er. While cosine comparisons
are solely slightly a↵ected by the feature space dimension, PLDA comparisons degrade the fewer information is pro-
vided, outperforming cosine on higher feature space dimension. The full-subspace PLDA, i.e., the 2Cov comparator,420

outperforms cosine and other PLDA comparators. Our proposed STPC implementations for cosine, PLDA, and 2Cov
comparators yield the same error rate trade-o↵ as their plaintext Sidekit implementation (as of Larcher et al. (2016)).
In contrast to Larcher et al. (2016), we assume already pre-computed comparison model parameters, and fully pro-
cessed embeddings. Score properties and distributions are preserved within our proposed STPC computation (to a
reasonable extent). For all comparators, the error rate trade-o↵ characteristics are the same when using the proposed425

scaled privacy-preserving method (regardless of the feature dimensions) and thus biometric recognition performance
is sustained while privacy is preserved.

Notably, we observed minor di↵erences in the score value of the Sidekit and the scaled ABY implementations,
which we attribute to di↵erences in the underlying Python and C++ libraries as well as to numerical artifacts. In
particular, computations are carried out on integer rather than float values (derived by multiplication with 105 and430
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Figure 3. Biometric performance of (from left to right) cosine, PLDA, and 2Cov comparators with di↵erent feature dimensions (without and after
LDA dimension reduction): 600 (black, solid), 400 (blue, dashed), 250 (red, dash-dotted), 200 (green, dotted), 150 (violet, solid). For PLDA, 600
dimensional features are depicted, where the colors indicate subspace dimension: 600 (black, solid), 400 (blue, dashed), 200 (red, dash-dotted),
100 (green, dotted), 50 (violet, solid). In this set-up, the full-subspace 600-dimensional PLDA equals the 2Cov on 600 feature dimensions.
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Figure 4. Biometric performance of plaintext and ABY (solid, dashed) implementations of cosine (black / green), PLDA (red / blue) with 100-
dimensional subspace, and 2Cov (cyan / orange) comparators on 200-dimensional embeddings; no score normalization employed.

truncation). This multiplicative domain representation of a float value leads to di↵erent spaces before and after mul-
tiplications are securely evaluated in our implementation. The integer values are preserved within the same domain,
when sustaining the same multiplication factor e.g., for the computation of 2Cov scores, the inner Frobenius terms
utilizing the � and ⇤ hyperparameters are in the 1015 domain (due to two dot products), the term utilizing c is in the
1010 domain (due to one dot product), and the scalar term remains in the 105 domain. Partial score terms are added,435

each of them being in the 1015 domain. As a result of these approximations in our scaled implementation, the LLR
score precision is limited to 3 digits (5-digit input, up to two multiplications in the summation of score subterms). By
consequence, LLR thresholds are also limited to 3-digit precision, whereas the HE-based implementation provides
full precision to verification service providers when denoting LLR thresholds. 3 This is a result of the scaling used
to speed up transaction times and is not inherent to STPC. However, we assume that even 2-digit precision on LLR440

3 By limiting LLR threshold precision, formally denoted decision policies are grouped. Decision policies resemble in (LLR) thresholds, which
are formally outlined by prior probability and decision cost beliefs (Brümmer, 2010). In this sense, LLR thresholds are continuous as they are
capable of summarizing di↵erent parameterizations of prior and cost beliefs. If we limit the precision of these LLR thresholds, summaries of prior
and cost beliefs are grouped; the scale of possible decisions using LLR scores is limited. If one evaluates the information-theoretic performance of
binary classifiers (see Brümmer & du Preez (2008); Ramos & Gonzalez-Rodrigues (2008)), logarithmic (strictly) proper scoring rules are employed
that penalize, e.g., higher non-mated comparison scores much more than lower non-mated comparison scores. By limiting the precision, scores
are e↵ectively rounded. We assume the di↵erence in information performance resulting from third precision rounding to be marginal for LLRs
in [�5,+5], which we assume to be reasonable LLR ranges for current biometric voice recognition services.

13



Treiber et al. / Speech Communication 00 (2019) 1–18 14

Cosine
PLDA/2Cov

(non-centered Data)
PLDA/2Cov

(Centered Data)
Dimension HE Ours Improvement HE (Plain Model) HE (Protected Model) Ours Improvement Ours
F = 50 22 ms 3.7 ms 6⇥ 58 ms 15.9 s 11.2 ms 1 421⇥ 10.5 ms
F = 100 44 ms 3.7 ms 12⇥ 96 ms 61.7 s 26.6 ms 2 318⇥ 19.9 ms
F = 150 62 ms 3.8 ms 16⇥ 122 ms 135.7 s 45.1 ms 3 009⇥ 39.8 ms
F = 200 84 ms 3.9 ms 22⇥ 169 ms 241.9 s 77.4 ms 3 126⇥ 52.8 ms
F = 250 106 ms 4.0 ms 27⇥ 205 ms 379.6 s 113.7 ms 3 338⇥ 84.2 ms
F = 400 144 ms 4.0 ms 36⇥ 320 ms 973.1 s 246.7 ms 3 945⇥ 205.6 ms
F = 600 203 ms 4.2 ms 47⇥ 423 ms 2 171.6 s 529.8 ms 4 099⇥ 411.4 ms

Table 2. Experimental online runtimes of our outsourced STPC verification architecture and the HE verification architecture of Nautsch et al. (2018)
for cosine and PLDA/2Cov scores with either centered or non-centered data. For PLDA/2Cov scores, computational time is saved by centering the
data before comparisons, however, for accompanying dataset shifts, one might want to employ another data mean value. Our STPC verification is
implemented in C++ using ABY (Demmler et al., 2015b) while the HE solution is implemented in Python using Python-pallier (Thorne, 2017).
The experiments were run on l = 64 bit scaled integer inputs, with long-term (recommended use until 2030 and beyond) secure key sizes as
recommended by Barker (2016) (symmetric security parameter  = 128 and public-key security parameter � = 3072).

thresholds satisfies current technology demands and, indeed, no loss in the biometric recognition performance is ob-
served in this evaluation. Thus, biometric verification performance is retained in our solution. From Figures 3 and 4,
we conclude that not only comparative but identical performance results are sustained.

6.3. Workload Evaluation
We tested both our scaled and our full floating point implementation on a two-server infrastructure using two445

physically separated machines with Intel Core i9-7960X CPUs and 128 GB of RAM. Since we want to emulate well-
connected service providers, the network connection between the servers is configured with a bandwidth of 1 Gbit
and 1 ms round trip time.

6.3.1. Scaled Solution
Table 2 provides an overview of the measured transaction times of our scaled solution. We consider only the450

time of the verification itself without the client starting the process. The pre-computation time is not relevant to the
verification time itself and is therefore not included. A comparison to the HE-based verification of Nautsch et al.
(2018) can also be found in Table 2, including both the solution that assumes knowledge of the model in plain and
the solution that additionally hides the model. Since our solution also hides the model, which is valuable intellectual
property, the runtimes have to be compared to the latter. Their implementation is written in Python using Python-455

paillier (Thorne, 2017) that uses e�cient C-coded multiple-precision arithmetic and can operate in di↵erent ways
regarding the limitation of precision. Either a fixed value for all exponents can be agreed upon, which is equivalent
to our scaled solution, or the exponent terms of floating point values are communicated in plain, which leads to some
information leakage about the magnitude of the encrypted value (Thorne, 2017). The implementation of Nautsch
et al. (2018) uses the latter option. Note that in the setting of Nautsch et al. (2018), parts of the computation have460

to be performed on the client device, though we benchmark the whole computation on one server to yield a useful
comparison between the architectures.

The results show that the usage of outsourced STPC for embedding-based ASV significantly improves verification
duration. Depending on the feature dimension F, a verification can take as little as 3.7 ms (cosine), 10.5 ms (centered
data input to PLDA/2Cov), or 11.2 ms (non-centered data input to PLDA/2Cov). Even with the unaltered embeddings465

of F = 600, our PLDA/2Cov verifications require roughly half a second to complete. For the cosine distance, increas-
ing the feature dimension only slightly increases the verification time while an increased dimension results in a higher
verification time for PLDA/2Cov. Compared to the HE-based solution, our verification time is significantly improved.
The HE cosine verification takes between 22 ms (F = 50) and 203 ms (F = 600) whereas ours takes between 3.7
ms and 4.2 ms, respectively. Looking at the factor of improvement over increasing values of F, one can observe that470

our solution also scales better for larger F. For having non-centered data inputs to PLDA/2Cov comparisons, our
solution yields a similar result: the factor of improvement goes as high as 4099⇥ (F = 600) and is increasing for
increasing F. Though we only compare the online times here, we note that the total execution time (consisting of the
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setup and the online time) of our architecture is practical as well. For instance, the total evaluation time varies from
191.8 ms (F = 50) to 19.4 s (F = 600) for non-centered data, the latter still being an improvement of 112⇥ over the475

HE-based solution. Even compared to the HE solution that leaks the vendor’s model to allow for much more e�cient
runtimes compared to the HE solution that protects this information, our solution can still achieve considerably lower
runtimes (for the most part) while nonetheless leaking no information about the model. Overall, this evaluation shows
that our solution can also be viable for higher feature dimensions, e↵ectively reducing the HE verification time for
F = 600 from about 36 minutes to about half a second.480

6.3.2. Full Floating Point Solution
Though we showed in Section 6.2 that our scaled implementation does not alter verification accuracy, we also

evaluated full floating point operations (with 32-bit and 64-bit precision). Compared to our scaled solution, this
displays a significant drawback in e�ciency. For 32-bit precision, our implementation of PLDA/2Cov (non-centered
data) takes between 11.0 s (F = 50), 76.1 s (F = 150), and 232.5 s (F = 250), while the runtimes for 64-bit precision485

are between 21.3 s (F = 50) and 202.5 s (F = 150). Notably, the circuits for native floating point operations require
a much higher gate count and therefore a high amount of allocated memory for one verification. As a result, 32-bit
operations become infeasible in our setting for F = 400 and greater (32-bit) and for F = 200 and greater (64-bit).
Because of this, the main communication bottleneck is the high depth of the circuit introduced by the floating point
operations and therefore the cosine verification runtimes take considerably longer as well (between 3.2 s and 38.0 s490

for 64-bit precision). Though the full floating point PLDA/2Cov transaction times are still lower than the HE-based
solution of Nautsch et al. (2018) for 32-bit precision, the 64-bit precision times are not suitable for ASV. While feature
extraction may operate in 64-bit, we assume that the biometric comparison can be executed in 32-bit, because just a
few more additions and multiplications occur with each data value to result in LLR scores. Nonetheless, we propose
to use scaling for practical privacy-preserving ASV, since our scaled solution is significantly faster without displaying495

a decrease in verification accuracy.

7. Conclusion

In our work we propose a privacy-preserving automatic biometric verification architecture based on outsourced
STPC. We showed that the outsourced biometric data is unlinkable, irreversible, and renewable according to the
ISO/IEC 24745 standard. As an important use case, we demonstrate how to build an embedding-based privacy-500

preserving ASV by employing mixed-protocol outsourced STPC for cosine and PLDA/2Cov score computations and
threshold comparisons. A theoretical as well as a practical evaluation on the NIST i-vector challenge shows that our
architecture retains biometric recognition performance while achieving practical transaction times. Our architecture
is over 4000⇥ faster than previous solutions and, in addition, is secure against a malicious client. Since we also do
not require a device-specific key, we argue that the usage of outsourced STPC is a demonstrable and practical tool505

to satisfy recent legal restrictions for automatic biometric verification. To avoid limiting threshold precision through
scaling floating point values to integers while still achieving highly e�cient transaction times, we consider more
e�cient secure floating point operations as important future work.
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Brümmer, N., van Leeuwen, D., & Swart, A. (2014). A comparison of linear and non-linear calibrations for speaker recognition. In Proc. The
Speaker and Language Recognition Workshop (Odyssey) (pp. 14–18). ISCA.
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