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Abstract—This paper presents a review of multi-objective 

deep learning methods that have been introduced in the 

literature for speech denoising. After stating an overview of 

conventional, single objective deep learning, and hybrid or 

combined conventional and deep learning methods, a review of 

the mathematical framework of the multi-objective deep 

learning methods for speech denoising is provided. A 

representative method from each speech denoising category, 

whose codes are publicly available, is selected and a comparison 

is carried out by considering the same public domain dataset 

and four widely used objective metrics. The comparison results 

indicate the effectiveness of the multi-objective method 

compared with the other methods, in particular when the signal-

to-noise ratio is low. Possible future improvements that can be 

achieved are also mentioned.   

Keywords—Speech denoising, multi-objective deep learning 

for speech denoising, denoising for speech recognition. 

I. INTRODUCTION 

t is well known that noisy environments have a degrading 
effect on the quality and intelligibility of speech signals. 

Operating in noisy environments affect the performance of 
speech processing systems that are normally designed based 
on clean speech signals [1-16].  Speech denoising involves the 
reduction or removal of the noisy part of the speech+noise 
mixture. Speech denoising has been extensively studied in the 
speech processing literature and have been deployed in a wide 
range of speech processing systems including speech 
recognizers [17-18], voice activity detectors [19-21], hearing 
aids [22-23] and voice over IP (VoIP) [24]. 

Initial attempts at speech denoising involved applying 
linear filters to the mixture to reduce or eliminate the noise 
portion, most prominently Wiener filtering [25], by estimating 
the noise statistics. In this review, speech denoising methods 
are placed into two main categories [26-29]: conventional 
methods, including Wiener filtering, spectral subtraction, and 
Minimum Mean Square Error (MMSE) methods [30-39], and 
more recent deep learning-based methods [40-51]. 
Conventional methods attempt to estimate the statistical 
attributes in the mixture. A shortcoming of conventional 
methods is that their effectiveness significantly diminishes in 
nonstationary noisy environments [52-53]. More recently, 
deep learning methods have been introduced for speech 
denoising which are shown to perform better in nonstationary 
noisy environments compared with conventional methods. 
Deep learning methods attempt to model the nonlinear 
relationship between the mixture and the clean speech signals 
without knowing the noise statistics [54-56]. There have also 
been speech denoising solutions where conventional and deep 
learning methods are combined (named hybrid methods) [57-

59]. In the hybrid methods, denoised speech signals are 
obtained by incorporating conventional methods into the deep 
learning framework. The latest deep learning methods have 
incorporated not a single objective or loss function to optimize 
the parameters of a deep neural network but rather a 
combination of a number of different objective or loss 
functions (named multi-objective deep learning methods) [60-
75].  

A number of reviews of speech denoising has previously 
appeared in [26-29]. This review differs from the previous 
reviews by focusing on the multi-objective deep learning 
methods, which are the state-of-the-art speech denoising 
methods at the time of this writing. For the sake of 
completeness and for the purpose of laying the mathematical 
foundation to review the multi-objective deep learning 
methods, an overview of conventional methods, single 
objective deep learning methods, and hybrid methods is first 
stated in Section II. Then, in Section III, the multi-objective 
deep learning methods are reviewed. A comparison of 
representative methods in the above speech denoising 
categories is reported in Section IV followed by mentioning 
possible future improvements in Section V. Finally, the paper 
is concluded in Section VI.  

II. SPEECH DENOISING METHODS 

A. Conventional Methods 

A widely used and one of the earliest conventional 
methods is Wiener filtering [25]. In general, conventional 
methods attempt to obtain an estimate of the noise statistics. 
Another conventional method is spectral subtraction, 
developed by Boll [76], where the noise in the frequency 
domain over non-speech activity segments is used to subtract 
it from the mixture during speech activity segments. MMSE-
based [77] and its variations [30-39] is another popular 
conventional method. As stated earlier, a major shortcoming 
of these conventional methods is that their performance is 
adversely impacted in the presence of nonstationary noisy 
environments.  

B. (Single Objective) Deep Learning Methods 

After the initial introduction of deep learning networks by 
Hinton in 2006 [78], different deep learning configurations 
have been introduced such as Autoencoders [79], 
Convolutional Neural Networks (CNNs) [80], and Recurrent 
Neural Networks (RNNs) [81]. Autoencoders are designed to 
reconstruct the input at their output. They consist of encoding 
layers and decoding layers. Encoding layers abstract the input 
by removing redundant information in the input, while 
decoding layers reverse the process. CNNs first obtain high 
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level representations of the input through several 
convolutional layers which are then distinguished by fully 
connected layers. RNNs are similar to CNNs but incorporate 
feedback connections in addition to forward connections.  

Single objective deep learning methods can be placed into 
two major groups: (1) Time-frequency domain methods, e.g. 
[82-85, 89], in which generally LPS features are used as the 
input and the target of a deep neural network. Mapping-based 
(direct mapping) methods, e.g. [51, 84-85], in which the 
magnitude of LPS features are considered as training samples. 
Masking-based methods constitute another category in this 
group, e.g. [86-88], where the target of the network is 
considered to be an intermediate mask indicating the presence 
of clean and noise signals. This approach was first introduced 
in [86] by considering a binary mask that assigned 0 or 1, 
respectively, to the existence or absence of noise. In [87], a 
soft mask was considered instead of a binary mask [86], which 
was shown to be more effective compared to the binary mask. 
Several improvements to masking-based methods have also 
appeared. For example, in [90], a phase-sensitive filter was 
proposed which incorporated the phase information into the 
estimated mask. In another category in this group, a set of 
complementary features as well as the masking and mapping-
based targets developed for the training of deep neural 
networks [89] (2) Time-domain methods, e.g. [91-99], in 
which raw data in the time domain is considered. One of the 
earliest works in this group was reported in [91], where a fully 
convolutional neural network was used to map noisy time 
domain signals to their clean version. Another example is the 
method discussed in [92] where an end-to-end speech 
denoising was performed by minimizing the reconstruction 
error in the time domain. 

 

C. Hybrid Methods 

      Tu et al. introduced a hybrid method in [57] by 
incorporating conventional methods into the deep learning 
framework. An LSTM Multi-Style (LSTM-MT) model was 
trained using LPS as the input and clean LPS and Ideal Ratio 
Mask (IRM) as the targets. In what follows, the equations for 
the hybrid methods are briefly mentioned in order to lay the 
mathematical foundation for the review of the multi-objective 
methods in the next section.  

In the above hybrid method, the denoising process for the 
l-th audio frame is achieved in three steps. The first step, 
called Approximate Speech Signal Estimation (ASSE), 
preprocesses the noisy LPS 𝑋(𝑙) by considering a suppression 
rule, resulting in a clean speech estimate 𝑌(𝑙). In the second 
step, the trained LSTM-MT network uses 𝑌(𝑙)  to generate 

estimates of IRM 𝑀(𝑙) and clean speech 𝑆̂(𝑙). In the final 
step, the estimates of IRM 𝑀(𝑙) and clean speech 𝑌(𝑙) are 
utilized to estimate the output speech signal 𝑍(𝑙). The above 
steps are elaborated below.  

The prior and posterior Signal-to-Noise Ratios (SNRs), 

denoted by 𝛾(𝑘, 𝑙)  and 𝜉(𝑘, 𝑙) , respectively, are estimated 

using the following widely used equations  

 

𝛾(𝑘, 𝑙) ≜
|𝑋(𝑘, 𝑙)|2

𝜎(𝑘, 𝑙)
, 𝜉(𝑘, 𝑙) ≜

|𝑆(𝑘, 𝑙)|2

𝜎(𝑘, 𝑙)
 (1) 

 

where 𝜎(𝑘, 𝑙) indicates the noise variance in time frame 𝑙 and 

frequency bin 𝑘. Then, the noise reduction or suppression is 

achieved by the gain 𝐺(𝑘, 𝑙) as follows  

 

𝐺(𝑘, 𝑙) = 𝑔(𝛾(𝑘, 𝑙), 𝜉(𝑘, 𝑙)) (2) 

 

where 𝑔(. )  is a function of prior and posterior SNRs 

described in [66]. ASSE is then computed using the following 

equation  

 

𝑌(𝑘, 𝑙) = 𝑙𝑜𝑔[𝛿𝑀(𝑘, 𝑙) + (1 − 𝛿)𝐺(𝑘, 𝑙)] + 𝑋(𝑘, 𝑙) (3) 

 

where 𝛿 denotes a weighting parameter. 

Next, IRM is computed which is the ratio of the powers 

of the clean and noisy speech signals according to  

 

𝑀𝑟𝑒𝑓(𝑘, 𝑙) =
|𝑆(𝑘, 𝑙)|2

|𝑋(𝑘, 𝑙)|2
 (4) 

 

The objective function for training is the combination of the 

terms noted below 

 

𝐸 = ∑ [(𝑆̂(𝑘, 𝑙) − 𝑆(𝑘, 𝑙))
2

𝑘,𝑙

+ (𝑀(𝑘, 𝑙) − 𝑀𝑟𝑒𝑓(𝑘, 𝑙))
2

] 

(5) 

 

In another more recent hybrid method in [58], the speech 

signal 𝑆(𝑘, 𝑙)  is recovered and the noise signal 𝑉(𝑘, 𝑙)  is 

reduced by applying a linear filter transfer function 𝐻(𝑘, 𝑙), 

for example Wiener filter, to the observation 𝑋(𝑘, 𝑙). The 

Wiener filter transfer function is given by 

 

𝐻(𝑘, 𝑙) =
𝜙𝑆𝑆(𝑘, 𝑙)

𝜙𝑆𝑆(𝑘, 𝑙) + 𝜙𝑉𝑉(𝑘, 𝑙)
 (6) 

 

where 𝜙𝑉𝑉(𝑘, 𝑙) denotes the Power Spectral Density (PSD) 

of the noise signal expressed as 

 

𝜙𝑉𝑉(𝑘, 𝑙) = 𝐸{𝑉(𝑘, 𝑙)𝑉∗(𝑘, 𝑙)} (7) 

 

Likewise, the PSD of the desired signal is expressed as 

 

𝜙𝑆𝑆(𝑘, 𝑙) = 𝐸{𝑆(𝑘, 𝑙)𝑆∗(𝑘, 𝑙)} 

= 𝜙𝑋𝑋(𝑘, 𝑙) − 𝜙𝑉𝑉(𝑘, 𝑙) 

 

(8) 

where 𝜙𝑋𝑋(𝑘, 𝑙) = 𝐸{𝑋(𝑘, 𝑙)𝑋∗(𝑘, 𝑙)}  denotes the PSD of 

the observed signal. For real-time operation, at time frame 𝑙, 
the PSDs of the noise signal and the observed signal can be 

updated recursively as follows 

 



𝜙̂𝑉𝑉(𝑘, 𝑙) = 𝛼̂𝑉(𝑘, 𝑙)𝜙̂𝑉𝑉(𝑘, 𝑙 − 1)

+ (1 − 𝛼̂𝑉(𝑘, 𝑙))𝑋(𝑘, 𝑙)𝑋∗(𝑘, 𝑙) 
(9) 

𝜙̂𝑋𝑋(𝑘, 𝑙) = 𝛼̂𝑋(𝑘, 𝑙)𝜙̂𝑋𝑋(𝑘, 𝑙 − 1)

+ (1 − 𝛼̂𝑋(𝑘, 𝑙))𝑋(𝑘, 𝑙)𝑋∗(𝑘, 𝑙) 
(10) 

where 𝛼̂𝑉 and 𝛼̂𝑋 denote smoothing weights for the PSDs of 

the noise and the input mixture, respectively.  

     The PSD of the noise signal can be estimated based on the 

past average of power spectral values in a time-varying 

smoothing manner using a so-called Speech Presence 

Probability (SPP). However, when noise is nonstationary, or 

the level of SNR is low, it is quite challenging to acquire an 

accurate SPP, which limits the tracking capability of the noise 

estimator in case of time-varying noise.  

     To address this limitation, a deep learning network is used 

to replace SPP. This way, conventional and deep learning 

modules are merged together as part of the same solution. 

Two-layers of a Gated Recurrent Unit (GRU) and a one-layer 

of a feedforward network are utilized to construct a deep 

noise tracking network. A sigmoid output layer follows the 

GRU generating a vector of 0 and 1 elements denoted by 𝛼𝑉, 

which is used as the SPP of the current frame enabling an 

adapting smoothing factor. After updating the network 

parameters, the final desired speech signal is obtained via the 

following equation 

 

𝑆̂(𝑘, 𝑙) =
𝜙𝑋𝑋(𝑘, 𝑙) − 𝜙𝑉𝑉(𝑘, 𝑙)

𝜙𝑋𝑋(𝑘, 𝑙)
𝑋(𝑘, 𝑙) (11) 

The following MSE-based magnitude objective function is 

used to optimize the network parameters 

 

𝐽 =
1

𝐿
∑ ∑|𝑆̂(𝑘, 𝑙) − 𝑆(𝑘, 𝑙)|

2
𝐾

𝑘=0

𝐿

𝑙=0

 (12) 

 

where 𝐿 and 𝐾 correspond to the total number of frequency 

bins and time frames, respectively.  

     A real-time low-complexity hybrid speech denoising 

method was also discussed in [59] which uses a combination 

of a conventional method within a RNN network. 

III. MULTI-OBJECTIVE DEEP LEARNING METHODS 

A multi-objective deep learning method, named LSTM-

RNN, was first proposed in [60]. Initially, a Direct Mapping 

(DM) method is utilized based on a linear output layer and 

this Minimum Mean Square Error (MMSE) objective 

function 

𝐸𝐷𝑀 = ∑ (𝑆̂(𝑘, 𝑙) − 𝑆(𝑘, 𝑙))
2

𝑘,𝑙

 (13) 

in which 𝑆̂(𝑘, 𝑙)  and 𝑆(𝑘, 𝑙)  are the estimated and the 

reference clean LPS features at the (Time-Frequency) T-F 

bin, respectively. LSTM-IRM is another deep learning 

method introduced in [87] which is an extension of the Ideal 

Binary Mask (IBM) method. IRM has been shown to be 

effective as a soft mask defined as follows 

𝑀𝑟𝑒𝑓(𝑘, 𝑙) =
𝑆(𝑘, 𝑙)

𝑆(𝑘, 𝑙) + 𝑉(𝑘, 𝑙)
 (14) 

 

The corresponding objective function is stated as  

 

𝐸𝐼𝑅𝑀(𝑘, 𝑙) = ∑ (𝑀̂(𝑘, 𝑙) − 𝑀𝑟𝑒𝑓(𝑘, 𝑙))
2

𝑘,𝑙

 (15) 

 

As noted earlier 𝑀̂(𝑘, 𝑙) and 𝑀𝑟𝑒𝑓(𝑘, 𝑙) are the estimated and 

reference IRM, respectively. 

LSTM-DM would be the right option for speech 

denoising if the underlying clean speech can be perfectly 

reconstructed. However, due to data limitations and the local 

minima aspect of the LSTM-RNN optimization, it would be 

difficult to learn the relationship of the noisy and clean speech 

signals in LSTM-DM. As a result, one cannot say which 

approach is better, in particular in the presence of unseen 

noise signals, and across different SNR levels. 

The idea here is to jointly learn the clean speech and IRM 

in one single LSTM-RNN using dual outputs, called Multi 

Task Learning (MTL), whose objective function is expressed 

as 

  

𝐸𝑀𝑇𝐿 = ∑ [(𝑆̂(𝑘, 𝑙) − 𝑆(𝑘, 𝑙))
2

𝑘,𝑙

+ 𝛼𝑀𝑇𝐿 (𝑀̂(𝑘, 𝑙) − 𝑀𝑟𝑒𝑓(𝑘, 𝑙))
2

] 

(16) 

 

where 𝛼𝑀𝑇𝐿 denotes a weight for the dual outputs 𝑆̂(𝑘, 𝑙) and 

𝑀̂(𝑘, 𝑙) . During the denoising stage, the estimated clean 

speech and IRM can be combined via an averaging operation 

in the LPS domain as follows 

𝑍̂(𝑘, 𝑙) =
1

2
[𝑆̂(𝑘, 𝑙) + 𝑙𝑜𝑔 𝑀̂(𝑘, 𝑙) + 𝑋(𝑘, 𝑙)] (17) 

Another multi-objective framework was proposed in [61] 

in order to optimize a joint objective function, involving 

errors not only for the primary clean LPS features but also 

errors in the secondary target for continuous features, such as 

MFCCs, and for categorical information, such as IBM. This 

joint optimization of different but related targets increases the 

DNN performance on the prediction of the primary target 

LPS which is then used to reconstruct the denoised output 

signal. When a DNN is considered to serve as a mapping 

function between the noisy and clean LPS features, no 

assumption is imposed during the training process. On the 

other hand, in masking-based methods, some constraints, 

such as the independency of noise and clean speech, need to 

be imposed. 



The multi-objective learning approach considers the loss 

function of LPS features together with MFCC features and 

the IBM mask as noted below  

 

𝐸 =
1

𝑁
∑

‖𝑆̂𝑙(𝑋𝑙,𝑋𝑙±𝜏
𝑐𝑜𝑛𝑡,𝑊,𝑏)−𝑆𝑙‖

2

2

‖𝑋𝑛‖2
2 + 𝛼𝑐𝑜𝑛𝑡 ∗𝑁

𝑙=1

1

𝑁
∑

‖𝑆̂𝑙
𝑐𝑜𝑛𝑡(𝑋𝑙±𝜏,𝑋𝑙±𝜏

𝑐𝑜𝑛𝑡,𝑊,𝑏)−𝑆𝑙
𝑐𝑜𝑛𝑡‖

2

2

‖𝑋𝑙
𝑐𝑜𝑛𝑡‖

2

2 + 𝛼𝑐𝑎𝑡𝑒 ∗𝑁
𝑙=1

1

𝑁
∑ ‖𝑆̂𝑙

𝑐𝑎𝑡𝑒(𝑋𝑙±𝜏, 𝑋𝑙±𝜏
𝑐𝑎𝑡𝑒, 𝑊, 𝑏) − 𝑆𝑙

𝑐𝑎𝑡𝑒‖
2

2𝑁
𝑙=1   

(18) 

 

where 𝑆̂𝑐𝑜𝑛𝑡and 𝑆𝑐𝑜𝑛𝑡correspond to the estimated and clean 

features, 𝑆̂𝑐𝑎𝑡𝑒and 𝑆𝑐𝑎𝑡𝑒denote the estimated and target meta 

category information, 𝛼𝑐𝑜𝑛𝑡  and 𝛼𝑐𝑎𝑡𝑒  are the weighting 

coefficients of the second and third terms, respectively. The 

prediction for the secondary feature is complementary to the 

primary LPS features. The IBM learning can also improve the 

clean speech estimation.    

Although many improvements have been made by so 

called Denoising AutoEncoders (DAEs) in speech denoising 

applications, they often yield speech distortion due to over-

smoothing and clipping clean speech using the MSE 

objective loss. This affects the perceptual speech quality 

leading to a muffled sound. A perceptron optimized deep 

denoising autoencoder for single channel speech denoising 

appeared in [63] which is described next.   

The conventional DAE uses the MSE loss function to map 

the noisy to the clean signal. This loss or error is defined as  

 

𝐸 =
1

2
‖𝑆 − 𝑆̂‖

2

2
 (19) 

 

where 𝑆̂ is the output of the DAE in feedforward propagation 

and 𝑆  is the clean target mentioned before. The 

backpropagation of the error is derived according to  
𝜕𝐸

𝜕𝑆̂
=

𝜕

𝜕𝑆̂

1

2
(𝑆 − 𝑆̂)

2
= 𝑆̂ − 𝑆 (20) 

The linearity in the computation of the above gradient often 

leads to the over-smoothing problem typically seen in DAE. 

This is due to the fact that the penalty for clipping speech is 

the same as clipping noise as long as the Euclidian distance 

from the clean target is the same. In this method, to maintain 

the perceptual quality, it is better to preserve speech segments 

with the residual error rather than clipping speech segments 

to remove noise. Hence, a new loss has been designed which 

considers high penalty against signal removal and preserves 

the same error for noise removal. This objective function is 

given by  

 

𝐸 = {

1

2
‖𝑆 − 𝑆̂‖

2

2
             𝑖𝑓 𝑆̂ ≥ 𝑆

1

2
‖𝑆 − 𝑆̂ + 𝑝‖

2

2
     𝑖𝑓 𝑆̂ < 𝑆

 (21) 

where 𝑝 is a positive scalar denoting the penalty of speech 

clipping. The gradient is then computed as follows 

 

𝜕𝐸

𝜕𝑆̂
= {

𝑆̂ − 𝑆                 𝑖𝑓 𝑆̂ ≥ 𝑆

𝑆̂ − 𝑆 − 𝑝         𝑖𝑓 𝑆̂ < 𝑆
 (22) 

 

This new objective function is equivalent to the conventional 

MSE loss when the penalty is set to zero (𝑝 = 0). The training 

phase of DAE leads to an estimate of the clean signal while 

avoiding the removal of the desired signal. 

In another study, a perceptually guided speech denoising 

was proposed via a deep neural network [64]. From the 

hearing perception perspective, the MSE loss function is not  

optimal. It helps to incorporate the quality and intelligibility 

knowledge of speech into the loss function. In this approach, 

the short-time objective intelligibility measure (STOI) [100] 

is added to the objective function to optimize speech 

intelligibility. For this new loss function, the following steps 

are considered to derive the modified STOI function. 

Assuming a 16 kHz sampling rate, for each time frame, a 512-

point Fast Fourier Transform (FFT) is taken yielding 25 

frequency bins. Then, the frequency bins are grouped 

together to form one-third octave bands. Let 𝑆(𝑘, 𝑙)  and 

𝑆̂(𝑘, 𝑙)  denote the STFT representation of the clean and 

denoised speech signals, respectively. The corresponding 

frequency bins are grouped into 15 one-third octave bands. 

Then, the new T-F representation appears as follows 

 

𝑆𝑗(𝑙) = √ ∑ ‖𝑆(𝑘, 𝑙)‖2
2

𝑘2(𝑗)−1

𝑘=𝑘1(𝑗)

 (23) 

𝑆̂𝑗(𝑙) = √ ∑ ‖𝑆̂(𝑘, 𝑙)‖
2

2

𝑘2(𝑗)−1

𝑘=𝑘1(𝑗)

 (24) 

 

where 𝑗 corresponds to the index of one-third octave bands, 

𝑘1 and 𝑘2 denote the edges of these bands, and ‖∙‖2 indicates  

𝐿2 norm. As a result, the short-term temporal envelope of the 

clean and denoised signals can be expressed as 

 

𝑠𝑙,𝑗 = [𝑆𝑗(𝑙), 𝑆𝑗(𝑙 + 1), … , 𝑆𝑗(𝑙 + 𝑅 − 1)]
𝑇
 (25) 

 

𝑠̂𝑙,𝑗 = [𝑆̂𝑗(𝑙), 𝑆̂𝑗(𝑙 + 1), … , 𝑆̂𝑗(𝑙 + 𝑅 − 1)]
𝑇
 (26) 

 

Noting that the analysis window is 384ms in length, 𝑅 is set 

to 24. Based on the original STOI computation, the following 

equation is used to normalize and clip the denoised speech 

signal  

 

𝑠̅𝑙,𝑗(𝑖) = min (
‖𝑠𝑙,𝑗‖

2

‖𝑠̂𝑙,𝑗‖
2

𝑠̂𝑙,𝑗(𝑖), (1 + 10−
𝛽

20) 𝑠𝑙,𝑗(𝑖)) (27) 

 

where 𝑖 = 1,2, … , 𝑁 ; 𝛽  controls the lower bound of the 

Signal to Distortion Ratio (SDR).  

     The intermediate speech intelligibility measure is 

computed using the correlation coefficients between the 

vectors 𝑠𝑙,𝑗 and 𝑠̅𝑙,𝑗, namely 



𝑑𝑙,𝑗 =
(𝑠𝑙,𝑗 − 𝜇𝑠𝑙,𝑗

)
𝑇

(𝑠̅𝑙,𝑗 − 𝜇𝑠𝑙̅,𝑗
)

‖𝑠𝑙,𝑗 − 𝜇𝑠𝑙,𝑗
‖

2
‖𝑠̅𝑙,𝑗 − 𝜇𝑠𝑙̅,𝑗

‖
2

 (28) 

in which 𝜇(. ) indicates the mean vector. The modified STOI 

function is defined as follows 

 

𝑑𝑙 = 𝑓(𝑆𝑙
24, 𝑆̂𝑙

24) =
1

𝐽
∑ 𝑑𝑙,𝑗

𝑗

 (29) 

where 𝑆𝑙
24  and 𝑆̂𝑙

24  are the 24-frame magnitude spectrum 

starting from the time frame 𝑚  of the clean and denoised 

speech signals, respectively, and 𝐽 denotes the total number 

of the one-third octave bands.  

     To obtain the initial denoised speech signal, the IRM is 

first found. Then, the denoised speech obtained via the 

denoising module is fed into the modified STOI function. The 

following loss function is used to update the network 

parameters  

 

ℒ(𝑙) = (1 − 𝑓(𝑆𝑙
24, 𝑆̂𝑙

24))
2

+ 𝜆‖𝑆𝑙
24 − 𝑆̂𝑙

24‖
𝐹

/24 (30) 

 

As discussed earlier, MSE as a loss function leads to over-

smoothing speech trajectories and thus generating muffled 

sound. Also, MSE treats each element with equal importance 

which is not the case in realistic audio environments. In [65], 

a supervised speech denoising was proposed to improve 

address the MSE shortcoming. The loss function used is 

based on the two widely used speech quality and speech 

intelligibility metrics, namely STOI and Perceptual 

Evaluation of Speech Quality (PESQ) [101].  

The critical aspect regarding loss functions is their 

differentiability. Incorporating STOI and PESQ into the loss 

function is a challenging task since it cannot be differentiated 

using the standard algorithms such as gradient descent. A 

gradient approximation algorithm was introduced in the 

above approach whose steps are outlined below.  

 

Algorithm 2 Gradient Approximation  

Initialization: Noise variance 𝜎2, learning rate 𝛼, initial 

parameters 𝐼0 

for 𝑙 = 1,2,3, … , 𝐿 do 

      Sample 𝜖1, … , 𝜖𝑛~𝑁(0, 𝐼) 

      Calculate 𝐻𝑖 = ℎ(𝑤𝑙 + 𝜎𝜖𝑖) − ℎ(𝑤𝑙) for 𝑖 = 1, … , 𝑁 

      Do 𝑤𝑙+1 ← 𝑤𝑙 − 𝛼
1

𝑁𝜎
∑ 𝐻𝑖/𝜖𝑖

𝑁
𝑖=1   

end for 

 

A deep neural network with perceptual connection 

weights was considered for monaural speech denoising in 

[66]. In this method, the auditory perception was incorporated 

into the reconstruction error to fine-tune the weights of the 

network. The frequency spectrum of the error was shaped in 

order to obtain good quality auditory masking performance. 

To do so, less emphasis was placed near the formant peaks, 

and more emphasis was placed on the spectral valleys. The 

following filter was considered in this method 

 

𝑃(𝑧) =
𝐴(

𝑧
𝛾1

)

𝐴(
𝑧
𝛾2

)
=

1 − ∑ 𝑎𝑘𝛾1
𝑘𝑧−𝑘𝑞

𝑘=1

1 − ∑ 𝑎𝑘𝛾2
𝑘𝑧−𝑘𝑞

𝑘=1

 (31) 

where 𝐴(𝑧) is the LPC polynomial, 𝑎𝑘 s are the short-term 

linear prediction coefficients, 𝛾1  and 𝛾2  are the parameters 

controlling the energy error in the formant regions, and 𝑞 is 

the prediction error.  

     Then, the magnitude of the clean speech 𝑆 as well as the 

frequency response of the perceptual filter 𝑃 were used as a 

joint objective function. Mathematically, the following 

equation was used 

 

𝐽𝑀𝑆𝐸 = ‖𝑊𝑓(𝑆̂ − 𝑆)‖
2

+ ‖𝑃̂ − 𝑃‖
2
 (32) 

 

where the second term indicates the error between the output 

𝑃̂  and the reference 𝑃 . This term makes use of the clean 

speech for fine-tuning 𝑊𝑓 as the perceptual weighting matrix 

which is defined as follows 

 

𝑊𝑓 = [
𝑃(0) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑃((𝑁 − 1)𝜔0)

] (33) 

 

with 𝜔0 =
2𝜋

𝑇
 and 𝑇 being the FFT length.  

To make use of the input information for a single channel 

speech denoising, a complex ratio masking for joint 

optimization of magnitude and phase was presented in [68]. 

The aim of this method was to derive a complex ratio mask 

that produces the STFT of the clean speech when applied to 

the STFT of the noisy speech. In other words, the following 

complex spectrum of the clean speech 𝑆𝑘,𝑙 was considered  

 

𝑆̂𝑘,𝑙
𝑐 = 𝑀̂𝑘,𝑙

𝑐 ∗ 𝑋𝑘,𝑙
𝑐  (34) 

 

where “*” indicates complex multiplication, 𝑀̂𝑘,𝑙
𝑐  is the 

complex IRM (cIRM), and  𝑋𝑘,𝑙
𝑐 , 𝑀̂𝑘,𝑙

𝑐  and 𝑆̂𝑘,𝑙
𝑐  are complex 

numbers expressed as   

 

𝑋𝑐 = 𝑋𝑟 + 𝑖𝑋𝑖 (35) 

𝑀̂𝑐 = 𝑀̂𝑟 + 𝑖𝑀̂𝑖 (36) 

𝑆̂𝑐 = 𝑆̂𝑟 + 𝑖𝑆̂𝑖 (37) 

 

with the indices 𝑟  and 𝑖  denoting the real and imaginary 

components, respectively. Based on these definitions, Eq. 

(37) can be written as 

 

𝑆̂𝑟 + 𝑖𝑆̂𝑖 = (𝑀̂𝑟 + 𝑖𝑀̂𝑖) ∗ (𝑋𝑟 + 𝑖𝑋𝑖) (38) 

                     = (𝑀̂𝑟𝑌𝑟 − 𝑀̂𝑖𝑋𝑖) + 𝑖(𝑀̂𝑟𝑋𝑖 + 𝑀̂𝑖𝑋𝑟) 

The real and imaginary parts of the clean speech are then 

given by 

 

𝑆̂𝑟 = 𝑀̂𝑟𝑋𝑟 − 𝑀̂𝑖𝑋𝑖 (39) 

𝑆̂𝑖 = 𝑀̂𝑟𝑋𝑖 + 𝑀̂𝑖𝑋𝑟 (40) 

 



After solving for 𝑀̂𝑟 and 𝑀̂𝑖 by using Eq. (39) and Eq. (40), 

the complex ideal ratio mask 𝑀̂𝑐 is computed as follows 

 

𝑀̂𝑐 =  
𝑋𝑟𝑆̂𝑟 + 𝑋𝑖𝑆̂𝑖

𝑋𝑟
2 + 𝑋𝑖

2 + 𝑖
𝑋𝑟𝑆̂𝑖 − 𝑋𝑖𝑆̂𝑟

𝑋𝑟
2 + 𝑋𝑖

2  
(41) 

The cIRM acts similar to the Wiener filter. 

In [69], a Shifted Real Spectrum (SRS) mask was 

proposed for a single channel speech denoising. Given a time-

domain signal 𝑥 , one can decompose it into the time-

frequency domain via Discrete Time Fourier Transform 

(DTFT). The result is a complex spectrum 𝑋𝑐 with the real 

and imaginary parts of the signal denoted by 𝑋𝑟  and 𝑋𝑖 , 

respectively.  

It is well known that a time-domain signal 𝑥  can be 

represented in terms of its even and odd parts 

 

𝑥 = 𝑥𝑒𝑣𝑒𝑛 + 𝑥𝑜𝑑𝑑 (42) 

 

where 𝑥𝑒𝑣𝑒𝑛 = 𝐼𝐷𝑇𝐹𝑇(𝑋𝑟)  and 𝑥𝑜𝑑𝑑 = 𝐼𝐷𝑇𝐹𝑇(𝑗𝑋𝑖) . In 

SRS, the signal 𝑥  is padded with zeros to make 𝑥(𝑙) = 0 

when 𝑙 ≤ 0 with 𝑙 being the time index. The decomposition 

using 𝑥𝑒𝑣𝑒𝑛 and 𝑥𝑜𝑑𝑑 parts can be stated as 

 

𝑥𝑒𝑣𝑒𝑛(𝑙) = 𝑥𝑜𝑑𝑑(𝑙) =
1

2
𝑥(𝑙)     if 𝑡 > 0  (43) 

𝑥𝑒𝑣𝑒𝑛(𝑙) = −𝑥𝑜𝑑𝑑(𝑡)                if 𝑡 ≤ 0  (44) 

 

After obtaining the time-frequency representation, a time-

frequency mask can be built. Based on the definition of cIRM 

and IRM, in SRS representations, two versions of SRS-mask 

can be defined: cIRM-like 𝑐𝐼𝑅𝑀𝑠𝑟𝑠 and IRM-like 𝐼𝑅𝑀𝑠𝑟𝑠, in 

which 𝑋𝑠𝑟𝑠 , 𝑉𝑠𝑟𝑠 , and 𝑆𝑠𝑟𝑠  are representations of the time-

domain noisy speech 𝑥, noise 𝑣, and clean speech 𝑠. Using 

the time-frequency SRS-mask 𝑀̂𝑠𝑟𝑠 , the denoised speech 

signal can be obtained using 𝑆̂ = 𝑀̂𝑠𝑟𝑠⨂𝑌𝑠𝑟𝑠 , where 

⨂  denotes the Kronecker product of two matrices. 

A multi-objective loss function based on the parameters 

in PESQ was proposed in [70]. It was shown that MSE could 

not follow the human auditory system properly. Hence, the 

PESQ algorithm, which is the most widely used metric for 

speech quality evaluation, was adopted as a loss function. In 

fact, the symmetric and asymmetric disturbance terms in 

PESQ was incorporated into the loss function for training. 

These terms were computed frame-by-frame based on the 

clean and noisy signals.  

In the LPS domain, after mean and variance 

normalization, the commonly used MSE loss function can be 

expressed as follows 

𝐸 =
1

𝐾
∑ (

log|𝑆𝑘,𝑙|
2

− 𝜇𝑘

𝜎𝑘
−

log|𝑆̂𝑘,𝑙|
2

− 𝜇𝑘

𝜎𝑘
)

2

𝑘

=
1

𝐾
∑

1

𝜎2
(𝑙𝑜𝑔

|𝑆𝑘,𝑙|
2

|𝑆̂𝑘,𝑙|
2)

2

𝑘

 

(45) 

As seen in this loss function, the loudness and threshold 

effects are not taken into consideration when optimizing a 

deep neural network.  

     To incorporate the perceptual features mentioned above, 

two disturbance terms, namely 𝐷𝑡
(𝑠)

 and 𝐷𝑡
(𝑎)

, were added to 

the loss function. The term 𝐷𝑡
(𝑠)

considers the absolute 

difference between the denoised and clean loudness spectra, 

while the term 𝐷𝑡
(𝑎)

 is computed from the symmetrical 

disturbance but weighting positive and negative loudness 

differences differently. Thus, the final loss function is defined 

as 

𝐽 =
1

𝐿
∑(𝐸 + 𝛼𝐷𝑠

𝐷𝑡
(𝑠)

+ 𝛼𝐷𝑎
𝐷𝑡

(𝑎)
)

𝑙

 (46) 

where 𝛼𝐷𝑠
 and 𝛼𝐷𝑎

 are the weighting factors and 𝐿  is the 

number of frames. Eq. (46) can be viewed as a multi-

objective optimization function in which the MSE and PESQ-

based disturbance terms are minimized at the same time.  

An SNR-aware CNN-based single channel speech 

denoising was presented in [71], where it was shown that the 

speech denoising performance is corrupted by the mismatch 

of training and testing for different noise types and SNRs 

[55]. Several attempts have been made to classify noise types 

before feeding the noisy speech into a DNN. However, it 

would be difficult to generalize this capability due to the 

limitations associated with this classification problem. Noise 

Aware Training (NAT) has been proposed to incorporate the 

noise information into the input features. To cope with the 

noise type, two SNR-aware algorithms have been proposed 

allowing the denoising DNN model to achieve better speech 

denoising performance. First, an MTL framework is applied 

to approximate the clean speech signal together with the SNR 

level for a noisy input speech. By considering MTL, the 

trained CNN model is made aware of the SNR level. Second, 

a SNR Adaptive Denoising (SNR-AD) is introduced which 

includes an offline and an online mode. In the offline mode, 

several SNR-specific denoising models are prepared in which 

each model is trained by the noisy/clean pairs using the noisy 

speech within a particular range of SNR. Estimating the SNR 

is a regression problem while predicting the noise type is a 

classification problem. In the online mode, SNR-AD first 

predicts the SNR level and then selects the CNN model 

trained in that range.  

To incorporate the ability of the SNR prediction into the 

denoising model, CNNs can jointly predict the primary LPS 

features and SNR level of the noisy input. Mathematically, 

the loss function is modified to incorporate the SNR 

estimation capability as follows 

 

𝐽 =
1

𝑁
[∑‖𝑆𝑙 − 𝑆̂𝑙‖

2
+ 𝜆𝑆𝑁𝑅 ∑(𝑂𝑙 − 𝑂̂𝑙)

2
𝑁

𝑙=1

𝑁

𝑙=1

] (47) 

 

where 𝑂𝑙  and 𝑂̂𝑙  represent the actual and estimated SNR 

levels of the noisy input frame at index 𝑙, respectively, and 

𝜆𝑆𝑁𝑅 is a weighting factor.  



     In the second algorithm, the idea of using different 

denoising models is exploited based on the strength of noise. 

Before applying the proper denoising model, a decision is 

made by comparing the estimated SNR to some predefined 

thresholds. The thresholds are specified to be  

 

𝑚 = {

1;                                              𝑂̂𝑙 > 𝜌1

𝑢;        𝜌𝑢−1 > 𝑂̂𝑙 > 𝜌𝑢, ∀𝑈 > 𝑙 > 1

𝑈;                                         𝜌𝑢−1 > 𝑂̂𝑙

 (48) 

where 𝑂̂𝑙  is the estimated SNR level, 𝑈  indicates the total 

number of denoising models, 𝑚  corresponds to the 𝑚 -th 

denoising model, and 𝜌𝑢 is the 𝑙-th threshold.  

In another MTL work in [72], a CNN-based complex 

spectrogram enhancement was proposed. It has been stated in 

[39] that by increasing the window overlap and length of the 

Fourier transform, the importance of phase grows. Also, as 

described in the joint optimization-based speech denoising 

methods, the phase information plays a critical rule in low 

SNRs. The reason for this is that signals in the Fourier domain 

are complex, which can be described either in terms of real-

imaginary parts or magnitude-phase parts. Consider the real-

imaginary parts of a noisy speech as 𝑁𝑟 and 𝑁𝑖, respectively. 

The phase information can be expressed as 

 

arctan
𝑋𝑖

𝑋𝑟
= 𝑎𝑟𝑐𝑡𝑎𝑛

𝑆𝑖 + 𝑉𝑖

𝑆𝑟 + 𝑉𝑟
   (49) 

 

In case of high SNR values, i.e. |𝑆𝑖| ≫ |𝑉𝑖|, |𝑆𝑟| ≫ |𝑉𝑟|, Eq. 

(49) can be simplified to  

 

arctan
𝑋𝑖

𝑋𝑟
= arctan

𝑆𝑖

𝑆𝑟
 (50) 

  

This indicates that the importance of the phase information 

grows when dealing with low SNRs.  

The real-imaginary parts of the spectrogram were used as 

an objective function as follows 

 

Θ = ∑‖𝑆̂𝑖 − 𝑆𝑖‖2

2
+ ‖𝑆̂𝑟 − 𝑆𝑟‖

2

2
  

= ∑‖𝑆̂𝑣 − 𝑆𝑣‖
2

2
 (51) 

where 𝑆̂𝑣 = [𝑆̂𝑟  𝑆̂𝑖]
𝑇

 and 𝑆𝑣 = [𝑆𝑟  𝑆𝑖]
𝑇  denote the vertically 

cascaded vectors of the clean and enhanced real-imaginary 

spectrograms, respectively. Minimizing Eq. (51) is 

equivalent to maximizing Segmented SNR (SSNR) [102] of 

the denoised signal. In this approach, it was proposed to 

incorporate the Log Spectral Distance (LSD) [103] into the 

objective function to improve speech quality. Explicitly, the 

LSD was modeled as an LPS reconstruction term expressed 

as 

 

𝐿𝑆𝐷 =  ‖log(𝑆̂𝑖
2 + 𝑆̂𝑟

2) − log(𝑆𝑖
2 + 𝑆𝑟

2)‖
2

2
 (52) 

 

Then, Eq. (52) was combined with Eq. (51) to form the 

following formula 

 

Θ =  

∑ 𝛼𝑆𝑣
‖𝑆̂𝑣 − 𝑆𝑣‖

2

2

+ 𝛼𝐿𝑆𝐷‖log(𝑆̂𝑖
2 + 𝑆̂𝑟

2)

− log(𝑆𝑖
2 + 𝑆𝑟

2)‖
2

2
 

(53) 

 

with the weighting terms indicated by 𝛼𝑆𝑣
 and 𝛼𝐿𝑆𝐷. Because 

the first term of Eq. (53) reflects the maximization of SSNR 

while the second term reflects the minimization of LSD 

metric, this speech denoising is of the MTL type.  

Since the phase information has unpredictable behavior, 

the deep learning models cannot learn the relationship 

between the clean and noisy phase. Williamson et al. [77] 

justified the similarity between the structures in real-

imaginary spectrograms and magnitude spectrogram. Hence, 

instead of using the phase information directly, the 

spectrograms were used to compute the objective function 

[74]. In this approach, an extension of Eq. (53) was 

considered. In fact, the raw waveforms were incorporated 

into the objective function to improve speech quality. 

Mathematically, Eq. (53) was modified as follows 

Θ =                                                                                                       

∑ 𝛼𝑆𝑣
‖𝑆̂𝑣 − 𝑆𝑣‖

2

2
+ 𝛼𝐿𝑆𝐷‖log(𝑆̂𝑖

2 + 𝑆̂𝑟
2) − log(𝑆𝑖

2 + 𝑆𝑟
2)‖

2

2

+ 𝛼𝑤𝑎𝑣𝑒‖𝑤̂𝑆 − 𝑤𝑆‖2
2

 

 (54) 

 

where 𝑤̂𝑆  and 𝑤𝑆  are the clean and enhanced signals, 

respectively, and 𝛼𝑤𝑎𝑣𝑒 is a weighting parameter for the last 

term. The last term in Eq. (54) can be expressed using the 

inverse discrete Fourier transform (IDFT) as a function of 𝑦 

and 𝑦̂ as follows 

 

𝛼𝑤𝑎𝑣𝑒‖𝑤̂𝑆 − 𝑤𝑆‖2
2 =                                                                         

𝛼𝑤𝑎𝑣𝑒‖(𝐶𝑈1𝑆̂𝑟 − 𝐷𝑈2𝑆̂𝑖) − (𝐶𝑈1𝑆𝑟 − 𝐷𝑈2𝑆𝑖)‖
2

2
 

= 𝛼𝑤𝑎𝑣𝑒‖𝐹𝑆̂𝑣 − 𝐹𝑆𝑣‖
2

2
 (55) 

where 𝑈1, 𝑈2 are the matrices used for the recovery of the 

even symmetry of the real part, and the odd symmetry of the 

imaginary part, respectively, 𝐶 and 𝐷 are the cosine and sine 

matirces in the IDFT, and 𝐹 is defined as 

 

𝐹 = [𝐶𝑈1 − 𝐷𝑈2] (56) 

 

Hence, the objective function is rewritten as 

Θ = ∑ 𝛼𝑆‖𝑆̂𝑣 − 𝑆𝑣‖
2

2

+ 𝛼𝐿𝑆𝐷‖log(𝑆̂𝑖
2 + 𝑆̂𝑟

2) − log(𝑆𝑖
2 + 𝑆𝑟

2)‖
2

2
 

+𝛼𝑤𝑎𝑣𝑒‖𝐹𝑆̂𝑣 − 𝐹𝑆𝑣‖
2

2
 (57) 

 

It can be seen that all parts of Eq. (57) are directly related to 

the output vector 𝑆𝑣.  

A shortcoming of the mapping-based and masking-based 

methods is that they do not consider the phase mismatch 

problem. To address this issue, a Phase Sensitive Mask 



(PSM) was proposed in [84]. Here, it is worth mentioning that 

the PSM values are unbounded and thus the output values of 

the PSM estimation are normally truncated. In this method, a 

joint learning algorithm was proposed to model the PSM 

parameters explicitly. In comparison to the conventional 

algorithms which implicitly learn the T-F mask, this work 

focused on predicting the mask by an explicit framework of 

its variables.  

Mathematically, the following approximation of PSM 

was first computed under the assumption that clean speech 

and noise are uncorrelated  

𝑀𝑘,𝑙
𝑃𝑆𝑀 ≈ √

|𝑆𝑘,𝑙|
2

|𝑆𝑘,𝑙|
2

+ |𝑉𝑘,𝑙|
2 cos 𝜃𝑘,𝑙

𝑆𝑋 ≜ 𝑀𝑘,𝑙
𝑎𝑃𝑆𝑀 (58) 

where 𝜃𝑆𝑋  indicates the difference of the clean and noisy 

phase. The approximated PSM (aPSM) was described as a 

function of three parameters: (1) Clean speech magnitude, (2) 

noisy speech magnitude, (3) phase difference between clean 

and noisy speech spectra. A network was jointly optimized 

by the following loss functions 

𝐿𝑎𝑃𝑆𝑀 = ∑[𝑚̂𝑘,𝑙
𝑎𝑃𝑆𝑀|𝑋𝑘,𝑙| − |𝑆𝑘,𝑙| cos 𝜃𝑘,𝑙

𝑆𝑋]

𝑘,𝑙

2

 (59) 

𝐿𝑚𝑎𝑔 = ∑[|𝑆̂𝑘,𝑙| − |𝑆𝑘,𝑙|]
2

+ [|𝑉̂𝑘,𝑙| − |𝑉𝑘,𝑙|]
2

𝑘,𝑙

 (60) 

𝐿𝑝ℎ𝑎 = ∑[cos 𝜃̂𝑘,𝑙
𝑋𝑆 − cos 𝜃𝑘,𝑙

𝑋𝑆]
2

𝑘,𝑙

 (61) 

In addition, since the MSE does not accurately match the 

human auditory perception as related to speech intelligibility, 

a nonlinear magnitude warping technique was considered in 

the estimation steps. Consequently,  Eq. (60) was rewritten as 

𝐿𝑚𝑎𝑔
𝑤𝑎𝑟𝑝

= ∑[|𝑆̂𝑘,𝑙|
𝛼

− |𝑆𝑘,𝑙|
𝛼

]
2

𝑡,𝑓

+ [|𝑉̂𝑘,𝑙|
𝛼

− |𝑉𝑘,𝑙|
𝛼

]
2
 

(62) 

To further improve performance, the sum of clean and noise 

estimates were minimized with respect to a given mixture, 

that is  

|𝑋̂𝑘,𝑙|
2

= |𝑆̂𝑘,𝑙|
2

+ |𝑉̂𝑘,𝑙|
2

+ 2 cos 𝜃𝑘,𝑙
𝑆𝑉 |𝑆̂𝑘,𝑙||𝑉̂𝑘,𝑙| (63) 

 

𝐿𝑎𝑑𝑑
𝑤𝑎𝑟𝑝

= ∑[|𝑋̂𝑘,𝑙|
𝛼

− |𝑋𝑘,𝑙|
𝛼

]
2

𝑡,𝑓

 (64) 

 

Hence, the final objective function was defined to be 

 

𝐿𝐹𝑖𝑛 = 𝛾1𝐿𝑎𝑃𝑆𝑀 + 𝛾2𝐿𝑚𝑎𝑔
𝑤𝑎𝑟𝑝

+ 𝛾3𝐿𝑝ℎ𝑎 + 𝛾4𝐿𝑎𝑑𝑑
𝑤𝑎𝑟𝑝

 (65) 

 

where 𝛾1, 𝛾2, 𝛾3 and 𝛾4 indicate the weight values. 

IV. COMPARISON RESULTS 

     In this section, experiments were conducted to compare 

the performance of representative methods of the speech 

denoising methods reviewed in this paper. These 

representative methods were chosen because their codes are 

publicly available. Four extensively used metrics of Short-

Time Objective Intelligibility (STOI) [100], Perceptual 

Evaluation of Speech Quality (PESQ) [101], Segmented 

Signal-to-Noise Ratio (SSNR) [102], and Log Spectral 

Distance (LSD) [103] were employed to compare the 

methods in an objective manner. The same public domain 

dataset of IEEE [104] was used in the experiments. The IEEE 

Corpus includes 3600 speech wave (.wav) files by 20 

speakers (10 females and 10 males) in which each file is about 

2 seconds long. The speakers are from two regions of the 

Pacific Northwest (PN) and the Northern Cities (NC) reading 

the IEEE “Harvard” sentences. Noisy dataset was made by 

adding two types of noises (speech type noise (Babble) and 

non-speech type noise (Factory) noise signals) to the clean 

dataset. Three levels of SNR were made as -2, 0, and 5 dB. 

Both noise types were used for training, evaluation, and 

testing parts. The LPS features were considered as the input 

using 256-point FFT and 50% overlap. The dataset was 

randomly partitioned into three parts with no overlap: 70% 

for training, 20% for testing, and 10% for validation.   

     To provide a comprehensive comparison, the 

conventional methods of Wiener filtering [25] and  IBM [83], 

the single objective deep learning methods of DNN-IBM 

[83], DNN-IRM [87], the hybrid method of DNN-Hybrid 

[58], and the multi-objective method of  DNN-

MultiObjective (DNN-MO) [74] were examined considering 

the availability of their codes in the public domain.  

     Table I through Table III exhibit the performance of the 

denoised signals in terms of the above four metrics for three 

SNR levels. As can be seen from these tables, the DNN-

Hybrid and DNN-MO methods provided superior outcomes. 

This was expected since they utilize more information to 

optimize a deep neural network. Another key observation 

from these tables is that in lower SNR levels, the multi-

objective method performed better than the DNN-Hybrid 

method. Basically, as the SNR level becomes higher, the 

clean speech characteristics can be obtained well using the 

conventional methods. In other words, at higher SNRs, the 

difference between the DNN-Hybrid and DNN-MO method 

becomes small or rather negligible. 

     In general, since the multi-objective deep learning 

methods use richer information to achieve speech denoising, 

their performance in comparison to the other methods is 

better. In fact, what plays a critical role in achieving better 

performance is the terms selected for the optimization. 

Another important issue that is worth noting here is that  

environmental noises cannot be modeled accurately by the 

conventional methods. However, the deep learning methods 

can model the nonlinear relationship  between noisy speech 

and clean speech signals more effectively and thus their 

performance in general is better even in not previously 

encountered  noisy environments. 

V. POSSIBLE FUTURE DIRECTIONS 

     It is important to note that all the above deep learning 

methods are supervised methods, meaning that clean speech 

signals are assumed to be available for their training. In these 

methods, clean speech signals are used as the target. In 



practice, speech sentences spoken in the field differ from 

database speech sentences that are used for training. As a 

result, training on one set of speech signals does not 

guarantee the same performance when a different set of 

speech signals are spoken in the same noise environments. In 

real-world scenarios, clean speech signals are in fact not 

available. In [105], a speech denoising method was 

introduced which does not rely on the availability of clean 

speech signals to achieve training and it uses the mixture for 

both the input and the target of a deep neural network. This 

method eases the major assumption in the existing speech 

denoising methods and allows the training process to be 

conducted in an online or self-supervised manner without 

having access to clean speech signals. We envision that much 

progress can be made by developing different variations of 

the method described in [105].   

   Also, in the existing speech denoising methods, all noises 

are treated the same. We envision another future 

improvement can be achieved by designing deep neural 

networks for different types of noise and thus using a bank of 

deep neural networks depending on the noise characteristics 

encountered in the field. Since in practice or real-world 

scenarios, there are many different noise types, unsupervised 

noise classification approaches such as the one in [106] can 

be used to train these deep neural networks in an online 

manner depending on the noise type encountered in the field.  

 

     
 

TABLE I. Average performance metrics of representative speech denoising methods in non-speech type noise (Factory – N1) and speech type noise (Babble – N2) 

at -2 dB SNR. 

 STOI  

(N1) 

STOI  

(N2) 

PESQ  

(N1) 

PESQ  

(N2) 

LSD  

(N1) 

LSD  

(N2) 

SSNR  

(N1) 

SSNR  

(N2) 

Noisy Signal 0.6235 0.6086 1.3057 1.3114 2.3968 1.9121 -4.4675 -3.8066 

Wiener 0.5929 0.5450 1.4301 1.2305 1.5489 1.4658 0.2607 -0.6993 

IBM 0.6894 0.6741 1.3694 1.3354 1.7839 1.5469 1.0894 1.1152 

DNN – IBM 0.7366 0.7119 1.4209 1.3737 1.3953 1.2860 0.4422 0.6157 

DNN – IRM 0.7577 0.7283 1.6558 1.4961 1.0895 1.0649 0.5055 0.3867 

DNN – Hybrid 0.8010 0.7542 1.6850 1.5813 0.9157 0.8812 0.6024 0.7312 

DNN – MO 0.8159 0.7614 1.7068 1.6573 0.8556 0.8331 0.8011 0.7556 

 

TABLE II. Average performance metrics of representative speech denoising methods in non-speech type type (Factory – N1) and speech type noise (Babble – N2) 

at 0 dB SNR. 

 STOI  

(N1) 

STOI  

(N2) 

PESQ  

(N1) 

PESQ  

(N2) 

LSD  

(N1) 

LSD  

(N2) 

SSNR  

(N1) 

SSNR  

(N2) 

Noisy Signal 0.6689 0.6585 1.3607 1.3689 2.3088 1.8318 -3.6128 -2.9568 

Wiener Filter 0.6869 0.6040 1.5274 1.3041 1.4481 1.3931 0.8107 -0.1013 

IBM 0.7031 0.6968 1.4052 1.4012 1.7642 1.5125 0.5024 0.6587 

DNN – IBM 0.7831 0.7567 1.5740 1.4368 1.3538 1.3125 2.0030 1.8394 

DNN – IRM 0.7991 0.7758 1.8233 1.6141 0.9668 0.9709 1.5943 1.5159 

DNN – Hybrid 0.8312 0.8173 1.9547 1.8333 0.8123 0.8206 2.1415 1.8012 

DNN – MO 0.8450 0.8234 2.1005 1.9673 0.7315 0.7519 1.9614 1.9684 

 

TABLE III. Average performance metrics of representative speech denoising methods in non-speech type noise (Factory – N1) and speech type noise (Babble – 

N2) at 5 dB SNR. 

                      STOI  

(N1) 

STOI  

(N2) 

PESQ  

(N1) 

PESQ  

(N2) 

LSD  

(N1) 

LSD  

(N2) 

SSNR  

(N1) 

SSNR  

(N2) 

Noisy Signal 0.7837 0.7788 1.5424 1.5504 2.0065 1.5628 -0.6908 -0.0727 

Wiener Filter 0.7878 0.7849 1.8624 1.5558 1.3534 1.2688 2.4677 1.8805 

IBM 0.8046 0.7975 1.7056 1.6652 1.5193 1.4658 2.1259 2.0126 

DNN – IBM 0.8657 0.8457 1.9607 1.7420 1.4568 1.3780 5.2782 5.0936 

DNN – IRM 0.8841 0.8627 2.2386 2.0020 0.8084 0.7725 4.4368 4.2259 

DNN – Hybrid 0.9111 0.8827 2.3071 2.1101 0.7130 0.6852 5.5115 5.3230 

DNN – MO 0.9362 0.9135 2.5403 2.3114 0.6823 0.6533 6.4371 6.1123 

VI. CONCLUSION 

     A review of multi-objective deep learning speech 

denoising methods has been covered in this paper. These 

recent methods denote the current state-of-the-art in speech 

denoising. To set the stage for this review, an overview of 

conventional, single objective deep learning, and hybrid 

methods was first presented. This overview was followed by 

a review of the mathematical framework of the existing 

multi-objective deep learning methods. Representative 

methods in the speech denoising categories whose codes are 

publicly available were then compared by considering the 

same public domain dataset and four widely used objective 

metrics. The comparison conducted has shown the 

effectiveness of the multi-objective deep learning methods, in 

particular in low SNRs as compared with the other existing 

methods.  

Metric 
Method 

Metric 
Method 

Metric 

Method 
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