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Abstract

Spoken documents, such as podcasts or lectures, are a growing presence in everyday life. Being able to automatically
identify their discourse structure is an important step to understanding what a spoken document is about. Moreover,
finer-grained units, such as paragraphs, are highly desirable for presenting and analyzing spoken content. However, little
work has been done on discourse based speech segmentation below the level of broad topics. In order to examine how
discourse transitions are cued in speech, we investigate automatic paragraph segmentation of TED talks using lexical
and prosodic features. Experiments using Support Vector Machines, AdaBoost, and Neural Networks show that models
using supra-sentential prosodic features and induced cue words perform better than those based on the type of lexical
cohesion measures often used in broad topic segmentation. Moreover, combining a wide range of individually weak
lexical and prosodic predictors improves performance, and modelling contextual information using recurrent neural
networks outperforms other approaches by a large margin. Our best results come from using late fusion methods that
integrate representations generated by separate lexical and prosodic models while allowing interactions between these
features streams rather than treating them as independent information sources. Application to ASR outputs shows that
adding prosodic features, particularly using late fusion, can significantly ameliorate decreases in performance due to
transcription errors.
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1. Introduction

Audio and video recordings are increasingly popular
ways to disseminate information. However, these sorts
of spoken documents, such as podcasts or lectures, can
often contain long passages. This can be difficult to browse
and analyze without effective access to internal discourse
structure. Previous work on automatically detecting this
sort of discourse structure has generally focused on coarse-
grained topic or story level segmentation (Tür et al., 2001;
Tsunoo et al., 2017). Nevertheless, finer-grained multi-
sentence segments are also important units of speech. For
example, paragraph segmentation is valuable for automatic
summarization (Sporleder and Lapata, 2006) and improv-
ing the readability of transcripts (Pappu and Stent, 2015).
In fact, misplaced paragraph boundaries can increase the
amount of effort it takes for human readers to identify the
main points in texts, especially for unfamiliar subject areas
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(Goldman et al., 1995). Thus, an improved understand-
ing of paragraph segmentation would also be beneficial
for natural language generation. However, relatively little
work has been done on automatic paragraph segmentation
in text, let alone for speech.

In general, paragraph segmentation provides a good test
case for teasing out how discourse structure is signalled us-
ing different aspects of speech. Qualitative analyses of text
structure have found that paragraphs are internally cohe-
sive units (Giora, 1986; Ji, 2008; McGee, 2014). However,
this type of cohesion does not necessarily correspond to the
notion of lexical cohesion (i.e., lexical similarity) used in
coarse-grained topic segmentation. As such, previous work
on automatic paragraph segmentation has mostly focused
on predicting boundaries from surface features of individ-
ual sentences and their immediate neighbours. While this
is effective for some genres, e.g., English news text, results
can be highly variable depending on the domain (Sporleder
and Lapata, 2006). So, we would like to obtain more
general cues for supra-sentential cohesion and structure
within paragraph segments. Prime candidates for this are
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discourse-oriented linguistic elements such as cue words,
e.g., discourse markers such as ‘because’ and ‘otherwise’,
and prosody, i.e., pitch, loudness and timing aspects of
spoken language (Passonneau and Litman, 1993b).

Previous work has shown that features based on cue
words and prosody are helpful for segmentation tasks
(Eisenstein and Barzilay, 2008; Hsueh et al., 2006; Tür
et al., 2001, interalia). However, how they can be best
utilized, together with other lexical and acoustic features,
is still an open question. On the one hand, previous work
on topic segmentation has argued that lexical and prosodic
features contribute independent evidence and, thus, can
be modelled separately (Tür et al., 2001). On the other
hand, discourse analyses suggest that the prosodic form
of a cue word can also be important for discourse inter-
pretation (Hirschberg and Litman, 1994). On balance, we
would expect these sorts of lexico-prosodic interactions to
be important for paragraph structure. Moreover, previous
analyses of paragraph structure also suggest that we need
to track subtle topic related changes across potential bound-
aries (Giora, 1986). Thus, to investigate this, we need to
be able to model interactions between features across time
and across modalities.

In the following, we build on our previous work (Lai
et al., 2016; Farrús et al., 2016) to investigate the predic-
tiveness of cue words, supra-sentential prosody, and lexical
coherence based features for automatic paragraph segmen-
tation using a large corpus of TED talks.1 In particular, we
examine whether lexical and prosodic features that help
high level topic segmentation are also predictive at the
paragraph level. We frame paragraph segmentation as a
binary classification task: for each utterance in a talk, we
predict whether or not it is the last in a paragraph. Evalua-
tion is performed with respect to human transcriptions of
the talks.

TED talks are well known for being well-structured and
entertaining to listen to. We consider these talks semi-
spontaneous as they are prepared in advance and speakers
are coached to be engaging and convincing in spoken form.
However, talks still vary greatly in the style of their deliv-
ery. So, we expect features that are indicative of paragraph
breaks in this dataset to be robust across a range of lectur-
ing styles. The polished nature of these talks also makes
it more likely that text-oriented discourse segmentation
methods will work on this data set. This makes our work
more comparable to previous work on topic and paragraph
segmentation of text, and allows us to focus on studying
the role of lexical and prosodic cues in this task.

1http://www.ted.com

The current work focuses on how we can integrate lexi-
cal and prosodic features effectively for this task. In par-
ticular, we test the hypothesis that discourse-oriented cues
are better indicators of paragraph structure than traditional
lexical similarity measures. We also expect discourse cue
words and speech prosody to be more robust predictors
of structure than the surface, syntax and language model
based lexical features used by Sporleder and Lapata (2006)
for text segmentation. Beyond this, we expect that mod-
elling sequential information will improve performance
and that allowing low level interactions between lexical
and prosodic features will produce better results than mod-
elling these information sources separately.

We also investigate whether prosodic features can help
deal with error prone automatic transcriptions. Since our
primary interest for this paper is establishing how we can
make use of different types of speech features and model
architectures, we focus on performance on sentence in-
stances as determined by our human transcriptions for
comparability across experiments,. However, we acknowl-
edge this approach still leaves us quite some distance off

a fully end-to-end automatic paragraph segmenter: this
paragraph segmentation pipeline relies on the accuracy of
transcription, punctuation restoration and the sentence seg-
mentation based on that. As such, we consider our current
work as providing necessary groundwork for developing
an end-to-end discourse segmenter incorporating prosodic
and lexical features, while also providing useful insights
into how discourse structure is signalled in speech. Of
course, automatic transcription and punctuation restora-
tions are research problems in their own right. We leave a
more detailed investigation of how completely automating
upstream processes and joint modelling would affect our
approach to future work.

In Section 2, we review previous work on paragraph
segmentation and related work on speech and text segmen-
tation. We describe the experimental setup used to test our
hypotheses and research questions in Section 3. Section 4
describes results from our experiments using Support Vec-
tor Machines (SVMs), AdaBoost decision tree ensembles,
Multi-Layer Perceptrons (MLPs), and Long Short-Term
Memory recurrent neural networks (LSTMs). We also in-
vestigate different fusion strategies for lexical and prosodic
features using LSTM based architectures (Section 4.4),
and how well our automatic paragraph segmenters perform
on automatic transcriptions (Section 4.5). We discuss the
implications of our results and potential extensions of our
work in Section 5. Section 6 concludes the paper.
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2. Background

In order to determine the approach we should take to
test our hypotheses, we review previous work on paragraph
segmentation, as well as related work on the usefulness of
lexical cohesion, prosody and cue word based features for
related speech and text segmentation tasks. This section
also reviews work on incorporating lexical and prosodic
features for these tasks.2

2.1. Text Based Paragraph Segmentation

Previous work on automatically detecting paragraph
structure has focused on text segmentation using su-
pervised learning methods. In a comprehensive study,
Sporleder and Lapata (2006) predict paragraph boundaries
in texts from multiple genres (fiction, news, parliament)
and languages (English, Greek, German). They employ
BoostTexter (i.e., AdaBoost) based classifiers to investi-
gate a range of surface form, syntactic, and language model
based features. Overall, they find that surface features out-
perform syntactic features. However, a large amount of
domain variation was observed: indicators for the first
three words in a sentence provided the best performance
for news and parliament data, while punctuation/quote
marks appear more important for fiction. Nevertheless,
their best results were obtained using the full feature set.
This suggests that combining predictions from a number
of individually weak predictors is important for this task.

Sporleder and Lapata (2006) show that good results can
be obtained using relatively shallow, syntactically oriented,
language processing methods. However, given the supra-
sentential nature of the task, we might expect to see gains
from incorporating more discourse-oriented language pro-
cessing. In this vein, Filippova and Strube (2006) find that
pronominalization/reference information and information
structure (expressed syntactically in German) improves
paragraph segmentation of German Wikipedia biographies
using a similar BoostTexter set up. However, they find that
features based on pre-determined lists of discourse connec-
tives (e.g. ‘finally’, ‘apart from’, ‘otherwise’) produced
worse performance than simply including the identity of
the first few words of a sentence. This is inline with find-
ings from Sporleder and Lapata (2006), who show that
sentence initial phrases associated with paragraph breaks
vary greatly between domains. So, it appears that the suc-
cess of this approach depends heavily on whether domain

2Note: In the automatic discourse parsing literature ‘discourse
segmentation’ generally means clause level elementary discourse units,
rather than the supra-sentential units we are interested in here.

specific cues are available, and performance drops on more
heterogeneous data sets (e.g., fiction).

To capture more general lexical cues for paragraph
breaks, it seems necessary to incorporate more contextual
information. However, the features included in Sporleder
and Lapata (2006) and Filippova and Strube (2006) focus
on characteristics of the target sentence and its immediate
neighbours. Furthermore, their classification method does
not take advantage of the fact that sentences within a docu-
ment come in a sequence. To address this, Shi et al. (2007)
propose the use of discriminatively trained Semi-Markov
Models, where paragraphs are predicted based on segment
(edge) and boundary (node) features. In that work, bound-
ary features represent observed sentence features similar
to those used by Sporleder and Lapata (2006). In contrast,
segment features depend on a hypothesized segmentation
over the sentence sequence. In this case, paragraphs are
characterized by their length, entropy, and the cosine sim-
ilarity between a paragraph and its neighbours. This ap-
proach results in markedly better performance than SVM
classifiers using boundary features alone, indicating that
the sequence modelling approach is useful for this task.
Shi et al. also report improved performance compared
to Sporleder and Lapata (2006) for segmenting English
novels, although performance is slightly worse for German
novels. So, it seems that further investigation of features
and models that can incorporate more contextual/sequence
information is warranted.

2.2. Lexical Cohesion

The use of paragraph and sentence similarity features
in Shi et al. (2007) assumes that paragraphs are lexically
cohesive: sentences within a segment are lexically simi-
lar. These sorts of lexical similarity measures form the
backbone of most text-based automatic topic segmenta-
tion methods. For example, in TextTiling (Hearst, 1994),
topic boundaries are determined by identifying points of
low lexical similarity between consecutive blocks of text.
Similarly, the approach of Shi et al. (2007) is reminiscent
of the divisive clustering algorithm used in C99 (Choi,
2000), which attempts to maximize segment lexical simi-
larity. In this vein, generative approaches have improved
topic segmentation performance by fitting the observed
data to models that associate each topic to a unique lan-
guage model, and each segment to a topic (Allan et al.,
1998; Yu et al., 2016) or mixture of topics (Purver et al.,
2006; Georgescul et al., 2008).

While paragraphs are generally considered to form co-
hesive semantic units (Van Dijk, 1982), paragraph breaks
rarely coincide with the types of segments usually consid-
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ered in automatic topic segmentation (e.g., news stories,
meeting agenda items). Analyzing English narratives, Ji
(2008) shows that paragraph breaks often coincide with
more subtle shifts related to time, location, and physical
or mental states. Similarly, in an analysis of literary texts,
Giora (1986) finds that paragraphs introduce new events
rather than topics. In this vein, Sporleder and Lapata (2006)
show that their supervised approach for paragraph segmen-
tation performs better than applying an unsupervised lexi-
cal cohesion based topic segmenter (Utiyama and Isahara,
2001). However, the results in Shi et al. (2007) suggest lex-
ical cohesion based features may fare better for paragraphs
when used in conjunction with other predictors.

Bag-of-words based similarity measures do not cap-
ture the fact that similar concepts can be expressed with
different words, and so cannot give us the full story on
segment cohesion. As such, similarity measures that ac-
count for this, such as Latent Semantic Analysis (LSA)
and Latent Dirichlet Allocation (LDA) based topic mod-
elling, have been applied to improve TextTiling and C99
style approaches (Choi et al., 2001; Riedl and Biemann,
2012). Thus, we would like to know if these represen-
tations can better capture lexical shifts associated with
paragraph breaks. Similarly, we would like to get an idea
of how well unsupervised Bayesian topic segmentation
approaches work for paragraph segmentation. Like LDA
based TextTiling, BayesSeg (Eisenstein and Barzilay, 2008)
focuses on identifying distributional shifts rather than per-
forming topic assignment, and thus makes a good candidate
for our task. We would expect these approaches to work
well if paragraphs are primarily characterized by changes
in word distributions.

2.3. Prosodic Cues for Boundaries

Text-based studies indicate that lexical cues for para-
graph boundaries can be quite domain specific. However,
studies of prosody suggest that supra-sentential aspects
of speech such as pitch, intensity and timing, may be a
source of more robust boundary cues. A number of studies
have shown that discourse boundaries are marked by simi-
lar prosodic features across speakers and domains. Such
studies have consistently observed declination of pitch and
intensity through the segment (Kreiman, 1982; Nakajima
and Allen, 1993; Geluykens and Swerts, 1994; de Looze
et al., 2015), reset to higher values at the beginning of
new segment (Grosz and Hirschberg, 1992; Swerts, 1997;
Tseng et al., 2006), and slower speaking rates near bound-
aries and pauses between boundaries (Lehiste, 1982; Smith,
2004; Zellers and Post, 2009).

The accumulated results suggest that prosodic bound-
aries share similar features across discourse levels. So we
expect to see similar prosodic features at sentence inter-
nal phrase boundaries and at topic boundaries, albeit on a
larger scale in the latter case. In line with this, Farrús et al.
(2016) show that these declination, reset and timing prop-
erties generally hold over a large corpus of lectures with
highly variable lexical/topical content. Boundary features,
such as pauses and feature differences across sentences,
have been shown to be useful for topic segmentation in the
absence of lexical features (Shriberg et al., 2000; Levow,
2004a; Hirschberg and Nakatani, 1998). However, Far-
rús et al. (2016) also show that sentence intrinsic features
such as sentence mean fundamental frequency (an acoustic
correlate of perceived pitch) can also predict whether a
sentence is paragraph final better than chance.

Boundary detectors based on non-lexical features are
appealing in that they are less likely to be hurt by auto-
matic transcription errors. In fact, Swerts and Geluykens
(1993) show that human listeners can detect topical bound-
aries in instruction monologues where lexical content is
obscured by a band-pass filter. Several studies have shown
that models using only prosodic and acoustic features can
be effective for broad topic segmentation (Hirschberg and
Nakatani, 1998; Levow, 2004b; Tür et al., 2001; Hsueh,
2008; Wang et al., 2010; Zheng et al., 2012). However,
the best performing segmentation approaches for spoken
language generally use a combination of acoustic, prosodic
and lexical features (Tür et al., 2001; Galley et al., 2003;
Dielmann and Renals, 2007; Hsueh and Moore, 2007;
Tsunoo et al., 2017). Thus, we expect that incorporation of
prosodic features would be helpful for automatic paragraph
segmentation.

2.4. Cue Words

The relationship between discourse related cue words
or cue phrases, such as ‘so’, ‘now’, and ‘okay’, and dis-
course semantics has been extensively explored from a
linguistic perspective (Schiffrin, 1987; Hirschberg and Lit-
man, 1994; Knott and Dale, 1994, interalia). Moreover,
discourse connectives, such as ‘because’ and ‘instead’, can
take arguments that span multiple sentences. Thus, we
would expect the presence of such cue phrases to be use-
ful for indicating multi-sentence constituents, which may
in turn help define paragraph level segments. However,
as mentioned above, previous studies have found features
based on lists of discourse connectives to be less useful
for predicting paragraph boundaries than cue words in-
duced from the data during training (Filippova and Strube,
2006; Sporleder and Lapata, 2006). In fact, such induced
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cues have been used to improve supervised and unsuper-
vised lexical cohesion based topic segmenters (Galley et al.,
2003; Rosenberg and Hirschberg, 2006; Hsueh et al., 2006;
Eisenstein and Barzilay, 2008; Dowman et al., 2008).

Interestingly, examination of induced cue phrases sug-
gests that generic discourse connectives such as ‘so’, ‘and’,
and ‘but’, are more important in spoken language than
written text (Eisenstein and Barzilay, 2008). Studies on the
discourse uses of cue phrases have also shown interactions
between cue phrases and prosody in terms of discourse
interpretation. For example, Hirschberg and Litman (1994)
show that the discourse structuring and sentential uses of
words such as ‘now’ correlate with different prosodic pat-
terns. Thus, we expect the presence of lexical discourse
cue phrases to be more predictive in speech segmentation,
particularly in conjunction with prosodic features.

2.5. Feature Fusion

In general, we expect work on paragraph segmentation
to shed light on how structure is cued within topical units
via different feature modalities. Previous work on topic
and sentence segmentation suggests that different types
of lexical and acoustic characteristics will be relevant for
identifying different levels of structure. However, how
lexical and prosodic features should be combined remains
an open question.

A number of previous studies use the concatenation
of features across modalities as input to classifiers for
topic segmentation, i.e., early or feature level fusion (Gal-
ley et al., 2003; Hsueh and Moore, 2007; Rosenberg and
Hirschberg, 2006). However, models that integrate dif-
ferent feature families at later stages have improved seg-
mentation performance on different datasets. This is often
done by including boundary probabilities estimated from
one model as input to another (decision level fusion). For
example, Tür et al. (2001) find that decision level fusion
of lexical and prosodic information within an HMM based
story segmenter performed better than adding decision
information from the lexical model to a prosody based
decision tree boundary classifier. Similarly Dielmann and
Renals (2007) find that allowing modalities to be processed
independently and with different sampling frequencies, via
a Dynamic Bayesian Network, improves meeting segmen-
tation over a feature fused HMM.

Decision level fusion assumes that lexical and prosodic
features present independent knowledge sources. This idea
is counterintuitive given previous studies of how prosody
can affect discourse meaning (Hirschberg and Litman,
1987, 1994). However, we should note that Tür et al.
(2001), by design, only include prosodic cues that are

deemed to be relatively unaffected by word identity. More-
over, since lexical knowledge is represented by boundary
probabilities in their multimodal decision tree, direct in-
teractions between lexical content and prosodic cues are
not modelled. To take advantage of various subtle lexical
and prosodic cues, we may need to combine evidence from
different feature types at a relatively low level.

Given the previous discussion of suprasentential
prosodic patterns and cohesion, we expect that modelling
the temporal sequence of features is important for detect-
ing boundaries. Recent work on multimodal sequence
modelling tasks suggests that Recurrent Neural Networks
(RNNs) are a good candidate for this job. They are also
well suited for modelling different types of feature fusion.
In terms of speech segmentation, Tilk and Alumäe (2016)
show that adding pause features to hidden unit outputs
from a text only RNN punctuation model improves perfor-
mance for English and Estonian lecture data. Klejch et al.
(2017) show that their lexical and acoustic RNN encoder-
decoder model outperforms a lexical model for English
punctuation. They also find that stochastically masking
lexical inputs with acoustic features produces better results
than simple feature concatenation. Similarly, Tsunoo et al.
(2017) show that a hierarchical RNN model combining
word embedding features and sentential acoustic features
improves on the state-of-the-art methods in news story seg-
mentation. Thus, structured fusion appears to work better
than simply concatenating all features at the input level.

Overall, we expect RNN architectures to be expressive
enough to allow us to evaluate different feature fusion
strategies as well as the implications of sequence mod-
elling for paragraphs. In the experiments that follow, we
investigate the usefulness of RNN-based classifiers com-
pared to AdaBoost, SVMs, and Multi-Layer Perceptrons
(i.e. feed forward neural networks).

3. Experimental Setup

In the rest of this paper, we present automatic paragraph
segmentation experiments on a large corpus of TED talks.
The experiments that follow were designed to probe the
following questions, as raised by the discussion above.

• What features are useful for paragraph segmentation?

• How can we make use of contextual information?

• How can we best use lexical and prosodic informa-
tion?

• How well do our methods work on automatically tran-
scribed speech?
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We frame our task as a supervised learning problem.
More specifically, we aim to predict whether a sentence
precedes a paragraph boundary.3 The experimental setup
is described in the following sections.

3.1. Data

In this study, we build paragraph boundary detectors
based on a set of 1492 TED (Technology, Entertainment,
Design) talks published before 2014. These talks vary
greatly in style and content. However, they are also gen-
erally known for being engaging and coherent. Thus, we
expect them to be well structured and less likely to be
affected by features of spontaneous speech like disfluen-
cies or incomplete utterances. There is also less need for
speakers to employ prosodic features for turn-taking pur-
poses which may obscure the discourse structuring nature
of these non-lexical features (Kreiman, 1982; Geluykens
and Swerts, 1994; Gravano, 2009). The data set includes
1156 speakers who have a variety of English accents. As
the talks span a wide variety of topics and genres, we also
expect the lexical content of these talks to be less stylized
than news broadcasts or agenda driven meetings. Thus, we
would expect boundary indicating cues learned from this
data to be more general.

Talks are 15 minutes long on average, so transcriptions
generally benefit from paragraph segmentation. Each talk
has been manually transcribed and includes punctuation
and paragraph breaks. Transcribers are not given strict
rules about paragraph structure. However, they do listen
to the audio stream to help determine when paragraph
breaks should occur.4 We excluded talks consisting of
only one paragraph (e.g. talks that are primarily musical
performances or demonstrations). Altogether, the data
set includes 210403 sentences and 33481 paragraphs with
an average of 6 sentences per paragraph. We perform a
random 90/10/10 split over the talks in the data set to form
training, development and test partitions.

Sentence boundaries are detected based on transcribed
punctuation using the Stanford CoreNLP sentence splitter
(Manning et al., 2014). We use the same toolkit to obtain
Part-of-Speech (POS) tags, parse trees, and co-reference in-
formation. We obtain word timings through Viterbi forced
alignment using an automatic speech recognition system.
Word timings are used to assign sentence boundary times.
Given the aligned transcript, we extract various lexical and
prosodic features as described in the following section and
summarized in Tables 1, 2, and 3.

3These experiments extend the work presented in Lai et al. (2016).
4p.c. TED translation team.

3.2. Prosodic Features

We use Praat (Boersma, 2001) to extract Fundamental
Frequency (F0) and intensity contours from the audio at 10
ms intervals. Here, F0 provides a measurable acoustic cor-
relate of pitch, while intensity is a correlate of perceived
loudness. To minimize errors in F0 estimation, we em-
ployed the method described in Evanini and Lai (2010)
to set F0 parameter settings, as well as octave jump re-
moval and linear interpolation through unvoiced segments.
We normalize F0 and intensity values so that zero values
represent speaker mean values for a talk. We subtract the
speaker mean for intensity normalization, while F0 values
are converted to log-scaled (semitone) values relative to
speaker mean F0 value (Hz).

Based on our previous analysis of paragraph prosody
(Farrús et al., 2016), we calculated aggregate statistics over
the F0 and intensity contours of each sentence and the first
and last words of each sentence (Table 1, stats) including
the mean, standard deviation, maximum, minimum, me-
dian, slope, quantiles, and range (difference between the
99th and 1st quantile values). Slope values are calculate
using linear regression on the F0 and intensity values for
the frame-level time sequence corresponding to the seg-
ment of interest. We also include the first five Legendre
polynomial decomposition coefficients estimated over a
given segment. The coefficients characterise the contour
shape (e.g., bias, slope, convexity) and have been shown
to be useful for detecting prosodic prominence (Kochanski
et al., 2005). For timing features, we include the duration
of the sentence, the number of words, the speaking rate
(words per second), and the durations of pauses before and
after the target sentence.

To better understand how different aspects of prosody
indicate structure we experiment with different feature sets:
(i) timing based features only (timing), (ii) sentence intrin-
sic F0 and intensity features from the target sentence (tar-
get), (iii) feature differences between the target sentence
and the immediately preceding and following sentences,
together with timing features (diff), (iv) timing, target sen-
tence intrinsic features, and difference features, as well as
target features for sentences/words immediately preceding
and following the target (prosody). To specifically under-
stand the contribution of timing features, we also look at
the full prosodic feature set without timing features. Based
on (Farrús et al., 2016), we expect difference features to
be the most indicative of paragraph boundaries. However,
we would like to see if different model architectures are
capable of making use of other prosodic features for this
task. The feature sets are summarized in Table 1.
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Prosodic Features
stats Calculated over F0 and intensity contours:

• mean, std dev, max, min, range, slope
• Quantiles(%): 1, 2.5, 25, 50, 75, 97.5, 99
• 1st-5th Legendre coefficients

target For target sentence:
• stats for whole target sentence
• stats for first and last words of target
• target first and last word differences

timing For target sentence:
• Number of words, speaking rate
• sentence duration
• previous and next pause durations

diff Differences in stats between:
• previous and target sentence
• target and next sentence
• target first word and preceding word
• target last word and following word
timing features

prosody target, timing, difference,
previous/next sentence target features

Table 1: Summary of prosodic features and feature subsets.

3.3. Lexical Baseline and Cue Word Features

For the supervised lexical baseline (baseline), we extract
features based on those used for paragraph segmentation
of texts in Sporleder and Lapata (2006). The features fall
into three categories: surface form, syntactic form, and lan-
guage model based complexity features. Language models
were estimated on the training partition using KenLM (1
to 5-grams) (Heafield, 2011) using modified Kneser-Ney
smoothing without pruning. As in Sporleder and Lapata
(2006), the language models were used to estimate average
word entropy and sentence probabilities. The individual
features are listed in Table 2, but we refer the reader to
Sporleder and Lapata (2006) for more details. Lai et al.
(2016) found that using the full baseline feature set per-
formed better than models based on subsets of features,
e.g. syntactic, surface, and language model based features.
Since the current work is primarily interested in exploring
the usefulness of discourse related features, here we focus
on the full baseline set, cue words (cw), and bag-of-words
(bow) features.

From the lexical baseline features we identify two types
of cue word related features (cw). We record the first three
words of the sentence (i.e., three 1-hot encodings, exclud-
ing words that occur less than 100 times). We also include
binary indicators for the presence of any cue phrases at
beginning, middle and end of the sentence from the list in

Lexical Baseline Features
cw 1st, 2nd, 3rd word indicators,

Cue phrase indicators (Knott, 1996)
bow Bag-of-Words indicators
lsx average word entropy,

sentence probability
number of phrases,
parse tree top level children,
branching factor,
parse tree depth,
part-of-speech tag counts,
number of words,
relative position in doc,
final punctuation,
quote in previous,
quote in target,
incomplete quote,

baseline cw, bow, lsx

Table 2: Summary of lexical baseline features based on Sporleder and
Lapata (2006).

Knott (1996). We are specifically interested in the perfor-
mance of these cue word features relative to bag-of-words
features over the entire sentence (bow, k-hot encoding).
To look at how word identity features perform compared
to other derived features in the baseline, we also report
performance when combining cue word and bag-of-words
features (cw+bow), as well as the effect of their removal
from the baseline set (lsx).

3.4. Lexical Cohesion Features

To examine the performance of lexical cohesion mea-
sures (coh), we look at the differences in topical and lexical
similarity around potential boundary points based on var-
ious sentence vector representations (sent vec). These
include Latent Dirichlet Allocation (lda) (Blei et al., 2003),
Latent Semantic Analysis (lsa) (Deerwester et al., 1990),
and tf.idf representations of the transcript. We also ex-
tract sentence representations based on neural-network
language models using the document vector approach of
Le and Mikolov (2014) (d2v). The lsa and d2v models
were trained using Gensim (Řehůřek and Sojka, 2010). lda
models were fit using Mallet (McCallum, 2002). In the
training stage, individual talks were treated as documents.
The words in each document were lemmatized and words
that occurred in more than half of the talks were excluded.
Numeric vector representations were assigned to individual
sentences using these models (100 dimensional vectors for
lda, lsa, and d2v). Models were fit using only the training
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Lexical Cohesion Features
sent vec lda, lsa, d2v, tf.idf (100 dim)
sim Comparing windows before/after target:

• Smoothed similarity
• TextTiling depth score
Target sentence similarity with:
• Previous 1-3 sentences
• Next 1-3 sentences

chain Lexical chain cohesion scores for:
• all lemmas,
• non stopword lemmas,
• lemmas with freq > 1,
• co-referenced entities

coh sim for each sent vec type,
chain

Table 3: Summary of lexical cohesion features. Vector similarity is
measured using cosine distance. A window size of 3 sentences is used
except where noted.

partition of the data.

As in TextTiling (Hearst, 1997), we obtain similarity
scores by summing sentence vectors falling inside the
fixed windows (i.e., 3 sentences) before and after the target
sentence, and then calculating the cosine similarity be-
tween these two vectors. We record the (moving-average)
smoothed similarities across the boundary, as well as Text-
Tiling depth scores. The latter measures the relative differ-
ence between the current similarity score and the closest
‘peaks’ in similarity to the left and right of the target sen-
tence. A window size of 3 was used based on initial exper-
iments using TextTiling for paragraph segmentation. We
also include the cosine similarity of each target sentence
vector with respect to the three previous and following
sentences for a more local measurement of lexical change.

Besides topic model based features, we also measure
cohesion based on lexical chains, i.e., word repetitions
across sentences (Hearst, 1994; Galley et al., 2003). We
calculate lexical chain cohesion scores (chain) as the cosine
similarity between the lexical chains in sentences before
and after the potential boundary (i.e., rather than using all
the lexical items in those windows). As in Galley et al.
(2003), chains are weighted by the term frequency and
compactness (i.e., log document length/chain length). We
include separate features for chains based on all lemmas,
lemmas that occur more than once, non-stopword lemmas,
and chains based on automatically detected co-reference
relations.

3.5. Baseline Classifiers

3.5.1. Unsupervised Baselines
For reference, we provide results based on well es-

tablished unsupervised segmentation methods: BayesSeg
(Eisenstein and Barzilay, 2008) on raw text input, as well
as TextTiling and C99 based on sentence-level bags of
words. In both cases we allow the segmenter to automat-
ically determine the number of boundaries. We also use
TextTiling and C99 with lda, lsa, d2v and tf.idf inputs.
We use a block size of 3 sentences for TextTiling, and
a mask size of 3 for C99. To help interpret their perfor-
mance, we also give results for random and majority class
segmentations (Niekrasz and Moore, 2010).

3.5.2. Baseline Supervised Classifiers
To compare with the supervised approach of Sporleder

and Lapata (2006), we build classifiers using AdaBoost
with decision stump estimators (Zhu et al., 2009). In this
learning method, predictions are made via a linear combi-
nation of predictions from a number of potentially weak
estimators (i.e., decision stumps). The weight assigned to
each estimator is determined by their predictiveness with
respect to the training input. In each learning iteration,
examples that are misclassified in the previous round are
given more weight (cf. boosting). Thus, we expect this
method to work well in tasks where features are individu-
ally weak predictors.

We compare this with linear kernel Support Vector Ma-
chine (SVM) classifiers (Fan et al., 2008). These were
previously used in Farrús et al. (2016) to investigate the
predictiveness of prosodic features for identifying para-
graph boundaries. However, in that work, combining all
prosodic features produced worse performance than the
best individual predictor. Since AdaBoost is designed to
combine weak predictors effectively, we expect AdaBoost
classifiers to have better performance than SVM classifiers.

AdaBoost and SVM classifiers were built using Scikit-
Learn (Pedregosa et al., 2011). We tune hyper-parameters
on the development set. For the SVMs, this is the regular-
ization parameter C. For AdaBoost, we leave the learning
rate at the default value (1.0), but tune the number of esti-
mators (powers of 2 between 16 and 512).

3.5.3. Neural Network Classifiers
To investigate the ability of neural network based clas-

sifiers to model different feature interactions, we also per-
form experiments using Multi-Layer Perceptrons (MLPs)
and Long Short-Term Memory Recurrent Neural Networks
(LSTM-RNNs). Each layer of an MLP consists of a number
of hidden units (neurons) which are densely connected
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to a vector of input features. Each hidden unit acts as a
function whose output is the weighted sum of the input
features. Non-linear functions may also then be applied to
those outputs. This allows us to model complex, potentially
non-linear interactions between input features.

In Recurrent Neural Networks (Elman, 1990), sequence
information is modelled by feeding in the (weighted) hid-
den unit outputs generated from the input at the previous
time step, alongside that of the current time step. This,
in effect, allows the layer to retain memory of previous
items in the sequence. This approach can also be used to
model the sequence backward in time. Combining forward
and backward RNNs over a sequence allows us to build
up contextual representations in both time directions. This
is potentially important for this segmentation task, since
previous work suggests features of interest can straddle
both sides of boundaries.

Several RNN variants have been proposed that add more
structure to hidden units. Most prominently, in Long Short-
Term Memory RNN (LSTM) hidden units are structured as
memory cells with input, output, and forget gates (Hochre-
iter and Schmidhuber, 1997). This allows control over
whether past context is used in computing the current out-
puts. Thus, we compare forward only LSTMs (LSTMs)
with Bi-directional LSTMs (BLSTMs) in the following
experiments to investigate the benefits of a more direct
sequence modelling approach to incorporating contextual
information. We refer the reader to Goldberg (2017) for a
detailed introduction to MLPs and RNNs.

Neural network models were implemented using Keras
(Chollet, 2015) and Tensorflow (Abadi et al., 2016). In
these experiments, we use tanh activations and sigmoid
output layers for both MLPs and BLSTMs. We use a grid
search to select the number of hidden units (16 to 512
units) and layers (1 to 4) using the development set. We
keep the number of hidden units the same for every layer.
Since our outputs are binary, we train our networks with
respect to cross-entropy loss using the RMSProp optimizer.
To help prevent overfitting we employ dropout: 30% of the
hidden unit outputs on each layer are randomly set to zero
during training. We also perform early stopping based on
development set loss.

3.6. Input Context Sequences

To get a better idea of how well context is used in dif-
ferent approaches, we perform experiments varying the
amount of input context. More specifically, we add fea-
tures from (1 to 4) previous and next sentences around
every sentence in our corpus (zero padding at talk bound-
aries). This then forms a sequence of (3 to 9) input feature

vectors which are used as input to the LSTM-based models.
Model weights are trained using backpropagation over the
network unrolled over the given sequence. The LSTM
models make paragraph boundary predictions for every
element in the input sequence. We use all such predictions
when calculating losses during training, but we only use
predictions for the target sentence when evaluating perfor-
mance on the test set. For the MLP, AdaBoost and SVM
models, we simply concatenate all vectors in the sequence
to form one ‘flat’ input vector. The output then corresponds
to the prediction for the center sentence in the input win-
dow. We treat the context size as a hyperparameter and
tune this on the development set except where noted.

3.7. Feature Fusion

We investigate lexical and prosodic feature fusion at
different levels by examining different BLSTM architec-
tures as shown in Figure 1. For feature level fusion, we
concatenate all features as input to a single BLSTM. For
decision level fusion, we train separate lexical and prosodic
BLSTMs, and make the final decision based on their
separate class probability estimates. We also investigate
whether learning separate feature representations for indi-
vidual feature subsets before fusion improves performance.
In this case, we combine the final hidden layer outputs, as
opposed to output probabilities, from separate lexical and
prosodic BLSTM models before making the final decision
(intermediate fusion, cf. score fusion in Nandakumar et al.
(2008)).

We use the best models for different feature sets as iden-
tified in the BLSTM feature level fusion experiments above.
We compare cases where we make the final decision imme-
diately after fusion, or whether we allow multiple BLSTM
layers to intervene.

3.8. ASR Transcripts

To investigate the effect of transcription errors on our
lexical features, we also apply our paragraph segmenters
(trained on manual transcripts) to outputs of several ASR
systems. ASR outputs for TED talks come from various
systems developed at the University of Edinburgh (Bell
et al., 2017). The systems display a wide variety of word
error rates (10–50%). In the experiments below, we use the
same sentence segmentation as for the manual transcripts.
We apply a machine translation (text) based punctuation
restoration system to obtain capitalization (to aid coref-
erence resolution) and sentence internal punctuation (for
lexical baseline features). In this case, prosodic features
were extracted based on the ASR word timings.
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Figure 1: Feature Fusion Architectures. Dotted arrows indicate that multiple layers of the same type, where the number of layers is treated as a
hyperparameter and tuned on the development set.

As the ASR systems used here were also trained on
TED data, in these experiments we repartition the data to
use the 27 talks in the ASR test sets (dev2010, tst2010,
tst2011) as our paragraph segmentation test set. All other
talks were split 90/10 into training and development data.
Paragraph segmenters were retrained using the hyperpa-
rameter settings selected in the experiments with manual
transcripts.

3.9. Evaluation Metrics

To evaluate our results we initially use standard seg-
mentation metrics: Pk (Beeferman et al., 1999) and Win-
dowDiff (WD) (Pevzner and Hearst, 2002). Both metrics
measure segmentation error using a sliding window (size
k) through a document. For Pk, a penalty of 1 is added
if a boundary is predicted for a no-boundary window or
vice versa. For WD, a penalty of 1 is added if the pre-
dicted number of boundaries does not match the ground
truth. The summed penalties are normalized by the total
number of windows to produce an error probability, with 0
indicating a perfect segmentation (i.e., lower Pk and WD
scores are better).

These standard metrics are known to be biased towards
segmentations with very few predicted boundaries or edge
clumping. Thus, following Niekrasz and Moore (2010),
we also report k-κ, a version of Pk which is explicitly cor-
rected for chance agreement. We also extend the document
sequence with k-1 zeros (no boundary) at either end to

ameliorate the edge bias problem. We use k=3 following
the standard practice of using half the average segment
length for the dataset. For k-κ, scores of -1, 0, and 1 repre-
sent perfect disagreement, chance and perfect agreement
respectively. To examine the significance of differences
between models, we use Paired Permutation Tests over k-κ
(Yeh, 2000; Smith, 2011), with p < 0.05 as the criteria for
statistical significance. Any mention of significant differ-
ences in the following refers to a statistically significant
difference according to this test.

4. Results

In the following, we report results of various approaches
for automatically predicting paragraph boundaries. The
evaluation metrics we show represent TED talk test set
results only (cf. Section 3.1).

4.1. Text-Based Unsupervised Baselines

Table 4 shows various unsupervised baseline results for
various vector representations of the text. As expected,
k-κ is close to zero for both of these baselines. For both
C99 and TextTiling, the tf.idf based approaches perform
better than lda, lsa, d2v and Bag-of-Words (bow) based
approaches. C99 results are generally better than TextTil-
ing in terms of k-κ, but worse in terms of WD. This reflects
a higher recall but also a higher false positive rate for the
former. Overall, the Bayesian topic modelling approach
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Classifier Features Pk WD k-κ
Majority n/a 0.41 0.41 0.00
Random n/a 0.45 0.50 0.03
TextTiling tf.idf 0.40 0.41 0.11

lda 0.42 0.44 0.09
lsa 0.43 0.45 0.09
d2v 0.44 0.46 0.09
bow 0.46 0.48 0.04

C99 tf.idf 0.39 0.41 0.12
d2v 0.43 0.44 0.10
lda 0.45 0.49 0.10
lsa 0.45 0.51 0.10
bow 0.47 0.57 0.06

BayesSeg text 0.40 0.50 0.16

Table 4: Unsupervised baseline test set results. The majority class base-
line predicts no boundaries anywhere. For Pk and WD scores, lower
scores indicate better performance. For k-κ, higher scores indicate
better performance.

(BayesSeg) performed the best in terms of k-κ, although
it appears to suffer in WD terms from a higher false posi-
tive rate. Overall, we see that these unsupervised lexical
cohesion based methods can detect some boundaries, and
abstract representations help compared to bags-of-words.
However, the observed performance is generally low, sup-
porting the hypothesis that lexical similarity is a weak
indicator of paragraph structure.

4.2. Feature Set Comparisons
In the following, we present results examining the per-

formance of prosodic and lexical feature subsets, as well
as combinations of lexical and prosodic features. Given
the problems with Pk and WD outlined above, we focus
on k-κ results in our comparisons. Differences in k-κ in
the results discussed in the text below were found to be
statistically significant (p < 0.05), except where noted.

4.2.1. Prosodic Features
Results from different prosodic feature sets are shown

in Table 5. Using the full prosodic feature set (prosody)
performed the best across all classifier types. Prosodic dif-
ference features (diff) are clearly an important part of this.
However, target sentence intrinsic features (i.e., target)
are also useful for this task in conjunction with difference
features (i.e., diff < pros all). Removing timing features
from the full prosodic feature set reduces performance
considerably, but again there is clearly still some useful
information in the non-timing features. This confirms the
idea that multiple aspects of sentence prosody are required
for this task.

Input adaboost blstm lstm mlp svm

target 0.12 0.16 0.06 0.12 0.01
timing 0.15 0.20 0.15 0.19 0.03
diff 0.19 0.24 0.21 0.21 0.11
prosody 0.22 0.27 0.22 0.25 0.12

w/o timing 0.10 0.15 0.14 0.12 0.07

Table 5: Prosodic features: Test set results for the full prosodic feature
set prosody and subsets: target sentence F0 and intensity features,
timing features including pausing, and differences between the target
and previous/next sentences. The last row shows the effect of removing
the timing features from the full prosodic feature set. Larger k-κ values
indicate better performance.

Using the BLSTM with the full prosodic feature set
(prosody) performs the best overall. As expected, the neu-
ral network approaches generally perform better than the
baseline AdaBoost and SVM classifiers. It appears that
the prosodic difference features were better utilized by the
SVM than duration (i.e., timing) based features or sentence
intrinsic features, even when context was available. These
results suggest that some notion of feature composition is
necessary to get the most out of non-difference features for
this task. The forward LSTM results are always worse than
the bidirectional version and the context dependent MLP.
The difference is especially pronounced for the model that
doesn’t include any contextual difference features (i.e.,
target). The fact that the MLP is able to recover relevant
information from context where the forward LSTM cannot,
indicates that some post-target information is necessary in
this task setup.

4.2.2. Lexical features
Table 6 shows the results for experiments with lexical

feature subsets. The lexical baseline models perform better
than prosody based models for all classifiers except the
LSTM. In general, lexical cohesion features perform bet-
ter than chance, but are still quite weak compared to the
other feature sets. Adding cohesion features (coh) to the
baseline features generally improves performance except
for the BLSTM, where the results are not statistically sig-
nificantly different (lex vs baseline). This suggests that
the BLSTM is able to capture information similar to (or
at least as informative as) the lexical cohesion features
through sequence modelling.

Lexical cohesion features on their own do not perform
as well as cue word (cw) and bag of words (bow) features
except in the forward LSTM case. As with the prosodic
features, not being able to access features from across the
potential boundary, particularly cue words, handicaps the
predictiveness of this model. Removing cue word and bag
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of words features from the lexical baseline set (i.e., lsx)
degrades performance significantly. This indicates that
these lexical identity features are important components
of the lexical baseline feature set. However, the additional
surface, syntax and language model features (included in
lsx) also add something beyond the identity features alone
(baseline > cw+bow).

Overall, the fact that lexical cohesion features do not
perform as well as cue word features supports the idea that
discourse oriented cues are more important than lexical co-
hesion for this level of segmentation. We also see that some
models are able to integrate cue word and bag-of-words
features better than others. As for the prosody experiments,
the BLSTM based models perform the best followed by
the MLP, AdaBoost, SVM, and lastly the forward LSTM.
This indicates that the type of transforms afforded by the
neural networks are useful for this task, but access to the
right type of context is required.

4.2.3. Lexical and Prosodic features
Table 7 shows the performance of classifiers trained on

combined sets of lexical and prosodic classifiers. Using
the full set of combined prosodic and lexical feature sets
(lex pros) improves performance compared to individual
lexical or prosodic models for each classifier type. We
see a similar improvement when just combining cue word
and bag-of-words features with prosodic information (cwb
pros), although performance here is worse than for the
full feature set. Overall, the results support the idea that
prosodic and lexical features contribute complementary
information for this task.

The gain from adding prosodic features appears greatest
for the LSTM model. This is likely due to the fact that the
prosodic features include next sentence features, and thus
provide useful additional lookahead type information. In
terms of classifiers, we see a now familiar ordering between
model types: BLSTM, MLP, AdaBoost, LSTM, SVM. In
this case the difference between MLP and AdaBoost is not
statistically significant, nor is the difference between the
SVM and LSTM. This, once again, reinforces the idea that
composition of features in time is important for this task.

4.3. The Effect of Context

As discussed in Section 3.6, we varied the amount of
context available to classifiers to investigate how access to
context affects performance. In the experiments above, we
only reported results for the context size that produced the
best results on the development set. To give a more com-
plete picture, Figure 2 shows the test set results when vary-
ing amounts of context are provided as input (or training

sequence length for (B)LSTMs). Here, we see that adding
just features from the previous and following sentence to
the target sentence results in a huge jump in performance
for non-reccurent lexical models. However, the prosodic
models don’t gain as much from including additional con-
text. Note that the full prosodic feature set includes in-
formation about the immediately preceding and following
sentences. The lack of improvement from adding more
context indicates that the most useful prosodic information
for this task is quite close to the potential boundary.

The superior performance of the BLSTM compared to
the MLP indicates that explicit mechanisms for sequence
modelling employed in the recurrent network are impor-
tant here. It appears that the MLP is less able to model
lexical and prosodic interactions as the context size grows.
We can also note that the forward LSTM results remain
much more stable with increasing context size with lexical
features generally behaving quite poorly. As in the results
above, we see that both forward and backwards sequence
modelling is important for this task.

4.4. BLSTM-based Fusion

The results described above all employ feature level fu-
sion: i.e, the input is the concatenation of all features. For
neural networks, the dense connections between layers ba-
sically allow interactions between input features. However,
it is possible that allowing these sorts of interactions is un-
necessary. Previous work has suggested that we can treat
lexical and prosodic features as independent information
streams (cf. Section 2.5). Training separate neural net-
works for feature subsets essentially removes connections
between feature blocks, reducing the number of model
parameters. Thus, if we can treat specific feature sets as
independent, we may be able to fit the data more efficiently.

We investigate this by looking at models that perform
two types of late fusion: decision level fusion and inter-
mediate fusion (Figure 1). We also compare different par-
titions of the input features. In the first case, we use sep-
arate models for lexical features without word identity
features, (lsx), the combined cue words and bag of words
features (cw+bow), lexical cohesion features (coh), and
the full prosodic feature set (prosody). In the second case,
we simply separate all lexical (lex) and prosodic features
(prosody). We use the best models for different feature sets
as identified in the experiments above, so model compo-
nents differ in number of hidden units and layers before
fusion.

Table 8 shows the results for different feature fusion
strategies. Here, our previous feature level fusion model

12



Input adaboost blstm lstm mlp svm

coh 0.07 0.08 0.07 0.08 0.07
cw 0.14 0.22 0.07 0.17 0.14
bow 0.14 0.23 0.09 0.14 0.14
lsx 0.15 0.23 0.09 0.18 0.13
cw+bow 0.18 0.29 0.07 0.23 0.19
cw+bow+lsx (=baseline) 0.23 0.34 0.12 0.27 0.24
cw+bow+lsx+coh (=lex) 0.26 0.34 0.18 0.28 0.25

Table 6: Lexical features: Test set results (k-κ). Baseline is the feature set used in Sporleder and Lapata (2006). Lex represents all baseline and
coherence features.

Figure 2: Varying the available context: Test set mean k-κ for models trained using best dev set hyperparameters. For a window size of 3, for
example, the input to the SVM, AdaBoost, and MLP consists of target sentence features, plus the same features for the immediately previous and
following sentences

Input adaboost blstm lstm mlp svm

cwb pros 0.29 0.36 0.25 0.29 0.25
lex pros 0.32 0.38 0.30 0.33 0.29

Table 7: Combining Lexical and Prosodic features: Test set results
(k-κ, feature level fusion). cwb pros: cue words, bag of words and
all prosodic features. lex pros: all lexical features and all prosodic
features.

(cf. Table 7) consistently outperforms decision level fu-
sion, where we simply use a sigmoid decision layer on
top of output probabilities. However, we get better results
when we perform intermediate fusion, where the fusion
layers take hidden unit outputs of the separate lexical and
prosodic models as inputs to the final decision layer. That
is, allowing features derived from the separate lexical and
prosodic models to interact improves performance.

However, we can improve both decision level and
intermediate fusion by adding additional BLSTM lay-
ers between the individual models and the overall (de-

cision+blstm) decision level. This again highlights the
sequential dependencies in prediction. We see a small but
statistically significant gain using the intermediate fusion
strategy (intermediate+blstm). This gives us our best re-
sults overall. Both of these models outperform the feature
fusion model that matches their overall depth (i.e., 8 layer
feature fusion). Thus, allowing composition of prosodic
and lexical features before the decision layer is generally
preferable. Furthermore, additional partitioning of the in-
put feature space reduces performance. This indicates that
some interactions between lexical features used here need
to happen early in the model structure.

We also consider earlier fusion where we take separate
1 layer paragraph boundary models and fuse them with
BLSTM layers (cf. Lai et al. (2016)). The results in Table 9
show that intermediate fusion performs better than decision
and feature level fusion when we do not include more
fusion layers. We obtain better performance if we allow
more BLSTM layers after fusion. However, Table 9 also
shows that input feature level fusion with a 5 layer model
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Fusion Type Fusion Layers µ(k-κ)
lsx, cw+bow, coh, prosody
Decision 0 0.28
Intermediate 0 0.36
Decision+blstm 4 0.40
Intermediate+blstm 4 0.41
lex, prosody
Decision 0 0.34
Intermediate 0 0.38
Decision+blstm 4 0.41
Intermediate+blstm 4 0.42
Feature (Table 7) 4 0.38
Feature 8 0.39

Table 8: Test set results for different fusion types and different partitions of the full input feature set (mean k-κ). We train separate BLSTM models
for the different input feature types before fusion. The number of fusion layers indicate the number of BLSTM layers combining the different feature
types not including the final decision layer.

Fusion type Layers µ(k-κ)
Decision 1 0.22
Feature 1 0.26
Intermediate 1 0.29
Intermediate+blstm 1+4 0.34
Feature 5 0.38

Table 9: Test set results for fusion after 1 layer lexical and prosodic
BLSTMs (mean k-κ).

outperforms one where the first layer separates lexical and
prosodic features. This indicates that several layers are
necessary to obtain a good representation for late fusion.

4.5. Application to ASR outputs

While the full lexico-prosodic model performs best on
the manual transcripts, we’d like to see how well classi-
fiers built on different feature sets perform on ASR out-
puts. Figure 3 shows how k-κ varies with Word Error
Rate (WER) for various models (feature level fusion). As
we would expect, the graph shows a steady decrease in
performance for the lexical model with increasing WER.
However, the addition of prosodic features ameliorates
the degradation caused by ASR errors. This occurs even
though the prosodic model performs relatively poorly on
its own. ASR errors are likely to result in incorrect word
timing features which affect aggregate prosodic features
over words and sentences, as well as pause information.
Thus, we observe a large decrease in the prosodic model
compared to the manual transcription case. So, it appears
that it is quite hard to decouple prosodic and lexical fea-
tures if the former depend on word timings. Nevertheless,

degraded prosodic features can still help out degraded lexi-
cal features.

Interestingly, the model using just cue words, bag of
words, and prosodic features (cwb pros) outperforms the
superset lexical and prosodic (feature fusion) model (lex
pros). The full lexical model includes features derived
from other language processing tasks, such as syntactic
parsing, which are likely to degrade with ASR errors. In
contrast, cw and bow features simply rely on word identity
and so are less sensitive to this problem.5 This may ac-
count for the cwb pros outperforming the lex pros model.
However, it still appears that the cue word/bag-of-words
model (cw bow) results degrade less quickly than the full
lex results. In both cases, the prosodic information im-
proves performance compared to corresponding models
that don’t include prosodic information.

Results corresponding to different fusion methods are
shown in Figure 4. This shows that decision level fusion
performs better than intermediate fusion on the manual
transcriptions than for the ASR test set. However, inter-
mediate fusion performs better on the ASR output. This
may be because the overall confidence of individual lexical
and prosodic models is reduced when dealing with ASR
outputs. Both intermediate fusion and decision level fusion
perform better than feature level fusion. This, once again,
suggests that performing some separate abstraction over
lexical and prosodic features is beneficial. However, com-
bining them in terms of abstract representations (hidden

5It is worth noting that performance of cue word/bag-of-word fea-
tures on this small test set appear to be quite a lot better than for the
separate test set used in the experiments above, although the feature set
performance ordering is otherwise the same on manual transcripts.

14



Figure 3: Results for the ASR test set using ASR transcripts with feature level fusion models: Word error rate versus mean k-κ. Zero percent total
error results correspond to predictions made using manual transcripts as input.

Figure 4: Results for the ASR test set using ASR transcripts for different fusion types: Word error rate versus mean k-κ.
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layer outputs) is more robust than using decision outputs.
It is important to note that these experiments focus on

the effect of ASR errors on this task given gold-standard
sentence timings. This was done to in order to keep things
consistent with the experiments performed on manual tran-
scription (i.e., 0% WER): ASR errors effect punctuation
restoration, which can in turn change sentence segments.
This makes evaluation with respect to the gold standard
less straightforward and would require us to use a modi-
fied evaluation metric. Since the focus of the current work
is on establishing the usefulness of prosodic and lexical
features for this task, we defer a detailed investigation into
all upstream components for future work.

However, at this stage we can note that punctuation
restoration is still an area of ongoing research, with pre-
vious work on TED talks report overall F1-scores 61.4%,
and 71.4% when restricted to period restoration Tilk and
Alumäe (2016). So, we would expect this to effect down-
stream paragraph segmentation negatively. Beyond this,
work on spontaneous conversational speech has noted dif-
ficulties in translating the concept of punctuated sentence
from text to spoken utterances (Strassel, 2003). Similarly,
the TED talks don’t often exhibit the types of disfluencies
that are the hallmark of conversational speech (Shriberg,
2001). As we saw previously, timing features like paus-
ing are predictive of paragraph boundaries. However, the
presence of pauses related to disfluencies make the inter-
pretation of pauses more complicated (and similarly so for
sentence segmentation). So, we would expect to see more
reliance on lexical cues in this case, although more long
range prosodic features may still be able to compensate
for this. We would not expect our models trained on fluent
speech to be able to generalize to disfluent speech with-
out some adaptation. A model that considers word-level
sentence segmentation probabilities obtained, for example,
in a multitask training scenario, may be more appropri-
ate for discourse segmentation of spontaneous speech. In
general, further work is required to better understand the re-
lationship between spoken utterances and larger discourse
segments represented by paragraphs, especially in presence
of disfluencies.

5. Discussion

The experiments described above indicate that cue
words and prosody are better indicators of paragraph struc-
ture than measures of lexical cohesion. This supports the
idea that discourse oriented surface cues, e.g. word iden-
tities, are more important for this level of segmentation
than changes in word distributions. Although lexical co-

hesion features did improve performance relative to the
lexical baseline for most classifiers we experimented with,
they appeared redundant in the corresponding BLSTM ex-
periments. So, while lexical/topic similarity measures do
reflect some aspects of paragraph structure, they are far
from sufficient for capturing paragraph cohesion.

In line with Sporleder and Lapata (2006), our results
indicate that combining a large number of individually
weak lexical and prosodic predictors is necessary for this
task. Moreover, we can improve performance by allowing
interactions between lexical and prosodic signals. The clas-
sification methods we investigated vary to the extent that
they allow such interactions. Machine learning methods
such as AdaBoost can do this to some extent by learning
a weighted combination of estimators. However, neural
network models can go further by using the hidden unit
structure to compose feature values through a series of
linear and non-linear functions. The benefits of including
prosodic features are particularly evident as the error rate
increases in automatic transcripts.

In fact, the experiments show that lexico-prosodic mod-
els benefit from late fusion, where separate lexical and
prosodic models, in effect, act as feature extractors. Fusing
the hidden layer outputs tends to work better than decision
level fusion, particularly for ASR transcripts. This indi-
cates that some extra abstraction over the current input fea-
ture set is required. A benefit of delaying modality fusion
in this way is that it allows models of different modalities
to be trained separately. For example, the lexical compo-
nent could take advantage of text without corresponding
speech data. However, given domain differences observed
in previous text studies, further work is necessary to see
how well text oriented paragraph cues transfer to speech.

Making more contextual information available to SVM,
AdaBoost, and MLP based classifiers improved perfor-
mance. However, the BLSTM models outperform these
methods, showing the benefits of structured composition
of features across time. Experiments varying input se-
quence length support previous findings that the most use-
ful prosodic features for segmentation occur very close to
potential boundaries (Shriberg et al., 2000). However, the
overall results also support the idea that lexico-prosodic in-
teractions indicate discourse structure. In the current work,
we only extract the prosodic word level features for the
first and last word of a sentence, so there is only a direct
correspondence with the first cue word feature. However,
incorporating word or subword prosodic features together
with word representations, such as word embeddings, for
all words in the sentence may better model discourse struc-
ture related interactions.
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In this vein, combining (sub-)word features may also
help us to obtain more useful and compact sentence repre-
sentations using, for example, autoencoder based methods
(Li et al., 2015). Similarly, we plan to investigate the
usefulness of lexical and prosody based attention mecha-
nisms for this task (Luong et al., 2015; Bahdanau et al.,
2014). Learning paragraph segmentation as a joint task
with sentence segmentation (Tilk and Alumäe, 2016; Kle-
jch et al., 2017) or discourse parsing (Ji and Eisenstein,
2014; Braud et al., 2016) may also be helpful for learning
appropriate lexical and prosodic representations. This may,
in turn, allow us to better model supra-sentential sequences.
However, even without these potential enhancements, our
current results clearly show the benefits of incorporating
lexical and prosodic features before the decision level and
of sequence modelling.

Bayesian generative models provide an alternative ap-
proach to integrating knowledge sources and adapting to
different styles for unsupervised segmentation (Dowman
et al., 2008; Nguyen et al., 2012; Du et al., 2013). In the
current work, we did not explore any of these methods
besides applying the BayesSeg baseline. It would be in-
teresting to see whether integrating prosodic features into
these sorts of models at the word level can help capture
the more subtle shifts represented by paragraphs. In fact,
it appears that little work has been done on incorporat-
ing non-lexical speech features into topic models. The
model presented in Dowman et al. (2008) shows how to
incorporate discourse features such as speaker activity and
overlap into a probabilistic model of meeting segmentation.
However, this approach assumes that features are indepen-
dent of each other and feature distributions depend only
on the segment boundary variable. In contrast, our cur-
rent work indicates that paragraph segmentation requires
incorporation of sequence information and modelling of
interactions between features. Neural variational inference
techniques for learning latent variable models, like topics
(Miao et al., 2017), may provide a promising avenue to
further explore Bayesian generative models for multimodal
paragraph segmentation using recurrent neural networks.
Similarly, the paragraph segmentation task may also benefit
from incorporating aspects of recent work on topic seg-
mentation in task-oriented dialogue using reinforcement
learning (Takanobu et al., 2018). We leave investigation of
this for future work.

Several studies have found that, while human agree-
ment for discourse segmentations is far from perfect, some
boundaries are clearly more popular than others (Stark,
1988; Ji, 2008; Passonneau and Litman, 1993a). In order
to understand what types of boundaries our neural network

models are finding, we need a better understanding of the
types of thematic units they present. For example, disconti-
nuities may be better understood in terms of re-orientations
of participants, perspective, location, and time. Since doc-
uments need to maintain multi-paragraph coherence, these
discontinuities may not be very sharp (Giora, 1986).

At this time, human performance on our paragraph seg-
mentation task is unknown. Most recent works on topic
and paragraph segmentation have focused on prediction of
automated methods with respect to pre-existing (author)
text segmentations as gold standards, rather that human
performance. The closest study is Niekrasz (2012), who
calculates k-κ of 0.58 for speaker intention based segmen-
tation of Pear story narratives (mean over 7 annotators).
Our best performance is still some ways off from that
level. However, the results are not directly comparable,
e.g., Niekrasz used a window size of 1 for comparability
to Cohen’s κ agreement measure. Thus, further investiga-
tion of human agreement on paragraph segmentation with
respect to different types of shifts on this data set will be
necessary in future work.

6. Conclusion

This paper investigated automatic paragraph segmenta-
tion using lexical and prosodic features on a highly diverse
set of TED lectures. Our experiments show that cue word
and bag-of-words features performed better than lexical
cohesion measures drawn from work on automatic topic
segmentation. This indicates that lexical distribution shifts
only tell part of the story of what makes the lexical content
in a paragraph cohesive. The performance of cue word/bag-
of-word features suggests that specific words are indicative
of this level of discourse structure. Similarly, the structure
indicating aspects of prosody can help make up for errors
in ASR transcripts. In fact, in experiments on ASR outputs,
classifiers based on cue word, bag-of-words, and prosodic
features outperformed the full feature set as word error rate
increased.

Overall, these experiments highlight the need to com-
bine many weak predictors to make good boundary deci-
sions. Moreover, how features are combined can have a
large impact on results. Approaches that can model inter-
actions between low level features worked better. Overall,
the best performance came from BLSTM models using
the full lexical and prosodic feature sets. We observe that
the inclusion of sequential information both forwards and
backwards in time resulted in significant gains for this task.
Late fusion of lexical and prosodic features provided the
best results overall. Intermediate fusion of hidden layer
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outputs worked better than decision level fusion, especially
for automatically transcribed talks.

Future work will focus on mapping between represen-
tations learned by neural network models to the different
types of thematic discontinuity represented by paragraph
breaks. We will also investigate richer neural network
based sentence representations that incorporate word and
sub-word lexical and prosodic features. Further work is
also required to determine how well this approach gener-
alizes to other spoken language genres (e.g. news broad-
casts), and, similarly, representations learned from written
text transfer to this task.
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