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Abstract

Speech signals may contain different paralinguistic aspects such as the pres-

ence of pathologies that affect the proper communication capabilities of a speaker.

Those speech disorders have different origin depending on the type of the dis-

ease. For instance, diseases with morphological origin such as cleft lip and palate

that causes hypernasality, or with neurodegenerative origin such as Parkinson’s

disease that generates hypokinetic dysarthria on the patients. Automatic as-

sessment of pathological speech allows to support the diagnosis and/or the eval-

uation of the disease severity. Conventional methods are based on the manually

applied assessment of single features such as jitter, shimmer, or formant fre-

quencies that may not completely model all of the phenomena that appear due

to the disease. This paper introduces a novel strategy based on unsupervised

representation learning for automatic detection of pathological speech. The pro-

posed approach is based on the use of recurrent and convolutional autoencoders

trained to extract informative features to characterize the presence of patholo-

gies in speech. A novel feature set based on the reconstruction error of the

autoencoders is also proposed. The performance of the introduced models is

evaluated classifying pathological speech signals recorded from people suffering
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from Parkinson’s disease, and children with cleft lip and palate. All participants

from this study were Spanish native speakers. The proposed models are accurate

to classify the speech signals of both kinds of diseases, with an accuracy of up to

97% for cleft lip and palate, and up to 84% for the case of Parkinson’s disease.

We also show that the reconstruction error from the autoencoders in different

frequency regions contain information related to specific speech symptoms of

both diseases.

Keywords: Pathological speech, unsupervised representation learning,

convolutional autoencoders, recurrent autoencoders Parkinson’s disease, Cleft

lip and palate

1. Introduction

The speech signals contain paralinguistic information with specific cues about

the speaker, including their identity, mood, age, gender, and the presence of

diseases that may alter their communication capabilities. The automatic clas-

sification of paralinguistic aspects has many potential applications, and has5

received a lot of attention by the research community (Schuller and Batliner,

2013; Schuller et al., 2019; Cummins et al., 2018). Potential applications in-

clude the assessment of pathological speech, which allows the development of

computer aided tools to support the diagnosis and the prediction of the disease

severity (Orozco-Arroyave et al., 2015). Particularly, the assessment of patho-10

logical speech has focused on the analysis of diseases with different origin such

as morphological, or neurological.

One of the speech pathologies caused by morphological changes is hyper-

nasality, which appears in about 90% of patients with cleft lip and palate (CLP),

even after surgical correction of the palate (Vijayalakshmi et al., 2007). CLP15

patients may experience feeding and swallowing difficulties, hearing loss, and dif-

ferent speech disorders such as soft voice and omission or substitution of sounds.

CLP also causes excess of nasalization, which is characterized by the presence

of additional resonances in the nasal cavity during the speech production (Wy-
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att et al., 1996). The velopharyngeal dysfunction may also cause nasal emis-20

sion of the air stream, resulting in weak consonant production, short utterance

length, and the development of compensatory articulation movements (Wyatt

et al., 1996). In addition to the diseases with morphological origin, patients

with neurological disorders such as Parkinson’s disease (PD) develop hypoki-

netic dysarthria, which appears in about 90% of the patients (Ho et al., 1999).25

Speech symptoms caused by PD include rigidity of the vocal folds, bradykine-

sia, and reduced control of muscles and limbs involved in the speech production.

The effects of the dysarthria in the speech of PD patients also include increased

acoustic noise (Hornykiewicz, 1998), reduced intensity (Baker et al., 1998), harsh

and breathy voice quality, increased nasality (Spencer and Rogers, 2005), mono-30

pitch, monoludness, speech rate disturbances (Skodda et al., 2011), imprecise

articulation of consonants (Tykalova et al., 2017), and involuntary introduction

of pauses (Moretti et al., 2003).

CLP and PD patients share common speech symptoms due to the presence

of the disease. For instance, PD patients can exhibit hypernasality because35

their reduced control of the nasal cavity (Saxon et al., 2019). In addition, the

speech of CLP patients is affected by different articulation disorders, similar

to those observed in PD patients, such as problems in the pronunciation of

fricatives or weakened plosives (Maier et al., 2009). Both CLP and PD patients

have compensatory articulation disorders. Those movements in CLP patients40

include the substitution of glottal stops by voiced stops, or nasal fricatives by

oral fricatives (Prathanee et al., 2014). For the case of PD patients, they usually

have incomplete vocal closure by maintaining a continuous level of vocal fold

activity to avoid the difficulty of initiating the phonation (Blanchet and Snyder,

2009). This behavior causes that voiceless stops such as /p/, /t/, and /k/ are45

replaced by /b/, /d/, and /g/.

Clinical observations in the speech of patients can be objectively and au-

tomatically measured by using computer aided methods supported in signal

processing and pattern recognition methods with the aim to address two main

aspects: (1) to support the diagnosis of the disease by classifying healthy control50
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(HC) subjects and patients, and (2) to predict the level of degradation of the

speech of the patients according to a specific clinical scale.

Different approaches have been proposed to automatically model pathologi-

cal speech with different origins. One of the first studies to automatically assess

the speech of CLP patients was performed by Schuster et al. (2006), who evalu-55

ated the intelligibility of CLP patients using the word accuracy obtained from a

speech recognition system. The authors showed that there is significant differ-

ence between the word accuracy obtained between children with isolated cleft

lip, isolated cleft palate, unilateral cleft lip and palate, and bilateral cleft lip and

palate. The results also indicated that there is a significant negative correlation60

between the word accuracy and a perceptual evaluation of the intelligibility of

the children (Pearson correlation r = −0.90). Vijayalakshmi et al. (2007) im-

proved the resolution of the speech spectrum using the modified group delay

functions to find a peak located in 250 Hz, which exhibited a higher intensity

in hypernasal voices than in healthy ones. Later, Maier et al. (2009) aimed to65

detect the presence of distinct articulation disorders in CLP patients such as

hypernasality in vowels, nasalized consonants, pharyngealization, glottal articu-

lation, among others. The authors computed features such as the word accuracy,

several prosody features from the pitch and energy contours, the Teager energy

profile, Mel-frequency cepstral coefficients (MFCCs), and the goodness of pro-70

nunciation. The proposed method achieved moderate to good agreement (kappa

index κ ≈ 0.6) for the detection of all articulation disorders, using several clas-

sification methods. Orozco-Arroyave et al. (2013) computed several features

based on non-linear dynamics analysis to discriminate between children with

CLP and HC, when they pronounced sustained vowels and isolated words. The75

authors reported an accuracy of up to 92%, using a classifier based on support

vector machines (SVM). Golabbakhsh et al. (2017) detected hypernasality in

CLP children using acoustic features such as jitter, shimmer, and MFCCs, com-

bined with features extracted from wavelet decompositions. The participants

were asked to read six sentences in Persian language. The authors reported ac-80

curacies of up to 85% when MFCCs were combined with wavelet-based features,
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using also an SVM classifier. Vikram et al. (2018) computed MFCCs and their

derivatives only in segments with glottal activity to classify children with CLP

vs. HC. The features were classified with a deep neural network (DNN) and

Gaussian mixture model–based classifiers with an accuracy of 93.3%. Recently,85

Dubey et al. (2019) introduced the use of constant Q-Cepstral coefficients to

classify normal, moderate, and severe hypernasality levels of CLP patients and

HC children, when they pronounce sustained vowels. The authors reported an

accuracy of up to 83.3% using an SVM classifier.

Regarding the assessment of the speech of PD patients, several studies have90

described the associated speech symptoms considering features based on phona-

tion, articulation, prosody, and intelligibility (Orozco-Arroyave et al., 2018;

Orozco-Arroyave, 2016; Bocklet et al., 2013; Rusz et al., 2017; Moro-Velázquez

et al., 2018). Phonation features model the stability and periodicity of the vo-

cal fold vibration, and include perturbation features such as jitter, shimmer,95

amplitude perturbation quotient, pitch perturbation quotient, and non-linear

dynamics measures (Orozco-Arroyave et al., 2015; Sakar et al., 2013; Naranjo

et al., 2016). Phonation features also include noise measures such as harmonics

to noise ratio, glottal to noise excitation ratio, and voice turbulent index, among

others (Tanaka et al., 2011). Articulation symptoms are related to the modifi-100

cation of the position, constriction, and shape of several limbs and muscles to

produce speech. These symptoms have been modeled with features such as vowel

space area, vowel articulation index, formant centralization ratio, voiced onset

time, and onset energy (Orozco-Arroyave, 2016; Rusz et al., 2013; Novotnỳ et al.,

2014; Montaña et al., 2018). Additional articulation features included a non-105

linear dynamics analysis on the amplitude envelope of diadochokinetic (DDK)

exercises (Godino-Llorente et al., 2017), models of the bio-mechanical systems

of the jaw-tongue movement (Gómez-Vilda et al., 2017), or the evaluation of the

pronunciation of specific phonetic units using posterior probabilities from Gaus-

sian mixture models (Moro-Velazquez et al., 2019). Prosody deficits in PD are110

manifested as monotonous speech, monoloudness, reduced stress, and changes

in speech rate and pauses (Skodda et al., 2011). In addition, the bradykinesia

5



and freezing of movement sometimes cause difficulty in the initiation of volun-

tary speech and inappropriate long silences. Prosody features are based on the

contour of the fundamental frequency, energy, duration, and voiced rate (Bock-115

let et al., 2013; Galaz et al., 2016). Finally, intelligibility is a measure of how

comprehensible is the speech of a person. Intelligibility assessment is commonly

performed using automatic speech recognition systems, and the word error rate

has been used to discriminate between PD and HC speakers (Orozco-Arroyave

et al., 2016a; Barnish et al., 2016; Dimauro et al., 2017).120

In addition to the hand-crafted feature extraction models, there is a grow-

ing interest in the research community to consider deep learning models in the

assessment of the speech of PD patients. The “2015 computational paralinguis-

tic challenge (ComParE)” (Schuller et al., 2015) had one of the sub-challenges

about the automatic estimation of the neurological state of PD patients. The125

ground-truth was given according to the part III of the movement disorder

society - unified Parkinson’s disease rating scale (MDS-UPDRS), which is fo-

cused on the evaluation of motor capabilities of the patients, including one

specific item for speech production. The winners of the challenge (Grósz et al.,

2015) reported a Spearman’s correlation of 0.65 when grouping automatically130

the speech tasks per speaker and using Gaussian processes and DNNs to perform

the prediction of the clinical score. A deep learning based articulation approach

was proposed in (Vásquez-Correa et al., 2017) to model the difficulties of the

patients to stop/start the vibration of the vocal folds. Onset and offset transi-

tions were modeled with time-frequency representations to be used as input for135

a convolutional neural network (CNN). The authors considered speech record-

ings of PD patients and HC speakers in three languages: Spanish, German, and

Czech, and reported accuracies ranging from 70% to 89%, depending on the lan-

guage. Tu et al. (2017) proposed a deep learning model to predict the dysarthria

severity adding an intermediate interpretable hidden layer with four perceptual140

dimensions: nasality, vocal quality, articulatory precision, and prosody. The

authors obtained an interpretable output highly correlated (Spearman’s corre-

lation ρ=0.82) with a subjective evaluation of the dysarthria severity of the
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patients provided by speech and language pathologists. Zhang (2017) combined

perturbation and articulation features with a deep learning model based on au-145

toencoders to classify PD patients and HC subjects. Different acoustic features

were used as input for the autoencoder. The bottleneck features from the au-

toencoder were used to feed a K-nearest neighbor (KNN) classifier. The authors

considered the data from Sakar et al. (2013), which include 20 PD and 20 HC

subjects, all of them Turkish native speakers. The reported accuracy was 94%;150

however, the results were slightly optimistic because the hyper-parameters of

the autoencoder were optimized on the test set. A different approach was pro-

posed by Zhang et al. (2019), where the authors considered non-speech body

sounds such as breathing, clearing throat, and swallowing to classify PD vs.

HC subjects. The non-speech body sounds were modeled using a deep learning155

strategy based on ResNet architectures. The proposed method achieved an ac-

curacy of up to 83.3% in a dataset formed with 321 PD patients and 569 HC

subjects. The results were comparable to the ones obtained with normal speech

sounds. However, the speaker independence was not guaranteed in the training

process, which leads to biased and optimistic results.160

Conventional hand-crafted features extracted in the literature may not ade-

quately capture enough information to characterize the speech signals associated

with different speech disorders. Methods based on feature representation learn-

ing have the potential to extract more abstract and robust features than those

manually computed. These features could help to improve the accuracy of dif-165

ferent models to classify pathological speech (Cummins et al., 2018). There are

recent studies focused on extracting features based on deep learning strategies

for assessment of pathological speech. However, there are still several strategies

that can be addressed, especially in aspects related to unsupervised representa-

tion learning to extract suitable features for pathological speech classification.170

This paper introduces a parallel representation learning strategy to model

two kinds of pathological speech signals with different origin: dysarthric speech

due to PD and hypernasal speech due to CLP. For both applications, this a

first step in developing robust speech-based technology to evaluate the degree
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of affection of the speech, i.e., the dysarthria level of PD patients, and the175

hypernasality level of CLP children after surgical intervention, which can be

helpful to evaluate the progress of speech therapy. In addition, the classifica-

tion methods are particularly useful for CLP patients because in some cases

the cleft palate is hidden by the skin. Two types of autoencoders were im-

plemented to compute low-dimensional feature representations of the speech180

frames: (1) a convolutional autoencoder (CAE) to learn a representation of the

spatial distribution of the energy content in a spectrogram, and (2) a recurrent

autoencoder (RAE) to model the temporal evolution of the spectral components

of a speech frame. We considered the features from the hidden representation

in the bottleneck space, and a proposed feature set based on the reconstruction185

error of the autoencoder in different spectral components of the speech signal.

These features are used to classify PD and CLP patients vs. HC subjects, all of

them Spanish native speakers. The aim of choosing these pathologies is to test

whether the proposed methods are accurate to model speech disorders with dif-

ferent origin, i.e., morphological and neurodegenerative, and for speakers with190

different ages, i.e., children affected by CLP and elderly persons affected by PD.

In addition, due to the fact that CLP and PD patients exhibit common speech

problems such as the presence of hypernasality or compensatory articulatory

movements (Saxon et al., 2019; Maier et al., 2009; Blanchet and Snyder, 2009),

we think that the methods proposed here are applicable and robust to model195

the speech disorders from both diseases.

The rest of the paper is organized as follows. Section 2 describes the data

used for training the autoencoders and to classify PD patients and CLP children.

Section 3 describes the proposed convolutional and recurrent autoencoders to

characterize pathological speech, and the classification and validation strategies.200

Section 4 shows the results obtained in this paper to classify both PD and CLP

patients. Finally, Section 5 shows the conclusions obtained from the study and

further experiments to be performed.
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2. Data

2.1. Training data205

The CIEMPIESS corpus (Hernández-Mena and Herrera-Camacho, 2014) was

used to train the convolutional and recurrent autoencoders. The data consist

of 17 hours of FM radio podcasts in Mexican Spanish. The data consider only

“clean” utterances, i.e., those made by only one person, with no background

noise, foreign accents, or music. The data are formed with 16717 audio files210

with a sampling frequency of 16 kHz and 16-bit resolution. The speech signals

were uttered by 96 male and 45 female speakers. 700 utterances from the entire

corpus (speaker independent) were subtracted to be used as the validation set

for the training process of the autoencoders.

2.2. CLP data215

Data for CLP was provided by Grupo de procesamiento y reconocimiento de

señales (GPRS) of the National University from Colombia. The data contain

utterances from 135 children with repaired CLP and 58 HC. The age of the chil-

dren ranges from 5 to 15 years old. All the patients were evaluated by speech

therapists and they were diagnosed with hypernasal speech, mainly because220

changed nasality is often still present after surgical therapy of the cleft. The

tasks performed by the participants include the pronunciation of isolated Span-

ish words such as /bola/, /chuzo/, /coco/, /gato/, /jugo/, /mano/, /papa/,

and /susi/. These words contain different groups of phonemes to characterize

properly the different place and manner of articulation of the patients (Orozco-225

Arroyave et al., 2016b).

2.3. PD Data

Data for PD include recordings of the PC-GITA database (Orozco-Arroyave

et al., 2014). The data contain speech utterances from 50 PD and 50 HC Colom-

bian Spanish native speakers. Each speaker performed different speech exercises,230

including DDK tasks i.e., rapid repetition of syllables such as /PA-TA-KA/,
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reading of ten isolated sentences, reading of a phonetic balanced text with 36

words, and a spontaneous monologue about their daily activities. Additional

information from the participants is shown in Table 1. The results from the

statistical tests show that the data are balanced in gender, age, and education235

level. The values of the MDS-UPDRS-III (Goetz et al., 2008) scores, which

range from 0 to 132 indicate that most of the patients are in intermediate state

of the disease.

Table 1: General information of the subjects. Time since diagnosis, age and education are

given in years. [F/M]: Female/Male. Mean(Standard deviation). *p–value calculated through

Chi–square test. **p–value calculated through t-test.

PD patients Healthy controls Patients vs. controls

Gender [F/M] 25/25 25/25 *p = 1.00

Age [F/M] 60.7(7.3)/61.3(11.7) 61.4(7.1)/60.5(11.6) **p = 0.98

Education level [F/M] 11.5(4.1)/10.9(4.5) 11.5(5.2)/10.6(4.4) **p = 0.88

Time since diagnosis [F/M] 12.6(11.5)/8.7(5.8) –

MDS–UPDRS–III [F/M] 37.6(14.0)/37.8(22.1) –

3. Methods

The general methodology addressed in this study is shown in Figure 1. The240

training data are used to train convolutional and recurrent autoencoders, which

are used to extract features from the utterances of the test data. The extracted

features from both autoencoders are classified using SVM and DNN methods to

discriminate between PD and HC subjects, and between CLP and HC children.

Additional details about each stage of the methodology are explained in the245

following sections.

3.1. Convolutional autoencoder

The CAE is considered to characterize the spatial information embedded

in the time-frequency representation from the input. The architecture of the

CAE is shown in Figure 2. The input is a spectrogram with 128 frequency250

bins distributed according to the Mel-scale and 126 time steps. The speech

signal is segmented into “chunks” of 500 ms with a time-shift of 250 ms. The
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Test data

Training data

Convolutional autoencoder (CAE)

Recurrent autoencoder (RAE) 

Extract features 
from trained 
autoencoders

CAE 
features

RAE 
features

Classification
● DNN 
● SVM

PD vs. HC
CLP vs. HC

Figure 1: General methodology followed in this study.

short time Fourier transform (STFT) is computed for each “chunk” with a

window length of 32 ms and a step-size of 4 ms, forming the 126 time-steps.

The STFT is computed with 512 frequency points, which are transformed into255

the Mel-scale using 128 filters, forming the input spectrogram observed in the

left part of Figure 2. In these spectrograms we did not lose information about

the fundamental frequency contour because the high number of Mel filters and

the large frame size. The input spectrogram is encoded with a four layer CNN

with leaky RELU activation functions and a fully connected layer to form the260

bottleneck representation h. Each layer of the CNN consists of a 3 × 3 kernel

to map the fine structures of the time-frequency representation into different

feature maps. The number of feature maps on each convolutional layer is twice

the previous one in order to get more detailed representations of the input space

in the deeper layers. In addition, max-pooling operation is also performed after265

each convolutional layer. The decoder is formed with a set of four transposed

convolutional layers to map the bottleneck representation into the reconstructed

version of the input spectrogram.

3.2. Recurrent autoencoder

Besides the CAE described above, we also considered an RAE to character-270

ize the temporal structures of the input spectrogram. For this case the input

spectrogram is the same as the one in the CAE. Each column of the n = 126

time steps of the spectrogram serves as input for a sequence to one recurrent
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Figure 2: Scheme of the CAE considered in this study. FC: fully connected layer, h: bottleneck

representation.

neural network in the encoder, which is formed with a bidirectional LSTM

(BLSTM) with 128 cells to model information from the past (backward) and275

future (forward) states of the sequence, simultaneously. The output sequence of

the BLSTM layer at the last time step xn is stacked with the hidden state of the

layer at the last time step sn because they have observed and carry information

about the whole input sequence. This stacked vector then passes trough a fully

connected layer to get the bottleneck representation h. The decoder is formed280

with a sequence of 2 LSTM layers to retrieve the original spectrogram from the

bottleneck representation. The bottleneck features were replicated 126 times

for the decoder. This part was necessary since every LSTM cell in the decoder

requires an input vector. The complete architecture of the RAE is shown in Fig-

ure 3. The Pytorch (Paszke et al., 2017) implementation of the trained models285

are available online1 for the research community. The repository also contains

scripts to train the autoencoders with different datasets, and methods to use

the trained autoencoders to extract the proposed features.

3.3. Feature Extraction with Autoencoders

Two different feature sets are extracted from the trained autoencoders, ac-290

cording to Figure 4. The first set consists of the bottleneck features h ob-

tained from the CAE and the RAE, computed from the “chunks” with 500 ms

length. The second feature set is based on the mean square error (MSE) be-

tween the input and the decoded spectrograms, computed for each frequency

1https://github.com/jcvasquezc/AEspeech
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Figure 3: Scheme of the RAE considered in this study. h: bottleneck representation. xn

output of the BLSTM layer at the last time step, sn hidden state of the BLSTM at the last

time step.

hEncoder Decoder

Bottleneck

.

.

.

MSE(f)

error 1

error 2

error 3

error 128

Figure 4: Features extracted from the autoencoders in this study.

band (MSE(f)). The main hypothesis for the second feature set is that not295

all frequency regions of the spectrogram can be reconstructed with the same

error, and such a reconstruction error is related to the presence of paralinguistic

aspects such as different speech disorders.

3.4. Classification and validation

Two classification strategies were considered to evaluate the proposed ap-300

proach. The first classifier is based on a fully connected DNN to process the

extracted M -dimensional feature vectors from the autoencoders. The network
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is formed with two fully connected layers with M/2 neurons, followed by the

classification layer with a Softmax activation function to make the final deci-

sion. A dropout layer with a rate of 0.5 is considered between the fully con-305

nected layers to avoid over-fitting. The classifier was trained with an ADAM

optimizer (Kingma and Ba, 2014). All features from the test subjects were

classified individually, to get local decisions for each feature vector. The final

decision for each speaker was made based on a majority vote strategy. The

second classification strategy is based on an SVM with a Gaussian kernel. The310

features extracted from a single utterance X ∈ RM×N (being N the number of

500 ms length spectrograms extracted from the utterance) are concatenated in

the second dimension, and four statistical functions are extracted (mean, stan-

dard deviation, skewness, and kurtosis), forming a vector xu ∈ R4×M to repre-

sent the complete utterance. These vectors are classified with an SVM with a315

Gaussian kernel to get a global decision for the complete utterance. Since each

speaker pronounces several utterances, the decision for each speaker was also

made based on a majority vote strategy. The SVM and DNN are considered

because they are currently state-of-the-art methods in different applications

related to recognition of paralinguistic aspects from speech, including patho-320

logical speech classification (Orozco-Arroyave et al., 2015; Berus et al., 2019;

Viswanathan et al., 2020; Novotný et al., 2020). In addition, SVMs are robust

enough to model high dimensional feature spaces and small datasets (Scholkopf

and Smola, 2001)

The validation process for the classifiers follows a nested speaker independent325

10-fold cross-validation strategy. We consider 80% of the data for training (155

subjects for the case of CLP data and 80 speakers from the PD corpus), 10%

for development (19 subjects from the CLP and 10 for the case of PD corpus),

and the remaining 10% for test.

For the SVM classifier, the complexity hyper-parameter C and the band-330

width of the kernel γ were optimized in a randomized search strategy, as follows:

the values of C and γ are modeled with an exponential probability density func-

tion, which generates values for each hyper-parameter to be evaluated according
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to the performance in the development set. After several iterations with dif-

ferently generated values from the probability functions, the hyper-parameters335

that produced the highest accuracy are stored. The optimal hyper-parameters

are found based on the median of the values of the hyper-parameters obtained

for each fold. Finally, the 10-fold cross-validation is repeated in order to guar-

antee that all test samples are evaluated with the optimal hyper-parameters,

which leads to more realistic and stable results.340

4. Experiments and Results

4.1. Analysis of the reconstruction error

Figure 5 shows an example of the spectrograms decoded by the convolu-

tional and recurrent autoencoders. The input spectrogram from Figure 5(a)

corresponds to a sample of the validation set of the training data, which is345

encoded and decoded with the convolutional and recurrent autoencoders, pro-

ducing the spectrograms depicted in Figures 5(b) and 5(c), respectively. Note

how the harmonic components related to the fundamental frequency are well

reconstructed. Additionally, note that the autoencoder is removing most of the

background noise of the speech utterance.350
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Figure 5: (a) Input spectrogram. (b) Decoded spectrogram with the CAE. (c) Decoded

spectrogram with the RAE.

The difference in the reconstruction error of the CAE between the patholog-

ical and healthy speakers is observed in Figure 6. The average and the standard
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deviation of the reconstruction error in Figure 6(b) is higher for CLP than for

HC children. Conversely, for the case of PD patients and their corresponding

HC subjects in Figure 6(a), the reconstruction error is higher for the HC sub-355

jects than for the PD patients, especially in the area inside the red square that

corresponds to frequencies below 3000 Hz. The Wilcoxon signed-rank test was

applied to evaluate whether the differences in the reconstruction error between

healthy speakers and patients are significant. The results from the tests indi-

cate that the differences are significant in both cases: PD vs. HC (p�0.005,360

W=549.0) and CLP vs. HC (p�0.005, W=182.0). Note also that for frequencies

lower than 2 kHz the reconstruction error increases linearly with the frequency

in both cases, PD (Pearson’s correlation r=0.554), and CLP (r=0.765). This

behavior is valid for the case of PD patients not only for the area highlighted

with the read square but for the complete frequency range (r=0.885). The dif-365

ference in the reconstruction error for different frequency regions is expected

since most of the information from the speech signals is in the low part of the

spectrum, and the bottleneck features assign higher weights to reconstruct that

part of the spectrogram. Due to the same reason, the standard deviation of the

reconstructed error is higher in the upper frequencies.370

The reconstruction error for the RAE is observed in Figure 7 for the PD

and CLP databases. For the case of PD in Figure 7(a), note that the error is

higher for HC than for PD speakers, as it was observed for the CAE, especially

in frequencies below 5 kHz. This effect could be explained because monotonicity

and monoloudness, which make patients to produce speech with less variability375

than healthy people. These aspects make PD speech easier to be reconstructed

than healthy speech when using both autoencoders. A contrary effect is observed

for the CLP patients in Figure 7(b), where the error is higher for CLP patients

than for HC subjects, as it was observed as well with the CAE. This behavior

may be explained because CLP patients have problems to produce phonemes380

with more energy content in higher frequencies, like sibilants (Peterson-Falzone

et al., 2016). Note also that the relation between the error and the frequency

is linear for frequencies below 3 kHz, approximately. The Wilcoxon signed-rank
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(a) (b)

Figure 6: Average reconstruction error per frequency band of the convolutional autoencoder

for the speakers of the (a) PD and (b) CLP databases.

test was also applied to evaluate whether the differences in the reconstruction

error are significant. The results from the tests indicate that the differences385

are significant in both cases: PD vs. HC (p�0.005, W=2.0) and CLP vs. HC

(p�0.005, W=767.0).

(a) (b)

Figure 7: Average reconstruction error per frequency band of the recurrent autoencoder for

the speakers of the (a) PD and (b) CLP databases.
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4.2. Classification CLP vs HC

Table 2: Area under the ROC curve obtained to classify CLP vs. HC children using the

features extracted from the convolutional and recurrent autoencoders with different number

of hidden nodes in the bottleneck layer using a DNN and an SVM classifiers.

Feature set DNN SVM

64 128 256 512 1024 64 128 256 512 1024

CAE bottleneck 0.923 0.927 0.948 0.960 0.939 0.959 0.971 0.956 0.958 0.940

CAE error 0.919 0.939 0.925 0.938 0.936 0.966 0.962 0.951 0.954 0.973

CAE bottleneck & error 0.951 0.956 0.960 0.954 0.955 0.964 0.971 0.977 0.972 0.950

RAE bottleneck 0.862 0.929 0.934 0.931 0.915 0.655 0.773 0.730 0.744 0.811

RAE error 0.947 0.949 0.962 0.933 0.956 0.927 0.946 0.938 0.936 0.943

RAE bottleneck & error 0.955 0.950 0.956 0.958 0.953 0.935 0.938 0.935 0.921 0.927

CAE & RAE bottleneck & error 0.962 0.964 0.965 0.956 0.976 0.944 0.952 0.964 0.959 0.947

Avg. AUC 0.931 0.945 0.950 0.947 0.947 0.907 0.930 0.921 0.921 0.927

Avg. diff. with max. of each row 0.170 0.075 0.039 0.059 0.059 0.230 0.067 0.129 0.136 0.089

The results to discriminate between children with CLP and HC subjects

using the convolutional and the recurrent autoencoders are shown in Table 2.390

The area under the ROC curves (AUC) is included. The features were combined

using an early fusion strategy in all experiments. In general the results using

SVM and DNN are comparable, except for the bottleneck RAE features, where

the DNN is better. The highest AUC is 0.977, obtained with the combination

of bottleneck and error features from the CAE, and with the SVM classifier.395

These results suggest that bottleneck and the proposed error-based features

are complementary for the automatic classification of the disease. In addition,

the combination of features from the convolutional and recurrent autoencoders

improve the results with the DNN but not with the SVM classifier, where the

best results were obtained only with features extracted from the CAE. This400

behavior can be explained because the DNN is more robust to classify the high

dimensional feature vector obtained with the combination of the bottleneck and

error features from both autoecoders, which is not case of the SVM. These results

also suggest that features extracted from both autoencoders are complementary.

Differences in the classification with different numbers of nodes in the bottleneck405

layer are not significant; however, the results with h = 256 are better because

on average they provide the highest AUC with the DNN classifier (highlighted
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in bold). In addition, the last row of the table includes the average difference

of each result per column with the best AUC of each row. A lower average

difference indicates a more stable result across all feature sets. The results with410

h = 256 also have the lowest difference.

Details of the results obtained with h = 256 nodes in the bottleneck layer

are observed in Table 3, which includes values of accuracy, sensitivity, and

specificity. The number of features and the associated AUC are also included.

The feature set that produces the higest accuracy with the DNN and SVM415

classifiers are highlighted in bold. The highest accuracy (93.6%) is obtained

with the combination of bottleneck and error features from the CAE, which

confirms that those features are complementary for the addressed problem. In

addition, note that for the DNN classifier, the highest accuracy is observed for

the combination of all features from both autoencoders, while the combination420

of the features from the CAE achieved the highest accuracy with the SVM.

Table 3: Accuracy (ACC %), Sensitivity (SENS %), specificity (SPEC %), and area under

the ROC curve for the results obtained with h = 256 nodes in the bottleneck layer of the

autoencoders, classifying CLP vs. HC subjects.
Feature set Num. features ACC (%) SENS (%) SPEC (%) AUC

DNN

CAE bottleneck 256 84.1 86.5 81.1 0.948

CAE error 128 85.5 86.5 81.1 0.925

CAE bottleneck & error 384 88.5 86.5 92.5 0.960

RAE bottleneck 256 84.8 86.5 79.2 0.934

RAE error 128 86.2 84.6 86.8 0.962

RAE bottleneck & error 384 87.3 86.5 86.7 0.956

CAE & RAE bottleneck & error 768 90.9 87.5 96.2 0.965

SVM

CAE bottleneck 4x256 89.2 87.5 89.9 0.956

CAE error 4x128 89.2 83.3 92.3 0.951

CAE bottleneck & error 4x384 93.6 89.1 96.1 0.977

RAE bottleneck 4x256 70.7 70.6 70.7 0.730

RAE error 4x128 90.5 85.2 93.2 0.938

RAE bottleneck & error 4x384 89.2 86.0 90.7 0.935

CAE & RAE bottleneck & error 4x768 92.0 93.0 89.0 0.964

The result obtained with the best model, i.e., CAE with bottleneck and error

features with the SVM classifier, is observed with more detail in Figure 8. The

reduced false positive rate in the ROC curve of Figure 8(a) shows the capability
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of the model to detect the target class i.e., CLP children. On the other hand,425

the histograms and the fitted probability density functions in Figure 8(b) show

the scores assigned by the classifier to predict the corresponding class for each

sample in the test set. Note that the equal error rate is slightly deviated to the

left in the decision threshold.
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Figure 8: (a) ROC curve for the best result obtained classifying CLP vs. HC speakers.

(b) Histograms and their corresponding density estimation for the scores obtained from the

classifier.

An additional experiment was performed to evaluate which are the most430

accurate speech tasks for the addressed problem. We performed a separate

classification of CLP vs. HC using each word included in the corpus with all the

proposed features and the SVM classifier. The results are available in Table 4.

The best result with each feature set is highlighted in bold to detail which are

the most discriminant words in the classification problem. The results indicated435

that the most accurate words were those with sibilant fricative phonemes such

as /CHUZO/ and /SUSI/. This result is in line with observations reported in

the literature, where the excess in the nasal air emission of CLP patients, i.e.,

hypernasality, is associated with the abnormal production of fricative sounds,

especially the sibilants (Kalita et al., 2019).440

The results from Figure 9 show the Top-10 feature sets and speech exercises

that produced the highest accuracies for the addressed problem. The top ac-
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Table 4: AUCs obtained with the different feature sets from the autoencoders classifying CLP

speakers with the different speech tasks available in the corpus. Avg. average
Speech Feature set

exercise CAE RAE Fusion

bottleneck error bottleneck bottleneck error bottleneck bottleneck Avg.

& error & error & error

BOLA 0.938 0.970 0.960 0.533 0.963 0.939 0.947 0.893

CHUZO 0.974 0.976 0.971 0.681 0.963 0.956 0.971 0.927

COCO 0.936 0.935 0.945 0.569 0.877 0.856 0.926 0.863

GATO 0.813 0.892 0.875 0.641 0.881 0.877 0.848 0.832

JUGO 0.891 0.978 0.889 0.506 0.826 0.856 0.911 0.837

MANO 0.883 0.869 0.909 0.583 0.871 0.849 0.913 0.840

PAPA 0.850 0.903 0.900 0.625 0.891 0.890 0.927 0.855

SUSI 0.970 0.963 0.971 0.592 0.977 0.952 0.957 0.912

curacy is 97.0%, obtained with the fusion of error and bottleneck features from

the CAE. Figure 9 confirmed that the words with the highest accuracies are

those with sibilant fricatives such as /SUSI/ and /CHUZO/.445
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Figure 9: Top-10 accuracies obtained with the different feature sets and speech exercises

classifying CLP vs HC subjects.

The results obtained in this paper are comparable with others reported in
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previous studies where the same data were used, and which consider traditional

hand-crafted features based on periodicity, noise, and spectral content (Orozco-

Arroyave et al., 2015). However, it should be noted that the experiments ad-

dressed in (Orozco-Arroyave et al., 2015) are biased, since the hyper-parameters450

of the classifier were optimized according to the accuracy on the test set, which

is not reliable and makes their results optimistic. The results from this pa-

per are more realistic for the considered data. The results from this paper are

also higher than the ones reported in (Carvajal-Castaño and Orozco-Arroyave,

2019), which consider also the same data, and used hand-crafted articulation455

features. The authors reported an accuracy up to 93.6% compared to the 97.0%

obtained in this paper.

4.3. Classification PD vs. HC

Table 5: Area under the ROC curve obtained to classify PD vs. HC subjects using the features

extracted from the convolutional and recurrent autoencoders with different number of hidden

nodes in the bottleneck layer using a DNN and an SVM classifiers.

DNN SVM

64 128 256 512 1024 64 128 256 512 1024

CAE bottleneck 0.709 0.756 0.758 0.728 0.742 0.846 0.862 0.852 0.844 0.837

CAE error 0.807 0.796 0.762 0.790 0.814 0.781 0.836 0.780 0.763 0.841

CAE Bottleneck & error 0.801 0.795 0.808 0.760 0.815 0.868 0.870 0.857 0.870 0.839

RAE bottleneck 0.717 0.749 0.753 0.752 0.708 0.796 0.745 0.691 0.806 0.767

RAE error 0.790 0.753 0.760 0.784 0.832 0.877 0.866 0.852 0.871 0.874

RAE Bottleneck & error 0.811 0.801 0.822 0.841 0.816 0.893 0.908 0.764 0.854 0.783

CAE & RAE Bottleneck & error 0.833 0.795 0.793 0.822 0.791 0.878 0.892 0.850 0.870 0.828

Avg. AUC 0.781 0.778 0.779 0.782 0.788 0.848 0.854 0.807 0.840 0.824

Avg. diff. with max. of each row 0.178 0.201 0.190 0.169 0.128 0.117 0.077 0.410 0.178 0.287

The results classifying PD vs. HC subjects are shown in Table 5 using

the DNN and SVM classifiers and the different feature sets extracted with the460

autoencoders. For the DNN classifier, note that the highest average AUC is

obtained with 512 and 1024 nodes, and the best result is observed with the fusion

of bottleneck and error features from the RAE with 512 nodes (AUC=0.841)

and with the RAE error features with 1024 nodes (AUC=0.832). Conversely, for

the SVM, the highest average AUC is obtained with a lower number of hidden465

nodes (128). The best results are also observed with the fusion of bottleneck
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and error features from the RAE (AUC=0.908) and the fusion of all feature sets

from both autoencoders (AUC=0.892). In general, the SVM is more accurate

than the DNN, for this application.

More detailed results for the classification of PD and HC subjects are shown470

in Table 6. The feature set that produces the higest accuracy with the DNN

and SVM classifiers are highlighted in bold. The best results are obtained with

features derived from the RAE, for both classifiers. Particularly, the proposed

reconstruction error features from the RAE are the most accurate when we

consider the SVM classifier (accuracy=84%).475

Table 6: Accuracy (ACC %), Sensitivity (SENS %), specificity (SPEC %), and area under

the ROC curve for the results obtained with h = 512 nodes in the bottleneck layer of the

autoencoders for the DNN classifier and with h = 128 nodes for the SVM classifier, , classifying

PD vs. HC subjects.
Feature set Num. features ACC (%) SENS (%) SPEC (%) AUC

DNN

CAE bottleneck 512 63 54 72 0.728

CAE error 128 72 64 80 0.790

CAE bottleneck & error 640 69 68 70 0.760

RAE bottleneck 512 67 76 58 0.752

RAE error 128 74 58 90 0.784

RAE bottleneck & error 640 76 70 82 0.841

CAE & RAE bottleneck & error 1280 76 72 80 0.822

SVM

CAE bottleneck 128×4 79 80 78 0.862

CAE error 128×4 72 71 73 0.836

CAE bottleneck & error 256×4 78 80 76 0.870

RAE bottleneck 128×4 64 68 62 0.745

RAE error 128×4 84 85 83 0.866

RAE bottleneck & error 256×4 81 81 81 0.908

CAE & RAE bottleneck & error 512×4 77 80 75 0.892

Details of the most accurate model, i.e., RAE error with the SVM classifier,

are observed in Figure 10. The ROC curve in Figure 10(a) shows the capability

of the model to detect the target class i.e., PD speakers. On the other hand,

the histograms and the fitted probability density functions in Figure 10(b) show

the scores assigned by the classifier to predict each sample of the database.480

Although there are other feature sets with higher AUC than the one displayed

in Figure 10, e.g., the combination of bottleneck and error features from the RAE
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(AUC=0.908), we selected only the RAE error features because their stability

in the prediction of the class per speaker. The ROC curve and histograms of

the predictions for the fusion of features from the RAE are shown in Figure 11.485

Note that in this case, there are more errors spread over the decision space in

Figure 11(b), e.g, the black bar at the left part of the figure.
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Figure 10: (a) ROC curve for the error-based features obtained from the RAE classifying PD

vs. HC speakers. (b) Histograms and their corresponding density estimation for the scores

obtained from the classifier.
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Figure 11: (a) ROC curve for the fusion of bottleneck and error features from the RAE

classifying PD vs. HC speakers. (b) Histograms and their corresponding density estimation

for the scores obtained from the classifier.
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We performed also classification experiments with the separate speech tasks

pronounced by the patients. The results are available in Table 7. The best

result with each feature set is highlighted in bold to detail which are the most490

discriminant speech tasks in this classification problem. We observed that the

most accurate exercises correspond to the read text and the monologue, which

is expected because the data used to train the autoencoders correspond also to

continuous speech utterances. On the other hand, the most discriminant DDK

exercises are the rapid repetition of PA-TA-KA (average AUC=0.699) and PA-495

KA-TA (average AUC=0.694), which agrees with previous studies about the

sequence of bilabial, alveolar, and velar stops has more discriminating power

than other DDK sequences (Rueda et al., 2019).

Table 7: AUCs obtained with the different feature sets from the autoencoders classifying PD

speakers with the different speech tasks available in the corpus. Avg. average
Speech Feature set

exercise CAE RAE Fusion

bottleneck error bottleneck bottleneck error bottleneck bottleneck Avg.

& error & error & error

PA-TA-KA 0.719 0.744 0.754 0.601 0.588 0.764 0.726 0.699

PA-KA-TA 0.749 0.701 0.775 0.536 0.597 0.758 0.741 0.694

PE-TA-KA 0.591 0.657 0.706 0.599 0.520 0.789 0.760 0.657

PA 0.762 0.620 0.729 0.502 0.596 0.656 0.742 0.658

TA 0.668 0.619 0.708 0.518 0.668 0.761 0.773 0.674

KA 0.841 0.627 0.792 0.599 0.505 0.534 0.748 0.664

read sentences 0.746 0.671 0.749 0.553 0.612 0.646 0.715 0.670

read text 0.859 0.755 0.836 0.588 0.638 0.720 0.842 0.748

monologue 0.874 0.639 0.836 0.569 0.599 0.755 0.818 0.727

The results from Figure 12 show the Top-10 feature sets and speech tasks

that produced the highest accuracies for the classification of PD vs. HC. The500

top accuracy is 84.0%, obtained with the fusion of all speech tasks and features

from the autoencoders, and the error based features from the RAE. Note that

in this case, the best result is almost always obtained with the combination of

all speech tasks rather than with individual tasks.

The results obtained with our proposed method are better than others re-505

ported in the literature when the same data were used, and which considered

different sets of hand-crafted features. For instance, features based on period-

icity, noise, and spectral content (Orozco-Arroyave et al., 2015), features based
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Figure 12: Top-10 accuracies obtained with different feature sets and speech tasks classifying

PD vs HC subjects.

on articulation (Vásquez-Correa et al., 2017), features based on Gaussian mix-

ture models representations (Moro-Velazquez et al., 2019), or features based on510

non-linear dynamics (Godino-Llorente et al., 2017), empirical mode decomposi-

tion (Rueda et al., 2019), among others.

5. Conclusion

This paper introduced a parallel representation learning scheme to model

pathological speech signals with morphological and neurological origins. Two515

types of autoencoders were implemented to compute low-dimensional feature

representations of the speech frames from each disease: (1) a CAE to learn a

representation of the spatial distribution of the energy content in a spectrogram,

and (2) a RAE to model the temporal evolution of the spectral components
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of a speech frame. Both autoencoders were trained with a corpus of healthy520

speech in order to have a robust model that could serve as a reference for a

posterior extraction of features related with the presence of speech disorders.

We computed two different feature sets extracted from the trained autoencoders:

(1) features from the hidden representation in the bottleneck space, and (2)

a proposed feature set based on the reconstruction error of the autoencoder525

in different spectral components of the speech signal. The extracted features

were used to classify speech utterances from PD and CLP patients vs. their

corresponding HC subjects using two classification strategies: DNN and SVM.

The reconstruction error from the autoencoders contains information about

paralinguistic aspects of the speakers such as the presence of speech disorders.530

Higher reconstruction errors were observed for CLP patients than for healthy

subjects, especially in frequencies above 2 kHz, where usually sibilant fricatives

appear in the speech. This is an important aspect because those sounds are

typically associated with the impairments suffered by CLP patients due to the

excess of air coming out through the nasal cavity. Conversely, the reconstruction535

error for the PD patients is lower for patients than for healthy speakers, in

particular for frequencies below 2.5 kHz, approximately. This aspect can be

likely explained due to the monotonicity in the speech of PD patients, which

makes them to produce slower speech with less variability.

The proposed models were accurate to model speech signals from patients540

of both diseases: PD and CLP. Accuracies of up to 97.0% were obtained in

the classification of CLP vs. HC speakers. The accuracies observed classifying

PD and HC speakers were up to 84.0%. In addition, the information obtained

from the error-based features was complementary to the information extracted

from the bottleneck features to classify pathological speech signals. The features545

extracted from the RAE were more accurate than those obtained from the CAE

in both scenarios: PD vs. HC and CLP vs. HC. In general, classifying PD vs.

HC speakers is more challenging than the problem of discriminating between

CLP vs. HC children. The main reason is because elderly healthy speakers in

general, also exhibited articulation and phonation problems due to the normal550
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aging process (Arias-Vergara et al., 2017). . Additionally, elderly people could

also be or have been smokers or drinkers.

Finally, the results obtained in this study are comparable or better than those

observed in the literature when the same data are considered, both for classi-

fication of CLP (Orozco-Arroyave et al., 2015, 2013, 2016b; Carvajal-Castaño555

and Orozco-Arroyave, 2019), and for the classification of PD (Orozco-Arroyave,

2016; Vásquez-Correa et al., 2017; Godino-Llorente et al., 2017; Moro-Velazquez

et al., 2019; Rueda et al., 2019).These comparisons show that our method based

on unsupervised feature learning produces state-of-the-art results for the ad-

dressed datasets.560

Further experiments with the proposed approach will include the prediction

of the neurological state and the dysarthria level of the PD patients, and the

level of nasality in CLP children. The models will also be considered to evaluate

speech disorders with different origin than the ones addressed here. For instance

speech disorders with laryngeal origin like those developed by patients with565

larynx cancer, or speech impairments with perceptual origin like the exhibited

by cochlear implants users. The aim is to test whether the proposed methods

are general to model pathological speech. In addition, the methods are going to

be evaluated with speech corpora in different languages to test their reliability

and generalization, in a similar way to the experiments addressed in (Vásquez-570

Correa et al., 2019).
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Grósz, T., Busa-Fekete, R., et al., 2015. Assessing the degree of nativeness625

and Parkinson’s condition using Gaussian processes and deep rectifier neural

networks, in: Proceedings of INTERSPEECH, pp. 1339–1343.

Hernández-Mena, C.D., Herrera-Camacho, J., 2014. CIEMPIESS: A new open-

sourced mexican spanish radio corpus, in: Proceedings of the ninth interna-

tional conference on language resources and evaluation (LREC’14), European630

Language Resources Association (ELRA) Reykjavik, Iceland. pp. 371–375.

30



Ho, A.K., Iansek, R., Marigliani, C., Bradshaw, J.L., Gates, S., 1999. Speech

impairment in a large sample of patients with parkinson’s disease. Behavioural

neurology 11, 131–137.

Hornykiewicz, O., 1998. Biochemical aspects of Parkinson’s disease. Neurology635

51, S2–S9.

Kalita, S., Sudro, P.N., Prasanna, S.M., Dandapat, S., 2019. Nasal Air Emis-

sion in Sibilant Fricatives of Cleft Lip and Palate Speech, in: Proceedings of

INTERSPEECH, pp. 4544–4548.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv640

preprint arXiv:1412.6980 .
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Universidad de Antioquia 80, 109–123.

Paszke, A., Gross, S., Chintala, S., et al., 2017. Automatic differentiation in

pytorch, in: Conference on Neural Information Processing Systems (NIPS),

pp. 1–4.

Peterson-Falzone, S.J., Trost-Cardamone, J., Karnell, M.P., Hardin-Jones,695

M.A., 2016. The clinician’s guide to treating cleft palate speech. Elsevier

Health Sciences.

Prathanee, B., Seepuaham, C., Pumnum, T., 2014. Articulation disorders and

patterns in children with a cleft. Asian Biomedicine 8, 699–706.

Rueda, A., Vásquez-Correa, J.C., Rios-Urrego, C.D., Orozco-Arroyave, J.R.,700
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