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Abstract 
 

The present study1 investigates relationships between voice similarity ratings made by human 

listeners and comparison scores produced by an automatic speaker recognition system that 

includes phonetic, perceptually-relevant features in its modelling. The study analyses human voice 

similarity ratings of pairs of speech samples from unrelated speakers from an accent-controlled 

database (DyViS, Standard Southern British English) and the comparison scores from an i-vector-

based automatic speaker recognition system using ‘auto-phonetic’ (automatically extracted 

phonetic) features. The voice similarity ratings were obtained from 106 listeners who each rated 

the voice similarity of pairings of ten speakers on a Likert scale via an online test. Correlation 

analysis and Multidimensional Scaling showed a positive relationship between listeners’ 

judgements and the automatic comparison scores. A separate analysis of the subsets of listener 

responses from English and German native speaker groups showed that a positive relationship 

was present for both groups, but that the correlation was higher for the English listener group. This 

work has key implications for forensic phonetics through highlighting the potential to automate part 

of the process of selecting foil voices in voice parade construction for which the collection and 

processing of human judgements is currently needed. Further, establishing that it is possible to 

use automatic voice comparisons using phonetic features to select similar-sounding voices has 

important applications in ‘voice casting’ (finding voices that are similar to a given voice) and ‘voice 

banking’ (saving one's voice for future synthesis in case of an operation or degenerative disease). 
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1 Introduction 

1.1 Perceived voice similarity 

When listeners compare the voices of different speakers, they perceive certain speakers 

as sounding more similar to each other than others. The phenomenon of “perceived voice 

similarity” is not well understood in phonetic terms. The few studies available investigating 

the contributions of different phonetic features to the perception of voice similarity tend to 

offer limited findings due to the methodologies employed. For example, an early study by 

Walden et al. (1978) considered the perception of a single word only, spoken by different 

speakers. This experiment highlighted fundamental frequency and word duration as 

playing a role in voice similarity judgements. Work by Remez et al. (2007) on the read 

speech of a mixed-accent and mixed-sex group of speakers identifies dynamic formant 

frequency information as contributing to perceived voice similarity. In evaluating the 

results of a voice line-up experiment involving nine Gothenburg Swedish speakers, Lindh 

(2009) conducted a pairwise speaker similarity experiment which highlighted speaking 

tempo as a possible contributor to voice similarity judgements.  

Perceptual similarity between the voices of Canadian French speakers is 

considered by Baumann and Belin (2010). Their study examines correlations between a 

range of acoustic features and speakers’ relative locations in a listener-determined 

perceptual space using Multidimensional Scaling (MDS), a data reduction technique 

which determines a number of pseudo-perceptual dimensions enabling the similarity of 

the objects (here, speakers) to be inferred (Schiffman et al., 1981). Baumann and Belin's 

study focusses on judgements of same/different speaker rather than judgements of the 

extent of similarity of different speakers and uses sustained vowels only. The authors 

reported highest correlations between perceptual measures and F0 and F1 (female 

speakers) and F0 and the mean difference between F4 and F5 (male speakers). A study 

which uses MDS analysis to analyse listener judgements on a similar-dissimilar Likert 

scale is that of Nolan et al. (2011); see also McDougall (2013). This study investigates the 

perceived similarity of a homogeneous group of male Standard Southern British English 

speakers and uses spontaneous speech stimuli. F0, vowel formants and a range of voice 

quality features are shown to be important factors in the judgement of voice similarity. 

 

1.2 Automatically-determined speaker similarity 

Stepping aside from human listeners, the extent of similarity between speakers can also 

be assessed by automatic speaker recognition (ASR) systems. ASR systems can be used 

to compare two speech samples and produce a score reflecting the likelihood that the 

speech samples were produced by the same speaker. While there are many approaches 

to ASR, it typically follows a sequence of feature extraction and speaker modelling, 

followed by the comparison of two speaker models, resulting in a numerical score. These 

numerical scores can be used to inform decisions about speaker identity (in commercial 

applications such as telephone banking, for example). In a forensic context, ASR systems 

can be used to calculate a likelihood ratio, which expresses the output score of the system 

under two competing hypotheses, e.g., that the speech samples originate from the same 

speaker, and that the speech samples originate from different speakers. The present 
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paper considers the use of ASR comparison scores not for decisions about identity or the 

calculation of likelihood ratios, but as a means of quantifying the similarity of different 

speakers. It addresses the question as to whether the assessments of speaker similarity 

made by an ASR system bear any correspondence to human listener judgements of voice 

similarity. If such relationships are present, automatically-determined voice descriptors 

should offer some insight into the acoustic workings of perceived voice similarity. 

In one relevant study, Lindh and Eriksson (2010) automatically assessed the 

similarity of male speakers who had previously been used in the mock voice parade in 

Lindh (2009) and compared these assessments with those made by human listeners. 

Listeners were asked to indicate the dissimilarity of all pairings of nine voices on a Likert 

scale using an online experimental interface. The automatic comparison was conducted 

using a Gaussian Mixture Model-Universal Background Model (GMM-UBM) system. In 

addition to comparing the rank of each speaker when tested against another speaker 

model, the listener judgements and automatic results were compared using MDS. Lindh 

and Eriksson found some visual similarities between the two-dimensional plots they 

compared, yet further quantitative analysis was not explored. The authors noted that it 

was difficult on the basis of their results to draw clear conclusions about the extent of the 

relationship between the human and automatic assessments of similarity. 

Previous work has also compared similarity ratings by humans and machines for 

the purpose of selecting voice actors for film dubbing, where a voice speaking a foreign 

language is inevitably compared with the voice of the original actor. Obin and Roebel 

(2016) compared two automatic approaches to finding voice actors from a set of 50 

speakers. They used both an MFCC i-vector system and a system which calculated a 

score taking into account manually added labels. The labels provided information such as 

speaker age, gender, voice quality, and emotion. Listeners were asked to judge the 

similarity between an original voice and a set of voices selected by the automatic 

approaches. The results of the multi-label classification approach were closer to the 

listeners’ performance than those of the i-vector system. However, the necessity of 

considerable (and time-consuming) manual labelling is a clear disadvantage of this 

approach. 

An experiment using auto-phonetic features (automatically extracted F0 and 

formant frequencies, and their derivatives) in an i-vector based system to identify 

(dis)similar voices was conducted by Kelly et al. (2016). The study's stimuli were taken 

from SITW (Speakers in the Wild) lapel microphone recordings in a variety of English 

accents. However, the SITW database is not controlled for recording conditions and is 

biased towards male speakers (McLaren et al., 2016). For a group of three male and three 

female speakers, sets of similar and dissimilar speakers were obtained by an automatic 

comparison. In a web-based experiment, a group of 43 listeners judged the similarity of 

each speaker with its automatically assigned similar and dissimilar speakers, and with a 

different sample of the speaker itself. Male speakers and their similar comparison 

speakers received significantly higher similarity judgements from the listeners than male 

speakers and their dissimilar comparison speakers. The i-vector-based comparison 

scores and median listener similarity ratings were found to have a positive linear 

correlation for male speakers only. Results for female speakers were inconclusive. A 

major drawback of this study is the small sample size of speakers compared. 
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With the exception of Kelly et al. (2016), the few studies that have considered links 

between automatically-determined similarity and perceived voice similarity have used 

automatic approaches based on spectral features. It is nevertheless the case that the 

human perception of voice similarity relates to acoustic and voice quality features, as well 

as spectral features. The auto-phonetic approach used in Kelly et al. (2016) may be more 

comparable to human perception of voice similarity by drawing on acoustic features that 

have been found to be perceptually relevant. While Kelly et al. were able to show some 

correlation for their male speaker set, the study has several shortcomings with respect to 

the use of its results for the selection of foil voices in the voice parade context, as is the 

primary focus of the present study (see Section 1.3). In particular, recording conditions 

were unconstrained, accent, social background and age were not controlled, and listeners 

were not controlled for their native language. The present study improves on this work by 

conducting an experiment in which all of these factors are controlled. 

There is one further study which warrants mention in the context of the present 

work, that of Park et al. (2018) which provides a comparison of human judgements and 

automatic assessments of pairs of voice samples for an ASR system incorporating 

phonetic features. However, this study is of speaker discrimination not speaker similarity, 

i.e. listeners are asked to judge same/different for each pair and results are compared 

with the automatic system's accuracy in same/different assessments, so the results are 

not directly comparable. In this study human and machine assessments differed, but there 

was a weak relationship between human- (MDS based on confidence judgements) and 

machine-determined spaces. The study finds different sources of speaker information 

being drawn on its human and machine results and notes the importance of acoustic 

phonetic features in accurate speaker discrimination judgements. Research is needed to 

establish relationships between human and automatic assessments of voice similarity and 

the extent to which inclusion of phonetic features in an ASR system can enhance such 

relationships. If the human perception of similarity is correlated with automatically 

identified similar voices, this will have an impact in several practical areas. It would allow 

film dubbing companies or games developers to choose local voice actors for their 

different characters that are closest to the voice of the original actor. Similarly, patients 

who have ‘lost’ their voice due to a degenerative disease or operation could choose a 

voice that is most similar to their own voice for synthesis. If recordings are available, it 

would be possible to use this technique to help determine the extent of similarity between 

their own voice and a synthesised voice. Further, correlation between human- and 

machine-assessed similarity of voices will have crucial implications for voice parade 

construction as discussed next in Section 1.3. 

 

1.3 Voice parades 

A potential application of automatically-determined assessments of speaker similarity lies 

in the construction of voice parades. A voice parade is an aural equivalent of a visual 

identity parade, i.e. a line-up of voice recordings which can be used to collect earwitness 

evidence for cases where a witness has heard a voice during the commission of a crime 

and typically not seen the perpetrator (due to dark surroundings, masking, blindfolding, 

etc.). A voice parade may be conducted when a suspect has been identified but there is 

no speech evidence, i.e. a voice recording, of the perpetrator's voice available. 
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In the UK, voice parades are prepared in accordance with the UK Home Office 

guidelines (Home Office, 2003, see also Nolan, 2003). An outline of the procedure is given 

in de Jong-Lendle et al. (2015). Regarding foil choice, the guidelines state that eight 

appropriate foil voices should be selected from a pool of at least 20 speakers “of similar 

age and ethnic, regional and social background as the suspect” (Home Office 2003: point 

9), ensuring that “the accent, inflection, pitch, tone and speed of the speech used, provides 

a fair example for comparison against the suspect” (Home Office 2003: point 15). 

To make sure that the selection of foil voices is fair, a paired comparison test has 

been introduced, as described by McDougall (2013a). This approach enables the 

phonetician to determine which eight speakers amongst a larger group of candidate foils 

are perceptually closest to the suspect speaker. The test involves asking a group of lay 

listeners to judge the similarity of every pairing of voices within the set containing the 

suspect and all candidate foils (cf. Rietveld and Broeders, 1991). Listeners rate the 

(dis)similarity of each pair of speakers on a 9-point Likert scale. These ratings are 

subjected to MDS. The eight candidate foils whose voices were judged most similar to the 

suspect's voice are then chosen as the foil-set for the voice parade. 

Voice parades must be prepared bespoke to each individual case and setting up a 

voice parade involves extensive manual effort which is time-consuming and costly. 

Automating the selection of foils for a voice parade could facilitate and speed up the 

process, enabling voice parades to be carried out more straightforwardly and more often. 

Further, if it can be established that automatically selected foils are compatible with 

listener-based performance, an automatic system for selecting foils will provide an 

objective method for this task. A step towards this goal is to compare voice similarity 

ratings by human listeners with similarity scores produced by an automatic speaker 

recognition approach, in order to assess how far automatic approaches can be drawn on 

in replicating the perceived similarity of speakers. 

 

1.4 Influence of language familiarity 

An increasing number of cases involve the language spoken by the perpetrator being 

foreign to the earwitness, raising questions about the effect of language familiarity on the 

reliability of speaker recognition, and in particular whether speaker recognition 

performance differs between native-speaker listeners and listeners from another language 

background (Köster and Schiller, 1997: 18). Further, if the languages of speaker and 

listener are mismatched, the degree to which the languages are related might also have 

an impact on the speaker recognition performance (Köster and Schiller, 1997: 19). An 

overview of research investigating the language familiarity effect in voice parades and on 

the discrimination of speakers is given in Perrachione (2019: 6–8). 

Research suggests that it can be expected that listeners with no or little knowledge 

of the target language will perceive the voices in a voice parade to sound more similar to 

each other while greater knowledge of the language allows differentiation on more 

perceptual levels (cf. Sherrin, 2015: 850). A study on the influence of language familiarity 

on voice similarity ratings was conducted by Fleming et al. (2014). Native speakers of 

Mandarin or English were asked to rate the speaker dissimilarity of pairs of English and 

Mandarin speakers using samples of duration 1250 ms. Although the phrases used for 
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the analysis were time-reversed to avoid a possible influence of language comprehension, 

both listener groups gave higher dissimilarity ratings to speaker pairs speaking the 

respective listener's native language and did not differentiate as much between the 

speakers of their foreign language.  

San Segundo et al. (2016) explored multiple pairwise similarity ratings by 20 

Spanish and 20 English native-speakers on short samples from Spanish twin pairs. They 

controlled the conditions for speaker similarity regarding dialect, age and F0, and listener 

groups were assumed to base their judgements on “holistic voice quality perception” 

(2016: 309) without an effect of language familiarity due to the short duration (~3 s) of the 

samples. Independent of listener language, twin pairs were perceived as more similar to 

each other compared with non-twins.  

An analysis by Perrachione et al. (2019) replicated Fleming et al. (2014) and 

evaluated a possible language familiarity effect on similarity ratings for read sentences in 

Mandarin and English, played to listeners in both forward and reversed conditions. 

Listeners were native speakers of Mandarin or English. While high correlations between 

the voice similarity ratings of the listener groups and forward and reversed speech were 

found, the observed effect of language familiarity was minimal, in contrast with Fleming et 

al. (2014) results.  

The language familiarity effect appears to play a role not to be disregarded in 

speaker recognition performance of human listeners. The few studies available of its effect 

on voice similarity ratings on the other hand suggest that it might not be as important here 

as for human speaker recognition. Further research is needed, however, including 

investigation of the assessment of voice similarity by native speakers of different 

languages as compared with an automatic system, as is undertaken in the current study. 

 

2 Research questions 

The present study aims to investigate the relationship between listener-perceived voice 

similarity and speaker similarity determined by an automatic system. The study compares 

demographically controlled voices, that is, speakers of the same sex, age group, and 

accent background.  

Additionally, the influence of the first language of listeners on the judgement of 

voice similarity is explored. An online listener test is employed, with most participants 

being recruited from England and Germany. Since most listeners describe themselves as 

native speakers of either (British) English or German, the presence of language-specific 

patterns amongst the ratings of these two listener groups will be investigated. Assuming 

that German listeners will report an overall good knowledge of the English language, and 

given the high degree of relatedness of the two languages, it is anticipated that the 

perceived similarity of voice pairs will be comparable between the two groups. 
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3 Method 

3.1 Voice database 

Stimuli were created using the DyViS (‘Dynamic Variability in Speech’) database which 

consists of the voices of 100 male speakers aged 18–25 years with a Standard Southern 

British English (SSBE) accent (Nolan et al., 2009; Nolan, 2011). This database of accent- 

and demographically-matched voices was chosen in order to replicate as closely as 

possible the real case situation of a voice parade in which a phonetician selects foil voices 

from amongst a collection of interview recordings of speakers with the same demographic 

background as the suspect, as noted in Section 1.3. The male/18–25 years/SSBE accent 

demographic combination was selected here as a proxy for a homogeneous set of 

speakers, but any fixed combination of demographic features and recording conditions 

could have been chosen.  

For the automatic comparison, studio quality recordings from Task 2 (spontaneous 

speech) and Task 3 (read speech) from the DyViS database were used. Task 2 recordings 

were also used to create stimuli for the listener experiment. 

 

3.2 Automatic experiment 

The automatic experiment was conducted using the VOCALISE (Voice Comparison and 

Analysis of the Likelihood of Speech Evidence) speaker recognition system (Alexander et 

al., 2016; Kelly et al., 2019). VOCALISE supports x-vector and i-vector speaker 

recognition frameworks, along with classic GMM-based approaches. All choices of 

framework can operate with either spectral Mel frequency cepstral coefficients or ‘auto-

phonetic’ features. These auto-phonetic features are considered to be more perceptually 

relevant than frequency envelope features like Mel-frequency cepstral coefficients. 

VOCALISE offers the capability of being able to extract and use these features with 

different algorithms typically used in automatic speaker recognition like GMMs, i-vectors 

and x-vectors. Measurable phonetic features such as formants and pitch are typically used 

by phoneticians in forensic phonetic casework to compare speakers. To the best of the 

authors’ knowledge VOCALISE is one of the only commercial forensic automatic speaker 

recognition systems that provides the capability of automatically extracting these features, 

and modelling them using ASR algorithms.  

For this paper, VOCALISE was used in i-vector PLDA (Probabilistic Linear 

Discriminant Analysis) mode, with auto-phonetic features (Alexander et al., 2016). To 

compare speakers, VOCALISE first extracts auto-phonetic features from each speech 

sample. The auto-phonetic mode was considered a good choice because phonetic 

features have been shown to be linked with perceived voice similarity (e.g. Nolan et al., 

2011, McDougall, 2013). In this experiment, the adapted auto-phonetic mode from Kelly 

et al., which extracts “F0, F1-F4, semitones of F0, along with first derivatives” (2016: 1567) 

is used. Speaker modelling is based on a Universal Background Model (UBM) with 256 

components, and a 200-dimensional Total Variability (TV) matrix (Kelly et al., 2016: 1568). 

i-vectors are subjected to Linear Discriminant Analysis (LDA) to reduce the number of 

dimensions to 100 and ensure greater speaker separability. Finally, 100-dimensional 
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PLDA is used to model intra-speaker and inter-speaker variability and calculate the 

likelihood of two i-vectors coming from the same versus different speaker(s). For each 

pair of i-vectors that is compared, a score is output (Alexander et al., 2016).  

The stimuli for the automatic comparison had a duration of 2–6 min. All Task 2 and 

Task 3 studio recordings from 100 speakers were compared against each other. This 

produced a matrix of 9900 different-speaker and 100 same-speaker comparison scores. 

Cross-validation score calibration (via linear logistic regression) was applied to the scores 

using Bio-Metrics2 in order to normalise their numerical range (Pigeon et al., 2000).  

 

3.3 Stimuli for the listener experiment 

Due to the constraints of the listener experiment and the trade-off between more robust 

results and listener fatigue, it was decided to use VOCALISE comparison scores 

calculated for the full set of 100 DyViS speakers to inform the selection of a smaller more 

manageable subset of ten speakers for the listener test. This subset of speakers was 

selected based on the distribution of their VOCALISE comparison scores across four 

quartile ‘bins’. This approach allowed speakers with an even spread of low to high 

comparison scores to be selected, and outlier speakers that yielded overall very high or 

very low comparison scores to be excluded.  

The experimental design involved selecting a set of speakers that yielded high 

VOCALISE comparison scores for same-speaker comparisons and a range of VOCALISE 

comparison scores from low to high for different-speaker comparisons. It was assumed 

that speakers who yielded an even spread of different-speaker comparison scores (across 

four quartile ‘bins’) when compared against the full 100 DyViS speaker set would also 

exhibit a relatively even spread of different-speaker comparison scores within the final 

subset of ten speakers.  

The full set of different-speaker VOCALISE comparison scores was divided into 

quartiles. Excluding the same-speaker comparison, each individual speaker's VOCALISE 

comparison scores were ranked from 1 (lowest score) to 99 (highest score). For each 

speaker, the distribution of these ranks across the quartiles was examined and the 

standard deviation of the number of ranks within a quartile was calculated. These standard 

deviations formed a measure of how balanced each speaker's VOCALISE comparison 

scores were, i.e. a speaker with a high standard deviation had been calculated to yield an 

above average number of VOCALISE comparison scores from within one certain ‘bin’ and 

fewer in the other ‘bins’. Such a speaker could, for example, yield very high or very low 

overall VOCALISE comparison scores in most comparisons. Standard deviations ranged 

from 1.48, with spk048 and spk059 having 23 to 27 comparison scores in each of the four 

‘bins’, to 30.22 for spk074 with 77 of 99 different-speaker VOCALISE comparison scores 

in the ‘bin’ containing the lowest scores. The VOCALISE comparison scores of the ten 

speakers with the lowest standard deviations were extracted and allocated to the 

respective ‘bin’ in order to assess whether scores from all ‘bins’ were present in roughly 

similar numbers. One speaker yielded overall very high VOCALISE comparison scores 

 
2 Bio-Metrics 1.8 performance metrics software, Oxford Wave Research Ltd.,  
https://www.oxfordwaveresearch.com/products/bio-metrics, accessed 30 January 2020. 
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(i.e. most of their scores were in the fourth ‘bin’) and was swapped with the speaker with 

the next lowest standard deviation. The final subset of ten speakers will be referred to as 

spk017, spk027, spk029, spk036, spk054, spk059, spk060, spk079, spk093, and spk095, 

where the numbers refer to the respective DyViS participant numbers.  

A pilot study with eight listeners showed that it was hard for listeners to compare 

voices only when also confronted with the mismatch in speaking style that comes with 

comparing spontaneous speech from Task 2 against read speech from Task 3. Based on 

the assumption that spontaneous speech would be encountered more often in a voice 

parade scenario than read speech, it was decided that only Task 2 files would be used in 

the final listener experiment.  

From each selected speaker's Task 2 recording, samples of continuous speech of 

3 to 5 s duration were manually extracted. In order to use samples that reflect the scores 

of the longer file comparisons from Task 2 and 3, all short samples from Task 2 were 

compared against each other in VOCALISE. The quartiles based on these scores were 

calculated using the same method as was used above for the longer samples to ensure 

that the 3–5 second samples yielded the same quartile results as the longer samples. 

Eleven samples per speaker were selected so that the resulting listener test stimuli always 

contained new samples of the speakers concerned. 45 different-speaker and ten same-

speaker comparisons were constructed. The selection of the samples was based on 

whether the respective comparison scores belonged to the same quartile as the score 

resulting from the longer recording comparisons. 

The original comparison scores of the ten selected speakers (pre cross-validation 

calibration) were then re-calibrated using the 90 deselected speakers. Calibrating the 

scores of the selected speakers with an independent set of speakers in this way gives a 

fairer representation of a scenario in which one would apply pre-determined calibration 

parameters to new sets of potential foil speakers. To apply this calibration, Task 2 and 

Task 3 recordings from the 90 deselected speakers were compared against each other 

using VOCALISE as previously described. This was repeated for the ten selected 

speakers. Calibration parameters derived from the scores of the 90 speakers were then 

applied to calibrate the score matrix of the set of ten speakers using Bio-Metrics3. The 

VOCALISE scores resulting from the Task 2 sample 1 versus Task 3 sample 2 comparison 

and the Task 2 sample 2 versus Task 3 sample 1 comparison were averaged for each 

speaker pair.  

In a nutshell, ten of the DyViS speakers were selected to form a subset for the 

listener experiment based on the distribution of their VOCALISE comparison scores 

across four quartile ‘bins’ with the aim to get close to an even spread of high to low 

VOCALISE comparison scores. Outliers that had yielded overall very high or very low 

comparison scores – meaning they could be either very easily confused or distinguished 

using the auto-phonetic mode in VOCALISE – were excluded. Only spontaneous speech 

from Task 2 was used for the listener experiment and eleven stimuli per speaker with a 

duration of 3 to 5 s each were selected to make up 45 different-speaker and ten same-

speaker comparisons. Recalibration was applied to the original comparison scores of the 

 
3 Bio-Metrics 1.8 performance metrics software, Oxford Wave Research Ltd.,  
https://www.oxfordwaveresearch.com/products/bio-metrics, accessed 30 January 2020. 
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selected speakers to approximate a realistic scenario in which a new set of foils would be 

calibrated using pre-determined parameters. 

 

3.4 Listener experiment 

To avoid listener fatigue and participants abandoning the assessment early, the 

experiment was designed to be as short as possible and only to collect ratings for 

comparisons which were absolutely necessary. In order to assess the perceptual 

distances between all speakers, every speaker had to be compared at least once with 

every other speaker, assuming that e.g. spk017 vs. spk027 would yield the same rating 

as spk027 vs. spk017. Hence, instead of as many as 90 different-speaker comparisons, 

45 were considered sufficient in the perceptual distance experiment. Same-speaker 

comparisons were included in order to confirm whether listeners indeed perceived 

samples from the same speaker as most similar to each other. The order of samples within 

a speaker comparison and the position of a comparison within the experiment were 

randomised but remained the same for each listener. 

An online experimental interface was used for the perceptual task in order to 

maximise participant numbers. The assessment was divided into a training phase and a 

testing phase. The training phase served to familiarise the participants with the format of 

the experiment and the range of voices, and to allow them to practise making judgements. 

It consisted of five comparisons made up of two short clips each. The samples were drawn 

from the ten selected speakers and were comparable to those used in the testing phase. 

The participants were asked to rate the overall voice similarity of each given pair in a snap 

reaction on a scale from 1 (very dissimilar) to 9 (very similar), ideally while ignoring accent, 

speaking style, and speech content. The participants were also told that they would 

encounter male voices only. The speed at which listeners could proceed lay in their own 

hands. To submit each response, listeners were required to click a 〈Submit〉 button at the 

end of the comparison row. After clicking that button, the row was disabled and listeners 

could not go back to the respective comparison to re-listen or to change their rating. The 

testing phase followed the same schema as the training phase. Fig. 1 exemplifies the 

experimental interface by showing the first two comparisons.4 

 

Figure 1. Comparisons in the online assessment (desktop version using Firefox) with disabled row No. 1 

showing a submitted score. 

 

 
4 The online assessment was made accessible via the Oxford Wave Research website: 
https://www.oxfordwaveresearch.com/voicesim2019/, last accessed 30 January 2020. 
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3.5 Listeners 

A total of 112 listeners participated in the online experiment over the course of five weeks. 

The results from six individuals were excluded due to technical problems, a hearing 

impairment, or an unusual distribution of the participant's ratings (e.g. the participant's 

later responses only using one value on the scale, indicating that the participant was no 

longer engaging properly with the task). One of these listeners rated 25 consecutive 

comparisons (comparisons No. 31–55) as ‘5’, indicating that they lost interest in the 

experiment. Two other listeners were very extreme outliers regarding the frequency with 

which they chose ‘1 – very dissimilar’ on the rating scale. These listeners rated 40 and 35 

out of 55 comparisons as ‘1’ and, therefore, appeared to have rated the voice pairs rather 

regarding same versus different instead of similar versus dissimilar, so their results were 

excluded.  

106 listeners – 45 male, 58 female and 3 other – were thus included in the analysis. 

The participants were aged between 18 and 63 years with an average age of 26.46 years 

(SD = 8.79 years) and a median of 24 years. In total, 16 different languages were indicated 

as participants’ first languages. German and English were the most frequent first 

languages, with 46 and 41 listeners respectively. The remaining listeners’ first languages 

included Chinese (n = 4), French and Greek (n = 2 each) and Nepali, Frisian, Indonesian, 

Hindi, Lithuanian, Finnish, Hungarian, Thai, Swedish, Yoruba, and Turkish (n = 1 each).  

According to their self-reported accent or dialect, 39 listeners were speakers of 

British English (BE). These are relevant for the exploration of rating differences between 

German listeners and listeners who are substantially familiar with BE which was spoken 

in the comparison samples. The accent of a huge proportion of English listeners could be 

summarised as Standard Southern British English (SSBE); these included the 

descriptions “RP” (Received Pronunciation), “Queen's”, “BBC English”, “SSBE” and 

“none”. Other English accents and regions mentioned were, e.g. “Yorkshire”, 

“Lancashire”, “North Wales”, “Coventry”, “London” or “Home Counties”. The majority of 

German listeners (n = 34) reported speaking standard German, seven indicated Bavarian, 

three Hesse and one each Alemannic and Saxonian as their respective dialects.  

Participants were asked to report their proficiency in English. In total, 43 

participants indicated they were native or bilingual speakers of English. This includes 

speakers of, e.g. American and Australian English. The proficiency of non-native speakers 

of English was either “Basic”, “Good”, “Very good” or “Excellent”. The majority of non-

native English speakers reported they had a very good proficiency in English (n = 32) or 

excellent proficiency (n = 18). Twelve listeners stated that they had good proficiency, and 

one listener estimated their proficiency to be basic.  

Roughly two thirds of the listeners completed the voice similarity assessment on 

their computer or laptop, another third used their smartphone or tablet. About 75% of the 

listeners used in-ear or over-ear headphones and roughly 21% used their internal 

speakers. The remaining listeners used loudspeakers. None of the included listeners 

reported a hearing impairment and all of them reported being in a quiet environment when 

completing the experiment.  
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3.6 Evaluation and analysis of the data 

In making their voice similarity assessments, listeners did not use the rating scale 

consistently with each other, and some did not use its full range. For each speaker pair in 

the listener test, any listener ratings in the bottom and top 5% of the spread of responses 

to that comparison were removed, then a mean of the remaining 90% of scores was taken, 

i.e. a 5% trimmed mean, to get a first impression of the correlation between calibrated 

VOCALISE scores and listener ratings.  

A more detailed examination of the untrimmed data was then carried out using 

Weighted MDS, a type of MDS which, as well as calculating the usual stimulus space, 

provides a participant space that indicates the weighting given by each participant to each 

dimension in the common stimulus space, taking into account individual differences in the 

listeners’ use of the Likert scale (see Giguère, 2006). This was executed using the 

statistical software SPSS. Since Weighted MDS is based on multiple comparison 

matrices, the technique was applied to the matrices of all included listeners (n = 106), as 

well as to those of BE participants and German participants separately. There were fewer 

BE participants (n = 39) than German participants (n = 47), so a subset of 39 German 

participants was chosen randomly to provide a balanced dataset for the BE-German 

analyses. The similarity scale in the voice similarity assessment was used such that higher 

numbers indicated higher similarity. To aid interpretation, the ratings were inverted for 

each listener before subjecting the data to MDS (cf. Giguère, 2006: 29). In line with 

recommendations from Kruskal (1964: 1), all ratings were subtracted from the number ten 

to invert them, i.e. to convert the similarity ratings to dissimilarity ratings (or distances).  

Since the VOCALISE scores consisted of a single matrix, Weighted MDS was not 

appropriate. For further processing, the uncalibrated scores first were converted into 

distances to be comparable to the listener MDS. The scores were scaled from 1 to 9 and 

then inverted to represent dissimilarity now rather than similarity, as is the approach in 

MDS. Following this, Principal Component Analysis (PCA), a basic type of MDS (Abdi, 

2007: 1), was applied. 
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4 Results 

4.1 Relationship between human listener and machine ratings 

Figure 2. Box plot displaying the 5% trimmed mean listener ratings for same- and different-speaker 

comparisons (Listener rating 1 = very dissimilar, 9 = very similar). 

To demonstrate the distribution of listeners’ responses to same-speaker and different-

speaker comparisons on the Likert scale, boxplots showing the 5% trimmed mean listener 

ratings are given in Fig. 2. The box plots in Fig. 2 reveal that the median of the listener 

ratings for same-speaker comparisons (MED = 8.60) is substantially higher than that of 

different-speaker comparisons (MED = 3.82). For same-speaker comparisons, the 5% 

trimmed mean of ratings ranges between 6.64 and 8.91, whereas for different-speaker 

comparisons the minimum is at 1.38 and the maximum is at 6.26. For same-speaker 

comparisons, there are a range of responses: they are not judged consistently with a 

perfect 9, showing that listeners are treating same-speaker pairings in a similar 

conceptual/perceptual way to different-speaker pairings.  

Fig. 3 displays a scatter plot with the 5% trimmed mean of the listener ratings of 

voice similarity on the horizontal axis and the calibrated VOCALISE scores on the vertical 

axis. The 45 different-speaker comparisons are shown as squares, while the ten same-

speaker comparisons are triangles. As can be seen in the plot, different- and same-

speaker comparisons do not overlap and are clearly separated by both the automatic 

approach and by the listeners. Different-speaker comparisons produced lower voice 

similarity scores than same-speaker comparisons for both listener judgements and the 

automatic approach. The comparison of spk060 to spk017 yielded the lowest similarity 

scores, both for listeners (5% trimmed mean = 1.38) and for the machine approach 

(calibrated VOCALISE score = −8.63). All same-speaker comparisons received high 

scores on both axes. Three speakers (spk027, spk036, spk054) have received 

comparatively very high voice similarity scores for their within-speaker comparisons by 

the automatic approach, but their voices were not judged by the listeners as being as 

similar to themselves as the rest of the speakers’ voices.  

 



15 
 

 

Figure 3. Scatter plot displaying the relationship between calibrated VOCALISE scores and the 5% trimmed 

mean of the listener ratings (Listener rating 1 = very dissimilar, 9 = very similar). 

Linear regression was applied to the different-speaker comparison scores using 

Excel, and the resulting regression line (R2
different = 0.17, Rdifferent = 0.42) is shown in the 

plot as a solid line. For comparison, the linear regression line for all comparisons (both 

same-speaker and different-speaker) is shown in the plot as a dotted line. Correlating 

scores from different-speaker comparisons using Spearman rank correlation results in ρ 

= 0.34* (p = 0.02, 2-tailed). This result confirms that there is a statistically significant 

positive correlation between listener ratings and VOCALISE scores for different-speaker 

comparisons that is broadly linear.  

Listeners used the scale from 1 to 9 in different ways and not always the full range. 

Most listeners used the extreme ends of the scale at least once. Some, however, focussed 

rather on the extremes and used few intermediate ratings to judge the similarity of voice 

pairs in a comparison. Other listeners did not make use of the full scale but rather tended 

to use the upper or the lower half. 

A method that takes listeners’ individual approaches to the use of the rating scale 

into account is Weighted MDS (also INDSCAL – Individual differences scaling) (cf. 

Giguère, 2006: 32). Weighted MDS uses distance matrices of multiple pairwise 

comparisons as input, in this case those supplied by 106 listeners through their ratings. 

An analysis based on Weighted MDS aims to find a lower dimensional representation of 

the distances between speakers as perceived by the listeners (cf. Cox and Cox, 2000: 1). 

Only different-speaker comparisons are considered in the MDS analysis.  

By inverting the original ratings in the listener matrices, high ratings denote low 

similarity, whereas low ratings correspond to high similarity. This can be observed as large 

Euclidean distances between data points of speakers perceived as dissimilar, whereas 

data points of speakers perceived as similar appear closer to each other in an MDS 

analysis.  
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In this Weighted MDS analysis, an analysis with five pseudo-perceptual 

dimensions was chosen, as it provided a “fair” fit according to the stress thresholds 

proposed for goodness of fit (cf. Kruskal, 1964: 3) for the given listener similarity ratings 

(stress = 0.14, R2 = 0.20). The first two MDS dimensions which account for the greatest 

amount of variance successively can be represented on a scatter plot to enable 

visualisation to some extent of the (dis)similarity relationships between the ten speakers. 

Such a scatter plot is shown in Fig. 4 with MDS dimension 1 on the horizontal and MDS 

dimension 2 on the vertical. For comparison, Fig. 5 gives a scatter plot of the first two of 

the five PCA dimensions produced by the VOCALISE scores.  

Figure 4. Plot of the first two dimensions 

produced by MDS based on the ratings from 

106 listeners. 

Figure 5. Plot of the first two dimensions 

produced by PCA based on VOCALISE scores.

Several similarities between the two plots can be observed. Spk095 and spk036 

are the closest pair in the MDS plot. These two speakers are also close neighbours in 

PCA dimension 2, and do not vary greatly on PCA dimension 1. Similarly, the cluster of 

spk054 and spk059 in the MDS plot can be found near each other in the PCA plot, where 

the speakers are very similar in dimension 1 and vary slightly in dimension 2. Spk017 and 

spk079 seem to be quite dissimilar from any of the other speakers based on the 

VOCALISE scores. The same tendency, though not as strong as in the PCA plot, can be 

found in the MDS plot. Also, spk079 being closer to spk095 and spk036 in the MDS plot 

is reflected in the PCA plot, where spk079 is similar to that speaker pair in the second 

dimension. The other speakers do not seem to build any striking clusters in the MDS plot; 

however, they are all rather similar in the first dimension and vary in their degree of 

similarity in the second dimension. In PCA, the other speakers are relatively slightly more 

similar in dimension 1 than in MDS, and differ comparatively more on dimension 2 but 

overall loose similarities between the plots can also be found for those speakers.  

The results in the scatter plot in Fig. 3 revealed a positive and significant correlation 

in aggregate. In order to get a clearer picture of the speaker-specific (dis)similarities within 

MDS and PCA, the Euclidean distances between all speakers were calculated using the 

five dimensions for each of the MDS and PCA results using the following formula: 

𝑑(𝑠𝑝𝑘𝑝, 𝑠𝑝𝑘𝑞) = √∑ (𝑑𝑖𝑚𝑖𝑠𝑝𝑘𝑞
− 𝑑𝑖𝑚𝑖𝑠𝑝𝑘𝑝

)
2

5
𝑖=1 . Spearman rank correlation was used to 

further explore the relationships between the MDS and PCA analyses with respect to the 
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speakers’ Euclidean distances to other speakers in the two multidimensional spaces. The 

results are listed in Table 1. A significant correlation between the Euclidean distances in 

MDS and PCA was found for spk029 (ρ = 0.76, p = 0.01). For all other speakers, the 

equivalent correlation is not significant. Nevertheless, relatively high correlations are 

shown by spk054, spk059, spk093 and spk095 whose correlation coefficients are greater 

than ρ = 0.3. 

 

Speaker Spearman’s rho (2-tailed) 

spk017 -0.22 
spk027 0.30 
spk029 0.76* (p = 0.01) 
spk036 -0.01 
spk054 0.31 
spk059 0.37 
spk060 0.13 
spk079 0.13 
spk093 0.47 
spk095 0.41 

 

Table 1. Spearman rank correlations of each speaker’s Euclidean distances in MDS and PCA (*significant 

correlation at the 0.05 level, two-tailed). 

 

4.2 Differences in similarity ratings of native German and British English 
listeners 

The first language of listeners may have an influence on the voice similarity ratings of the 

native speakers of BE in this experiment. In this case, most listeners’ native language was 

either German or (British) English, therefore, MDS was applied to the subsets of matrices 

from German listeners and BE listeners. In both cases, the five-dimensional analysis was 

selected (BE: stress = 0.14, R2 = 0.24; German: stress = 0.14, R2 = 0.22). Fig. 6 presents 

a scatter plot of the first two dimensions from each MDS analysis, the one for BE listeners 

on the left and for German listeners on the right.  

The plots show some differences in the distances between the clustering of 

speakers across the analyses, however, some loose groups can be identified. Circled in 

light-grey dashes in the bottom left quadrant of the BE MDS plot are spk059, spk029, and 

spk054. Although German listeners seem to judge the voices of spk029 and spk059 as 

more similar to each other than each of them compared to spk054, they are all still 

relatively close together in the bottom left quadrant of the BE MDS plot. A group of voices 

that German listeners rate as very similar, those of spk060, spk027, and spk093 (black 

solid ellipse), is at least judged very similar in dimension 2 by BE listeners. Spk017 (light-

grey solid ellipse) seems to be rated as somewhat dissimilar from other speakers by BE 

listeners, whereas German listeners perceived this speaker as quite similar to spk079 and 

spk036 (dark-grey dashed ellipse). However, this group and spk017 can still be found in 

the same quadrant in the BE listener MDS plot. Since the orientation of MDS is undefined, 

and the MDS plot can thus be legitimately rotated, here if one were to rotate the German 

listener MDS plot by 90° to the left, one would find a distribution of the speakers quite 
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similar to the BE listener MDS plot. As the languages are closely related and most German 

listeners reported a good to excellent proficiency in English, this is not a surprising result. 

Overall, the MDS plot based on the ratings from all 106 listeners mostly reflects similar 

relationships to those found in the separate plots for German and BE listeners. Differences 

could be due to combining the ratings from both German and BE listeners, together with 

ratings from the listeners with another language background. An underlying reason might 

be that foreign-language speakers of English lack the ability to perceive certain 

sociophonetic or dialectal features to which native speakers are sensitive.  

 

 

Figure 6. MDS plots in two dimensions based on matrices from British English listeners (left) and German 

listeners (right). Ellipses are explained in the text. 

 

Comparing the separate MDS plots (Fig. 6) with the PCA plot (Fig. 5), many 

similarities can be observed. Spk054 and spk059 are perceived as rather similar to each 

other according to both the MDS plots and they are close together in the PCA plot. Similar 

relationships also exist for spk093 and spk060. While spk017 and spk079 can be found 

relatively close together in the same quadrant within the MDS plots, they are similar on 

PCA dimension 1 as well. Also relatively similar in all plots are spk029 and spk59 and 

close on at least one dimension within any of the plots are spk027 and spk093.  

To compare relationships between the ratings of the BE and German listener 

groups further, the Euclidean distances of each speaker to all other speakers were 

calculated individually using the five dimensions produced in each of the MDS analyses 

of ratings by BE listeners and German listeners. The correlations between the distances 

for each speaker to all other speakers in the two MDS analyses were explored using 

Spearman rank correlation as shown in Table 2. All speakers yielded positive correlations, 

and six of these were significant or highly significant.  
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Speaker Spearman’s rho (two-tailed) 

spk017 0.77** (p = 0.01) 

spk027 0.92** (p = 0.00) 

spk029 0.33 

spk036 0.61 

spk054 0.22 

spk059 0.16 

spk060 0.73* (p = 0.02) 

spk079 0.72* (p = 0.02) 

spk093 0.81** (p = 0.01) 

spk095 0.89** (p = 0.00) 
 

Table 2. Spearman rank correlations of each speaker’s Euclidean distances in MDS based on BE and 

German listeners respectively. (*significant correlation at the 0.05 level, **significant correlation at the 0.01 

level, two-tailed). 

The procedure was repeated separately for the distances based on the MDS 

analyses of BE and German listener ratings and for the distances based on the PCA 

dimensions. The results of the Spearman rank correlations are shown in Table 3. All but 

one of the correlation coefficients between the PCA and the German MDS analysis, are 

positive, with spk029 showing the strongest positive correlation coefficient (ρ = 0.588). 

However, no significant correlations are observed here. By comparison, in the PCA and 

BE MDS analysis there are several larger correlation coefficients present, including two 

significant ones (spk054, ρ = 0.673*, p = 0.033; spk095, ρ = 0.709*, p = 0.022). Yet there 

are three negative correlation coefficients (spk017, spk036, spk060). Overall, the BE 

listeners seem to agree better with the automatic distances than the German listeners. 

 

British English listeners German listeners 

Speaker Spearman’s rho 
(two-tailed) 

Speaker Spearman’s rho 
(two-tailed) 

spk017 -0.07 spk017 -0.29 

spk027 0.25 spk027 0.31 

spk029 0.06 spk029 0.59 

spk036 -0.19 spk036 0.10 

spk054 0.67* (p = 0.03) spk054 0.02 

spk059 0.26 spk059 0.44 

spk060 -0.06 spk060 0.18 

spk079 0.43 spk079 0.15 

spk093 0.42 spk093 0.33 

spk095 0.71* (p = 0.02) spk095 0.49 
 

Table 3. Spearman rank correlations of each speaker’s Euclidean distances in PCA and MDS based on BE 

listeners (left) and German listeners (right) respectively (*significant correlation at the 0.05 level, two-tailed). 

 

5 Discussion 

Displaying listener and machine ratings in a scatter plot showed a pattern of higher ratings 

for same-speaker and lower ratings for different-speaker voice comparisons for both 
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human listeners and the automatic approach. Focussing on different-speaker pairs, a 

statistically significant, broadly linear relationship was found between listener and 

machine ratings. This indicative finding supports further exploration of the use of automatic 

systems for speaker similarity assessment. Given sufficient agreement between scores 

from an automatic approach and listener judgements, the automatic approach would 

provide an objective way to select foil voices for voice parades. Score calibration would 

allow for direct interpretation of the numerical values as similarity measurements, e.g. to 

compare similarity directly across different sets of foils. Additionally, a similarity score 

range that is acceptable for voice parades could potentially be defined. Ideally, a forensic 

phonetician would be able to use a suspect's speech sample in an automatic voice 

similarity comparison to preselect a set of similar voices from a pool of voices followed by 

a significantly shorter auditory analysis than would be necessary without this preselection. 

Given the availability of appropriate, homogeneous speaker databases, time spent on an 

auditory analysis could be reduced further.  

Visual comparison of the MDS and PCA plots displaying the speaker similarity 

relationships as perceived by listeners and determined by a machine showed many 

parallels. In order to compare these parallels numerically, the Euclidean distances 

between all pairs of speakers were calculated using five dimensions of MDS and PCA. 

Spearman rank correlation analysis of each speaker's Euclidean distances to all other 

speakers within MDS and PCA revealed positive correlations for a number of speakers. 

While many parallels were observed, the ratings of the listeners and the automatic 

approach were not always well aligned. This raises questions about what listeners might 

further take into account that is not (yet) included in the analysis by the automatic 

approach. For example, one listener commented that a speaker in the experiment had a 

lisp. A preliminary auditory analysis revealed spk017 as that particular speaker. This might 

contribute to an explanation as to why this speaker was isolated from the group in the 

MDS and PCA analyses. As McDougall (2013b) has previously shown, various voice 

quality features (including a fronted or advanced tongue position) can play a role in 

listener-based voice similarity judgements. A future analysis of voice quality and acoustic 

correlates may shed further light on the present results.  

A comparison of BE and German listeners’ voice similarity ratings separately was 

conducted to explore a potential effect of the first language of listeners on the ratings and 

to investigate which group's ratings were more similar to the ratings of the automatic 

approach. Spearman rank correlation of each speaker's distances to all other speakers in 

MDS for BE listeners and German listeners resulted mostly in positive correlations, some 

of which were significant or highly significant. Although some previous research has 

shown a language familiarity effect in voice similarity ratings (e.g. Fleming et al., 2014), 

such an effect did not seem to play a huge role in the present experiment whose findings 

were instead more consistent with those of Perrachione et al. (2019), perhaps due to the 

fact that the German listeners almost all indicated having a “good” or “very good” 

proficiency in English. Furthermore, the sample duration was very short with roughly four 

seconds per sample, and hence the overall impression of voice quality might be more 

important than the first language of the listeners. This would support findings by San 

Segundo et al. (2016) which showed comparable ratings by naïve English and Spanish 

listeners on short samples from a homogeneous group of Spanish speakers.  
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Comparing the Euclidean distances of the MDS analyses based on BE and 

German listener ratings to the PCA analysis based on the ratings from the automatic 

approach, it was the BE listener ratings which yielded the greater number of significant 

correlations with the automatic output. The analysis based on German listener ratings did 

not yield any significant correlations, but did produce some positive correlations.  

One explanation for the results differing between the two listener groups might be 

that BE listeners perceive finer differences than German listeners and that these 

differences are also taken into account by the automatic approach. These differences 

could concern, for example, vowel qualities which have an influence on formant 

measurements. In a situation like the present where the speakers are heavily controlled 

for their gender, age, accent, and social background and the conversation content 

revolves around the same topic, the speakers and their speech are already quite similar 

overall. While holistic voice quality might be perceived similarly by BE and German 

listeners, the former might be more susceptible to slight variations of (socio)phonetic and 

linguistic cues between the speakers. It is possible that sociophonetic variation has an 

influence on formant measurements which are reflected in the ratings from the automatic 

approach. This, however, needs further investigation. Nevertheless, the individual 

variation in the correlation coefficients shows the need for further research with more 

speakers.  

Another factor to consider is that the linguistic content of the samples was not 

identical, so listeners were unable to make direct linguistic comparisons. It is possible that 

listeners may have taken linguistic features (‘what was said’) into account when rating the 

speakers’ samples even when asked to rate the similarity of ‘voices’. This could have led 

to some discrepancies between human listener and machine ratings. Thus, additionally to 

voice quality, (socio)phonetic and linguistic information relating to the speakers may also 

have contributed to the positioning of the speakers along the pseudo-perceptual 

dimensions determined by the listener ratings and to discrepancies between listener and 

machine ratings. 

  

6 Conclusion 

In this study, the assessments made by human listeners of the extent of similarity amongst 

pairs of voice samples were correlated with the corresponding similarity scores obtained 

from an i-vector system using auto-phonetic features on a small scale. Relationships 

between the two types of similarity were demonstrated with correlation analysis and 

various analyses based on Weighted MDS and PCA. Separating responses from English 

and German native speaker groups showed similar patterns of a positive relationship 

between listener and automatic assessments, but with English listener assessments 

achieving higher levels of correlation with the automatic output than those of the German 

listener group. Future work will investigate this phenomenon for larger groups of speakers, 

and for different accents of English and other languages. Additionally, the comparison of 

female speakers’ voices and possible sex-specific effects must be addressed in future 

experiments when appropriate databases are available. The effectiveness of automatic 

systems in reflecting listeners’ voice similarity judgements requires additional testing. 
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Further work will also entail an evaluation of the acoustic-phonetic features which underlie 

the pseudo-perceptual dimensions generated by the MDS analysis and investigation of 

whether the specific words and phrases contained in speech samples play a role in how 

listeners make judgements of voice similarity. In order for automatically retrieved voice 

similarity ratings to align more with what listeners perceive as similar, improvements to 

the automatic approach based on phonetic features that are found to play a role must be 

further explored.  

Many practical implications of this work for voice parade construction await further 

exploration. The findings of this study pave the way for future developments towards an 

automatic approach for selecting foil voices for voice parades. Calibration of automatically 

generated scores would enable similarity comparisons to be made across different sets 

of candidate foils, and a threshold for an acceptable extent of similarity between foils and 

a suspect voice could potentially be identified. Further, the ability to identify perceptually 

similar speakers using an automatic approach can contribute to improvements in voice 

casting and voice banking application development. 
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