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ABSTRACT
Research on speaker recognition is extending to address the vulnerability in the wild conditions,
among which genre mismatch is perhaps the most challenging, for instance, enrollment with read-
ing speech while testing with conversational or singing audio. This mismatch leads to complex and
composite inter-session variations, both intrinsic (i.e., speaking style, physiological status) and extrin-
sic (i.e., recording device, background noise). Unfortunately, the few existing multi-genre corpora are
not only limited in size but are also recorded under controlled conditions, which cannot support con-
clusive research on the multi-genre problem. In this work, we firstly publish CN-Celeb, a large-scale
multi-genre corpus that includes in-the-wild speech utterances of 3,000 speakers in 11 different gen-
res. Secondly, using this dataset, we conduct a comprehensive study on the multi-genre phenomenon,
in particular the impact of the multi-genre challenge on speaker recognition and the performance gain
when the new dataset is used to conduct multi-genre training.

1. Introduction
Speaker recognition aims to verify the claimed identity

of a person using her/his spoken utterance as input modal-
ity. With several decades of research, the performance of
speaker recognition systems has been remarkably improved,
and commercial usage has beenmade feasible in certain con-
ditions [1, 2, 3].

A long-standing theme in speaker recognition research
has been the problem of tackling various speaker-independent
variations in the speech signal. These variations could be
extrinsic or intrinsic. The most significant extrinsic varia-
tions include diversity in recording device, ambient acous-
tics, background noise, transmission channel, and distortions
introduced in pre-processing algorithms. Intrinsic variations
refer to both theminor and universal randomness in themove-
ment of pronunciation apparatus as well as more explicit
diversity in speaking style (e.g., reading or spontaneous),
speaking rate, emotion, and physical status. These variations
pose the major challenge for speaker recognition systems.

The history of speaker recognition research can be seen
as a pursuit towards solving the impact of these variations on
the recognition accuracy. For instance, initial research was
constrained to text-dependent tasks and focused on solving
the variation caused by pronunciation randomness, in which
the HiddenMarkovModel (HMM)was themost popular [4].
Later research attempted to solve text-independent tasks and
had to deal with phonetic variation, which boomed the Gaus-
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sianMixtureModel withUniversal BackgroundModel (GMM-
UBM) architecture [5]. Further research tried to address
inter-session variation caused by channels and speaking styles,
for which the i-vector/PLDA architecture was the most suc-
cessful [6]. Recently, the research focus has been targeted to-
wards dealing with complex variations in the wild scenarios,
for which deep learning methods have been demonstrated to
be the most powerful [7, 8, 9, 10].

Multi-genre scenario is perhaps themost challenging sce-
nario for speaker recognition, as it involves nearly all the
complex variations one can imagine. For example, a speaker
aged 20 may be registered with the system using an inter-
view speech, recorded in a quiet environment, with a rela-
tively formal speaking style, and using a far-field table mi-
crophone; while the test may be with a singing speech of the
same speaker at age 40, in a live show under music back-
ground, with a close-talk hand-held microphone. From an-
other perspective, multi-genre is not an artificial challenge,
it is indeed encountered in many real-life applications. For
instance, a good speaker recognition system must be able to
accept a user several months after the registration, even if the
user uses a different cellphone and speaks in a different style.
In summary, we argue that good performance onmulti-genre
scenarios is a sufficient and necessary condition for practical
success of speaker recognition research.

Unfortunately, the existing state-of-the-art techniques per-
form poorly in multi-genre conditions. Our recent experi-
mental results show that a system trained with the most pop-
ular recipe and using the largest corpus publicly available
(VoxCeleb) performed quite poorly on CN-Celeb1 [11], a
multi-genre corpus that we have recently published. Specif-
ically, the results in terms of Equal Error Rate (EER) was
3.75% on SITW, the accompanying test data of VoxCeleb.
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Table 1
History of speaker recognition research.

Phases Approximate Period Variations Techniques Typical Corpora

I 1970-2000 pronunciation DTW, HMM Private data
II 1995-2010 phone GMM-UBM Switchboard, NIST SRE (-03)
III 2005-2016 session JFA, i-vector/PLDA Mixer, NIST SRE (04-16)
IV 2017- complex DNN VoxCeleb, NIST SRE (18-19)

On CN-Celeb.E, a subset of CN-Celeb1 consisting of 200
speakers, the EER result was 15.52%, an increase of 300%
compared to the SITW result.

The importance of multi-genre scenario and the below-
par performance of existing techniques in this scenario ne-
cessitates a concentrated research effort in this direction. How-
ever, the present CN-Celeb1 corpus [11] is insufficient to
derive comprehensive research conclusions due to its limited
data size. CN-Celeb1 has only 1,000 speakers and 270 hours
of speech signals in total. The limited data size makes it
hard to be used as a standalone training set, especially when
the models are based on deep learning methods. This has
been clearly demonstrated in our previous experiments [11]
where the performance of i-vector system was better than
that of x-vector system (14.24% vs. 14.78%), when the two
systems were trained with 800 speakers (CN-Celeb1.T) and
tested on the rest 200 speakers (CN-Celeb.E). Moreover, the
performance of x-vector system trained with CN-Celeb1.T
was even worse than the one trained with VoxCeleb, even
though the former is based on multi-genre data and so is un-
der matched condition. The data insufficiency is an obstacle
for researchers for a deep investigation into the multi-genre
challenge.

In this work, we firstly publish a new large-scale multi-
genre corpus, called CN-Celeb2. CN-Celeb2 shares the same
11 genres as CN-Celeb1, but the data size is much larger. It
contains over 520,000 utterances from 2,000Chinese celebri-
ties. The two multi-genre corpora make up the overall CN-
Celeb corpus1, which can be used to perform fully multi-
genre training and test. Secondly, based on the new CN-
Celeb database, we conduct a comprehensive study onmulti-
genre speaker recognition. In particular, we employ multi-
genre training to improve model robustness in cross-genre
scenarios, and also investigate the efficacy of ameta-learning
approach to improve model generalization for novel genres.

2. Speaker recognition: challenge, technique
and data
We firstly present a historical review of speaker recog-

nition research. Different from the previous overviews that
concentrate on details of speaker recognition techniques [1,
2, 3], this review focuses on the interaction amongst scien-
tific challenge, technical development and data accumula-
tion. With this outlook, we categorize the development of
speaker recognition research into 4 phases, as outlined in Ta-

ble 1.
2.1. Phase 1: Randomness in pronunciation

The initial foray into speaker recognition focused on the
randomness in pronunciation. One cannot produce the same
words/utterances in exactly the same way. Early speaker
recognition research focused on solving this type of varia-
tion, by using either non-parametric methods such as Dy-
namic TimeWarping (DTW) [12] or with parametric models
such as Hidden Markov Model (HMM) [4, 13].

Researchers in this period often used small self-collected
datasets. For example, Doddington recorded 123male speak-
ers in a sound booth using a dynamic microphone, where 63
males were used for target trials and the rest 60 males for im-
poster trials [12]. Similarly, Parthasarathy et al. recorded 51
males and 49 females over long distance telephony channel,
and each speaker made 26 calls uttering the same phrase [4].
2.2. Phase 2: Phonetic variation

Further investigations attempted to deal with the pho-
netic variation – the main obstacle towards text-independent
speaker recognition. GMM [14] and its adapted version,
GMM-UBM [5] were demonstrated to be the most effective
towards this end.

A large dataset is necessary to train the Gaussian compo-
nents, and so data requirement during this phase was more
demanding than Phase 1. Moreover, the data used by re-
searchers began to be more standardized, partly due to the
NISTSpeaker Recognition Evaluation (SRE) started in 1996 [15].
One of themost popular corpora during this phasewas Switch-
board collected by the Linguistic Data Consortium (LDC)2.
This corpus incorporated several collections, each of which
includes hundreds of speakers and thousands of conversa-
tions. It was extensively used in the NIST SRE series from
1996-2003, and also formed an important part of the training
set in the later NIST SREs.
2.3. Phase 3: Session variation

Session variation refers to the systematic change in speak-
ing style or acoustic condition when the same speaker speaks
in different sessions. Kenny’s important work on Joint Fac-
tor Analysis (JFA) [16, 17, 18] paved the way for solving
general variations between sessions. The i-vector model,
a successor of JFA, made a further leap [6] in producing
session-based vectors that involve all types of long-term vari-
ations, and leave the task of discriminating different types

1The dataset can be downloaded from https://openslr.org/82/
2https://www.ldc.upenn.edu/
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of variations to a back-end model. Numerous results have
demonstrated that the i-vectormodel could achieve very good
performancewith accompanying probabilistic linear discrim-
inant analysis (PLDA) [19, 20] as its back-end model.

The data requirement to solve session variation is much
more demanding than the previous two phases. Especially,
differentiating session variation requires single-speakermultiple-
condition (SSMC) data. This type of data is much harder to
collect as it requires the same speaker providing utterances
under different conditions. Fortunately, NIST SRE, after
year by year evaluation, offered a large amount of SSMC
data, and the research conducted in this phase mostly used
the NIST SRE data, which was primarily collected by LDC
under the Mixer protocol [21].
2.4. Phase 4: Complex variation

The session variation, especially covered by the NIST
SRE, varies in channels, background noises and even lan-
guages. However, these variations are largely under control.
The speech data collected by the Mixer project, be it tele-
phonic conversations or interviews, was constrained by the
collection process, e.g., the participants were fully coopera-
tive.

Recently, researchers are attempting to solve amore chal-
lenging task: recognizing speakers in the wild. A key feature
of this task is that the speakers do not cooperate with or are
even aware of being recorded, and the recording conditions
are fully unconstrained, leading to more complex variation.
For example, the audio/video posted on YouTube may be
fully spontaneous and recorded by diverse devices.

Addressing such complex variations is highly challeng-
ing. Fortunately, the DNN-based methods have shown great
potential in dealing with this problem [7, 8, 9, 10]. So far, the
most popular deep learning architecture is based on the con-
cept ‘deep embedding’, which converts speech segments of
variable lengths to fixed-length continuous vectors. Accom-
panied by a back-end scoring model (e.g., PLDA), the deep
embedding approach has gained the state-of-the-art perfor-
mance.

The most successful deep embedding model is the x-
vector model, proposed by Snyder et al. [9]. Recent progress
on the deep speaker embedding approach includesmore com-
prehensive architectures [22, 23], improved pooling meth-
ods [10, 24, 25, 26], better training criteria [27, 28, 29, 30,
31, 32], and better training schemes [33, 34, 35]. Another
popular deep learning approach is the end-to-end modeling,
which discriminates speakers of two speech segments di-
rectly [36, 37, 38]. A key advantage of the end-to-end ap-
proach is that the training and test are based on the same
criterion, which ensures the test is optimal if the data is suf-
ficient and the training can be well conducted. However, the
training process is often tricky [39].

Due to the data-driven nature, DNN-based methods are
data-hungry. Ideally, the training data must comprise all the
potential variations and their combinations that may appear
in real applications. To meet this demand, researchers from
SRI released SITW, the first dataset in unconstrained con-

ditions [40]. This dataset contains audio from 299 speakers,
with an average of 8 different sessions per speaker. Although
very valuable, SITW is too small to be used as a training
set. Oxford released a large in-the-wild corpus VoxCeleb1
in 2017 [41], and an even larger one VoxCeleb2 in 2018 [22].
The total number of speakers in the two corpora exceeds
7,000, which is fairly large for speaker recognition research.
More importantly, both SITW and VoxCeleb are free, which
significantly promoted the recent research on complex and
unconstrained conditions.
2.5. Data is still insufficient

With decades of research, complex variation can be par-
tially addressed, thanks to the SITW and VoxCeleb corpora.
However, the present research is yet to solve the truly com-
plex (and difficult) variations. In fact, most of SITW/VoxCeleb
data are from interviews, so the variation on speaking styles
has been largely constrained. Most importantly, the record-
ing condition and speaking style of each speaker in these cor-
pora do not change much, which means that speakers and
conditions may be heavily coupled [42].

Aswe havementioned, themulti-genre scenario involves
the truly complex variation, making it one of the most dif-
ficult conditions for speaker recognition research3. Unfor-
tunately, none of existing datasets is really multi-genre, in-
cluding SITW and VoxCeleb, which makes the research on
multi-genre speaker recognition nearly impossible. The re-
cently published CN-Celeb1 corpus, allows some prelimi-
nary studies in this direction [44, 45, 46, 47]. However, the
lack of multi-genre training data severely precludes further
study on this important subject. We therefore start by build-
ing a large-scalemulti-genre training set, and then study some
simple techniques to address the multi-genre challenge.

3. CN-Celeb2: features and collection pipeline
3.1. Revisit CN-Celeb1

TheCN-Celeb1 corpus is a free and public speaker recog-
nition dataset released by the research group of the authors [11].
The speech data were collected from Bilibili, a public media
source, using an automated pipeline similar to the one used
to collect VoxCeleb [41]. Human check was arranged to en-
sure the quality of the collected data. Especially, CN-Celeb1
was intentionally designed to cover multiple genres, in par-
ticular cross-genre situations. The entire dataset contains
more than 130,000 utterances from 1,000 Chinese celebri-
ties, and covers 11 different genres in real world. Readers
can refer to the original publication [11] for more details of
the data profile and the collection pipeline.

We note that choosing celebrities as the target speakers
is important for CN-Celeb1 to achieve its goal. Celebrities
naturally appear in multiple situations and speak in multiple
genres, which perfectly matches our research on multi-genre
phenomenon. However, we do not expect that the speak-
ing style of celebrities would be fully spontaneous, and we

3Others may include recognition with disguised speech or non-speech
signals such as laugh and cough [43].
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Table 2
Comparison between CN-Celeb1 and CN-Celeb2.

CN-Celeb1 CN-Celeb2

Language Chinese Chinese
Genre 11 11
# of Sources 1 5
# of Spks 1,000 2,000
# of Utters 130,109 529,485
# of Hours 274 1,090
# of SSMC Spks 745 658
Human Check Yes Yes

can neither guarantee that speech of celebrities can perfectly
represent that of the general public. A 100% spontaneous
speech dataset covering a large population and diverse gen-
res is certainly valuable, but constructing such a dataset will
be very difficult, considering the constraints in terms of leg-
islation and technical possibility. At present, although not
fully spontaneous and representative, speech of celebrities
is sufficient for our research purpose.

Recently, CN-Celeb1 has attracted increasing attention
and several multi-genre studies have been carried out using
this dataset [44, 45, 46, 47]. Although very valuable, CN-
Celeb1 is not large enough to be used as a standalone train-
ing set. We therefore present a new large-scale multi-genre
corpus called CN-Celeb2 to meet the requirements for multi-
genre training. This section summarizes the data collection
pipeline and presents the data profile of this new corpus.
CN-Celeb1 and CN-Celeb2 make up the overall CN-Celeb
corpus. It has been published in OpenSLR4 and is freely
available for researchers.
3.2. Data Description

CN-Celeb2 shares the same features as CN-Celeb1. Both
the corpora were collected from Chinese open media, and all
the constituent speakers are Chinese celebrities. The overall
statistics are shown in Table 2.

• The data volume of CN-Celeb2 is larger thanCN-Celeb1.
CN-Celeb2 contains 529, 485 utterances from 2, 000
Chinese celebrities, the total speech duration is 1, 090
hours, which is around 4 times the volume of CN-
Celeb1.

• CN-Celeb2 was collected from more media sources
compared to CN-Celeb1. All the data of CN-Celeb1
were collected fromBilibili5. For CN-Celeb2, we col-
lected singing data fromNetEase Cloud6 andChangba7,
recitation data from Himalaya8, and vlog data from
Tik Tok9. Fig. 1 shows the source distribution of the
two datasets.

4https://openslr.org/82/
5https://bilibili.com
6https://music.163.com/
7https://changba.com/
8https://www.ximalaya.com/
9https://www.douyin.com/

Figure 1: The media source distribution of (a) CN-
Celeb1 and (b) CN-Celeb2.

Table 3
The audio duration distribution of CN-Celeb1 and CN-
Celeb2.

Duration(s) CN-Celeb1 CN-Celeb2

# of Utters Proportion # of Utters Proportion

<2 41,658 32.02% 36,505 6.89%
2-5 38,629 29.69% 57,215 10.81%
5-10 23,497 18.06% 266,799 50.39%
10-15 10,687 8.21% 154,120 29.11%
>15 15,638 12.02% 14,846 2.80%

• The audio duration distributions of CN-Celeb1 and
CN-Celeb2 are shown in Table 3. It can be seen that
short utterances account for a larger proportion in both
CN-Celeb1 and CN-Celeb2, which reflects the sce-
nario of most real-life applications but leads to a more
complex challenge for speaker recognition research.

• CN-Celeb2 includesmore data for the genres that were
not well covered by CN-Celeb1, such as vlog, live
broadcast. The genre distributions of CN-Celeb1 and
CN-Celeb2 are shown in Table 4.

• CN-Celeb2 contains lessmulti-genre speakers thanCN-
Celeb1. Fig. 2 shows the distribution of multi-genre
speakers in the two datasets. The reason is that the
number of celebrities who are active in multiple do-
mains is limited, making it very difficult to collectmulti-
genre data. Compared to CN-Celeb1where 75% speak-
ers are multi-genre, there are only 33% multi-genre
speakers in CN-Celeb2. Note that although a large
proportion of the speakers are single-genre, the speech
utterances were still collected from multiple sessions
in diverse conditions. Such multi-session data is also
very valuable and can be used to develop techniques
that can address the multi-genre challenge with lim-
ited multi-genre data.

• The averaged number of utterances per speaker is 265
in CN-Celeb2 and 130 in CN-Celeb1. Fig. 3 shows
the number of speakers that have different numbers
of utterances in the two datasets, where the minimum
length of the utterances counted in the statistics is set
to be 0s, 2s, 5s, 10s respectively in the four plots.
In other words, utterances shorter than the minimum
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Table 4
The genre distribution of CN-Celeb1 and CN-Celeb2.

Genres CN-Celeb1 CN-Celeb2

# of Spks # of Utters # of Hours # of Spks # of Utters # of Hours

Advertisement 17 120 0.18 66 1,542 3.86
Drama 160 7,247 6.43 268 13,116 16.32
Entertainment 483 22,064 33.67 616 31,982 60.84
Interview 780 59,317 135.77 519 34,024 81.28
Live Broadcast 129 8,747 16.35 388 167,019 439.95
Movie 62 2,749 2.20 133 4,449 5.77
Play 69 4,245 4.95 127 14,992 22.04
Recitation 41 2,747 4.98 218 58,231 129.18
Singing 318 12,551 28.83 394 42,157 75.19
Speech 122 8,401 36.22 394 36,680 82.58
Vlog 41 1,894 4.15 488 125,293 177.00

Overall 1,000 130,109 273.73 2,000 529,485 1090.01

Figure 2: The distribution of multi-genre speakers in
CN-Celeb1 and CN-Celeb2.

length are ignored when computing the statistics. It
reflects the proportion of speakers that have different
numbers of utterances.

• The averaged number of sessions per speaker is 17 in
CN-Celeb2 and 6 in CN-Celeb1. Note that we treat
each video as a single session, even though some videos
may involvemultiple sessions (e.g., in amovie or play).
Fig. 4 shows the number of speakers that have dif-
ferent numbers of sessions in the two datasets, where
the minimum length of the utterances counted in the
statistics is set to be 0s, 2s, 5s, 10s respectively in the
four plots. It reflects the proportion of speakers that
have different numbers of sessions.

We also compare CN-Celeb1 and CN-Celeb2 with some
existing datasets in Table 5. Note that NIST SRE dataset
has not been enumerated as it is not a standalone corpus and
changes in composition with each release.

Figure 3: The distribution of speakers that have dif-
ferent numbers of utterances in CN-Celeb1 and CN-
Celeb2. For the four plots, the minimum length of the
utterances is set to be 0s, 2s, 5s, 10s respectively, repre-
senting that utterances shorter than the minimum length
are ignored when computing the statistics.

3.2.1. Collection pipeline
CN-Celeb2 was collected following a similar pipeline

as CN-Celeb1. The source code has been published online
to help readers reproduce our work and collect their own
data10.

Broadly, the collection process comprises two stages: in
the first stage, potential segments of the Person of Interest
(POI) were extracted from a large amount of raw videos with
an automatic tool, and then in the second stage, human check
was employed to remove incorrect segments. This process
is much faster than purely human-based segmentation, and
also avoids potential errors caused by a purely automated
process, as VoxCeleb has employed. We highlight that the

1http://www.openslr.org/38/
2https://catalog.ldc.upenn.edu/LDC2006S26
3Here presents RedDots_r2015q4_v1 released up to August 17th 2015.

10https://github.com/celebrity-audio-collection/videoprocess
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Table 5
Comparison of existing speaker recognition datasets.

Name Collection Environment Language Data Source # of Spks # of Utters Free

Forensic Comparison [48] clean Australian English mobile 552 1, 264 Yes
Free ST Chinese Mandarin1 clean Chinese mobile 855 102, 600 Yes
TIMIT [49, 50] clean English telephone 630 6, 300 No
SWB [51] clean English telephone 3, 114 33, 039 No
CSLU2 mostly clean English telephone 500 6, 000 No
NIST SRE [52, 53] clean, noisy Multilingual telephone, microphone − − No
Aishell-1 [54] clean Chinese mobile 400 140, 000 Yes
Aishell-2 [55] clean Chinese mobile 1, 991 1, 000, 000 Yes
RSR2015 [56] clean English mobile, tablet 300 190, 000 No
RedDots [57]3 clean Multilingual mobile 62 13, 500 Yes
HI-MIA [58] near/far-field Chinese, English microphone, mobile 340 3, 940, 000 Yes
BookTubeSpeech [59] multi-media English BookTube 8, 450 38, 707 Yes
SITW [40] interview English open-source media 299 2, 800 Yes
VoxCeleb1 [41] mostly interview Mostly English YouTube 1, 251 153, 516 Yes
VoxCeleb2 [22] mostly interview Multilingual YouTube 6, 112 1, 128, 246 Yes
CN-Celeb1 [11] multi-genre Chinese Bilibili 1, 000 130, 109 Yes
CN-Celeb2 multi-genre Chinese multi-media sources 2,000 529,485 Yes

Figure 4: The distribution of speakers that have differ-
ent number of sessions in CN-Celeb1 and CN-Celeb2.
For the four plots, the minimum length of the utterances
is set to be 0s, 2s, 5s, 10s respectively, representing that
utterances shorter than the minimum length are ignored
when computing the statistics.

human check is important in our case: because the multi-
genre data are very complex in both video and audio, the
purely automatic process cannot deal with such complexity.
Although the human check makes the process more costly,
it results in a more valuable dataset.

Our automatic pipeline is largely borrowed from the one
used for collectingVoxCeleb1 [41] andVoxCeleb2 [22], with
some modifications to increase the efficiency and precision.
In particular, we introduced an additional relaxation & re-
covery step that employs both image and speech information
to validate the extracted segments. The detailed steps of the
collection process are summarized as follows.

• STEP1. POI list design. Wemanually selected 2, 000
Chinese celebrities as our target speakers. These speak-

ers were mostly from the entertainment sector, includ-
ing singers, drama actors/actresses, news reporters and
interviewers. Regional diversity was also taken into
account so that variations in accent were covered.

• STEP 2. Pictures and videos download. Pictures
and videos of the 2, 000 POIs were downloaded from
several media sources by searching for the names of
the persons.
For pictures, we developed a crawler to download pic-
tures of POIs using the search engine Baidu11. For
each POI, 120 pictures were downloaded and 10 clear
pictures were selected by a human examiner. Since
the POIs are well-known, the selection was very easy
and the errors were rare. We then arranged a double
check process, in which the selected 10 pictures were
rechecked by another examiner.
For videos, we firstly searched the POI name in the
source media. In order to specify that we were search-
ing for POI names, the word ‘human’ was appended
to the search queries. Secondly, for each POI, at most
10 videos were manually selected and downloaded for
each genre, depending on how many videos can be
found in that genre. One examiner was responsible
for one POI, and a double check process was arranged
to ensure the quality.

• STEP 3. Face detection and tracking. For each
POI, we firstly obtained the portrait of the person by
detecting and clipping the face images from all pic-
tures of that person. The RetinaFace algorithm was
used for the detection and clipping [60]. Thereafter,
video segments that contained the target person were
extracted. This was achieved via the following three-
step process: (1) For each frame, detect all the faces

11https://image.baidu.com/
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appearing in the frame using RetinaFace; (2) Deter-
mine if the target person appears by comparing the
POI portrait and the faces detected in the frame using
the ArcFace face recognition system [61]. (3) Apply
the MOSSE face tracking system [62] supported by
OpenCV Tracker12 to produce face streams.

• STEP 4. POI speaking verification by SyncNet. As
in [41], we employed a mouth-speech synchronization
detection system [63] to verify that the target person
(POI) is speaking, by testing if the mouth movement
of the target person is synchronized with the speech
signal. This is necessary especially in genres such as
movie, drama and entertainment where the target per-
son appears in the video but the speech is from other
persons. A pre-trained SyncNet model13 was used in
our implementation.

• STEP5. Relaxation& recovery by speaker diariza-
tion. Although SyncNet worked well in most cases, it
failed for videos of complex genres such as advertise-
ment, movie and vlog. In these genres, scenes may
change abruptly in time, leading to a large number of
small POI segments. To solve this problem, we em-
ployed a relaxation & recheck process: Firstly relaxes
the result of SyncNet by merging the adjacent POI
segments if their distance is less than 10 frames, and
secondly recovers the true POI part from the merged
segments, by using a speaker diarization system.
The details of the recovery step are as follows: we
used an off-the-shelf speaker diarization system14 to
split the input speech into speaker-homogeneous trunks.
The diarization system was based on the UIS-RNN
model [64], which firstly split the entire speech into
small pieces of 1s length with 0.6s overlap, and then
extracted the speaker embeddings of all the pieces us-
ing a pre-trainedVGG speaker recognitionmodel [26].
The UIS-RNN model then clustered the embeddings
of all the pieces into several clusters, each correspond-
ing to a single speaker. According to the clustering
result, adjacent pieces were merged together if they
were from the same cluster, resulting into speaker ho-
mogeneous trunks.
In order to utilize the diarization result, the POI clus-
ter was firstly identified as the one that overlapped
with the SyncNet output most. Then the overlap be-
tween the speaker-homogeneous trunks of the POI clus-
ter (output from the diarization) and the merged POI
segments from SyncNet (output from the relaxation)
was output as the final POI speech segments.

• STEP 6. Human check. The POI segments pro-
duced with the above automated pipeline were finally
checked by humans. To ensure the quality, we de-
signed an iterative process: For each POI, the extracted

12https://learnopencv.com/object-tracking-using-opencv-cpp-python/
13https://github.com/joonson/syncnet_python
14https://github.com/taylorlu/Speaker-Diarization

POI segments were firstly assigned to an examiner for
the first-round full check, and then 20 segments were
sampled and assigned to another examiner for spotting
check. If the accuracy returned by the spotting check
was lower than 90%, the task would be bounced back
to the first examiner for the second-round full check.
This process repeated until the spotting check returned
an accuracy higher than 90%.
According to our experience, this human check is rather
efficient: one could check 1 hour of speech in 1 hour.
As a comparison, if we do not apply the automated
pre-selection, checking 1 hour of speech requires about
4 hours.

3.3. Pruning rate
Human check is the most costly step in the CN-Celeb

pipeline. An interesting question is that if this check is nec-
essary, especially for the genres that are relatively easy to
deal with. For example, for interview, the accuracy of the
automatic process might be sufficiently high – at least Vox-
Celeb1 andVoxCeleb2were collected using a similar pipeline,
without any human check.

To investigate how necessary the human check is, we
compute the pruning rate for each genre, i.e., the proportion
of frames that were pruned by human check. The results
are shown in Figure 5. Firstly, it can be seen that for some
genres (e.g., speech, recitation, interview), the pruning rate
is relatively small, indicating that the automatic process can
be regarded as reliable; however for other genres (e.g., play,
movie), the pruning rate is very high, which means there is a
big proportion of frames produced by the automated process
that are incorrect. These results confirm the necessity of the
human check in complex genres. As we will see in the next
section (Table 9), speaker recognition performance is often
worse on genres with a high pruning rate. This observation
indicates that more complex the genre is, more necessary the
human check is.

4. Experiment I: Multi-genre challenge
In this section, we will study the basic performance of

speaker recognition systems on multi-genre conditions. Our
goal is to investigate the behavior of the state-of-the-art sys-
tems when the enrollment/test genre is different from that of
the training, and when the enrollment and test are in different
genres.
4.1. Basic results

We built two speaker recognition systems, one is based
on the i-vectormodel and one is based on the x-vectormodel.
The two systems are used as baseline systems to test the
single-genre performance and multi-genre performance on
SITW and CN-Celeb.E, respectively.
4.1.1. Data
VoxCeleb15: This is used as the training data. It comprises
VoxCeleb1 and VoxCeleb2, amounting to 2, 000+ hours of

15http://www.robots.ox.ac.uk/∼vgg/data/voxceleb/
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Figure 5: Pruning rate with human check when collecting CN-Celeb1 and CN-Celeb2.

Table 6
Data profile of CN-Celeb.E.

Enroll Data Avg. Length per Utt 28s
# of Utters per Spk 5

Test Data Avg. Length per Utt 8s
# of Utters per Spk 90

Gender Info # of Female 84
# of Male 116

Trials # of Target 18,024
# of Nontarget 3,586,776

speech signals from 7, 000+ speakers. Data augmentation
was applied to improve robustness, with the MUSAN cor-
pus [65] to generate noisy utterances, and the room impulse
responses (RIRS) corpus [66] to generate reverberant utter-
ances.
SITW: This dataset is used for testing single-genre perfor-
mance. It comprises 6, 445 utterances from 299 speakers
(precisely, this is the Eval.Core set within SITW). Note that
this dataset is similar to VoxCeleb in terms of data proper-
ties, and so there is no genre mismatch when used as the test
set. The test protocol (trials for test) follows the Kaldi SITW
recipe16.
CN-Celeb.E: This dataset is a subset of CN-Celeb1, con-
taining 18, 224 utterances from 200 speakers. All the speak-
ers are multi-genre. Note that data of the interview genre
is similar to VoxCeleb and SITW, although they are from
different media sources. Therefore, there is a domain mis-
match between training and enrollment/test, while the genres
are the same. During the test, speakers enroll once and are
tested against multiple utterances. The enrollment speech
(might be split into multiple utterances) for each speaker is
28s on average. The average length of the test utterances is
8s, and there are 18,024 test utterances in total, 90 utterances
per speaker in average. The trials are produced by cross pair-
ing the enrollment speech and the test utterances, amounting
to 3,604,800 gender-independent test trials. More details of
the test data and trials are shown in Table 6.
SITW(S): This is an auxiliary dataset for performance anal-
ysis. As the average length of SITW is much longer than

16https://github.com/kaldi-asr/kaldi/egs/sitw

that of CN-Celeb.E, the results on these two datasets are not
directly comparable. For a more reasonable comparison, we
trim the utterances of SITW to match the average length of
the utterances in CN-Celeb.E, which is 28s and 8s for en-
rollment and test, respectively. This new dataset is called
SITW(S), and the test protocol on this dataset is the same as
in SITW.
4.1.2. Baseline Systems

In this study, we firstly use the SITW recipe of the Kaldi
toolkit [67] to build our i-vector and x-vector baselines. This
basic recipe may not achieve the best performance on a par-
ticular dataset, but has been demonstrated to be highly com-
petitive and generalizable by many researchers with their
own data and model settings. We therefore consider that
this recipe can represent a stable state-of-the-art technique.
Moreover, using this recipe allows others to reproduce our
results easily.
i-vector system: The i-vector model was built following the
Kaldi SITW/v1 recipe. The acoustic features comprise 24-
dimensionalMFCCs plus the log energy, augmented by first-
and second-order derivatives, resulting in a 75-dimensional
feature vector. Moreover, cepstralmean normalization (CMN)
is employed to normalize the channel effect, and an energy-
based voice active detection (VAD) is used to remove silence
segments. The universal background model (UBM) consists
of 2,048 Gaussian components, and the dimensionality of
the i-vector is set to be 400. For the back-end model, LDA
is firstly employed to reduce the dimensionality to 150, and
then PLDA is used to score the trials.
x-vector system: The x-vector model was created follow-
ing the Kaldi SITW/v2 recipe. The acoustic features are
30-dimensional MFCCs. The DNN architecture involves 5
time-delay (TD) layers to learn frame-level deep speaker fea-
tures, and a temporal statistic pooling (TSP) layer is used to
accumulate the frame-level features to utterance-level statis-
tics, including the mean and standard deviation. After the
pooling layer, 2 fully-connection (FC) layers are used as the
classifier, for which the outputs correspond to the number of
speakers in the training set. Once trained, the 512-dimensional
activations of the penultimate layer are read out as an x-
vector. The back-end model is the same as in the i-vector
system, which includes LDA for dimensional reduction, and
PLDA to score the trials.
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Table 7
EER(%) results with the i-vector and x-vector baseline systems.

System
Training Set Test Set

Front-end Back-end SITW SITW(S) CN-Celeb.E

i-vector VoxCeleb VoxCeleb 5.66 7.41 18.37
x-vector VoxCeleb VoxCeleb 3.48 4.62 16.59

Table 8
EER (%) results of more powerful x-vector systems. ‘TSP’
represents temporal statistic pooling. ‘SAP’ represents self-
attentive pooling. ‘AAM’ represents additive angular margin.

Topology Pooling Loss SITW CN-Celeb.E

TDNN TSP Softmax 2.43 16.87
TDNN TSP AAM-Softmax 2.49 16.65
TDNN SAP Softmax 2.41 17.11
TDNN SAP AAM-Softmax 2.57 16.96
ResNet-34 TSP Softmax 2.41 16.74
ResNet-34 TSP AAM-Softmax 1.96 16.51
ResNet-34 SAP Softmax 2.16 17.33
ResNet-34 SAP AAM-Softmax 2.30 16.52

4.1.3. Baseline results
The overall results in terms of equal error rate (EER) are

shown in Table 7. It can be seen that both the i-vector and
x-vector systems obtain reasonable performance on SITW,
and the results are similar to the official results released with
Kaldi recipes. The results on SITW(S) are slightly worse
than those on SITW, which is expected as the enrollment and
test utterances are shorter in this dataset. The performance
on CN-Celeb.E is much worse. For example, compared to
the x-vector results on CN-Celeb.E and SITW(S), the EER
on CN-Celeb.E increases by more than 300%. These results
clearly indicate that the state-of-the-art speaker recognition
systems cannot inherently deal with the complexity intro-
duced by multiple genres.
4.1.4. More powerful x-vector systems

We have also implemented more powerful x-vector sys-
tems by using arguably more advanced techniques. In this
work, we used an open-source code17 and tested a bunch of
state-of-the-art architectures/techniques, such as ResNet [22,
68], self-attentive pooling [69] and additive angular margin
loss [61], on SITW and CN-Celeb.E. The results are shown
in Table 8. It can be found that although these more ad-
vanced systems obtain obvious performance improvements
over the basic x-vector system on SITW (1.96% vs. 3.48%),
they did not show clear superiority on CN-Celeb.E (16.51%
vs. 16.59%). It indicates that these advanced techniques
may simply overfit to the training condition and so are of
little help in solving the multi-genre challenge. This is an-
other reason why we use the basic x-vector architecture as
our baseline.

17https://github.com/kjw11/tf-kaldi-speaker

Table 9
EER(%) results of the baseline systems in different genres on
CN-Celeb.

Genres # of Spks # of Utters i-vector x-vector

Advertisement 75 781 12.43 9.37
Drama 377 4,521 14.66 11.70
Entertainment 1,020 18,931 9.48 7.31
Interview 1,253 41,586 9.06 6.98
Live Broadcast 496 154,249 6.79 5.42
Movie 165 1,495 14.17 11.47
Play 170 5,476 13.87 11.56
Recitation 259 58,839 19.21 16.55
Singing 683 38,879 23.37 20.86
Speech 331 39,792 4.19 3.21
Vlog 524 120,812 7.92 5.31

Overall 3,000 485,361 8.75 7.43

4.2. Within-genre results
In this section, we break down the multi-genre tests and

compare the performance in different genres. We focus on
the case where the enrollment and test utterances are from
the same genre. To ensure the confidence of experimental
results, we use the overall CN-Celeb dataset (3,000 speak-
ers in total) for test and also filter away short utterances with
less than 5s duration. Table 9 presents the EER results, and
Figure 6 shows the DET curves. In the test for each genre, 5
utterances of each speaker are randomly selected for enroll-
ment, and the remaining utterances are used for test.

It can be observed that with both the i-vector and the x-
vector systems, performance on different genres is substan-
tially different. For genres such as speech, live broadcast,
vlog and interview, the EER results are less than 8%, and the
performance is relatively acceptable. While for genres such
as singing, recitation, drama and movie, the EER results are
more than 12%, and the performance is quite unacceptable.
The performance discrepancy on different genres could be
attributed to two reasons: Firstly, the speaker-independent
variation is naturally much more significant for some genres
compared to others. For example, the channel, background
and speaking style in speech and interview tend to be more
controlled than those in singing and drama. The more com-
plex the variation, the more difficult it is for the speaker traits
to be identified. Secondly, the i-vector and x-vector models
are trained with VoxCeleb that mainly consists of interview
speech. This perhaps makes the model biased to interview
and similar genres such as speech and live broadcast.

Another observation is that even for the interview genre,
the performance is much worse than that obtained on SITW
(6.98% vs. 3.48% on the x-vector system). This is clearly
caused by the discrepancy between channels and languages
of the two sources of CN-Celeb and SITW (Bilibili, etc.,
for CN-Celeb while YouTube for SITW). It indicates that
the true performance of the present state-of-the-art speaker
recognition system is not as good as one though from the
results reported on SITW, even without genre mismatch.

Taking the x-vector system as an example, if we set the
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Figure 6: DET curves of different genres with the i-vector and x-vector systems.
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Figure 7: Cross-genre tests with the i-vector system. The lightness of the color corresponds
to the numerical value of the EER(%).

overall EER (7.43%) as the threshold for an acceptable sys-
tem, the present speaker recognition system can only obtain
reasonable performance in a few genres. These genres are
speech, vlog, live broadcast, interview and entertainment.
This clearly demonstrated how challenging the multi-genre
problem is.
4.3. Cross-genre results

In this section, we focus on cross-genre test and compute
a genre-to-genre performance matrix. Figure 7 and Figure 8
show the EER results with the i-vector system and the x-
vector system, respectively. The numerical values shown in
the blocks are the EER results under the enrollment genre
corresponding to its row and the test genre corresponding to
its column. Note that the diagonal results show the in-genre
results in Table 9. The last column shows the overall results
that the enrollment is based on one genre and test is on all
the genres. Note that there are two blank cells (recitation-
advertisement and recitation-advertisement). This is because

there is only 1 recitation-advertisement speaker, whichmakes
the EER result unreliable.

Firstly, paying attention to the overall results (the last
column) enrolled with each genre, it can be found that the
best performance is obtained when the enrollment is with the
speech genre, and the worst performance is obtained when
the enrollment is with the singing genre. Roughly stating,
the simpler the enrollment condition (e.g., speech, interview,
etc.), the better is the average performance obtained. This is
good news as one tends to enroll in the silent environments
with careful pronunciation.

Secondly, the results with the same enroll-test pair (e.g.,
singing-speech and speech-signing) are roughly the same.
This phenomenon was also observed in some previous stud-
ies on multiple speaking styles, e.g., [70, 71, 72, 73]. This
indicates that the variation in the enrollment genre is similar
to the variation in the test genre.

Thirdly, the cross-genre performance is determined by
two factors: (1) the complexity of the enrollment/test genre,
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Figure 8: Cross-genre tests with the x-vector system. The lightness of the color corresponds
to the numerical value of the EER(%).

Figure 9: Cross-genre results (EER %) for acceptable conditions (EER threshold = 7.43%)
with the x-vector baseline system.

(2) the degree of match between the two genres. For ex-
ample, when the enrollment is movie, the EER is 14.17%
when the test genre is movie, which is not very bad due to
the matched genre; however the EER is 11.67% when the
test genre is speech, which is even better, due to the sim-
pler condition of the speech genre. In general, worse perfor-
mance is obtained when the enrollment and test genres are
less matched.

In summary, the cross-genre phenomenon is highly com-
plex, and in most of the conditions, the performance is not
acceptable. Taking the x-vector system as an example, if
we set the overall EER (7.43%) as the threshold for accep-
tance, there are only several conditions can be deemed ac-
ceptable, as shown in Figure 9. These observations indicate
once again that cross-genre is a very challenging problem.

For a deep analysis, we also report results in two metrics
related to score calibration: the cost of log likelihood ratio
(LLR) denoted by Cllr and the minimum cost of LLR de-
noted byCmin

llr [74, 75]. Compared to EER,Cllr evaluates theaveraged performance over all the possible settings on the
priors and costs of the target and non-target trials, by assum-
ing that the PLDA scores are LLRs. In the cross-genre situa-
tion, the enrollment and test conditions are drastically differ-
ent, and so the PLDA scores may significant deviated from
the true LLRs. In this case, a large Cllr could be attributed
to the lack of both discrimination and regularization of the

PLDA scores, where discrimination refers to how well the
scores can distinguish target and non-target trails, while reg-
ularization refers to how well the scores represent LLRs . A
score calibration can be designed to map the scores to LLRs.
This map is monotonic and so does not change the discrim-
ination capacity of the scores but improves regularization.
When the calibration is perfect (which can be obtained with
a finite evaluation set), the resultant Cllr is Cmin

llr . Therefore
the difference betweenCllr andCmin

llr (sometimes calledCloss) reflects how the PLDA scores biased from LLRs and how
much the score calibration may contribute.

It should be noted that score calibration does not change
EERs with each cross-genre test as the calibration is sim-
ply a monotonic score mapping. However, it may improve
system performance on the overall test, by applying differ-
ent calibration models for different cross-genre tests. This
is because after the test-dependent calibration, the scores of
different tests become comparable and a cross-test threshold
is applicable.

TheCllr/Cmin
llr results are shown in Table 10 and Table 11

for the i-vector and x-vector systems, respectively. Note that
the last column ‘Total’ reports the results with all the test
trials pooled of each row.

We firstly observe that the performance tendency of the
Cmin
llr results are similar to that of the EER results. This is not

very surprising as both evaluate the discrimination power
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Figure 10: Cross-genre tests with the i-vector system. The lightness of the color corre-
sponds to the numerical value of the Cllr/Cmin

llr .
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(a) Cllr results with the x-vector system under cross-genre tests
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(b) Cmin
llr results with the x-vector system under cross-genre tests

Figure 11: Cross-genre tests with the x-vector system. The lightness of the color corre-
sponds to the numerical value of the Cllr/Cmin

llr .
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of the scores, though Cmin
llr reflects the expected error rate

while EER is the error rate at the equilibrium point of false
acceptance and false rejection. Due to the similar trend, we
will keep use EER as the main metric and report the EER
results only when discussing the relative performance.

Moreover, we found that there is a large gap betweenCllrand Cmin
llr , and this gap is more significant for the test scenar-

ios where the enroll-test mismatch is more obvious (spec-
ified by results in EER and Cmin

llr ). This indicates that the
PLDA scores are far from LLRs, and score calibration is im-
portant in real applications where a threshold is required for
decision making.
4.4. Statistical analysis

In this section, we analyze the performance degradation
under within-genre and cross-genre conditions. A key in-
sight is that if the distribution of the speaker vectors remains
the same as in the training condition, then the performance
with the PLDA scoring will be optimal assuming the PLDA
model is well trained with the training data [76]. There-
fore, the performance degradation we observe in the multi-
genre test (either thewithin-genre test or the cross-genre test)
can be understood by the change in the statistics of the dis-
tribution. Since PLDA is the back-end scoring model, we
compute the statistics related to PLDA, including the inter-
speaker variance, intra-speaker variance and the global mean
shift. We will compute these statistics of each genre and ob-
serve the statistics change amongst different genres.

We firstly compute the inter-speaker variance and intra-
speaker variance of each genre in Table 10. Besides, we also
compute themean shift betweenVoxCeleb and different gen-
res of CN-Celeb. The mean vector of VoxCeleb is regarded
as a reference vector, and the mean vectors of different gen-
res in CN-Celeb are regarded as genre vectors. The mean
shifts can be computed between the reference vector and dif-
ferent genre vectors based on the Euclidean distance and Co-
sine similarity. Results are shown in Table 11. Note that all
these results are computed in the PLDA transformed space.

Firstly, it can be found that the statistics of VoxCeleb are
more similar to matched genres (e.g., speech and interview)
compared to unmatched genres (e.g., singing and recitation),
and the mean shift is less significant in the case of matched
genres. As the PLDA is trained on VoxCeleb, if the statis-
tics change and the mean shift are significant, the perfor-
mance will be impacted. Referring to the results in Table 9,
it can be observed that the genre incurring the most signif-
icant statistics change and mean shift suffers from the most
performance reduction.

The statistics change and the mean shift cause more se-
vere problems in the cross-genre scenario, as the enroll data
and test data in this scenario possess different statistical prop-
erties but they have to be represented in a single PLDAmodel.
We presented a deep analysis on this enroll-test mismatch
problem in our recent study [77], but mismatch caused by
the cross-genres challenge is yet to be thoroughly studied.

Table 10
Inter-speaker variances (Sb) and intra-speaker variances (Sw)
of i-vectors and x-vectors derived from VoxCeleb and different
genres of CN-Celeb.

Genres i-vector x-vector

Sb Sw Sb Sw

VoxCeleb 0.920 1.042 1.053 0.894

Advertisement 0.443 1.020 1.162 3.167
Drama 0.297 1.227 0.982 4.835
Entertainment 0.300 1.176 0.889 4.179
Interview 0.297 1.114 0.755 3.967
Live Broadcast 0.357 1.052 0.822 2.023
Movie 0.404 1.210 1.201 5.289
Play 0.250 1.232 0.868 4.740
Recitation 0.360 1.481 0.816 2.379
Singing 0.204 1.226 0.618 2.884
Speech 0.542 1.096 1.038 2.225
Vlog 0.349 1.307 0.830 2.726

Table 11
Mean shifts of i-vectors and x-vectors on different genres of
CN-Celeb. Euc. represents Euclidean distance and 1-Cos. rep-
resents Cosine similarity.

Genres i-vector x-vector

Euc. 1-Cos. Euc. 1-Cos.

Advertisement 1.616 1.305 1.554 1.208
Drama 1.575 1.240 1.515 1.148
Entertainment 1.590 1.263 1.551 1.203
Interview 1.562 1.220 1.532 1.174
Live Broadcast 1.498 1.122 1.533 1.174
Movie 1.587 1.259 1.519 1.153
Play 1.482 1.097 1.449 1.049
Recitation 1.491 1.111 1.498 1.123
Singing 1.653 1.366 1.526 1.164
Speech 1.410 0.994 1.426 1.017
Vlog 1.516 1.150 1.543 1.190

4.5. Qualitative analysis
In this section, we analyze the distribution of the speaker

vectors by visualization. Data from 10 speakers of 11 genres
are selected to generate speaker vectors. The t-SNE toolkit [78]
is applied to project the speaker vectors to a 2-dimensional
space. Figure 12 and Figure 13 present the distribution of
i-vectors and x-vectors, respectively.

In Figure 12, it can be seen that with i-vectors, speakers
are largely intermingled with each other. This is not sur-
prising as the i-vector model is purely unsupervised and re-
flects variations of both speaker traits and acoustic condi-
tions. Therefore, it is naturally hard to discriminate amongst
speakers in multi-genre conditions.

For x-vectors presented in Figure 13, one can observe
larger inter-speaker distance and smaller intra-speaker dis-
tance compared to i-vectors. This indicates that the x-vector
model has its advantage to tackle the acoustic complexity as-
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Figure 12: The i-vector distribution plotted by t-SNE, where (a) each color represents a
speaker, (b) each color represents a genre.

Figure 13: The x-vector distribution plotted by t-SNE, where (a) each color represents a
speaker, (b) each color represents a genre.

sociated with multiple genres. Nevertheless, the genre com-
plexity still leads to complicated intra-speaker distributions
and overlap among different speakers. This demonstrates
that multi-genre speaker recognition is quite challenging.

5. Experiment II: Multi-genre training
A straightforward approach to improve the performance

under multi-genre conditions is to train the speaker recogni-
tion system usingmulti-genre data, calledmulti-genre (MG)
training. Correspondingly, training using single-genre data
(e.g., VoxCeleb) is called single-genre (SG) training. In
the following experiments, we use CN-Celeb.T to denote
the speech data in CN-Celeb but not in CN-Celeb.E. We use
VoxCeleb for SG training, and CN-Celeb.T (2, 800 speakers
in total) for MG training.

Besides, as shown Figure 2, there is a large proportion

of multi-genre speakers in CN-Celeb (also in CN-Celeb.T).
These multi-genre speakers are the most important for MG
training, as their data can inform the model what variations
are caused by genres. In order to investigate the contribu-
tion of the multi-genre speakers (which to some extent are
truly multi-genre data), we relabel CN-Celeb.T such that the
data from the same speaker for different genres are treated as
originating from different speakers. This relabeled dataset
is denoted by CN-Celeb.T/SI, where SI means speaker iso-
lation. We call CN-Celeb.T/SI as partial multi-genre data,
and the training on CN-Celeb.T/SI as partial MG training.

In this experiment, we compare the overall performance
on CN-Celeb.E with different training schemes. Since the
baseline system consists of two components: the i-vector/x-
vector front-end model and the PLDA back-end model, we
investigate the impact ofMG training on the two components
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Table 12
Overall EER (%) results with single-genre, multi-genre and partial multi-genre training.

System Scheme Front-end Back-end CN-Celeb.E

Cosine PLDA

i-vector (a) VoxCeleb VoxCeleb 20.88 18.37
(b) VoxCeleb CN-Celeb.T 20.88 15.30
(c) VoxCeleb CN-Celeb.T/SI 20.88 16.31
(d) CN-Celeb.T CN-Celeb.T 19.29 14.01
(e) CN-Celeb.T/SI CN-Celeb.T/SI 19.25 14.81

x-vector (a) VoxCeleb VoxCeleb 20.13 16.59
(b) VoxCeleb CN-Celeb.T 20.13 13.44
(c) VoxCeleb CN-Celeb.T/SI 20.13 14.76
(d) CN-Celeb.T CN-Celeb.T 20.35 12.52
(e) CN-Celeb.T/SI CN-Celeb.T/SI 20.83 13.65

respectively. The results are shown in Table 12.
5.1. Front-end model training

For the front-end models, we firstly compare the perfor-
mance between SG training (a) and MG training (d). To
eliminate the impact of the back-end model, we just look at
the results with cosine scoring. It can be observed that MG
training does not give a clear advantage over SG training, es-
pecially with the x-vector model (20.35% vs. 20.13%). This
may be attributed to the bias in speaker numbers (2,800 in
CN-Celeb.T vs. 7,000+ in VoxCeleb). Note that with the i-
vector model, the MG training leads to slightly better perfor-
mance than the SG training (19.29% vs. 20.88%) although
the MG training used much less data. This better perfor-
mance could be explained by the fact that the training data
(CN-Celeb.T) and the test data (CN-Celeb.E) are coherent in
the MG training, in both languages and acoustic conditions.
This coherence is important for the i-vector model that is
generative and descriptive.

Secondly, we compare the performance betweenMG train-
ing (d) and partial MG training (e). We again focus on the
cosine scoring. Due to the unsupervised training strategy
of the i-vector model, MG training and partial MG training
obtain the same EER results. For the x-vector model, par-
tial MG training is a bit inferior to MG training (20.83% vs.
20.35%). This is expected as the speaker labels of the par-
tial multi-genre data lose the cross-genre information after
speaker isolation.
5.2. Back-end model training

To investigate the impact of MG training on the back-
end PLDAmodel, we compare the performance between SG
training (a) and MG training (b). It can be seen that perfor-
mance with PLDA scoring improves with the MG training,
for both the i-vector and x-vector systems.

Secondly, when comparing the training scheme (c) to (a)
and (b), it can be seen that although the partial MG train-
ing is worse than the MG training (14.76% vs. 13.44% for
the x-vector system), it greatly outperforms the SG train-
ing (14.76% vs. 16.59% for the x-vector system). This in-

dicates that even without cross-genre speakers (true multi-
genre data), data collected frommultiple genres are still very
useful. This is good news, as collecting partial multi-genre
data is much cheaper than collecting true multi-genre data.

In summary, the multi-genre data is important for MG
training and can improve the performance on multi-genre
test. The MG training can be employed to either the front-
end model or the back-end PLDA; though the best perfor-
mance is obtained when both are MG trained. Partial MG
training is not as effective as the true MG training, but it can
provide reasonable gains with a low cost.

6. Conclusion
In this paper, we presented a comprehensive study for

multi-genre speaker recognition. To make the study feasi-
ble, we firstly collected and published a large-scale multi-
genre corpus, CN-Celeb2. Combined with the previously
published CN-Celeb1, we have sufficient data to train and
test speaker recognition systems in multi-genre conditions.

Based on the new dataset, we firstly evaluated the perfor-
mance of the state-of-art speaker recognition systems in the
multi-genre scenario, through which we identified the most
difficult genres, and demonstrated that the major challenge
of multi-genre speaker recognition lies in both genre com-
plexity and genre mismatch. In the second experiment, we
employedmulti-genre training to tackle themulti-genre diffi-
culties. Significant performance improvement was obtained,
and importance of multi-genre speakers was identified.

Multi-genre speaker recognition is very important but is
also very challenging. The research presented in this pa-
per should be regarded as an initial and preliminary study
in this direction. Lots of work remains to be done on this
topic; to mention a few: (1) collection of more multi-genre
data to support the research; (2) development ofmore power-
ful front-end models in order to produce genre-independent
vectors; (3) discovery of more powerful back-end models to
handle the changed statistics from one genre to another; (4)
exploration of physiological models that can describe the
intrinsic change of human pronunciation in different gen-
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res. We anticipate that the multi-genre challenge will be one
of the prime obstacles that needs to be tackled before the
speaker recognition techniques find ubiquitous applicability
in practice.

References
[1] J. P. Campbell, “Speaker recognition: A tutorial,” Proceedings of the

IEEE, vol. 85, no. 9, pp. 1437–1462, 1997.
[2] D. A. Reynolds, “An overview of automatic speaker recognition tech-

nology,” in IEEE international conference on Acoustics, speech, and
signal processing (ICASSP), vol. 4. IEEE, 2002, pp. IV–4072.

[3] J. H. Hansen and T. Hasan, “Speaker recognition by machines and hu-
mans: A tutorial review,” IEEE Signal processing magazine, vol. 32,
no. 6, pp. 74–99, 2015.

[4] S. Parthasarathy and A. E. Rosenberg, “General phrase speaker verifi-
cation using sub-word background models and likelihood-ratio scor-
ing,” in Proceeding of Fourth International Conference on Spoken
Language Processing. ICSLP’96, vol. 4. IEEE, 1996, pp. 2403–
2406.

[5] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification
using adapted Gaussian mixture models,” Digital signal processing,
vol. 10, no. 1-3, pp. 19–41, 2000.

[6] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol. 19, no. 4, pp.
788–798, 2011.

[7] E. Variani, X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez-
Dominguez, “Deep neural networks for small footprint text-dependent
speaker verification,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2014, pp. 4052–
4056.

[8] L. Li, Y. Chen, Y. Shi, Z. Tang, and D. Wang, “Deep speaker feature
learning for text-independent speaker verification,” in Proceedings of
the Annual Conference of International Speech Communication As-
sociation (INTERSPEECH), 2017, pp. 1542–1546.

[9] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-vectors: Robust DNN embeddings for speaker recognition,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2018, pp. 5329–5333.

[10] K. Okabe, T. Koshinaka, and K. Shinoda, “Attentive statistics pool-
ing for deep speaker embedding,” in Proceedings of the Annual Con-
ference of International Speech Communication Association (INTER-
SPEECH), 2018, pp. 2252–2256.

[11] Y. Fan, J. Kang, L. Li, K. Li, H. Chen, S. Cheng, P. Zhang, Z. Zhou,
Y. Cai, and D. Wang, “CN-CELEB: a challenging Chinese speaker
recognition dataset,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 7604–
7608.

[12] A. E. Rosenberg, “Automatic speaker verification: A review,” Pro-
ceedings of the IEEE, vol. 64, no. 4, pp. 475–487, 1976.

[13] T. Matsui and S. Furui, “Concatenated phoneme models for text-
variable speaker recognition,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), vol. 2. IEEE,
1993, pp. 391–394.

[14] D. A. Reynolds, “Automatic speaker recognition using gaussian mix-
ture speaker models,” in The Lincoln Laboratory Journal. Citeseer,
1995.

[15] M. P. Alvin and A. Martin, “NIST speaker recognition evaluation
chronicles,” in Proceedings of Odyssey: The Speaker and Language
Recognition Workshop. Citeseer, 2004.

[16] P. Kenny, M. Mihoubi, and P. Dumouchel, “New MAP estimators
for speaker recognition,” in Eighth European Conference on Speech
Communication and Technology, 2003.

[17] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, “Joint factor
analysis versus eigenchannels in speaker recognition,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol. 15, no. 4, pp.
1435–1447, 2007.

[18] P. Kenny, “Joint factor analysis of speaker and session variability:
Theory and algorithms,” CRIM, Montreal,(Report) CRIM-06/08-13,
vol. 14, pp. 28–29, 2005.

[19] S. Ioffe, “Probabilistic linear discriminant analysis,” in European
Conference on Computer Vision (ECCV). Springer, 2006, pp. 531–
542.

[20] S. J. Prince and J. H. Elder, “Probabilistic linear discriminant anal-
ysis for inferences about identity,” in 2007 IEEE 11th International
Conference on Computer Vision. IEEE, 2007, pp. 1–8.

[21] C. Cieri, L. Corson, D. Graff, and K. Walker, “Resources for new
research directions in speaker recognition: The mixer 3, 4 and 5
corpora,” in Proceedings of the Annual Conference of International
Speech Communication Association (INTERSPEECH), 2007.

[22] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep
speaker recognition,” in Proceedings of the Annual Conference of
International Speech Communication Association (INTERSPEECH),
2018, pp. 1086–1090.

[23] J. weon Jung, H.-S. Heo, J. ho Kim, H. jin Shim, and H.-J. Yu,
“RawNet: Advanced End-to-End Deep Neural Network Using Raw
Waveforms for Text-Independent Speaker Verification,” in Proceed-
ings of the Annual Conference of International Speech Communica-
tion Association (INTERSPEECH), 2019, pp. 1268–1272.

[24] W. Cai, J. Chen, and M. Li, “Exploring the encoding layer and loss
function in end-to-end speaker and language recognition system,” in
Proceedings of Odyssey: The Speaker and Language Recognition
Workshop, 2018, pp. 74–81.

[25] N. Chen, J. Villalba, and N. Dehak, “Tied mixture of factor analyz-
ers layer to combine frame level representations in neural speaker
embeddings,” in Proceedings of the Annual Conference of Interna-
tional Speech Communication Association (INTERSPEECH), 2019,
pp. 2948–2952.

[26] W. Xie, A. Nagrani, J. S. Chung, and A. Zisserman, “Utterance-
level aggregation for speaker recognition in the wild,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 5791–5795.

[27] L. Li, D. Wang, C. Xing, and T. F. Zheng, “Max-margin metric learn-
ing for speaker recognition,” in 10th International Symposium on Chi-
nese Spoken Language Processing (ISCSLP), 2016, pp. 1–4.

[28] W. Ding and L. He, “MTGAN: Speaker verification through multi-
tasking triplet generative adversarial networks,” in Proceedings of the
Annual Conference of International Speech Communication Associa-
tion (INTERSPEECH), 2018, pp. 3633–3637.

[29] J. Wang, K.-C. Wang, M. T. Law, F. Rudzicz, and M. Brudno,
“Centroid-based deep metric learning for speaker recognition,” in
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2019, pp. 3652–3656.

[30] Z. Bai, X.-L. Zhang, and J. Chen, “Partial AUC optimization
based deep speaker embeddings with class-center learning for text-
independent speaker verification,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020,
pp. 6819–6823.

[31] Z. Gao, Y. Song, I. McLoughlin, P. Li, Y. Jiang, and L.-R. Dai, “Im-
proving aggregation and loss function for better embedding learning
in end-to-end speaker verification system,” in Proceedings of the An-
nual Conference of International Speech Communication Association
(INTERSPEECH), 2019, pp. 361–365.

[32] J. Zhou, T. Jiang, Z. Li, L. Li, and Q. Hong, “Deep speaker embed-
ding extraction with channel-wise feature responses and additive su-
pervision softmax loss function,” in Proceedings of the Annual Con-
ference of International Speech Communication Association (INTER-
SPEECH), 2019, pp. 2883–2887.

[33] R. Li, N. Li, D. Tuo, M. Yu, D. Su, and D. Yu, “Boundary discrim-
inative large margin cosine loss for text-independent speaker verifi-
cation,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2019, pp. 6321–6325.

[34] S. Wang, J. Rohdin, L. Burget, O. Plchot, Y. Qian, K. Yu, and J. Cer-
nocky, “On the usage of phonetic information for text-independent
speaker embedding extraction,” in Proceedings of the Annual Con-

First Author et al.: Preprint submitted to Elsevier Page 16 of 18



Short Title of the Article

ference of International Speech Communication Association (INTER-
SPEECH), 2019, pp. 1148–1152.

[35] T. Stafylakis, J. Rohdin, O. Plchot, P. Mizera, and L. Burget, “Self-
supervised speaker embeddings,” in Proceedings of the Annual Con-
ference of International Speech Communication Association (INTER-
SPEECH), 2019, pp. 2863–2867.

[36] G. Heigold, I. Moreno, S. Bengio, and N. Shazeer, “End-to-end text-
dependent speaker verification,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016, pp.
5115–5119.

[37] S.-X. Zhang, Z. Chen, Y. Zhao, J. Li, and Y. Gong, “End-to-end atten-
tion based text-dependent speaker verification,” in Spoken Language
Technology Workshop (SLT). IEEE, 2016, pp. 171–178.

[38] F. R. Rahman Chowdhury, Q. Wang, I. L. Moreno, and L. Wan,
“Attention-based models for text-dependent speaker verification,” in
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2018, pp. 5359–5363.

[39] D. Wang, L. Li, Z. Tang, and T. F. Zheng, “Deep speaker verification:
Do we need end to end?” in 2017 Asia-Pacific Signal and Informa-
tion Processing Association Annual Summit and Conference (APSIPA
ASC). IEEE, 2017, pp. 177–181.

[40] M. McLaren, L. Ferrer, D. Castan, and A. Lawson, “The Speakers in
theWild (SITW) speaker recognition database.” in Proceedings of the
Annual Conference of International Speech Communication Associa-
tion (INTERSPEECH), 2016, pp. 818–822.

[41] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: A large-scale
speaker identification dataset,” in Proceedings of the Annual Confer-
ence of International Speech Communication Association (INTER-
SPEECH), 2017, pp. 2616–2620.

[42] S. Shon and J. Glass, “Multimodal association for speaker verifi-
cation,” in Proceedings of the Annual Conference of International
Speech Communication Association (INTERSPEECH), 2020, pp.
2247–2251.

[43] M. Zhang, X. Kang, Y. Wang, L. Li, Z. Tang, H. Dai, and D. Wang,
“Human and machine speaker recognition based on short trivial
events,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 5009–5013.

[44] J. Kang, R. Liu, L. Li, Y. Cai, D. Wang, and T. F. Zheng, “Domain-
invariant speaker vector projection bymodel-agnostic meta-learning,”
in Proceedings of the Annual Conference of International Speech
Communication Association (INTERSPEECH), 2020.

[45] S. Kataria, P. S. Nidadavolu, J. Villalba, and N. Dehak, “Analysis of
deep feature loss based enhancement for speaker verification,” in Pro-
ceedings of Odyssey: The Speaker and Language Recognition Work-
shop, 2020, pp. 459–466.

[46] J. Mo and L. Xu, “Weighted cluster-range loss and criticality-
enhancement loss for speaker recognition,” Applied Sciences, vol. 10,
no. 24, p. 9004, 2020.

[47] Z. Chen, S. Wang, and Y. Qian, “Self-supervised learning based do-
main adaptation for robust speaker verification,” in ICASSP 2021-
2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2021, pp. 5834–5838.

[48] G. Morrison, C. Zhang, E. Enzinger, F. Ochoa, D. Bleach, M. John-
son, B. Folkes, S. De Souza, N. Cummins, and D. Chow, “Forensic
database of voice recordings of 500+ australian english speakers,”
2015.

[49] W. M. Fisher, “Ther DARPA speech recognition research database:
specifications and status,” in Proc. DARPA Workshop on Speech
Recognition, Feb. 1986, 1986, pp. 93–99.

[50] V. W. Zue and S. Seneff, “Transcription and alignment of the TIMIT
database,” in Recent Research Towards Advanced Man-Machine In-
terface Through Spoken Language. Elsevier, 1996, pp. 515–525.

[51] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “Switchboard: Tele-
phone speech corpus for research and development,” in Acoustics,
Speech, and Signal Processing, IEEE International Conference on,
vol. 1. IEEE Computer Society, 1992, pp. 517–520.

[52] J. Gonzalez-Rodriguez, “Evaluating automatic speaker recognition
systems: An overview of the nist speaker recognition evaluations

(1996-2014),” Loquens, 2014.
[53] C. S. Greenberg, L. P. Mason, S. O. Sadjadi, and D. A. Reynolds,

“Two decades of speaker recognition evaluation at the national in-
stitute of standards and technology,” Computer Speech & Language,
vol. 60, p. 101032, 2020.

[54] H. Bu, J. Du, X. Na, B. Wu, and H. Zheng, “Aishell-1: An open-
source mandarin speech corpus and a speech recognition baseline,”
in 2017 20th Conference of the Oriental Chapter of the International
Coordinating Committee on Speech Databases and Speech I/O Sys-
tems and Assessment (O-COCOSDA). IEEE, 2017, pp. 1–5.

[55] J. Du, X. Na, X. Liu, and H. Bu, “Aishell-2: transforming mandarin
ASR research into industrial scale,” arXiv preprint arXiv:1808.10583,
2018.

[56] A. Larcher, K. A. Lee, B. Ma, and H. Li, “Text-dependent speaker
verification: Classifiers, databases and RSR2015,” Speech Communi-
cation, vol. 60, pp. 56–77, 2014.

[57] K. A. Lee, A. Larcher, G. Wang, P. Kenny, N. Brümmer, D. v.
Leeuwen, H. Aronowitz, M. Kockmann, C. Vaquero, B. Ma et al.,
“The RedDots data collection for speaker recognition,” in Proceed-
ings of the Annual Conference of International Speech Communica-
tion Association (INTERSPEECH), 2015.

[58] X. Qin, H. Bu, andM. Li, “Hi-mia: A far-field text-dependent speaker
verification database and the baselines,” in IEEE International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP).
IEEE, 2020, pp. 7609–7613.

[59] J. W. M. Pham, Z. Li, “Toward better speaker embeddings: Auto-
mated collection of speech samples from unknown distinct speakers,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2020, pp. 7089–7093.

[60] J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, and S. Zafeiriou, “Reti-
naface: Single-stage dense face localisation in the wild,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 5203–5212.

[61] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular
margin loss for deep face recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 4690–4699.

[62] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual
object tracking using adaptive correlation filters,” in 2010 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recogni-
tion. IEEE, 2010, pp. 2544–2550.

[63] J. S. Chung and A. Zisserman, “Out of time: automated lip sync in
the wild,” in Asian conference on computer vision. Springer, 2016,
pp. 251–263.

[64] A. Zhang, Q. Wang, Z. Zhu, J. Paisley, and C. Wang, “Fully super-
vised speaker diarization,” in International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 6301–
6305.

[65] D. Snyder, G. Chen, and D. Povey, “MUSAN: A Music, Speech, and
Noise Corpus,” 2015, arXiv:1510.08484v1.

[66] T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur, “A
study on data augmentation of reverberant speech for robust speech
recognition,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2017, pp. 5220–5224.

[67] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al., “The Kaldi
speech recognition toolkit,” in IEEE 2011 workshop on automatic
speech recognition and understanding, no. EPFL-CONF-192584.
IEEE Signal Processing Society, 2011.

[68] H. Zeinali, S. Wang, A. Silnova, P. Matějka, and O. Plchot, “BUT
system description to voxceleb speaker recognition challenge 2019,”
arXiv preprint arXiv:1910.12592, 2019.

[69] Y. Zhu, T. Ko, D. Snyder, B. Mak, and D. Povey, “Self-attentive
speaker embeddings for text-independent speaker verification.” in
Proceedings of the Annual Conference of International Speech Com-
munication Association (INTERSPEECH), 2018, pp. 3573–3577.

[70] S. J. Park, G. Yeung, J. Kreiman, P. A. Keating, and A. Alwan, “Using
voice quality features to improve short-utterance, text-independent

First Author et al.: Preprint submitted to Elsevier Page 17 of 18



Short Title of the Article

speaker verification systems.” in Proceedings of the Annual Confer-
ence of International Speech Communication Association (INTER-
SPEECH), 2017, pp. 1522–1526.

[71] E. Shriberg, S. Kajarekar, and N. Scheffer, “Does session variability
compensation in speaker recognition model intrinsic variation under
mismatched conditions?” in Tenth Annual Conference of the Interna-
tional Speech Communication Association, 2009.

[72] S. J. Park, C. Sigouin, J. Kreiman, P. A. Keating, J. Guo, G. Yeung, F.-
Y. Kuo, and A. Alwan, “Speaker identity and voice quality: Modeling
human responses and automatic speaker recognition.” in Proceedings
of the Annual Conference of International Speech Communication As-
sociation (INTERSPEECH), 2016, pp. 1044–1048.

[73] E. Shriberg, M. Graciarena, H. Bratt, A. Kathol, S. S. Kajarekar,
H. Jameel, C. Richey, and F. Goodman, “Effects of vocal effort and
speaking style on text-independent speaker verification,” in Proceed-
ings of the Annual Conference of International Speech Communica-
tion Association (INTERSPEECH), 2008.

[74] D. Ramos and J. Gonzalez-Rodriguez, “Cross-entropy analysis of
the information in forensic speaker recognition,” in Proceedings of
Odyssey: The Speaker and Language Recognition Workshop. Inter-
national Speech Communication Association, 2008.

[75] N. Brümmer and J. Du Preez, “Application-independent evaluation of
speaker detection,” Computer Speech & Language, vol. 20, no. 2-3,
pp. 230–275, 2006.

[76] D.Wang, “Remarks on optimal scores for speaker recognition,” arXiv
preprint arXiv:2010.04862, 2020.

[77] L. Li, D. Wang, J. Kang, R. Wang, J. Wu, Z. Gao, and X. Chen, “A
principle solution for enroll-test mismatch in speaker recognition,”
arXiv preprint arXiv:2012.12471, 2020.

[78] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Jour-
nal of Machine Learning Research, vol. 9, no. Nov, pp. 2579–2605,
2008.

First Author et al.: Preprint submitted to Elsevier Page 18 of 18


