
1

Blind Speech Separation and Dereverberation using
Neural Beamforming

Lukas Pfeifenberger and Franz Pernkopf, Senior Member, IEEE

Abstract—
In this paper, we present the Blind Speech Separation and

Dereverberation (BSSD) network, which performs simultaneous
speaker separation, dereverberation and speaker identification in
a single neural network. Speaker separation is guided by a
set of predefined spatial cues. Dereverberation is performed by
using neural beamforming, and speaker identification is aided by
embedding vectors and triplet mining. We introduce a frequency-
domain model which uses complex-valued neural networks, and
a time-domain variant which performs beamforming in latent
space. Further, we propose a block-online mode to process longer
audio recordings, as they occur in meeting scenarios. We evaluate
our system in terms of Scale Independent Signal to Distortion
Ratio (SI-SDR), Word Error Rate (WER) and Equal Error Rate
(EER).

Index Terms—Multi-channel speech separation, beamforming,
dereverberation, speaker identification, triplet mining

I. INTRODUCTION

Speaker separation and speech enhancement is of paramount
significance in many voice applications, such as hands-
free teleconferencing or meeting scenarios. Especially in
human-machine interfaces, where high-performance Auto-
matic Speech Recognition (ASR) systems are essential, both
speech intelligibility and quality play an important role. Fueled
by the success of deep learning, both speaker separation and
speech enhancement have made major advances over the last
years [1].

When multiple microphones are available, spatial informa-
tion can be exploited as speaker sources are directional. Mask-
based beamforming has been shown to be advantageous for
this task [2], [3]. In particular, a neural network is leveraged
to estimate a time-frequency mask of the desired signal [4],
[5], [6], [7]. This mask is then used to compute the spatial
covariance matrices required to construct a frequency-domain
beamformer [8]. This approach has been further extended
into the domain of complex numbers, where complex-valued
neural networks [9] are used to directly estimate complex
beamforming weights from noisy observations [10], [11].

Simultaneously to the success of neural beamforming,
single-channel speaker separation techniques have also pro-
gressed dramatically. Frequency-domain algorithms such as
Deep Clustering (DC) [12], Permutation Invariant Training
(PIT) [13] and Deep Attractor Network (DAN) [14] rely

Lukas Pfeifenberger and Franz Pernkopf are with the Intelligent Systems
Group at the Signal Processing and Speech Communication Laboratory, Graz
University of Technology, Graz, Austria.

This work was supported by the Austrian Science Fund (FWF) under
the project number P27803-N15. Furthermore, we acknowledge NVIDIA for
providing GPU computing resources.

solely on spectral features. Time-domain algorithms such as
Wave-U-Net [15], TasNet [16] and Conv-TasNet [17] delivered
promising results.

Recently, some of these single-channel algorithms have been
combined with a mask-based beamformer. In particular, a neu-
ral network estimates a gain mask of the desired signal, which
is then used to construct a frequency-domain beamformer, i.e.:
Beam-TasNet [18], SpeakerBeam [19], [20], Neural Speech
Separation [21], Multi-Channel Deep Clustering [22], [23],
and Convolutional Beamforming [24]. More recently, end-to-
end multi-channel speech separation has been done entirely
in time domain. By leveraging spatial cues among the multi-
channel signals such as the Inter-channel Time Difference
(ITD) or Inter-channel Phase Difference (IPD), the desired
signal is estimated directly in time domain [25]. We further
extend this approach by addressing the following three issues:

A. Open number of sources

Many source separation algorithms are limited to a pre-
defined number of sources which they can separate [13], [14],
[16], [17], [15], [18], [26], [27]. Exceptions are k-means clus-
tering [12] and Recurrent Selective Attention Network (RSAN)
[28]. We propose an iterative approach to separate an unknown
number of sources, by leveraging the spatial information
encoded within the data. As shown in the experiments section,
we tested our system with up to four overlapping speakers.

B. Distant speaker separation

While close-talk speech separation models yield impressive
performance, far-field speech separation is still a challenging
task [29], [30]. Especially in real-world scenarios, reverbera-
tion and echoes cannot be ignored, as they severely degrade
speech intelligibility and ASR performance [31]. Various deep
learning based methods have been proposed for dereverbera-
tion [32], [33], [34], most of which are based on the Weighted
Prediction Error (WPE) algorithm [35]. As this algorithm is
restricted to the frequency domain, we chose a more general
approach which learns to separate overlapping speakers from
a reverberated mixture in both time- and frequency-domain.

C. Speaker Identification

To be useful in real-world applications, a speaker separation
algorithm has to be at least block-online capable, i.e.; a short
block of audio is processed at a time. This implies a permuta-
tion problem at block level, requiring speaker diarization [36],
[37]. Therefore, identifying the separated speakers in each

ar
X

iv
:2

10
3.

13
44

3v
2

 [
cs

.S
D

]
 5

 N
ov

 2
02

1

2

block of audio is necessary. A speaker identification algorithm
is agnostic to the spoken text, and only relies on the speaker
characteristics embedded in the waveform. Embedding vectors
are used to map utterances into a feature space where distances
correspond to speaker similarity [38]. Typically, i-Vectors [39]
or x-Vectors [40] are used for this task. Algorithms such as
Deep Speaker [41] rely on contrastive loss or triplet loss to
learn embeddings on a very large set of speakers [42], [43],
[44], [45]. We chose the triplet loss as its performance on
small batch sizes is advantageous [46].

In this paper, we introduce our Blind Speech Separation and
Dereverberation (BSSD) network, which performs separation,
dereverberation and speaker identification in a single neural
network. The only knowledge required is that of the micro-
phone array geometry. We propose a frequency-domain variant
(BSSD-FD), and time-domain variant (BSSD-TD). Our contri-
butions are: Unsupervised speaker localization; separation of
each speaker using adaptive beamforming; dereverberation of
each source; and speaker diarization using embedding vectors.
We evaluate our system in both offline and block-online mode.
Further, we report the performance in terms of SI-SDR, WER
and EER against similar state-of-the art algorithms for speaker
separation.

II. SYSTEM MODEL

We assume a standard meeting scenario, where multiple
speakers may talk simultaneously in an arbitrary room, i.e. an
office. The position and number C of the concurrent speakers
is unknown. We place a circular microphone array with M
microphones in the center of the room, i.e. on a table. Figure
1 provides an example with three speakers. We assume that
each speaker has a direct line of sight to the microphone
array, i.e. the speaker is not obscured by a corner, or standing
in the next room. Each speaker is assumed to be stationary,
except for minor movements. Further, the room may have
a significant amount of reverberation. Note that we do not
assume any diffuse or directional noise sources in this paper.
For speech separation in the presence of ambient noise, we
refer the interested reader to [7].

Fig. 1: Meeting room scenario with three independent speak-
ers.

The signal arriving at the microphone array is composed of
an additive mixture of C independent sound sources sc(t). In

time domain, the samples of all M microphones at sampling
time t can be stacked into a single M × 1 vector, i.e.

z(t) =

C∑
c=1

sc(t), (1)

where z(t) =
[
z(t, 1), . . . , z(t,M)

]T
. We use bold symbols

for vectors, i.e. z(t), and plain symbols for scalars, i.e.
z(t,m). The vector sc(t) represents the cth sound source at
sample time t. Each sound source is composed of a monaural
recording sc(t) convolved with a Room Impulse Response
(RIR) denoted by hc(t), i.e.

sc(t) = hc(t) ~ sc(t), (2)

where ~ denotes the convolution operator. The RIR models
the acoustic path from a sound source to each microphone as
a set of M FIR filters, which includes all reverberations and
reflections caused by the room acoustics [47]. Modern office
rooms are made of laminate flooring and concrete walls, which
have a low acoustic absorption coefficient. Consequently, the
reverberation time RT60 may be very large, which significantly
affects the performance of speech separation and speech
recognition algorithms [29], [30], [31].

To cope with this environment, we propose the BSSD
network, which iteratively extracts an unknown number of
speakers from a multi-channel input mixture z(t). During each
iteration, the Direction Of Arrival (DOA) of the loudest speech
source is estimated by a localization module, which correlates
the input mixture against a pre-defined set of DOA bases. The
DOA is subtracted from a spatial speech presence probability
map, so that the second-loudest source is extracted during the
subsequent iteration. The DOA information is then fed into
a Neural Network (NN), which extracts and dereverberates
the corresponding speech source. The network also predicts a
speaker embedding vector for each extracted speech source,
which is used to assign the utterance to a speaker for block-
online processing. This iterative process is repeated until
no new speaker embedding is found. Figure 2 illustrates
two iterations of the BSSD network, which consists of the
following modules: DOA bases, localization, beamforming and
dereverberation, and speaker identification. In the following
chapters, we will introduce each module in detail.

III. DOA BASES

As each source in Figure 1 has a direct line of sight towards
the microphone array, it is possible to assign a unique DOA
to each individual source in the mixture. Even if there is a
significant amount of reverberation, there will always be an
anechoic component in the RIR (i.e. the earliest peak) that
corresponds to the DOA [47]. We therefore define a set of D
unique DOA vectors on a unit sphere around the microphone
array, where each impinging sound wave is modeled as plane
wave, i.e.

V (d, k,m) = e−i2πfkτd,m , (3)

where fk is the frequency for index k and τd,m is the time
delay from a point on the sphere to the mth microphone, i.e.

3

Fig. 2: Overview of the BSSD system, showing two iterations.
During each iteration, the localization module estimates the
DOA of a source from a set of pre-defined DOA bases. The
DOA is then used to extract and dereverberate the correspond-
ing speech source from the multi-channel input mixture z(t).
The neural network also assigns a speaker embedding vector
ei to each enhanced source i.

τd,m =

√
(xm − xd)2 + (ym − yd)2 + (zm − zd)2

c
, (4)

where c is the speed of sound. The cartesian coordinates of the
mth microphone are denoted by xm, ym, zm, and xd, yd, zd are
the coordinates of the dth point on the sphere. We define these
points to be equally distributed on the surface of the sphere
using a fibonacci spiral [48], i.e.

φd = g · d,

θd = arcsin
d

D − 1
,

xd = cos θd cosφd,

yd = cos θd sinφd,

zd = sin θd,

(5)

where g = π(3−
√

5) is known as the golden angle [48], and
d = 1 . . . D is the DOA index. We use a circular microphone
array with M channels. Hence, the array is flat and we cannot
distinguish between positive and negative z coordinates. It is
therefore sufficient to only use half a sphere for the DOA
bases. To assign a DOA index d̂ to a given RIR h(t), we
utilize GCC-PHAT [49], i.e.

d̂ = argmax
d

K∑
k=1

|HH(k) · V (d, k)|2

|H(k)|22
, (6)

where H represents the FFT of the RIR h(t). Note that the
amplitude of the DOA vector V (d, k) is defined as 1 in Eq.
(3).

IV. SOURCE LOCALIZATION

To estimate the direction of a speech source relative to the
microphone array, we again use GCC-PHAT to obtain a spatial
speech presence probability map for the input mixture z(t) and
the DOAs V (d, k). First, we transform the input mixture to
the frequency domain using the Short-Time Fourier Transform
(STFT), i.e.

z(t)→ Z(l, k), (7)

where Z(l, k) contains M samples of frequency bin k and
STFT frame index l. Next, we compute the spatial speech
presence probability map γ ∈ [0 . . . 1] as:

γ(l, k, d) =
|ZH(l, k) · V (d, k)|2

|Z(l, k)|22
. (8)

A. Spatial Whitening

To separate speakers based on their location, Eq. (8) utilizes
the IPDs, which are encoded in the phase of the complex-
valued input mixture Z(l, k). However, it is well known that
microphone array recordings are strongly correlated towards
low frequencies [49], [8], [50], [51]. This is due to the fact
that the wavelength of low frequencies is large compared to
the aperture of the microphone array. As a consequence, the
IPDs will be small, and the overall separation performance
is degraded. To mitigate this effect, we decorrelate the noisy
inputs Z(l, k) using Zero-phase Component Analysis (ZCA)
whitening [52] from our previous works [10], [7]. In particular,
we use the whitening matrix

U(k) = EΓ(k)D
− 1

2

Γ (k)EH
Γ (k), (9)

where EΓ and DΓ are M ×M sized eigenvector and eigen-
value matrices of the real-valued spatial coherence matrix of
the ideal isotropic sound field Γ(k) [47]. Its elements are given
as Γi,j(k) =

sin(2πfkxi,j/c)
2πfkxi,j/c

, and xi,j is the distance between
the ith and the jth microphone. To avoid a division by zero,
the diagonal elements of DΓ are loaded with a small constant
ε = 10−3. We prefer ZCA whitening over PCA whitening, as
the ZCA preserves the orientation of the distribution of the
data [52]. Using the whitening matrix U(k), we rewrite Eq.
(8) as

γU (l, k, d) =
|ZH(l, k)UH(k) ·U(k)V (d, k)|2

|U(k)Z(l, k)|22 · |U(k)V (d, k)|22
, (10)

where U(k)Z(l, k) can be recognized as the whitened input
mixture, and U(k)V (d, k) as whitened DOA vector. Figure 3
demonstrates the effect of spatial whitening. Panel (a) shows
γ(l, k) for a single speaker and a matching DOA vector.
Panel (b) shows γU (l, k) with whitening. It can be seen
that the separation performance is greatly increased for low
frequencies.

4

Fig. 3: Effectiveness of spatial whitening at low frequencies.
(a) γ(l, k) from Eq. (8) for a single speaker. (b) γU (l, k) from
Eq. (10) with whitening.

B. Speaker Separation and Diarization

To iteratively estimate the DOA index d̂ of all speech
sources in the mixture Z(l, k), we use the pseudo code in Al-
gorithm 1. First, we create a weighted spatial speech presence
probability map γW (l, k, d), using the energy PZ(l, k) in each
time-frequency bin of the input mixture Z(l, k). Next, we copy
that map into γ′W (l, k, d). Then, we initialize an empty list of
speaker embeddings E . During each iteration, we average over
the frame and frequency axes of γ′W (l, k, d) to determine its
global maximum over the D possible DOAs. The index of the
maximum is denoted as d̂, which is used as input for the BSSD
network, which outputs an estimate of the desired signal y(t)
at the direction of the DOA index d̂, and a speaker embedding
vector e for that output. Then, we compare this newly found
embedding against the previously stored ones in the list E ,
using the distance function distance(E , e). If the distance
is greater than a threshold δ, we append the embedding to
the list, and subtract γW (l, k, d̂) from all DOA indices of the
weighted spatial speech presence probability map γ′W (l, k, :).
This ensures that each speech source is only extracted once 1.
If the threshold δ is not met, the same embedding is already
a member of the list E . This may happen due to reflections
or sidelobes [49] of the beamformer in the BSSD module. In
this case, we stop the iterations and consider all speech sources
within the mixture z(t) to be extracted. We will discuss the
BSSD architecture and the distance function in the following
chapters.

V. BSSD NETWORK - FREQUENCY DOMAIN

Well-established beamformers such as the Minimum Vari-
ance Distortionless Response (MVDR) beamformer [53] or the
Generalized Eigenvalue (GEV) beamformer [54] use the signal
statistics (i.e., the power spectral density matrices) to derive a
set of beamforming weights W (k) ∈ C in frequency domain.
As those weights are static over time, the signal separation
performance is limited especially in reverberant conditions
[49]. Therefore, a beamformer is often used in conjunction
with a post-filter [8]. The post-filter acts as a single-channel
gain mask on the output of the beamformer.

1Note that this algorithm is different to just sorting the DOA indices by
energy, as multiple DOA indices may share the energy from the same speaker,
due to the limited spatial resolution of the beamformer array.

Algorithm 1 Source localization

1: PZ(l, k)← 1
M

∑M
m=1 |Z(l, k,m)|2

2: γW (l, k, d)← γU (l, k, d) · PZ(l, k)
3: γ′W (l, k, d)← γW (l, k, d)
4: E ← []
5: Y ← []
6: while true do
7: d̂← argmax

d

(∑L
l=1

∑K
k=1 γ

′
W (l, k, d)

)
8: y(t), e← BSSD(z(t), d̂)
9: Y.append(y(t))

10: if distance(E , e) > δ̂ then
11: E.append(e)

12: γ′W (l, k, :)← max
(
γ′W (l, k, :)− γW (l, k, d̂), 0

)
13: else
14: break
15: end if
16: end while

In [10], we proposed the Complex-valued Neural Beam-
former (CNBF), which combines the properties of a beam-
former and a post-filter using a neural network. Unlike a
statistical beamformer, the CNBF estimates a set of individual
beamforming weights W (l, k) ∈ C for each time-frequency
bin. Those weights act as a spatio-temporal, complex-valued
gain mask, which allows for a higher flexibility in the design
of the beamformer, i.e. higher suppression rates or derever-
beration. The CNBF uses complex-valued, non-holomorphic
activation functions like vector normalization, phase normal-
ization or conjugation. To back-propagate the complex-valued
gradient, Wirtinger calculus is used [55], [56], [57]. A Ten-
sorflow implementation of the CNBF network can be found
at2.

We extend the CNBF to include dereverberation and a
speaker embedding vector. Figure 4 shows the architecture
of the BSSD-FD network. The left branch performs beam-
forming and dereverberation, and the right branch outputs an
embedding vector per utterance.

A. Speaker Separation

The STFT layer transforms the multi-channel input mixture
to the frequency domain using Eq. (7). The STFT produces
L time frames and K frequency bins per frame. Source
separation is based on the DOA index d̂ from Algorithm 1,
which is a scalar. The Adaption layer uses this input to modify
the IPDs of the multi-channel input mixture in frequency
domain, i.e.

Z̃(l, k) =
(
U(k)V (d̂, k)

)∗
�
(
U(k)Z(l, k)

)
, (11)

where ∗ denotes complex conjugation, and � element-wise
multiplication. The adaption layer performs two tasks: (i) It
whitens the input signal Z(l, k) as shown in Eq. (10). (ii)
It subtracts the phase of the whitened DOA vector V (d̂, k)

2https://github.com/rrbluke/CNBF

5

Fig. 4: Layers of the frequency-domain BSSD-FD network.
The left branch performs beamforming and dereverberation,
the right branch assigns an embedding vector to the enhanced
output signal y(t). The symbols next to each layer denote the
dimensionality of the respective output tensor.

from the phase of the whitened input signal. This operation
will align the phase of Z̃(l, k) such that the IPDs for the
direction of V (d̂) are zero. Consequently, signals originating
from this direction (i.e. the desired signal) can be identified
by a small IPD, whereas all other signal components (i.e.
interfering speakers) will have large IPDs. Hence, the NN
sees the desired signal always at the same spatial location,
enabling it to distinguish between the desired and unwanted
signal components. Consequently, the NN extracts the speaker
towards the direction of V (d̂). We refer to Eq. (11) as the
Analytic Adaption (AA). Hence, this system is abbreviated as
BSSD-FD-AA.

Instead of modifying the phase of the input with the DOA
vector, it is also possible to modify the input directly with a
set of trainable weights, i.e.

Z̃(l, k) = A(d̂, k)Z(l, k), (12)

where A(d̂, k) is a complex-valued matrix of shape M×M . It
allows to scale, shift and mix the M channels of the complex-
valued inputs Z(l, k) freely. Note that the DOA index d̂ selects
the location from which we want to extract the desired speech
signal. Hence, during training, all possible D DOA locations
must be presented to the NN to train all complex-valued
weights in the tensor A. Eq. (12) can be implemented as
a complex-valued linear layer [10]. We refer to Eq. (12) as

Statistic Adaption (SA). Hence, this system is abbreviated as
BSSD-FD-SA.

B. Beamforming and Dereverberation

The structure of the left branch of the NN in Figure 4
resembles a traditional filter-and-sum beamformer, which can
be written as:

Y (l, k) = W T (l, k)Z̃(l, k), (13)

where Y (l, k) denotes the beamformed output in frequency
domain, and W (l, k) are the beamforming filters. The inner
vector product of Eq. (13) is computed before the inverse
STFT layer in Figure 4. The NN estimates the weights W (l, k)
solely from the spatial information in Z̃(l, k), which is ob-
tained by the Norm layer. In particular, this layer normalizes
the magnitude of the M dimensional input vector Z̃(l, k) to
1, and aligns its phase to the first microphone, i.e.

vZ̃(l, k) =
Z̃(l, k) · Z̃∗(l, k,m = 1)

|Z̃(l, k) · Z̃∗(l, k,m = 1)|
. (14)

Then, a bidirectional LSTM layer creates a latent space of
H neurons, followed by a dense layer with a complex-valued
tanh activation function [10]. A linear layer outputs a set of
unconstrained filter weights W (l, k) ∈ C to calculate the
enhanced output Y (l, k) as shown in Eq. (13). After the inverse
STFT layer, we obtain the enhanced time-domain signal y(t).

By using a neural beamformer, the design goal is not
limited to MVDR constraints or similar concepts [10]. In fact,
we can also include a dereverberation objective by using an
appropriate loss function for the NN. In particular, we use the
negative SI-SDR [58] between the output y(t), and a clean
anechoic reference utterance r(t), i.e.

LSI-SDR = −10log10

(|αr(t)|22
|αr(t)− y(t)|22

)
, (15)

where α = y(t)T r(t)
r(t)T r(t)

. We use r(t) = sc(t) from Eq. (2) as
anechoic reference signal.

C. Speaker Identification

The right branch of the NN in Figure 4 extracts an embed-
ding vector e to identify the speaker in the enhanced output
signal Y (l, k). The embedding vector maps the utterance
into a feature space where distances correspond to speaker
similarity [38]. Therefore, the NN must be agnostic to the
spoken text, and only rely on the speaker characteristics
embedded in the waveform. We use the log-power spectral
density log

(
|Y (l, k)|2

)
as input features. Then, a series of

6 convolutional layers with a filter length of 10, and in-
creasing dilation factors of (1,2,4,8,16,32) frames create a
latent space of L × E dimensional embeddings. We use a
softplus3 activation function and layer normalization after each
convolutional layer. A skip connection is added between every
two convolutional layers. The L time frames are averaged
to obtain a single, E dimensional embedding for the whole

3The softplus activation function is defined as f(z) = log(1 + ez).

6

utterance (AvgPool layer). The linear layer at the end of the
stack outputs the unconstrained embedding vector e.

We want to identify an open set of speakers, i.e. we need
to be able to compare two utterances and determine whether
they belong to the same speaker. Therefore we employ the
triplet loss [42], which has been successfully used for speaker
identification and diarization tasks [41], [43], [44], [45]. The
goal of the triplet loss is to ensure that two utterances from
the same speaker have their embeddings close together in the
embedding space, and two examples from different speakers
have their embeddings farther away by some margin β. In
other words, we want the embeddings of the same speaker
to form clusters, and these clusters must be separated by the
margin, i.e.

LTL =
∑
B3

[
|ea − ep|2 − |ea − en|2 + β

]
+
, (16)

where the embedding ea denotes an anchor, ep is an embed-
ding from the same speaker as the anchor (positive example),
and en is an embedding from a different speaker (negative
example). In a batch of B utterances, there can be as many
as B3 triplets. It is therefore crucial to only select a subset
of valid triplets, where the positive example is from the same
speaker as the anchor, and the negative example belongs to
a different speaker. Further, we only need to consider triplets
where the loss LTL is actually greater than zero. To select
relevant triplets, we utilize Hard Triplet Mining [59], where we
select the hardest positive and negative example per anchor. In
particular, we randomly select P utterances from B speakers,
where we determine the largest distance |ea − ep|2 between
an anchor and a positive example within the P utterances
per speaker, and the smallest distance |ea − en|2 between an
anchor and a negative example from the P (B − 1) remaining
utterances. More formally, this procedure can be written as:

LTL-HTM =
1

B · P

B∑
i=1

P∑
a=1

[
β + max

p=1...P

(
|eia − eip|2

)
− min
j=1...B
n=1...P
i 6=j

(
|eia − ejn|2

)]
+
.

(17)
When the batch size P ·B is small, the embeddings may col-
lapse into a single point during training [60]. To avoid this, we
propose to minimize the cross-entropy between embeddings of
different speakers as follows:

LTL-CE =
−1

(B2 −B)P 2

B∑
a=1

B∑
n=1
n 6=a

P∑
i=1

P∑
j=1

log
(
|(ẽia)T ẽjn|2

)
,

(18)
where ẽ = e

|e|2 is the magnitude-normalized embedding vector
e. This regularization ensures that the embeddings ea and
en will be different. The overall cost function for the entire
BSSD-FD architecture is then defined as:

LBSSD-FD = LSI-SDR + λ1LTL-HTM + λ2LTL-CE, (19)

where λ1 and λ2 are weights for the individual terms.

D. Distance Measure

In order to determine whether two embeddings e1 and e2

belong to the same speaker, we use the euclidian distance
|e1 − e2|2. If the distance falls below a certain threshold
δ, we consider the two embeddings to belong to the same
speaker. If it exceeds the threshold, the speakers are considered
different. Hence, two types of errors exist: (i) A false positive
is triggered when two embeddings from two different speakers
are incorrectly classified as belonging to the same speaker,
which we measure using the False Acceptance Rate (FAR),
i.e.

FAR(δ) =
1

(B2 −B)P 2

B∑
a=1

B∑
n=1
n 6=a

P∑
i=1

P∑
j=1

1
(
|eia − ejn|2 < δ

)
,

(20)
where 1(x) denotes an indicator function, i.e.

1(x) =

{
1, if condition x is true.
0, otherwise.

(21)

(ii) A false negative is triggered when two embeddings from
the same speaker are classified as belonging to different
speakers, which we measure using the False Rejection Rate
(FRR), i.e.

FRR(δ) =
1

B(P 2 − P)

B∑
a=1
p=a

P∑
i=1

P∑
j=1
j 6=i

1
(
|eia−ejp|2 > δ

)
. (22)

The FAR is positively correlated to the decision threshold δ,
and the FRR is correlated negatively. The value at which the
FAR and FRR are equal, is known as the Equal Error Rate
(EER). It is determined by:

δ̂ = argmin
δ
|FAR(δ)− FRR(δ)|

EER = FAR(δ̂) = FRR(δ̂),
(23)

where δ̂ is considered the optimal threshold belonging to the
EER.

VI. BSSD NETWORK - TIME DOMAIN

With the recent success of time-domain speech separation
algorithms [15], [16], [17], [25], we also formulate a time-
domain variant of our BSSD network. The beamforming and
dereverberation operations can be formulated analogously to
the frequency domain, but the NN will train faster when using
real-valued data. Figure 5 shows the architecture of the BSSD-
TD network. Similar to the frequency-domain variant, the left
branch performs beamforming and dereverberation, and the
right branch outputs an embedding vector per utterance.

7

Fig. 5: Layers of the time-domain BSSD-TD network. The left
branch performs beamforming and dereverberation, the right
branch assigns an embedding vector to the enhanced output
signal y(t).

A. Speaker Separation

Analogous to the frequency-domain network, source sepa-
ration is based on the Adaption layer, which uses the DOA
index d̂ from Algorithm 1 to modify the ITD of the input
signal z(t). By rearranging Eq. (11), we can formulate an
identical operation in time-domain, i.e.

Z̃(l, k,m) =
(
UT (k,m)V (d̂, k)

)∗ · (UT (k,m)Z(l, k)
)
,

=

M∑
i=1

UH(k,m)V ∗(d̂, k)U(k,m, i) · Z(l, k, i),

=

M∑
i=1

V ′(d̂, k,m, i) · Z(l, k, i),

(24)
where we can identify the convolutional kernel V ′(d̂, k,m, i)
in frequency domain. We can see from Eq. (3), that the DOA
V (d̂, k) resembles M sinc pulses with a positive time-delay
τd,m, and Eq. (9) shows that the elements of the whitening
matrix U(k,m, i) are real-valued. Therefore, V ′(d̂, k,m, i)
will be a causal IIR filter in time domain [61], which we
truncate to TA samples to obtain the FIR filter v′(d̂, tA,m, i)
by using the inverse FFT. This allows to formulate the time-
domain adaption layer as:

z̃(t,m) =

M∑
i=1

z(t, i) ~ v′(d̂, tA,m, i), (25)

which can be implemented using a single convolution layer.
Similar to the frequency-domain adaption layer, Eq. (25)
synchronizes the ITD to be zero for signals originating from
the direction of V (d̂), i.e. the desired signal. The subsequent
NN sees the desired signal always at the same spatial location,
which makes it easier to distinguish between the desired and
unwanted signal components. Consequently, the NN extracts
the speaker towards the direction of V (d̂). We refer to Eq. (25)
as Analytic Adaption (AA). Hence, this system is abbreviated
as BSSD-TD-AA.

Instead of modifying the ITDs of the input signal with
the DOA vector, it is also possible to replace the fixed
convolutional kernels ṽ(d̂, tA,m, i) with a set of trainable
weights, i.e.

z̃(t,m) =

M∑
i=1

z(t, i) ~ a(d̂, tA,m, i), (26)

where a is a tensor of shape (D,TA,M,M), and TA is the
filter length of the learnable convolution kernels. This allows
to scale, shift and mix the M channels of the input signal
z(t) freely. Note that the DOA index d̂ provides the location
from which we want to extract the desired speech signal.
Hence, during training, all D possible DOA locations must
be presented to the NN to train the weights a. Note that
Eq. (26) can be implemented as a convolution layer. We refer
to Eq. (26) as Statistic Adaption (SA). Hence, this system is
abbreviated as BSSD-TD-SA.

B. Beamforming and Dereverberation

The structure of the left branch of the NN in Figure 5
resembles a time-domain beamformer [49], where the first
convolution layer right after the adaption layer transforms the
time-domain input z̃(t) into a latent space z′(l, h) with L
frames and H filters. The stride of this convolution layer is
set to H

4 , and the activation function is linear.
Similar to the frequency-domain beamformer, filtering is

performed in latent space. The beamforming weights w′(l, h)
are estimated from the spatial information embedded in
z′(l, h), using layer normalization, followed by a bidirectional
LSTM layer, a dense layer with tanh activation, and a linear
layer. The linear layer allows the NN to freely choose the am-
plitude and phase of the beamforming weights. The enhanced
output y′(l, h) is obtained by

y′(l, h) = w′(l, h)� z′(l, h), (27)

where all variables are of shape L×H . Finally, a deconvolution
layer with a linear activation function produces the enhanced
time-domain signal y(t). Analogous to the BSSD-FD archi-
tecture, we use the negative SI-SDR from Eq. (15) between
the output y(t), and a clean anechoic reference utterance r(t).

C. Speaker Identification

The right branch of the NN in Figure 5 extracts an embed-
ding vector e to identify the speaker in the enhanced output
signal y(t). The NN is identical to the BSSD-FD architecture,

8

except for the input layer which uses the enhanced signal
y′(l, h) as input features. Identically to Eq. (19), the overall
cost function for the entire BSSD-TD architecture is defined
analogously to the BSSD-FD architecture given in Eq. 19.

VII. BLOCK ONLINE PROCESSING

For realtime applications, it is possible to use the BSSD
system in block-online mode. We split the input mixture
z(t) into blocks of equal length. Each block b is iteratively
processed using Algorithm 1. It returns the DOA index d̂,
a list Yb of extracted speakers y(t), and a list Eb of speaker
embeddings e. Figure 6 illustrates the block-online processing
scheme of the BSSD system for C = 2 speakers and 4 blocks.
Note that the speakers may change their position from block to
block, i.e. they may walk around, switch places, etc. Therefore,
both the DOA and speaker embedding are extracted for each
source in each block. The process of assigning each extracted
source block to the same speaker identity is referred to as
diarization [36], [37], by using Algorithm 2.

Fig. 6: Block-online processing mode of the BSSD system,
showing a mixture of C = 2 speakers being split into 4 blocks.
Each block is processed separately using Algorithm 1.

Algorithm 2 Diarization in block-online mode.
1: Y ← []
2: E ← []
3: for all blocks b do
4: for c = 1 : length(Eb) do
5: if min(|E − Eb(c)|2) > δ̂ then
6: E.append(Eb(c))
7: else
8: i← argmin(|E − Eb(c)|2))
9: Y(i).append(Yb(c))

10: end if
11: end for
12: end for

First, we initialize empty lists for all speakers Y and all
embeddings E . Then, we iterate over all blocks b, where
Algorithm 1 is executed for each block. It returns a list Yb
of extracted speakers and a list Eb of speaker embeddings for
that block. Next, we iterate over each extracted source c within
that block, and we compare the distance of the embedding
Eb(c) against all embeddings E . If the threshold δ̂ (see Eq.
23) is exceeded, we have found a new speaker. In that case,
this speaker is added to the list of known embeddings E .

Otherwise, we have found an utterance belonging to a known
embedding. In that case, we determine the index i of that
embedding, and append the source Yb(c) to the speaker at
position Y(i). To preserve the time alignment of each extracted
speaker, we append a block of silence to each source in Y
that did not receive an update. This may happen if a speaker
is silent during block b.

A trade-off has to be made when choosing the block length
TB . If it is too large, short utterances followed by periods of
silence might not get detected. If it is too small, the predicted
embeddings may be inaccurate, causing Algorithm 2 to assign
the sources Yb(c) to the wrong speaker. We examine this
behavior in our experiments.

VIII. RIR RECORDINGS

We use both recorded and simulated RIRs to generate
spatialized recordings with Eq. (2). Real RIRs are obtained
through multi-channel room impulse response measurements,
and simulated RIRs are obtained by the Image Source Method
(ISM) [23], [62].

A. Real RIRs

To obtain realistic RIRs, we use a circular microphone
array with M = 6 channels and a diameter of 92.6mm [63],
and a 5W measurement loudspeaker. To drive the loudspeaker
from a Linux-based PC with ALSA [64], we use the PlayRec
Python module [65], which simultaneously plays and records
audio from a sound card. We use an exponential chirp with
a duration of 5s sweeping from 24kHz down to 20Hz as
excitation signal [47]. However, we only use a bandwidth
of 8kHz for our experiments. We recorded 120 6-channel
RIRs in 24 different, fully furnished office rooms with a
reverberation time RT60 ∈ [200 . . . 900]ms. The distance from
the loudspeaker to the microphone array was varied from
1m. . . 3m, and the direction was chosen randomly. Figure 7
shows the recording setup. We augmented the number of RIR
recordings to 720 by virtually rotating the array by 6 × 60◦,
i.e. shifting the microphone channels.

Fig. 7: RIR recording setup using a 5W measurement loud-
speaker and a 6-channel microphone array [63].

9

B. Simulated RIRs

To obtain simulated RIRs, we further generated 720 artificial
RIRs for the same array geometry with 6 channels, but with a
shorter reverberation time RT60 ∈ [200 . . . 400]ms, which is
randomly chosen. The room is modeled as a simple rectangular
shoebox with random dimensions ranging from 3m. . . 6m,
where the microphone array and the sound sources are placed
randomly. RIR generation was done using the Image Source
Method [23], [62] using Pyroomacoustics [66].

IX. EXPERIMENTS

A. Experimental Setup

1) Speech mixtures: We use the WSJ0 speech database
which contains 12776 utterances from 101 different speakers
for training, and 5895 utterances from 18 different speakers
for testing. To generate mixtures, we use the wsj0-2mix from
[12], which we extended to 3 and 4 speakers. To generate re-
verberated, multi-channel mixtures from Eq. (2), we convolve
the monaural signals with both the real and simulated RIRs,
as described in Section VIII. All recordings use a sample rate
of fs = 16kHz.

2) DOA bases: We use D = 100 DOA bases, which are
equally distributed on a sphere, as shown in Figure 8. This
provides an average spatial resolution of about 13.82◦, which
equates to two persons standing right next to each other at a
distance of 1m. Note that the number of DOA vectors D can
be changed without re-training the NN. Clearly, we want to
use a different DOA index dc ∈ [1 . . . D] for each source sc
in the input mixture z(t). To achieve this, we randomly select
a RIR hc(t) belonging to a the DOA index dc using Eq. (6).
From the 720 real and simulated RIRs available, 640 are used
for training, and 80 for testing.

3) BSSD-FD system: For the BSSD-FD network in Figure
4, we use a FFT length of 1024 samples, and an overlap of
75%. This results in K = 513 frequency bins. Further, we have
M = 6 microphones as determined by the RIR recordings.
The beamforming branch uses H = 500 neurons to create the
beamforming weights W (l, k), and to predict the enhanced
signal Y (l, k). The identification branch uses an embedding
dimension of E = 100 to predict the speaker embeddings e.

4) BSSD-TD system: For the BSSD-TD network in Figure
5, we use a filter length of TA = 100 samples for the filter
kernels in the adaption layer in Eq. (25) and (26). The first con-
volutional layer uses a filter length of 200 samples and a stride
of 50 samples to create a latent space of H = 500 neurons.
The beamforming branch predicts the beamforming weights
w′(l) and the enhanced signal y′(l) in latent space. This signal
is transformed back to time domain using the deconvolution
layer, which uses a filter length of 200 samples, a stride of
50 samples, and overlap-add to produce the enhanced signal
y(t). The identification branch uses an embedding dimension
of E = 100 to predict the speaker embeddings e.

B. Related Systems

To compare our BSSD system against other state-of-the art
speech separation algorithms, we evaluate Conv-TasNet [17]

and PIT with spatial features [23]. To account for dereverber-
ation, we apply the WPE algorithm from [35] prior to Conv-
TasNet.

1) Conv-TasNet: Conv-TasNet separates 2 speakers in time
domain. It operates on chunks of 4s of audio, where it
separates the two speakers in a latent space by using a speech
mask ∈ [0 . . . 1]. The mask is obtained from a series of
convolutions. The system operates on single-channel inputs,
therefore we only use one output of the WPE algorithm. We
use the implementation of [17].

2) Spatial PIT: Spatial PIT separates 2 speakers in fre-
quency domain. It uses log-spectrograms and the sine and co-
sine of the IPDs of frequency-domain, multi-channel mixtures
to predict a speech mask for each speaker [13], [23]. This
mask is used to construct a frequency-domain beamformer [7].
Note that there is no explicit dereverberation constraint, but the
target speech mask is obtained from the anechoic reference
signal r(t). Hence, the beamformer will remove late echoes.

C. Training

All four variants of the BSSD network are trained on
mixtures of C = 2 sources, where each mixture z(t) is
truncated to 5s length. The location (i.e. the DOA index d)
of each source is chosen randomly for each example. We use
a batch size of 60 mixtures from the 101 speakers of the WSJ0
training set. To enable efficient triplet mining with Eq. (17),
we use P = 3 different utterances from B = 20 speakers for
the first source sc=1(t) of each mixture. The second source
sc=2(t) is chosen randomly from the remaining 100 speakers
from the WSJ0 training set. We use the clean first source as as
reference utterance, i.e. r(t) = sc=1(t). The ground truth DOA
index d̂ is used to train the network. We use λ1 = 10−2 and
λ2 = 10−4 for the cost function in Eq. (19). This ensures that
the beamforming path is trained faster than the identification
path, as the latter depends on the former. As the combination
of the different RIRs and WSJ0 utterances allows for billions
of combinations, we randomly create new batches for training
and validation for each epoch. Adam is used as optimizer [67],
with a learning rate of 10−3. A Tensorflow implementation of
the BSSD network can be found at4.

D. Testing

We compare the frequency-domain (FD) and time-domain
(TD) variants of our BSSD system, as well as the analytic
adaption (AA) and statistic adaption (SA) layers introduced
in Section V and VI. Further, we use the Conv-TasNet and
spatial PIT as baseline systems. We test the BSSD network
both in offline mode in block-online mode.

1) Offline Mode: In offline mode, we use 5s long mixtures
of C = {1, 2, 3, 4} speakers from the test set. To be able to
test the performance of the speaker separation and speaker
identification modules separately, we use the ground truth
DOA index d̂ as input to the BSSD network. We report the
separation and dereverberation performance in terms of SI-
SDR using Eq. (15). Further, we report the WER using the

4https://github.com/rrbluke/BSSD

10

Google Speech-to-Text API [68] to perform ASR. Speaker
identification performance is reported in terms of EER on the
enhanced output, using Eq. (23).

2) Block-online Mode: In block-online mode, we use 20s
long mixtures from the test set, which we divide into Nb
blocks of TB = {1, 2.5, 5}s length. Each block is processed
by Algorithm 1, which outputs the DOA index d̂, a list of
extracted signals Yb, and a list of speaker embeddings Eb for
each block b. Then, Algorithm 2 is used to assign the extracted
utterances of each block to the same speaker. This solves the
speaker permutation problem. We report the SI-SDR, WER
and the Block Error Rate (BER) for the extracted speakers.
The BER indicates the percentage of falsely assigned blocks
due to erroneous embeddings. It is determined by comparing
the speaker embedding of the reference utterance rc(t) against
the extracted chunks yb,c(t) for each speaker c, i.e.

BER =
1

C ·Nb

C∑
c=1

Nb∑
b=1

1
(
|er,c − eb,c|2 > δ̂

)
(28)

X. RESULTS

A. Source Localization

First, we report the performance of the localization stage,
i.e. Algorithm 1, using a mixture with C = 3 speakers and
real RIRs. Figure 8 illustrates the D = 100 DOA positions,
arranged on a unit sphere according to Eq. (5). The color
gradient indicates the spatial speech presence probability map
γ′W (d), which is obtained by summing Eq. (10) over all
frequencies K and time frames L. The markers X1, X2 and
X3 indicate the positions of the three speakers. Panel (a)
illustrates γU (d) for the first iteration of Algorithm 1, panel (b)
for the second iteration, panel (c) for the third iteration, and
panel (d) for the fourth iteration. All three sources are localized
during the first three iterations, while the fourth iteration only
sees a faint reflection of one of the three sources. Therefore,
the speaker embedding for this reflection will already be
known, which serves as the stopping criterion of Algorithm
2.

B. Separation Performance

Figure 9 shows the performance of the BSSD-TD-SA model
with the same three speakers as in Figure 8. From panel (a) it
can be seen that there is a significant amount of reverberation
in the input mixture z(t). Panel (b) and (d) show the extracted
and dereverberated signals of two male speakers. Panel (c)
shows the extracted and dereverberated signal of a female
speaker. Even though speaker 2 and 3 are located very close
to each other, they can still be separated. Note that the spatial
resolution is only determined by the number of DOA vectors
D, and the BSSD model is trained independently of the
localization stage in Algorithm 1.

C. Speaker Identification

Figure 10 illustrates a 2D projection of the embeddings for
each of the 101 WSJ0 speaker identities, which were obtained

(a) (b)

(c) (d)

Fig. 8: Unit sphere with D = 100 equidistant DOA points and
a circular microphone array with M = 6 channels. Panel (a)
- (d) show the spatial speech presence probability map γ′W
during consecutive iterations of Algorithm 1.

using BSSD-TD-SA model. For each speaker, 20 random
utterances have been used, which have been reverberated and
spatialized using both the real and simulated RIRs. It can be
seen that each speaker identity can be distinguished.

D. Offline mode

Table I reports SI-SDR, WER and EER for the real RIRs.
For C = 1 speaker, the BSSD models only perform dere-
verberation. Hence, the SI-SDR is the highest for this case.
The low WER of 9.65% indicates that Google-ASR recognizes
reverberant audio quite well. However, all BSSD models could
lower the WER even further. Also, the EER is lowest for one
speaker. This is to be expected, as no interfering components
of other speakers reduce the quality of the speaker embeddings
e. For C = 2 speakers, it can be seen that all BSSD models
outperform Conv-TasNet and spatial PIT, even though Conv-
TasNet is aided by WPE, and spatial PIT has explicitly been
trained to perform dereverberation as well. Conv-TasNet could
only achieve a WER of 48.71%. Spatial PIT only achieves a
WER of 42.27%. It uses a static beamformer, which performs
poorly in reverberant environments [7].

For C = 3 and 4 speakers, performance of the BSSD
architecture drops, as expected. I.e.: the SI-SDR gets lower,
and both the WER and EER rise. The statistic adaption (SA)
outperforms the analytic adaption (AA) variants for all number
of speakers. This is also expected, as the SA variant allows
the network to find an optimal transformation to separate
the speakers both in time- and frequency domain, while the
AA enforces a fixed scheme for spatial whitening and source
localization. When comparing the time-domain (TD) to the
frequency-domain (FD) variants, it can be seen that the FD
models perform slightly better in terms of EER. This indicates
that the speaker embeddings are easier to estimate in frequency

11

(a)

(b)

(c)

(d)

(e)

Fig. 9: Performance plot of the BSSD-TD-SA model with
C = 3 speakers and real RIRs. (a) STFT plot of the first
microphone of the input mixture z(t). The T60 of the reverb
is approximately 650ms. (b) STFT plot of the clean first
source signal r1(t). (c-e) STFT plots of the extracted and
dereverberated sources yc(t).

Fig. 10: t-SNE plot of the extracted speaker embeddings, using
the 101 identities of the WSJ0 corpus.

domain, as they are calculated from the enhanced spectrograms
(see Figure 4).

TABLE I: Speech separation, dereverberation and speaker
identification performance for the real RIRs in offline mode.

model C SI-SDR WER EER
no enhancement 1 - 9.65 % -
Conv-TasNet 2 6.92 dB 48.71 % -
spatial PIT 2 2.26 dB 42.27 % -

BSSD-FD-AA

1 16.91 dB 5.09 % 2.87 %
2 8.65 dB 28.74 % 5.92 %
3 6.75 dB 51.90 % 8.94 %
4 5.61 dB 66.20 % 11.32 %

BSSD-FD-SA

1 14.92 dB 6.10 % 3.02 %
2 10.23 dB 23.70 % 4.22 %
3 8.34 dB 42.49 % 6.20 %
4 7.17 dB 56.43 % 7.22 %

BSSD-TD-AA

1 10.07 dB 9.81 % 4.18 %
2 6.74 dB 45.79 % 9.94 %
3 5.22 dB 71.63 % 15.68 %
4 4.31 dB 84.39 % 21.65 %

BSSD-TD-SA

1 14.40 dB 5.72 % 2.89 %
2 9.33 dB 26.19 % 5.75 %
3 7.92 dB 42.32 % 7.28 %
4 6.84 dB 56.57 % 9.39 %

Table II reports SI-SDR, WER and EER for the significantly
shorter simulated RIRs. Consequently, all systems perform
better in all scores. In these almost ideal conditions, Google-
ASR achieved a WER of 3.04% for a single speaker without
any enhancement. However, all BSSD variants also achieved
a lower WER as well. Also, Conv-TasNet and spatial PIT
perform better compared to the real RIRs. However, Conv-
TasNet still could not separate the speakers perfectly. The
static beamformer of spatial PIT performs quite well for the
short simulated RIRs, achieving a WER of 17.1%. However,
all BSSD variants achieved a lower WER for C = 2 speakers.
Again, the FD variants perform slightly better than the TD
models, and the SA layer outperforms the AA layer.

TABLE II: Speech separation, dereverberation and speaker
identification performance for the simulated RIRs in offline
mode.

model C SI-SDR WER EER
no enhancement 1 - 3.04 % -
Conv-TasNet 2 8.78 dB 25.34 % -
spatial PIT 2 3.06 dB 17.10 % -

BSSD-FD-AA

1 22.72 dB 1.72 % 2.89 %
2 10.93 dB 14.71 % 6.11 %
3 8.62 dB 27.82 % 8.27 %
4 7.25 dB 37.58 % 9.65 %

BSSD-FD-SA

1 22.02 dB 2.72 % 3.07 %
2 12.06 dB 12.80 % 5.25 %
3 9.06 dB 25.39 % 7.37 %
4 7.40 dB 40.36 % 8.99 %

BSSD-TD-AA

1 16.87 dB 2.71 % 3.44 %
2 10.62 dB 15.55 % 7.23 %
3 8.31 dB 30.86 % 10.05 %
4 6.75 dB 46.48 % 14.52 %

BSSD-TD-SA

1 22.75 dB 2.02 % 2.84 %
2 12.82 dB 9.84 % 5.56 %
3 10.23 dB 20.92 % 7.77 %
4 8.57 dB 34.45 % 9.23 %

E. Block-online mode
Table III reports SI-SDR, WER and BER for the real RIRs,

for block lengths of TB = 1s, 2.5s and 5s. We only performed

12

these experiments on the SA variants of the BSSD network, as
the SA layer consistently outperforms the AA layer. The SI-
SDR and WER are worse compared to offline mode, as many
sources of errors cumulate throughout the processing chain.
I.e.: Algorithm 1 may produce wrong DOA indices for short
blocks and many speakers. Consequently, speaker separation
is poor, resulting in erroneous speaker embeddings. Further,
both the speaker separation and speaker identification modules
introduce errors on their own. For the shortest block length of
TB = 1s, there are 20 blocks for 20s of audio. In order to
achieve a perfect BER score, the embeddings for the same
speaker in all 20 blocks must be identical (see Eq. (28)). If
the speaker is silent in one or more blocks, a perfect BER
score cannot be achieved. Clearly, performance is better for
larger block lengths and fewer speakers. For C = 2 speakers
and a block length of TB = 5s, the WER is 34.79% for the
FD variant, and 28.51% for the TD variant. The BER is 10%
for the FD variant, and 4.5% for the TD variant. In contrast to
the experiments in offline mode, all scores are slightly better
for the TD models.

TABLE III: Speech separation and dereverberation perfor-
mance for the real RIRs in block-online mode.

model C TB SI-SDR WER BER

BSSD-FD-SA

2
1.0s 3.80 dB 66.94 % 37.40 %
2.5s 7.05 dB 44.22 % 15.88 %
5.0s 8.64 dB 34.79 % 10.00 %

3
1.0s 3.00 dB 75.68 % 48.90 %
2.5s 5.19 dB 59.94 % 27.13 %
5.0s 6.73 dB 52.98 % 14.75 %

4
1.0s 2.49 dB 78.21 % 64.40 %
2.5s 3.71 dB 71.96 % 43.75 %
5.0s 4.76 dB 68.07 % 35.00 %

BSSD-TD-SA

2
1.0s 4.49 dB 60.67 % 25.30 %
2.5s 7.04 dB 36.24 % 10.75 %
5.0s 8.47 dB 28.51 % 4.50 %

3
1.0s 3.30 dB 74.11 % 39.70 %
2.5s 4.81 dB 63.82 % 23.88 %
5.0s 6.31 dB 48.68 % 22.50 %

4
1.0s 2.70 dB 76.32 % 47.85 %
2.5s 3.93 dB 70.83 % 32.25 %
5.0s 4.86 dB 65.14 % 32.50 %

Table IV reports SI-SDR, WER and BER for the simulated
RIRs, for block lengths of TB = 1s, 2.5s and 5s. All scores
are better compared to the significantly longer real RIRs. For
C = 2 speakers and a block length of TB = 5s, the WER is
19.80% for the FD variant, and 16.75% for the TD variant.
The BER is 3.25% for the FD variant, and 1.25% for the TD
variant. Again, In contrast to the experiments in offline mode,
all scores are slightly better for the TD models.

F. Model complexity

Table V reports the number of trainable parameters per vari-
ant of the BSSD network. The frequency domain (FD) variants
use mostly complex-valued weights, which are counted as
2 real-valued weights. Hence, these models are significantly
larger than the time domain (TD) variants. The size of the
statistic adaption (SA) layer in the time domain network is
comparatively small with 720,000 parameters. However, the
analytic adaption (AA) layer requires additional convolutions

TABLE IV: Speech separation and dereverberation perfor-
mance for the simulated RIRs in block-online mode.

model C TB SI-SDR WER BER

BSSD-FD-SA

2
1.0s 4.24 dB 58.08 % 27.55 %
2.5s 8.13 dB 27.70 % 7.88 %
5.0s 10.67 dB 19.80 % 3.25 %

3
1.0s 3.49 dB 75.03 % 40.00 %
2.5s 6.46 dB 46.98 % 17.50 %
5.0s 7.91 dB 35.83 % 11.75 %

4
1.0s 2.89 dB 81.74 % 49.40 %
2.5s 5.25 dB 52.42 % 24.63 %
5.0s 6.05 dB 49.52 % 23.75 %

BSSD-TD-SA

2
1.0s 5.82 dB 51.17 % 18.55 %
2.5s 10.94 dB 18.21 % 3.63 %
5.0s 11.91 dB 16.75 % 1.25 %

3
1.0s 4.40 dB 73.55 % 30.50 %
2.5s 7.75 dB 47.37 % 15.25 %
5.0s 9.66 dB 39.12 % 9.75 %

4
1.0s 3.10 dB 81.24 % 37.65 %
2.5s 5.11 dB 60.12 % 26.00 %
5.0s 7.80 dB 52.99 % 10.75 %

from Eq. (25). Similar to Conv-TasNet, the time domain
variant also has the advantage of a small step size of 50
samples. The number of parameters for speaker identification
is almost the same for all variants.

TABLE V: Number of parameters for the beamforming and
identification branches of the BSSD network.

model parameters
beamformer

parameters
identification

BSSD-FD-AA 11,064,384 2,664,100
BSSD-FD-SA 14,757,984 2,664,100
BSSD-TD-AA 5,456,700 2,526,500
BSSD-TD-SA 6,176,700 2,526,500

XI. CONCLUSION

In this paper, we introduced the Blind Speech Separation
and Dereverberation (BSSD) network, which performs si-
multaneous speaker separation, dereverberation and speaker
identification in a single neural network. We proposed four
variants of our system, which operate in frequency-domain and
time-domain, and use analytic adaption and statistic adaption
layers to perform blind speaker separation. We have shown that
100 DOA bases provide enough spatial resolution to separate
up to four speakers. Further, we proposed the block-online
mode to process longer audio recordings, as they occur in
meeting scenarios. In our experiments, we could show that the
BSSD network outperforms similar state-of-the art algorithms
for speaker separation in terms of SI-SDR and WER.

REFERENCES

[1] D. Wang and J. Chen, “Supervised speech separation based on deep
learning: An overview,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 26, no. 10, pp. 1702–1726, 2018.

[2] J. Barker, R. Marxer, E. Vincent, and S. Watanabe, “The third CHiME
speech separation and recognition challenge: Dataset, task and base-
lines,” in IEEE 2015 Automatic Speech Recognition and Understanding
Workshop (ASRU), 2015.

[3] E. Vincent, S. Watanabe, J. Barker, and R. Marxer, “The fourth CHiME
speech separation and recognition challenge: Dataset, task and base-
lines,” in Proc. of the 4th Intl. Workshop on Speech Processing in
Everyday Environments (CHiME 2016), 2016.

13

[4] H. Erdogan, J. Hershey, S. Watanabe, M. Mandel, and J. L. Roux,
“Improved MVDR beamforming using single-channel mask prediction
networks,” in Interspeech, Sep. 2016.

[5] J. Heymann, L. Drude, and R. Haeb-Umbach, “Neural network based
spectral mask estimation for acoustic beamforming,” in 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), March 2016, pp. 196–200.

[6] L. Pfeifenberger, M. Zöhrer, and F. Pernkopf, “Eigenvector-based speech
mask estimation using logistic regression,” in Interspeech 2017, 18th
Annual Conference of the International Speech Communication Associ-
ation, 2017, Aug. 2017, pp. 2660–2664.

[7] L. Pfeifenberger, M. Zöhrer, and F. Pernkopf, “Eigenvector-based speech
mask estimation for multi-channel speech enhancement,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 27,
no. 12, pp. 2162–2172, 2019.

[8] J. Benesty, M. M. Sondhi, and Y. Huang, Springer Handbook of Speech
Processing. Berlin–Heidelberg–New York: Springer, 2008.

[9] C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Subramanian, J. San-
tos, S. Mehri, N. Rostamzadeh, Y. Bengio, and C. Pal, “Deep complex
networks,” in International Conference for Learning Representations
(ICLR), 05 2017.

[10] L. Pfeifenberger, M. Zöhrer, and F. Pernkopf, “Deep complex-valued
neural beamformers,” in ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019,
pp. 2902–2906.

[11] Y. Koyama and B. Raj, “W-net BF: dnn-based beamformer using
joint training approach,” CoRR, vol. abs/1910.14262, 2019. [Online].
Available: http://arxiv.org/abs/1910.14262

[12] J. R. Hershey, Z. Chen, J. Le Roux, and S. Watanabe, “Deep clustering:
Discriminative embeddings for segmentation and separation,” in 2016
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2016, pp. 31–35.

[13] D. Yu, M. Kolbæk, Z. Tan, and J. Jensen, “Permutation invariant training
of deep models for speaker-independent multi-talker speech separation,”
in 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2017, pp. 241–245.

[14] Z. Chen, Y. Luo, and N. Mesgarani, “Deep attractor network for single-
microphone speaker separation,” in 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2017, pp. 246–
250.

[15] D. Stoller, S. Ewert, and S. Dixon, “Wave-u-net: A multi-scale
neural network for end-to-end audio source separation,” CoRR, vol.
abs/1806.03185, 2018. [Online]. Available: http://arxiv.org/abs/1806.
03185

[16] Y. Luo and N. Mesgarani, “Tasnet: Time-domain audio separation
network for real-time, single-channel speech separation,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, pp. 696–700.

[17] ——, “Conv-tasnet: Surpassing ideal time–frequency magnitude mask-
ing for speech separation,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 27, no. 8, pp. 1256–1266, 2019.

[18] T. Ochiai, M. Delcroix, R. Ikeshita, K. Kinoshita, T. Nakatani, and
S. Araki, “Beam-tasnet: Time-domain audio separation network meets
frequency-domain beamformer,” in ICASSP 2020 - 2020 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2020, pp. 6384–6388.

[19] K. Žmolı́ková, M. Delcroix, K. Kinoshita, T. Higuchi, A. Ogawa, and
T. Nakatani, “Speaker-aware neural network based beamformer for
speaker extraction in speech mixtures,” in Interspeech 2017, 18th Annual
Conference of the International Speech Communication Association,
2017, 08 2017, pp. 2655–2659.

[20] K. Žmolı́ková, M. Delcroix, K. Kinoshita, T. Ochiai, T. Nakatani, L. Bur-
get, and J. Černocký, “Speakerbeam: Speaker aware neural network for
target speaker extraction in speech mixtures,” IEEE Journal of Selected
Topics in Signal Processing, vol. 13, no. 4, pp. 800–814, 2019.

[21] T. Yoshioka, H. Erdogan, Z. Chen, and F. Alleva, “Multi-microphone
neural speech separation for far-field multi-talker speech recognition,”
in 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2018, pp. 5739–5743.

[22] Z.-Q. Wang and D. Wang, “Integrating spectral and spatial features for
multi-channel speaker separation,” in Interspeech 2018 - 19th Annual
Conferenceof the International Speech Communication Association, Sep
2018, Hyderabad, India, 09 2018, pp. 2718–2722.

[23] Z. Wang, J. Le Roux, and J. R. Hershey, “Multi-channel deep clustering:
Discriminative spectral and spatial embeddings for speaker-independent
speech separation,” in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2018, pp. 1–5.

[24] T. Nakatani, R. Takahashi, T. Ochiai, K. Kinoshita, R. Ikeshita,
M. Delcroix, and S. Araki, “Dnn-supported mask-based convolutional
beamforming for simultaneous denoising, dereverberation, and source
separation,” in ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 6399–
6403.

[25] X. Chang, W. Zhang, Y. Qian, J. L. Roux, and S. Watanabe, “Mimo-
speech: End-to-end multi-channel multi-speaker speech recognition,” in
2019 IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), 2019, pp. 237–244.

[26] T. Yoshioka, H. Erdogan, Z. Chen, X. Xiao, and F. Alleva, “Recognizing
overlapped speech in meetings: A multichannel separation approach
using neural networks,” 09 2018, pp. 3038–3042.

[27] T. Yoshioka, Z. Chen, C. Liu, X. Xiao, H. Erdogan, and D. Dimitriadis,
“Low-latency speaker-independent continuous speech separation,” 2019.

[28] T. von Neumann, K. Kinoshita, M. Delcroix, S. Araki, T. Nakatani,
and R. Haeb-Umbach, “All-neural online source separation, counting,
and diarization for meeting analysis,” in ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 02 2019, pp. 91–95.

[29] J. Barker, S. Watanabe, E. Vincent, and J. Trmal, “The fifth ’chime’
speech separation and recognition challenge: Dataset, task and base-
lines,” in Interspeech 2018 - 19th Annual Conferenceof the International
Speech Communication Association, Sep 2018, Hyderabad, India, 03
2018.

[30] S. Watanabe, M. Mandel, J. Barker, E. Vincent, A. Arora, X. Chang,
S. Khudanpur, V. Manohar, D. Povey, D. Raj, D. Snyder, A. S. Subrama-
nian, J. Trmal, B. B. Yair, C. Boeddeker, Z. Ni, Y. Fujita, S. Horiguchi,
N. Kanda, T. Yoshioka, and N. Ryant, “Chime-6 challenge:tackling
multispeaker speech recognition for unsegmented recordings,” 2020.

[31] T. Yoshioka, A. Sehr, M. Delcroix, K. Kinoshita, R. Maas, T. Nakatani,
and W. Kellermann, “Making machines understand us in reverberant
rooms: Robustness against reverberation for automatic speech recogni-
tion,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 114–126,
2012.

[32] K. Kinoshita, M. Delcroix, H. Kwon, T. Mori, and T. Nakatani, “Neural
network-based spectrum estimation for online wpe dereverberation,” in
Interspeech 2017, 18th Annual Conference of the International Speech
Communication Association, 2017, 08 2017, pp. 384–388.

[33] D. Williamson and D. Wang, “Time-frequency masking in the complex
domain for speech dereverberation and denoising,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, vol. PP, pp. 1–1, 04
2017.

[34] T. Nakatani and K. Kinoshita, “A unified convolutional beamformer for
simultaneous denoising and dereverberation,” IEEE Signal Processing
Letters, vol. 26, no. 6, pp. 903–907, 2019.

[35] T. Yoshioka, T. Nakatani, K. Kinoshita, and M. Miyoshi, Cohen I., Ben-
esty J., Gannot S. (eds) Speech Processing in Modern Communication.
Springer Topics in Signal Processing. Springer, Berlin, Heidelberg,
12 2009, vol. 3, ch. Speech Dereverberation and Denoising Based on
Time Varying Speech Model and Autoregressive Reverberation Model,
pp. 151–182.

[36] G. Sell, D. Snyder, A. McCree, D. Garcia-Romero, J. Villalba, M. Ma-
ciejewski, V. Manohar, N. Dehak, D. Povey, S. Watanabe, and S. Khu-
danpur, “Diarization is hard: Some experiences and lessons learned for
the jhu team in the inaugural dihard challenge,” in Interspeech 2018
- 19th Annual Conferenceof the International Speech Communication
Association, Sep 2018, Hyderabad, India, 09 2018, pp. 2808–2812.

[37] M. Kolbæk, D. Yu, Z. Tan, and J. Jensen, “Multitalker speech separation
with utterance-level permutation invariant training of deep recurrent neu-
ral networks,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 25, no. 10, pp. 1901–1913, 2017.

[38] D. Snyder, P. Ghahremani, D. Povey, D. Garcia-Romero, Y. Carmiel,
and S. Khudanpur, “Deep neural network-based speaker embeddings
for end-to-end speaker verification,” in 2016 IEEE Spoken Language
Technology Workshop (SLT), 2016, pp. 165–170.

[39] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end
factor analysis for speaker verification,” Audio, Speech, and Language
Processing, IEEE Transactions on, vol. 19, pp. 788 – 798, 06 2011.

[40] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-
vectors: Robust dnn embeddings for speaker recognition,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 04 2018, pp. 5329–5333.

[41] C. Li, X. Ma, B. Jiang, X. Li, X. Zhang, X. Liu, Y. Cao, A. Kannan,
and Z. Zhu, “Deep speaker: an end-to-end neural speaker embedding
system,” CoRR, vol. abs/1705.02304, 05 2017. [Online]. Available:
http://arxiv.org/abs/1705.02304

http://arxiv.org/abs/1910.14262
http://arxiv.org/abs/1806.03185
http://arxiv.org/abs/1806.03185
http://arxiv.org/abs/1705.02304

14

[42] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 815–823.

[43] C. Wang, X. Lan, and X. Zhang, “How to train triplet networks with
100k identities?” in 2017 IEEE International Conference on Computer
Vision Workshops (ICCVW), 2017, pp. 1907–1915.

[44] H. Song, M. Willi, J. J. Thiagarajan, V. Berisha, and A. Spanias, “Triplet
network with attention for speaker diarization,” in Interspeech 2018
- 19th Annual Conferenceof the International Speech Communication
Association, Sep 2018, Hyderabad, India, 08 2018.

[45] C. Zhang, K. Koishida, and J. Hansen, “Text-independent speaker
verification based on triplet convolutional neural network embeddings,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
vol. 26, pp. 1–1, 04 2018.

[46] C. Wu, R. Manmatha, A. J. Smola, and P. Krähenbühl, “Sampling
matters in deep embedding learning,” in 2017 IEEE International
Conference on Computer Vision (ICCV), 2017, pp. 2859–2867.

[47] H. Kuttruff, Room Acoustics, 5th ed. London–New York: Spoon Press,
2009.

[48] B. Duvenhage, K. Bouatouch, and D. Kourie, “Numerical verification of
bidirectional reflectance distribution functions for physical plausibility,”
in SAICSIT ’13: Proceedings of the South African Institute for Computer
Scientists and Information Technologists Conference, 10 2013, pp. 200–
208.

[49] J. Benesty, J. Chen, and Y. Huang, Microphone Array Signal Processing.
Berlin–Heidelberg–New York: Springer, 2008.

[50] Y. Huang, J. Benesty, and J. Chen, Acoustic MIMO Signal Processing.
Berlin–Heidelberg–New York: Springer, 2006.

[51] M. Brandstein and D. Ward, Microphone Arrays. Berlin–Heidelberg–
New York: Springer, 2001.

[52] A. J. Bell and T. J. Sejnowski, “The ‘independent components’ of natural
scenes are edge filters.” VISION RESEARCH, vol. 37, pp. 3327–3338,
1997.

[53] B. D. V. Veen and K. M. Buckley, “Beamforming: a versatile approach to
spatial filtering,” IEEE International Conference on Acoustics, Speech,
and Signal Processing, vol. 5, no. 5, pp. 4–24, Apr. 1988.

[54] E. Warsitz and R. Haeb-Umbach, “Blind acoustic beamforming based
on generalized eigenvalue decomposition,” IEEE Transactions on audio,
speech, and language processing, vol. 15, no. 5, Jul. 2007.

[55] M. F. Amin, M. I. Amin, A. Y. H. Al-Nuaimi, and K. Murase, “Wirtinger
calculus based gradient descent and levenberg-marquardt learning al-
gorithms in complex-valued neural networks,” in Neural Information
Processing. Springer Berlin Heidelberg, 2011, pp. 550–559.

[56] P. Bouboulis, “Wirtinger’s calculus in general hilbert spaces,” CoRR, vol.
abs/1005.5170, 2010. [Online]. Available: http://arxiv.org/abs/1005.5170

[57] R. F. H. Fischer, “Appendix A: Wirtinger calculus,” in Precoding and
Signal Shaping for Digital Transmission. Wiley-Blackwell, 2005, pp.
405–413.

[58] J. L. Roux, S. Wisdom, H. Erdogan, and J. R. Hershey, “Sdr – half-baked
or well done?” in ICASSP 2019 - 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 626–
630.

[59] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss
for person re-identification,” CoRR, vol. abs/1703.07737, 03 2017.
[Online]. Available: http://arxiv.org/abs/1703.07737

[60] X. Zhang, F. X. Yu, S. Kumar, and S. Chang, “Learning spread-out
local feature descriptors,” in 2017 IEEE International Conference on
Computer Vision (ICCV), 2017, pp. 4605–4613.

[61] S. Haykin, Adaptive Filter Theory, 4th ed. New Jersey: Prentice Hall,
2002.

[62] E. A. P. Habets and S. Gannot, “Generating sensor signals in isotropic
noise fields,” The Journal of the Acoustical Society of America, vol. 122,
no. 6, pp. 3464–3470, 2007.

[63] S. Studio, “Respeaker core v2.0,” Website, 2020, visited on
September 24th 2020. [Online]. Available: https://www.seeedstudio.
com/ReSpeaker-Core-v2-0.html

[64] J. Kysela, T. Iwai, C. Ladisch, J. Courtier-Dutton, L. Girdwood, and
M. Brown, “Alsa-project,” Website, 2020, visited on February 19th
2020. [Online]. Available: https://alsa-project.org/wiki/Main Page

[65] M. Geier, “python-sounddevice,” Website, 2020, visited on February
19th 2020. [Online]. Available: https://python-sounddevice.readthedocs.
io/en/0.3.15/

[66] R. Scheibler, E. Bezzam, and I. Dokmanic, “Pyroomacoustics: A python
package for audio room simulations and array processing algorithms,”
CoRR, vol. abs/1710.04196, 2017.

[67] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
3rd International Conference for Learning Representations, San Diego,
2015, Jul. 2015.

[68] A. Zhang, “SpeechRecognition – a library for performing speech
recognition, with support for several engines and apis, online and
offline.” Website, 2020, visited on March 25th 2020. [Online].
Available: https://pypi.org/project/SpeechRecognition/

Lukas Pfeifenberger received the M.Sc. (Dipl.
Ing.FH) degree in computer science from the Uni-
versity of Applied Sciences, Salzburg, Austria, in
2004. His master’s thesis promotes the use of closed
control systems in earth fault detection appliances.
Since 2005 he has been working in the electronics
industry on projects pertaining to FPGA design,
DSP programming and communication acoustics,
including algorithms for echo and noise cancellation.
In 2013, he received the M.Sc. degree in Telemat-
ics at Graz University of Technology, Austria. His

master’s thesis decuments the implementation of an acoustic beamformer
on an embedded device with limited resources. Since 2015 he has been
a Research Associate at the Laboratory of Signal Processing and Speech
Communication, Graz University of Technology, Austria. In 2021, he received
his Ph.D. degree in computer science with honors from Graz University
of Technology, Austria. His doctoral thesis explores the evolution of neu-
ral acoustic beamformers ranging from mask-based beamforming to blind
speaker separation. His research interests include signal processing, machine
learning, artificial intelligence, pattern recognition, computer vision, speech
enhancement, acoustic echo control, speaker separation, and data analysis for
industrial applications.

Franz Pernkopf received his MSc (Dipl. Ing.) de-
gree in Electrical Engineering at Graz University of
Technology, Austria, in summer 1999. He earned a
PhD degree from the University of Leoben, Aus-
tria, in 2002. In 2002 he was awarded the Erwin
Schrödinger Fellowship. He was a Research Asso-
ciate in the Department of Electrical Engineering at
the University of Washington, Seattle, from 2004 to
2006. From 2010-2019 he was Associate Professor
at the Laboratory of Signal Processing and Speech
Communication, Graz University of Technology,

Austria. Since 2019, he is Professor for Intelligent Systems at the Signal
Processing and Speech Communication Laboratory at Graz University of
Technology, Austria. His research is focused on pattern recognition, machine
learning, and computational data analytics with applications in signal and
speech processing.

http://arxiv.org/abs/1005.5170
http://arxiv.org/abs/1703.07737
https://www.seeedstudio.com/ReSpeaker-Core-v2-0.html
https://www.seeedstudio.com/ReSpeaker-Core-v2-0.html
https://alsa-project.org/wiki/Main_Page
https://python-sounddevice.readthedocs.io/en/0.3.15/
https://python-sounddevice.readthedocs.io/en/0.3.15/
https://pypi.org/project/SpeechRecognition/

	I Introduction
	I-A Open number of sources
	I-B Distant speaker separation
	I-C Speaker Identification

	II System Model
	III DOA Bases
	IV Source Localization
	IV-A Spatial Whitening
	IV-B Speaker Separation and Diarization

	V BSSD Network - Frequency Domain
	V-A Speaker Separation
	V-B Beamforming and Dereverberation
	V-C Speaker Identification
	V-D Distance Measure

	VI BSSD Network - Time Domain
	VI-A Speaker Separation
	VI-B Beamforming and Dereverberation
	VI-C Speaker Identification

	VII Block Online Processing
	VIII RIR Recordings
	VIII-A Real RIRs
	VIII-B Simulated RIRs

	IX Experiments
	IX-A Experimental Setup
	IX-A1 Speech mixtures
	IX-A2 DOA bases
	IX-A3 BSSD-FD system
	IX-A4 BSSD-TD system

	IX-B Related Systems
	IX-B1 Conv-TasNet
	IX-B2 Spatial PIT

	IX-C Training
	IX-D Testing
	IX-D1 Offline Mode
	IX-D2 Block-online Mode

	X Results
	X-A Source Localization
	X-B Separation Performance
	X-C Speaker Identification
	X-D Offline mode
	X-E Block-online mode
	X-F Model complexity

	XI Conclusion
	References
	Biographies
	Lukas Pfeifenberger
	Franz Pernkopf

