2102.09809v1 [cs.CR] 19 Feb 2021

arxXiv

INTRODUCING AN EXPERIMENTAL DISTORTION-TOLERANT SPEECH ENCRYPTION

SCHEME FOR SECURE VOICE COMMUNICATION

A PREPRINT

Piotr Krasnowski, Jerome Lebrun, Bruno Martin

Cote d’Azur, 98, Boulevard Edouard Herriot, 06200 Nice-Cedex, France
I3S-CNRS, 2000, Route des Lucioles, BP 121, 06903 Sophia Antipolis-Cedex, France
{krasnowski,lebrun,bruno.martin}@i3s.unice.fr

ABSTRACT

The current increasing need for privacy-preserving voice communications is leading to new ideas for securing
voice transmission. This paper refers to a relatively new concept of sending encrypted speech as pseudo-speech
in the audio domain over digital voice communication infrastructures, like 3G cellular network and VoIP. This
setting is more versatile compared with secure VoIP applications because vocal communication does not depend
on a specific transmission medium. However, it is very challenging to maintain simultaneously high security and
robustness of communication over voice channels.

This work presents a novel distortion-tolerant speech encryption scheme for secure voice communications over
voice channels that combines the robustness of analog speech scrambling and elevated security offered by digital
ciphers like AES-CTR. The system scrambles vocal parameters of a speech signal (loudness, pitch, timbre) using
distance-preserving pseudo-random translations and rotations on a hypersphere of parameters. Next, scrambled
parameters are encoded to a pseudo-speech signal adapted to transmission over digital voice channels equipped
with voice activity detection. Upon reception of this pseudo-speech signal, the legitimate receiver restores
distorted copies of the initial vocal parameters. Despite some deciphering errors, an integrated neural-based
vocoder based on the LPCNet architecture reconstructs an intelligible speech.

The experimental implementation of this speech encryption scheme has been tested by simulations and sending
an encrypted signal over FaceTime between two iPhones 6 connected to the same WiFi network. Moreover,
speech excerpts restored from encrypted signals were evaluated by a speech quality assessment on a group of
about 40 participants. The experiments demonstrated that the proposed scheme produces intelligible speech
with a gracefully progressive quality degradation depending on the channel noise. Finally, the preliminary
computational analysis suggested that the presented setting may operate on high-end portable devices in nearly
real-time.
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INTRODUCTION

voice channel

(VoIP, cellular, analog)

The mainstreaming of mobile networks opens new possibilities
for personal communication. However, the rising numbers of
reported privacy violations and cyber-espionage undermine con-
fidence in the communication infrastructure. Another issue is
the inadequate security of many voice communication systems,
such as GSM which encrypted voice traffic using the insecure
A5/1 stream cipher with a 64-bit key [1]. Low trust results
in a growing need for alternative methods of securing vocal
communication.

This work addresses the issue of secure voice communications
over untrusted voice channels. The procedure for establishing
a secure vocal link is illustrated in Fig. 1. In the first step, two
users carrying dedicated devices initiate an insecure call using
a preferred communication technique, like cellular telephony,
Voice over Internet Protocol (VoIP), or fixed-line telephone cir-
cuits. Then, the two devices securely acknowledge their crypto-
graphic keys by sending binary messages over the voice channel,

W - —

data as audio signal :

(a) Key exchange and authentication with short authentica-
tion codes displayed on the devices.

voice channel
(VolIP, cellular, analog) ‘

Denr——=g=

encrypted pseudo-speech

(b) Encrypted conversation.

Figure 1: Establishing a secure vocal link over a voice channel.

the same way as ordinary voice. Once the cryptographic key
is computed and authenticated, the speakers can start a secure
conversation. Each device encrypts speech in real-time into an
incomprehensible noise and sends the encrypted signal over the
channel. Upon reception, the paired device decrypts the signal
and restores the initial voice.
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The outlined communication scheme for secure voice commu-
nication revives the idea dating back to the late 30s [2]. First
secure voice systems relied on analog signal scrambling in time,
frequency and some mixed transform domains [3, 4, 5, 6, 7].
Their role was to obscure a conversation by making the speech
signal unintelligible for interceptors. The biggest advantage
of analog scramblers, apart from simplicity, was their excep-
tional robustness against distortion introduced by telephone lines
because transmission noise linearly mapped to reconstructed
speech. However, due to insufficient security level [8, 9], these
analog and semi-analog scramblers were later superceded by
fully-digital systems. Probably the first fully-digital secret tele-
phony system was SIGSALY' (‘X-System’), constructed in
1943 during WWII [10]. However, the proliferation of digital
secure voice systems became possible when communications
over fading telephone lines was replaced with packet networks
[11]. This change paved the way to modern secure VoIP, with
Telegram and Signal being the iconic examples. 2

Nowadays, sending encrypted audio over voice channels appears
to be more complicated than exchanging encrypted bits over dig-
ital packet networks. Modern voice channels aim at preserving
speech intelligibility at an acceptable speech quality degrada-
tion. This goal is accomplished by applying perceptual speech
processing, such as voice compression, voice activity detection,
and adaptive noise suppression [12, 13]. All these operations
considerably modify the synthetic signal. As a result, the current
golden standard for securing voice communication that consists
of consecutive voice encoding and binary enciphering is consid-
erably hindered by prohibitive error rates and extremely limited
bandwidth.

On the other hand, secure communication over voice channels
is supposed to be more versatile because the encrypted audio
signal can be made compatible with arbitrary communication
infrastructure. Furthermore, the encrypted audio signal is more
likely to pass through firewalls without being blocked [14]. Fi-
nally, the system can protect against spying malware installed on
the portable device if speech encryption is done by an external
unit [15]. The mentioned advantages suggest that the proposed
setting could be especially useful for diplomatic and military
services, journalists, lawyers, and traders who require secure
communications in an unreliable environment and without confi-
dential communication infrastructure. Consequently, the system
should reflect high security requirements by elevating the level
of secrecy, privacy, and authentication.

This work presents an experimental joint source-cryptographic
enciphering scheme for secure voice communications over voice
channels, which maintains the security level of digital encipher-
ing, and to some extent enjoys a similar distortion-tolerant prop-
erty of analog speech scramblers. The lossy enciphering unit
scrambles perceptual speech parameters (loudness, pitch, tim-
bre) [16] of a recorded speech signal using distance-preserving
[17] techniques, and produces a synthetic signal adapted for
transmission over a voice channel. Upon reception, a recipient
who owns a valid cryptographic key restores distorted copies

"https://www.nsa.gov/about/cryptologic-heritage/
historical-figures-publications/publications/wwii/
sigsaly-story/

https://signal.org, https://core.telegram.org

of speech parameters and decodes speech with a trained neural
vocoder.

The system architecture and its operation is thoroughly detailed,
emphasizing security aspects, computational complexity, and
robustness to distortion. The scheme operates on speech frames
and produces an enciphered signal of equal duration, what can
be seen as a strong advantage for making the system operation
real-time. Moreover, it is proved that encrypted speech is com-
putationally indistinguishable from random when enciphering is
done using a secure pseudo-random number generator (PRNG)
with a secret seed of a sufficient length.

Simulations and real-world experiments follow the system de-
scription. Simulations confirmed the scheme’s capability to
decode mildly distorted signals. Furthermore, the encrypted
speech signal was transmitted over FaceTime between two mo-
bile phones and successfully decrypted. A speech quality assess-
ment with about 40 listeners showed that the proposed encryp-
tion scheme produces intelligible speech and is robust against
Gaussian noise at SNR = 15 dB and voice compression at bi-
trate 48 kbps with the Opus-Silk speech coder. Finally, the
preliminary computational analysis suggests that an optimized
system implementation may run on high-end portable devices.
The experimental code used in simulations and speech samples
evaluated in the speech quality assessment are available online.

This work is organized as follows. Section 2 details the notion
of distortion-tolerant encryption and introduces a scrambling
technique of unit vectors on hyperspheres that is robust against
channel noise. The technique is one of the main building blocks
of a distortion-tolerant speech encryption scheme described in
Section 3. The scheme’s properties are discussed in Section 4.
Section 5 presents experimentation results and finally, Section 6
concludes the work.

2 DISTORTION-TOLERANT SCRAMBLING OF UNIT VECTORS
ON N-SPHERES

The perceptually-oriented processing of encrypted pseudo-
speech in voice channels leads to inevitable transmission errors.
This pessimistic property undermines the usefulness of many
prominent cryptographic algorithms in the studied speech en-
cryption system. The reason is their non-compliance to error,
which is the property that prevents adversarial data manipu-
lation and guarantees exact message decryption [18, 19]. In
contrast, successful operation of speech coding and compres-
sion techniques proves that a good enough approximation of
vocal parameters is sufficient to reconstruct intelligible speech
[12]. Consequently, some imperfect decryption in secure voice
communication is acceptable if the lower decryption accuracy is
somehow compensated by a higher robustness against noise.

Designing a secure cryptographic scheme that operates correctly
despite encrypted data distortion could be achieved using un-
conventional enciphering techniques. This work is inspired
by the notion of distance-preserving [17] encryption stated by
Definition 1. Intuitively speaking, an encryption scheme is
distance-preserving when the distance between any two pieces
of encrypted data is the same after decryption. This property
seems to be useful for protecting audio media streams in real-
time applications. For example, when some small channel noise
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degrades the enciphered vocal parameters, the original signal
could still be approximately decrypted without disrupting the
communication.

Definition 1. [/7] Let M be a data set, K be a key space, d
be a distance measure and Enc be an encryption algorithm for
data items in M. Then, Enc is d-distance preserving if:

VYmg,m € Mand Yk € K :
d(Enci(mo), Enci(my)) = d(my, my).

Applying the distance-preserving encryption technique directly
on speech parameters is far from being straightforward. Naively,
we could scramble independently three perceptual speech com-
ponents: pitch, loudness, and speech timbre [16]. Pitch and
loudness are associated with the fundamental frequency and
signal energy [13], both scalars. However, timbre is a multi-
dimensional signal loosely related to the spectral envelope
and with many possible representations. For instance, in the
speech recognition domain, a spectral envelope is usually en-
coded by 13-19 Mel-Frequency Cepstral Coefficients (MFCC)
[20, 12, 13].

On the other hand, exact distance preservation in perceptually-
oriented speech data seems to be an overly strict property. It is
because some small inaccuracies in speech representations are
usually acceptable or perceptually irrelevant. It is especially true
in real-time applications that prioritize robustness and efficiency
over the quality of representation. Thus, we propose a consid-
erable relaxation of distance-preserving encryption that, in our
opinion, is better suited for protecting real-time voice communi-
cation. The new notion, coined distortion-tolerant encryption, is
stated by Definition 2.

Definition 2. Ler KeyGen be a key generation algorithm that
produces a secret key over the keyspace K, Enc be an encryption
algorithm and Dec be a decryption algorithm. Moreover, let d
and d¢ denote respectively distance measures over the plaintext
space M and the ciphertext space C. We say that the encryption
scheme I1 = (KeyGen, Enc, Dec) is distortion-tolerant with
respect to dpq and d¢ if for every key k € K produced by KeyGen,
any two ciphertexts ¢y, c; € C, and & > 0 not too large, there is
7 > 0 such that:

1. de(er, ¢2) < 6 = dp(Deci(cy), Deci(c2)) < 6.

2. 76 < max {dp(Decg(c;), Dec(c)))}.

ci,cjeC

Unlike in distance-preserving encryption, we use two different
metrics over the message and the ciphertext spaces. Further-
more, we allow some distance expansion 7 between the de-
crypted plaintexts Decy(c;) and Decy(c,), which is still small
compared to the maximum distance between plaintexts. Finally,
the distortion-tolerant property applies locally in a ciphertext
neighborhood.

Every encryption scheme with a distortion-tolerant property is
malleable by design.> Without additional data-integrity mech-
anisms, an active attacker can modify the decrypted plaintext

3 An encryption algorithm is ‘malleable’ if it is possible to trans-
form a ciphertext into another ciphertext which decrypts to a bona fide
plaintext.

by carefully changing the encrypted data. Moreover, given a
pair (m, Enci(m)), the attacker may easily guess or approximate
the decryption result of all ciphertexts close to Ency (). On the
other hand, the malleability does not necessarily compromise
the secrecy of encryptions if the enciphering algorithm uses a
fresh cryptographic key k € K for every encryption.

In this section, we describe a distortion-tolerant technique for
scrambling unit vectors on hyperspheres in even dimensions.
The technique could be used for enciphering the spectral en-
velopes of speech signals represented as spherical vectors on the
hypersphere S” (how it is done will be detailed in Section 3).
The scrambling procedure relies on a spherical commutative
(abelian) group code [21] and uses a secure PRNG with a secret
seed (a cryptographic key). The result of scrambling is a new
spherical vector on S2"~! that may represent another spectral
envelope. Due to the distortion-tolerant property of the encipher-
ing technique, this vector can be efficiently descrambled despite
some small noise.

2.1 Hypersphere mappings

Forn > 1,let & = [£),...,&,]7 be a unit vector such that & > 0.
We describe two mappings, y¢ : S” — R" and @ : R" — §271,
which preserve the Euclidean distance approximately. The com-
position @ o y, transforms vectors on S" to vectors on S n-1,
as shown in Fig. 2. In our scheme, enciphering is performed
over the intermediate domain $¢ in R".

% @,

~ <(I)_—l
Figure 2: Mapping unit vectors on S” to vectors on S 2"~! using
two mappings y¢ and ®g.

P
-

Let x € S”. Then, yg(x) is defined as [£ ¢y, ..., &p,]", Where
@15 Pn—1 € [0, 1) and ¢, € [0, 27r) are the spherical coordinates
of x:

x1 = cos(¢),

X2 = sin(g;) cos(¢2),
)

Xy = sin(gy) - ... - sin(@,_1) cos(¢y),
Xne1 = sin(ey) - ... - sin(@,-1) sin(gy),

For a vector u € R”, let ®¢(u) be a torus mapping defined as in
[22]:

Qg (u) = [&1 cos(u1/&1), &1 sin(ui /1), ...,

. T 2)

& cos(up/€y), & sin(u, /&,)]" .
The image of the mapping @y is a composition of orbits on S >*~!,
which can be viewed as a flat torus [23]. The whole family
of flat tori with ||€]| = 1 and & > O foliates S, meaning
that every point on the hypersphere belongs to one and only
one flat torus [24, 25]. The pre-image of the mapping @ is
Pe =117, [0, 27E)).
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The mappings preserve the Euclidean distance between vectors
approximately. Let u, v € H:’;ll [0, 7&;) % [0, 2n&,). The distance
||y;1(u) - y‘_’;l(v)H is bounded by:

0 <l @ - %' Wl < ”‘;‘ i)

min

3)

where &, = 1rmn & # 0. On the other hand, by assuming
<isn

l[u = V|| < &pin, we have [26]:

2
;Ilu—VII < [[@g(u) = De(V)I] < Jlu = vl. “)
By combining Eq. (3) and Eq. (4) we finally obtain:
_ _ v/
0 < Iy =y Wl < 7z 1Ps(w)-0(V)ll )

From Eq. (5), we may conclude that the composed mapping
7;1 o GD;' is robust against some small channel noise, since

the error introduced to ®¢(u) will be mapped to 7;1 (u) with the
expansion factor up to 7/2&,,,.

2.2 Spherical group codes from lattices

The spherical mappings y¢ and @, provide a framework for a
distortion-tolerant scrambling of spectral envelopes. Another
challenge is to find a suitable model for enciphering vectors
over P¢. In this work, we propose a discrete model based on
a pair of nested lattices in R” and a spherical commutative
group code on §2"~!. Spherical commutative group codes were
introduced in [21] as a new encoding method for sending non-
binary information over non-binary Gaussian channel. However,
the useful literature on using these codes for enciphering remains
scarce.

Definition 3. [2/] A spherical commutative group code € of
order M is a set of M unit vectors € = {Go : G € G}, where o
lies on the unit hypersphere S"™' ¢ R" and G is a finite group
of order M of n X n orthogonal matrices.

Commutative spherical group codes are geometrically uniform,
i.e., for any two elements p, q € €, there exists an isometry fj, 4
such that f, 4(p) = q and fp (%) = € [27]. Moreover, they have
congruent Voronoi regions [28], the same detection probabil-
ity in the presence of transmission noise, and a distribution of
codewords invariant to multiplication by matrices from G. Al-
though spherical commutative group codes do not offer packing
densities as high as general spherical codes, this shortcoming
is compensated by their simple structure and the easiness of
encoding and decoding [29].

Every element in G can be uniquely represented as a product of
powers of generator matrices {Gy, ..., Gi}, such that G; € G for
i=1,..,k, and G; generate G:

G={G -Gy -G :0<wi<dyi=1,..k. (6)

Furthermore, G is isomorphic to Z;, @ ... ® Z,4, where d; -
dy-...-dy = M and d;|d;4 fori = 1,...,k — 1 [30]. We can
thus conveniently index G € G (and Go € %) by a vector
[wy, ...,Wk]T € Zdl D..0 de.

Costa et al. [29] proposed a very efficient method for con-
structing some spherical group codes in even dimensions using

lattices. Figure 3 presents a simple example of two nested lat-
tices in R? associated with a spherical group code on S*. The
red dots on the left side of the picture belong to an orthogonal
lattice Ag) = 2n€,Z X 2né, 7, where (€1, &) = (0.8,0.6). Since
& = [£1,6]7 is nonnegative with a unit norm, the points of
Ag) can be viewed as vertices of frames that are the pre-images
of (Df.

Besides, the red and black dots combined form another lattice
A(q) such that Ay C A(,). It can be noticed that the quotient
A/ A of order 4 can be mapped by @, to some spherical
code ¢ of order 4 on S*3. Moreover, since A, /A is closed
under translation by a single basis vector (the blue arrow), the
code should be closed under an associated rotation on S 3. Con-
sequently, the code ¢ is a commutative group code of order 4
with a single generator matrix. A generalized approach for con-
structing spherical codes from lattices is given by Corollary 1.
27§,

Figure 3: Example of a construction of a spherical code on S
from nested lattices in R?. The flat torus on the right side lies
on the hypersphere in R*.

Corollary 1. [29] Let Ag) C Aoy be a pair of full rank lattices
with respective generator matrices A, and Ag = [, ..., B,],
where {B, ..., B,,} is an orthogonal basis of Ap). There exists an
integer matrix H such that Ag = A H. Matrix H has a Smith
normal form H = PDQ where P and Q are integer matrices
with determinant -1 or 1, and D is a diagonal matrix with

diag(D) = [d,, wndy]”’, di € Nand dj\d;yy fori=1,..,n—1.

Let us define b; = |Bill, b = /X', B/, & = bi/b,

& = [&,...&]1T and the torus mapping @, Then, the quo-
tient of the lattices (27Tb_1/\((,)) / (27rb‘lA(B)) is associated with
a spherical code € c S? ' with the initial vector o =
[€1,0,6,0, ...,&, 017, and a generator group of matrices de-
termined by the Smith normal decomposition of H.

Corollary 1 states that for a given pair of nested lattices
A C Aw), A being orthogonal, and an integer matrix H such
that Ag = A, H, with Smith normal form H = PDQ, one can eas-
ily get generator matrices of G. The task is to correctly associate
basis vectors of the group A,)/Ag) with appropriate rotations
on the hypersphere. Firstly, from diag(D) we may conclude that
A/ A (and hence G) is isomorphic to Zg, @ ... ® Z,,, where
d, is the first element of Diag(D) larger than 1. In consequence,
we get that Gis of order M = d,;,-...-d,, and has k = n—m+1 gen-
erator matrices. We may express the 2n X 2n generator matrices
{G1, G2, ..., G¢} in block-diagonal form:

10t (277 i m.1) 0 - 0

0 rot(2ariima) .. 0

Gi +1 = . . . .
0 0 rot277 iy mn)
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where i = 0,...,k — 1, 74, are elements of the matrix R =
A[;'AQP and rot(x) are 2 X 2 rotation matrices:

- sin(x)]

cos(x)

cos(x)
sin(x)

rot(x) = [

For a relevant discussion, the reader is referred to [29].

It can be noticed that performing basic rotations on the code-
words of %’ is equivalent to translating points in the pre-image
of the flat torus. Thus, we can impose some design rules that
improve the properties of the constructed spherical code.

Firstly, from the bounds in Eq. (4) we obtain that for any
vectors u,v € (27rb’1A(a)) / (27rb’1A(ﬂ)) the Euclidean distance
|Dg(u) — Dg(v)l| is larger than 2/x(lu — v||. Consequently, the
maximization of the minimum distance between vectors of
(2nb™' A(s)) would improve the distance distribution between
codewords on the hypersphere S?'~!. In particular, selecting
dense lattices like the cubic lattice Z", the checkerboard lattice
D,, or the Gosset lattice I'g [31] in the construction will lead to
a larger minimum distance between codewords in 4’. Another
advantage of these mentioned lattices is the existence of very
efficient algorithms [32] for solving the closest vector problem
(CVP) [33].

The distribution of codewords on S2*~! can be further improved
by selecting a proper vector & = [£1,...,&,]T. From Eq. (5),
we should maximize the minimum component &,,;,. This is
achieved by taking & = ... = &,.

2.3 Scrambling

Finally, we describe the scrambling algorithm of vectors on S".
The procedure is presented in Algorithm 1. The parameters of
the scrambling model is a nonnegative vector § = [£, ...,&,] and
a quotient group A(q)/A of order M, where Ay = [, 27&Z
and Ay has an efficient algorithm for solving the CVP. In ad-
dition, the scrambler uses a secure PRNG with a secret, binary
random seed s of length A > 128. The role of the PRNG (here,
the subroutine ‘SelectRandom’) is to output pseudo-randomly
vectors from A, /A with a distribution computationally indis-
tinguishable from the uniform distribution by any probabilistic
polynomial-time (PPT) [19] algorithm up to the security level
given by A.

The algorithm starts by mapping a single vector x € §" to yg(x)
in P and searching the closest vector y in A)/Ag) in terms of
the Euclidean distance. This process may be viewed as quanti-
zation. The resulting quantization error could be mitigated by
increasing the resolution of A,. In the next step, the PRNG
selects an element v from A,)/A. Finally, the scrambler
outputs a codeword ®(y + v) that belongs to a spherical com-
mutative group code ¢ associated with A,/Ag) through the
mapping ®,.

If a sequence of plaintext vectors on S is given, the scrambler
processes them sequentially, each time using a freshly generated
vector produced by ‘SelectRandom’ with the same seed s.

The security of the scrambling algorithm depends on the PRNG
and the quality of entropy used to produce the seed s. It
can be noticed that for the scrambling vector v € A,)/Ap
taken perfectly at random (i.e., a ‘one-time-pad’ scenario),
(x +V) € A)/ A follows a uniform distribution over A, /A,

Algorithm 1:

Data: initial vector x € S, security parameter A > 128,
random seed s € {0, 1}*;

Result: scrambled codeword p € € C S 2n-1,

// find the closest vector in Aw)/Agp

X «— FindClosestVector(y(X); Aw)/A));
// select a random element from A)/Ap

v «— SelectRandom(A )/ Ag); 5);
// encipher and map on the flat torus

P« Dy +v);

for any distribution of y. Thus, ®z(x + v) can be any code-
word of ¥ with equal probability. Furthermore, the same re-
sult can be extended to a sequence of vectors (v, ..., Vy) se-
lected independently and uniformly at random over A)/Ag).
In such a case, the scrambling procedure would give a sequence
(@e(xy + Vi), ... De(xy + v)) of statistically independent code-
words with the uniform distribution over %. Consequently, the
adversary trying to extract any relevant information from the
ciphertext could not perform better than by randomly guessing.

From the construction of the scrambling algorithm, the existence
of any PPT adversary who breaks the secrecy of ciphertexts (with
non-negligible probability) implies the existence of efficient
attacks on the PRNG used in scrambling. In effect, the selection
of a proper sequence generator is the crucial factor from the
security standpoint. Some propositions of suitable PRNGs are
discussed in Section 4.

2.4 Transmission and descrambling

Spherical group codes discussed here can be viewed as equal-
energy block codes adapted for transmission over noisy channels
[21]. Nonetheless, in contrast to classic digital communications,
our scheme tolerates some detection error that is supposed to
be proportionally mapped to the plaintext as some deciphering
error. Optimally, a growing noise level should gradually in-
crease detection error and hence deciphering error. However, a
significant channel noise may break this desired continuity be-
tween transmission and deciphering errors, severely disrupting
the communication.

Let p € € be an encrypted codeword sent over the Gaussian
channel. Upon reception, the recipient observes { = p+n, where
n represents channel noise sampled from Gaussian distribution
with zero mean. Provided that the enciphered vector p can
be any codeword of € with equal probability, the maximum
likelihood detector selects the closest codeword in € in terms of
the Euclidean metric. Moreover, due to the uniform geometrical
distribution of codewords on the hypersphere S>*~!, the error
probability of the optimal detector is the same for every sent
codeword. This property turns out to be very useful in the
context of this work because the deciphering error caused by
Gaussian noise is statistically independent of the ciphertext.

Before decryption, the received vector § = [§y, ..., §2,] should
be projected to q = Go on the flat torus associated with ®,. The
rotation matrix G is of the form:
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rot(e;) 0 0

0 rot(ps) ... 0

G= . . . .
0 0 10U(@n) 5,100,

where ¢, ¢, ..., ¢, are some unknown rotation angles. Assum-
ing Gaussian noise, the vector q = [g1, ..., ¢2,]7 can be found
by projecting the coordinates of ¢ onto the respective circles of
radius &;:

[G2i-1,G2i]1 . |
s 1.

A A a0 LT @)
I1G2i-1, G2illl

[q2i-1,g2i] = &

The projection of § onto q is an additional source of error that is
difficult to tackle. When the noise level is small, however, the
overall distortion caused by the operation is limited. Another
situation may occur, when the distance ||q — p|| overreaches &,,;,,-
In such a case, q may be projected on the opposite side of the
torus and cause a large error as illustrated in Fig. 4.

Ein

e}

Figure 4: Projection of vectors to the flat torus in presence of
excessive noise. The initial vector p € % on the orbit of radius
&nin 18 transmitted over a transmission channel and received as
q = p + n. The vector { is projected to the vector q on the
opposite side of the orbit, far from p. A possible solution to this
problem is to increase the energy of the transmitted vectors.

Algorithm 2 details the descrambling procedure which essen-
tially reverses scrambling operations in Algorithm 1. It is as-
sumed that both participants securely shared the random seed s.
The subroutine ‘Project’ transforms the received vector q accord-
ing to Eq. (7). However, the projected vector q is not quantized
by Aw)/Ap). Additionally, if a descrambled vector } exceeds
H;:ll [0, 7&;) X [0, 27&,), respective coordinates of ¢ are reflected
around 7&;. Finally, it is essential to maintain synchronization
of the PRNGs on both communication sides.

From Algorithm 2 and Eq. (4), we may conclude that |y — y|| <
[lp — qll. By inserting this inequality to Eq. (5) we obtain:

V4
0<ly-xl <
2§min

In accordance with Definition 2, the scrambling scheme is
distortion-tolerant with the expansion factor 7 = 7/2¢,,;, when
the transmission error is no larger than &,,;,. On the other hand,
the distance ||y — x|| goes down to O when approaching the poles
of the hypersphere S”. Consequently, we may notice that the
vectors near the poles of S” should be relatively less distorted
by channel noise than the vectors close to the equator.

llp —qll. ¥

3 SPEECH ENCRYPTION SCHEME

Figure 5 illustrates a simplified model of a distortion-tolerant
speech encryption scheme, consisting of a speech enciphering

Algorithm 2:

Data: received § € 2!, seed s € {0, 1}%;
Result: descrambled vectory € S”;
// project to the flat torus
q «— Project(q; &);
// select a random element from A/Agp
v «— SelectRandom(A )/ Ag); $);
// decipher
X — d);l(q) —v mod Aw/Ag);
// correct
fori — 1ton—1do

if y; > n¢; then

| X« 2nE - X5

end

end

Y —7'(®); // map to S"

unit and a complementary deciphering unit. The enciphering
unit takes as an input a binary key-stream produced by a PRNG
with a secret seed s of length at least 128 bits, and samples of a
narrowband speech signal. In the first processing step, the speech
encoder maps 20 ms speech frames indexed by £ = 0, 1,2, ...
into a sequence of vocal parameters (&inin,es Pinit),t» Dinin) 0)»
where &(inir ¢ corresponds to the frame’s energy, pnir.¢ 1S a pitch
period, and D;,ir ¢ 18 a vector representing the shape of a spectral
envelope.

The encoding process is followed by enciphering using ran-
domness produced by the PRNG. Vocal parameters of every
frame are independently scrambled into a new set of parame-
ters (Eenc),t> Plenc).t> f)(m),g) defined over a new space of pseudo-
speech parameters (tagged by a tilde). Finally, the scram-
bled sequence is forwarded to the pseudo-speech synthesizer,
which produces a harmonic, wideband signal resembling pseudo-
speech. The synthetic signal is a concatenation of 25 ms frames
with a 5 ms overlap, where every frame carries one set of enci-
phered parameters. Consequently, the encrypted signal duration
is the same as the duration of the initial speech, which is an
essential requirement in real-time operation.

Due to the speech-like properties of the synthetic signal, it can
be transmitted over a wideband digital voice channel without
much risk of suppression by a Voice Activity Detector (VAD).
Upon reception of the signal samples, the paired deciphering
unit extracts distorted copies of the sent parameters (& ec) ¢,
Drec).t> ﬁ(,ec),g) and performs descrambling using the same bi-
nary key-stream produced by its PRNG. In the last step, restored
parameters (&(dec),¢» P(dec),t» Didec),r) are decoded into narrowband
speech, perceptually similar to the input speech signal.

The crucial property of the presented speech encryption
system is its ability to descramble enciphered parameters
(B(reerts Pirecnts Direcy.) distorted by channel noise. As the
amount of channel distortion goes up, so does the distortion
of the resynthesized speech. As a result, we obtain a progres-
sive and controlled speech quality degradation without signifi-
cant loss of intelligibility. Preservation of intelligibility comes
from the remarkable human tolerance to understanding distorted
speech signals.
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Figure 5: Simplified diagram of the distortion-tolerant speech encryption scheme.

3.1 Speech encoding

The speech encoder in the presented encryption scheme is es-
sentially a harmonic speech encoder that models speech signals
as a combination of amplitude-modulated harmonics [34]. The
perceived fundamental frequency of a harmonic speech signal
is usually referred to as pitch, signal energy is perceived as
loudness, whereas the spectral envelope is related to speech
timbre.

The encoder operates sequentially on 20 ms speech frames of
160 samples with a 10 ms look-ahead. Every frame is processed
in the same manner, so we skip the frame indexation ¢ for
simplicity. A speech frame is firstly pre-emphasized with a first-
order filter I(z) = 1 — 0.85z7! to boost high-frequency signal
components, and encoded into a set of 10 basic parameters:
its pitch period and an approximation of the spectral envelope
expressed by 9 coefficients. The pitch period expressed in signal
samples per cycle is defined as:

fs
init) = s 9
Dlinir) % )

where fj is the estimated fundamental frequency of the harmonic
structure of the speech signal and f; = 8000 is the sampling
frequency. The spectral envelope is obtained from the Power
Spectral Density (PSD) on a moving window of 40 ms speech
signal with 20-ms offset and 50% overlap. The PSD is windowed
using 9 mel-scaled triangular filters shown in Fig. 6, resulting in
9 band-limited energies Ej, ..., Eg such that their sum is close
enough to the frame energy:

9
Einir) = Z E;.
im1

It may be noticed that the vector of square roots of energy
coefficients [ VEy, ..., VEo]” is identified as a point on the non-
negative part of the 9-dimensional hypersphere centered at 0.
The radius /ggr of the 8-sphere is related to the frame energy,
whereas the normalized vector:

T
Diniry = [\/El/e(miz), \/E9/8(iniz)] (11)

corresponds to the shape of the spectral envelope, i.e. speech
timbre. Since a typical spectral envelope consists of about 4

(10)

formants [13], it is a reasonable assumption that Dy, should
capture the most relevant features in the speech spectrum.

The enciphering procedure requires the encoded pitch period and
the signal energy to be bounded by some predefined intervals
[pmin’ pmax] and [gmim 8max]~ Thus, ifp(inir) Or E(inir) exceed these
intervals, they are thresholded to the closest bound. A selection
of bounds is a compromise between the dynamic range required
for proper speech representation and its sensitivity to distortion.
Moreover, the lower energy bound &, is slightly larger than 0,
meaning that the scheme could be unable to register some very
low-amplitude sounds.

T T T

0 1 2 3 4
frequency (kHz)

Figure 6: Nine mel-scaled triangular spectral windows used in
speech encoding. The amplitude of two side filters is doubled to
compensate their missing halves.

3.2 Enciphering

A blockwise scrambling is applied on the input parameters
(P(init)> Einiry» D(inir)) defined over the space of speech parame-
ters into a new set (Penc)s E(enc)» f)(em.)) defined over the space of
pseudo-speech parameters. Each of these parameters is crucial
for maintaining speech intelligibility [16], and hence contains in-
formation that could be exploited by a cryptanalyst to reconstruct
the vocal message. For this reason, we consider them as equally
salient. Consequently, (P(inir)> E(inir)» D(iniry) are enciphered using
a single, shared PRNG.

The enciphering of each frame requires a vector of 10 freshly-
generated random integers v = [vy, ... vio], where v3 belongs to
the additive ring Z,is with 2'3 elements, v( belongs to Z,17, and
the remaining coefficients belong to Z,is. These non-uniform
ranges of values determine the quantization resolution of the
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input parameters: pini;) and &yiry are quantized using 216 Jevels,
and the vector Dy is encoded by one of the 2! possible val-
ues. Consequently, we obtain a 16-bit quantization per encoded
coefficient, which is a reasonable resolution for encoding vocal
parameters. The vector v can be efficiently computed from a
sequence of 160 bits produced by the PRNG. Given the random
bits, the scrambling block splits the binary sequence into chunks
of length 15, 16 and 17 bits, and reads them as unsigned integers.

Enciphering of pitch and energy is illustrated in Fig. 7. The input
pitch period pinir is linearly scaled into an interval [kgy,, Kpigh
such that 0 < Kjp, < Knign < 2'® — 1, and rounded to the closest
integer K(iniry € Zyis. Similarly, the frame energy in logarithmic
scale logo(&nir)) 1s transformed to O(iniry € [Olow> Onign]- Then,
the obtained integers ki, and (i) are translated respectively
by v; and v, over the additive ring Z,s:

12)
13)

K(ency = (K(iniry +v1) mod 216
Otene) = (O(ininy + v2) mod 2'°.
Finally, the enciphered integers K(ne) and o(n are scaled to

ﬁ(enc) € [ﬁmin’ ﬁmax] and é(enc) € [émina émax]~

P(init)

Pmin | g

| Pmax

K(init)y V1 K(enc) X
0l - e {2-1
Riow Khigh

| Prmax

Pmin | —@

P(enc)

1Og1(](5(in'i1)>
10g10(Emin) | °

i 10%10(57”(’;1‘)

: O(init V2 ,

0{ (init) |2“‘-l
) Ohigh

10?;1()(5,::/,:,) : - : logl()(ém(l,r)

101%1()(5(('7”‘))

Figure 7: Enciphering of the frame pitch period puiy (top) and
the frame energy &nir) (bottom). Step 1: p(iniry and log;,(&ginir))
are linearly scaled and rounded to K(iniry and Qginir) in Zyis. Step 2:
Kiniry and Qniry are translated by random v; and v, over Zis to
K(enc) and Q(ency- Step 3: Kienc) and Qeency are linearly scaled to
D(enc) and &,y defined over the space of pseudo-speech param-
eters.

The unit vector D) € S 8 is scrambled using a technique de-
scribed in Section 2. Let & = 1/ \/g[l, L1 e R Tt may
be noticed that the vector 2yz(Dnir) (note the factor of 2) lies
inside the hyperbox P = []%,[0,27/ V8), and thus can be
mapped to a flat torus associated with the mapping ®. Addition-
ally, the scrambling model relies on a spherical code ¢ = Go,
o =[£1,0, ...,fn,O]T , associated with the quotient A,)/Ag),
where A = (27Z8/ V8) is an orthogonal lattice and Ay, is the
scaled Gosset lattice:
_ 2n

Aw
ST

From its design, G is isomorphic to Z,is ® ng ® Zyn.

I's. (14)

Figure 8 illustrates an enciphering of 2yz(Dyir) over the pre-
image P¢. Let ¥,y € A be the closest lattice vector to
2y¢(Dniry)- The vector x;,;,, is firstly translated by a random
vector:

X(enc) :X(init) +vyap + ... + vipag mod A(a)/l\(ﬁ), (15)

where @, ..., ag are the basis vectors of the lattice A,:

a =27/2"[ 1, 0, 0, 0, 0, 0, 0, 0],
a, =2x/2"°[-1, 1, 0, 0, 0, 0, 0, 0],
a3 =2x/2'° 0,-1, 1, 0, 0, 0, 0, 0],
@y =27/2'°1 0, 0,-1, 1, 0, 0, 0, 0]7,
as =2n/2'°1 0, 0, 0,1, 1, 0, 0, 017,
g =27/2'°1 0, 0, 0, 0,-1, 1, 0, 0],
a; =27/2'°1 0, 0, 0, 0, 0,-1, 1, 0],
ag=2n/2"1 1, 1, 1, 1, 1, 1, 1, 1717,

Provided that the PRNG produces bits with a distribution in-
distinguishable from the uniformly random distribution and
v, ..., V]o are obtained by reading respective bitstrings as un-
signed integers, then vz + ... + vipag can be any vector of
A()/ A with distribution indistinguishable from the uniform
distribution over A(q)/Ag). This operation is thus equivalent to
the subroutine ‘SelectRandom’ in Algorithm 1 in Section 2.

T

Finally, the enciphered vector is mapped to the flat torus ]~)(enc) =
SS

q)f(/\/(enc)) € Sls'
’ N q)E(X(mrr))
‘ *D (inir) ’ - ‘ ’

Figure 8: Enciphering of D;,;;). The scaled spherical coordinates
2v¢(Dqiniry) are quantized by searching the closest lattice vector
from A). The obtained X ;) € Ao is randomly translated to a

L lp

QVS(D(inif)) X (init)
—_—

X (enc)

new lattice vector and projected to Dy ) = Qs (X (o)) On the flat
torus in R,

3.3 Pseudo-speech synthesis

The last stage of speech encryption involves the synthesis
of an analog audio signal. The role of audio synthesis is
to enable an efficient transmission of the enciphered values
(Penc)s Ecenc)s ﬁ(enc)) over a digital voice channel, and to prevent
signal blockage by a VAD. Robust operation requires finding
a trade-off between producing a signal sufficiently speech-like
yet simple to encode and decode. Furthermore, the encoding
procedure should comply with a typical signal distortion char-
acteristic introduced by a particular channel to benefit from
distortion-tolerant enciphering.

Since Pienc)s Eenc) and l~)(em.) represent the enciphered pitch pe-
riod, the energy and the spectral envelope of a speech frame, the
natural approach is to relate these values with some homologous
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parameters of an encrypted signal. Then, a perceptual distortion
of the signal would be proportionally mapped to the deciphered
speech, to some extent reflecting the quality of the voice channel
used for transmission.

‘ "
| ﬂ“w‘“"w;,‘ﬂ"r‘rl\ ;\\ " M”“ |
\T‘\‘J}cw“‘l‘b J\u‘ AL
P

| |

|
0.02  0.03

time (seconds)

0.00  0.01

Figure 9: Three 25 ms frames of a pseudo-speech harmonic sig-
nal. Every colored portion of the waveform encodes a different
set of enciphered parameters Penc), E(enc) and ]~)(g,,c). The frames
are windowed using a trapezoidal window and overlapped, form-
ing 5 ms guard periods.

Every 25 ms frame of a pseudo-speech signal consists of three
segments. The first and the last 5 ms of a frame play the role
of guard periods. The remaining 15 ms is where the enciphered
parameters are encoded. Once a frame is synthesized, it is
windowed by a trapezoidal window and concatenated in an
overlap-then-add manner, as illustrated in Fig. 9.

A 25 ms signal frame y, sampled at f; = 16 kHz contains the
samples of a harmonic waveform:

Kwy)

ylnl = nA cos(kwo/ fs - n + ¢ — kwo/ fs - 80),
=l

(16)

where n = 0,1, ...,399, wy is the fundamental frequency, Ay
are the amplitudes of harmonics, 7 is the energy scaling factor,
(¢x — kwo/ fs - 80) are the initial phases and K, is the number
of harmonics depending on wy. Given the harmonicity of y,, the
encoding of Penc), E(ency and ﬁ(enc) essentially reduces to a care-
ful manipulation of wy, Ay and ¢;. In addition, only the middle
samples y[80], ..., y[319] are involved in the encoding process.
Once the harmonic parameters of the frame are determined, the
remaining part of y, is reproduced.

The encoding of enciphered parameters into y;, is performed se-
quentially, starting from the pitch, then the envelope shape, and
finally the energy. The most natural approach for encoding the
pitch is to assign wy = 27fs/P(enc). Spectral shaping involves
finding a proper relation between the amplitudes A; and the
initial phases ¢. Finally, the spectrally shaped frame is scaled
in order to match the desired frame energy Z,e) = X205, Y2 [nl.
Compared to encoding the pitch and the energy, mapping the
vector l~)(em.) of length 16 into the spectrum of y, appears to be
less straightforward. The encoding process relies on a bank of 16
adjacent spectral windows, illustrated in Fig. 10. The main idea
of using these spectral windows is to encode each coordinate of
ﬁ(enc) into a frequency band associated to its respective spectral
window. Unlike in speech encoding, the windows are square-
shaped, and linearly distributed between the 300-6700 Hz range.
The proposed selection of spectral windows aims to improve
transmission robustness over a voice channel rather than to

capture the perceptually relevant spectral features. As a result,
the proposed framework is similar to using Frequency Division
Multiplexing (FDM) [35] for mitigating frequency fading.

Another difference is related to how the spectral windows are
applied. Instead of windowing the signal PSD as is the case
in speech analysis, the windows are directly applied on the
Discrete Fourier Transform (DFT) of sampled y;. As will be
explained later in the section, this change significantly simplifies
the encoding process. Besides, it seems better suited for data
transmission over channels with an additive, independent noise
such as AWGN.

T T T T T T T

0 1 2 3 4 5 6 7 8
frequency (kHz)

Figure 10: Sixteen square-shaped spectral windows distributed
uniformly over 300-6700 Hz.

Shaping the spectrum of the harmonic frame y, can be achieved
by a simultaneous manipulation of the amplitudes and the initial
phases of the harmonics. Thus, it is advantageous to consider
a complex-domain rewriting of y,, in which the amplitude Ay
and the initial phase ¢; are merged into a single complex term

Ay = Acexp(jign):

K(w())

zln] = Z Ay exp(ikwo/f, - n), n =0, 1, ...,239.
k=1

a7)

The complex samples z[0], ..., Z[239] correspond to respective
samples y[80], ..., y[319] that encode the enciphered parameters.

Let Z be the column vector representing the DFT of samples
z[0], ..., z[239]. The vector Z is a sum of harmonic components:

Ky

_ X T
7= Z ABL L
k=1

where B« is a row vector representing the DFT of complex
sinusoidal samples exp(j2nwy/ fsn) for n = 0,1, ...,239. The
goal of the encoding process is to find Z = [Z4, ..., Zs40]" such
that:

(18)

240

~ 21
Dienerie - e/ = 3 Z,Hep, k= 1,...,16, (19)
n=1
where Hy = [Hy, ..., Hr240] is a Tow vector representing the

k-th spectral window in Fig. 10 sampled at frequencies 55 - fs

forn = 0,1,...,239. As a result, each element of l~)(e,,c) is
represented by a complex sum of windowed DFT samples. The
predefined component exp(j2kx/16) is inserted to prevent the
result of summation from being purely real and improve the
time-domain waveform shape of the synthesized pseudo-speech
frame.
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The summations in Eq. (18) and Eq. (19) can be expressed
conveniently in a matrix form:

Dy ©Wis=HZ  and  Z=ByHA, (20
where Wy = [e/Ti!,e/T82, ..., /%1617 is the vector of the 16
roots of the unity, H is a 16 X240 matrix representing 16 spectral
windows sampled over the frequency domain of Z, B, is a
240 X K, matrix with columns B, «, A is the column vector
of K, complex amplitudes A; as defined by Eq. (17), and ©
denotes the Hadamard product. As a result, we obtain a simple,

linear relation between I~)(enc) and the amplitudes of harmonics:

Dieny © Wi = HB (A 1)
The problem of finding A such that Eq. (21) holds is under-
determined, because K, is larger than 16 by design. Instead,
we can compute the least-square solution using the Moore-
Penrose pseudo-inverse:

A = (HBy,) Dene) © Wis) (22)

where ()" denotes the pseudo-inverse operation. In order to
improve computational efficiency, the pseudo-inverse matrix
(HB,,,)" can be precomputed and kept in memory.

The least-square solutions obtained by the Moore-Penrose
pseudo-inverse imply that the computed magnitudes |A;| are
small. It has a positive impact on the time-domain waveform
shape, minimizing the risk of producing high-amplitude peaks
that are likely to be clipped during transmission. Another advan-
tage of the pseudo-inverse is its fast computation, suitable for
real-time processing.

Finally, we assign Ay = |A;| and b = Arg(Ak), and set the
scaling factor 17 in Eq. (16) to match the energy ).

The remaining issue is extracting ﬁ(enc) from y,;. The previ-
ously described encoding process involved complex samples
z[0], ..., z[239], where y[80 + n] = nR(z[n]). Let Y be a col-
umn vector of length 240 representing the DFT of samples
y[80], ..., y[319]. From the general properties of Discrete Fourier
Transform we have:

Yo = 22+ Lo 1= 1,240, (23)
where Z,4;_, denotes the complex conjugate of Z4;_,. Provided
that Z is a sum of complex sinusoids of frequency no larger than
6700 Hz, the values Z,, for n > 120 are close to zero. As a result,
we can approximate the vector Y as:

Y = { L, forn=1,..., 120,

'i241_n, forn = 121,,240
Finally, the enciphered vector can be approximately retrieved by
taking:

(24)

RIS IS

s 2

Deney ©Wis = ;HY. (25)
We estimated the root mean squared error (RMSE) of
D(cne) © W6 approximations by simulating a sequence of L =
10000 pseudo-speech frames from parameters (Pienc), Eenc)s

]~)(m)) selected randomly in every frame. We used the following
formula:

10

1 &~
RMSE;, = J 7 Z IDency.c © Wis — 217, 'HY |2,
=

where ﬁ(enc),g is the £-th encoded vector, Y/ is a vector repre-
senting the DFT of the £-th produced pseudo-speech frame, and
1¢ s the respective scaling factor. The obtained error was 0.011,
far lower than an anticipated distortion introduced by the voice
channel.

3.4 Signal transmission and analysis

Successful decoding of a synthetic signal produced by the
pseudo-speech synthesizer requires a high-precision, nearly
sample-wise synchronization. Consequently, the presented
speech encryption scheme is foremost suited for digital data
storage and transmission over fully digital voice communication
systems like VoIP, in which a high level of synchronization can
be maintained. Upon reception, the signal analyzer processes
sequentially the received signal frames and retrieves enciphered
parameters.

Let [0], ..., ¥[399] be the samples of some received pseudo-
speech frame ¥, and let Y be a column vector of length 240 with
DFT of the sequence §[80], ..., ¥[319]. The received parameters
Direcy and & are defined as:
- 2nf
P(rec) = (2)() 5
319
é(rec) = Z 3’2[’1],
n=80
where @y is the estimated fundamental frequency of the signal
frame and f; = 16000 Hz is the sampling frequency. If any of
the values p(yc) and &) exceed the intervals [Ppuin, Pmax] and
[Emins Emax], they are tresholded to the closest bound.

(26)

27)

The vector l~)(m) is retrieved from Y in two steps. Firstly, we
compute the normalized real-valued sum of the windowed DFT:
R R (ZH Yo V_Vm)
D(rec) = N — P

|R 2HY 0 W)

(28)

where Wi = [e‘j%',e‘-’%z,x.,e‘ﬂ_’%'é]r and RQHY © Wie)
is the real component of 2HY © W . Then, the vector D)

is projected to ]~)(W) on the flat torus associated with @ using
Eq. (7) in Section 3.4.

3.5 Deciphering

Given the set of received parameters (Prec), E(rec), ]3(,60)), the
descrambling algorithm reverses enciphering operations using
the same vector v = [vy, ..., vio]" of random integers produced by
the PRNG. The values p..) and log;,(E¢.c)) are firstly linearly
scaled t0 K(ec) and O(re) over the interval [0,2'® — 1]. Unlike in
the enciphering stage, these values are not quantized. In the next
step, K(rec) and o) are deciphered by respective translations
—y; and —v, modulo 2'¢:

(29)
(30)

6
Kdee) = (K(reey — v1)  mod 2!

Otdec) = (O(rec) — v2) mod 26,
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Figure 11: Overview of the narrowband LPCNet architecture.

where vi,v, € Zjis are obtained from the PRNG. If the val-
ues Kgee) and o(gec) €xceed the respective intervals [Kjow, Khignl
and [Qjow Onign], they are tresholded to the closest bound. In
the last step, the values are transformed back into the intervals
[Pmin> Pmax] and [10g,4(€min), 1080(Emax)] representing the do-
main of speech parameters.

The deciphering of the unit vector l~)(m) is done by translating
X(rec) = (Dg_:l(D(rec)):

/\/(dec) =X(rec) - V3@ — ... — VipQg mod A(a)/l\(ﬁ). (31)

The coordinates of x4, are corrected to fit the image of ygl
as in Algorithm 2. The deciphered spectral envelope vector is

D(tec) = 7’; ! (X(dec) /2).

3.6 Speech resynthesis

The output of the descrambling process is a sequence
(D(dec) 0> Edec),t» Didec),¢) Tepresenting harmonic parameters of 20
ms speech frames. The final speech resynthesis is possible with
any adapted speech synthesizer supporting harmonic speech
parametrization. An example of a suitable narrowband harmonic
speech synthesizer is Codec2.*

Unfortunately, although parametric sinusoidal speech co-ders
succeed in producing intelligible speech, they often struggle to
maintain satisfactory speech quality. In this work, we avoid har-
monic speech synthesis by using a narrowband modification of
the LPCNet, a Machine Learning (ML) based synthesizer intro-
duced by Jean-Marc Valin (Mozilla) and Jan Skoglund (Google
LLC) [36]. The narrowband LPCNet recreates the samples of a
speech signal s[n] from a sum of the linear prediction §[n] and
the excitation e[n]:

s[n] = §[n] + e[n] (32)
16
Sl = )" axsln - k1, (33)
k=1
where a1, ..., @1y are the 12-th order linear prediction coefficients

(LPC) for the current frame. The excitation samples e[n] are
produced by two concatenated neural networks that model an
excitation signal from the input vocal parameters.

“https://rowetel.com

Figure 11 depicts a simplified diagram of the modified narrow-
band LPCNet algorithm. The speech synthesizer combines two
recurrent neural networks: a frame-rate network processing 20
ms speech frames (160 samples) and a sample-rate network
operating at 8 kHz. Network architectures, shown in Fig. 12,
are the same as in [36]. The frame-rate network takes as in-
put the sequence of feature vectors computed from (p(sec) e,
&(dec),t> Didec),r) and produces a sequence of frame-rate condi-
tioning vectors f; of length 128. Vectors f; are sequentially for-
warded to the sample-rate network and padded with last value
to get a frame with 160 samples.

[cond f] [s[n-1]] [eln-1]] [ sln] |

conv 1x3

conv 1x3

concat

Figure 12: Architectures of the frame-rate (left) and the sample-
rate (right) networks. The frame network consists of two con-
volutional layers with a filter of size 3, followed by two fully-
connected layers. The output of the convolutional layers is
added to an input connection. The sample-rate network firstly
concatenates four inputs and passes the resulted combination to
two gated recurrent units (GRU, of size 384 and GRUj of size
16), followed by a dual fully connected layer [36]. The output
of the last layer is used with a soft-max activation.

The role of the sample-rate network is to predict the multino-
mial probability distribution of the current excitation sample
Pr(e[n]), given the current conditioning vector f,, the previous
signal sample s[n — 1], the previous excitation sample e[n — 1]
and the current prediction §[n]. The current excitation sample
e[n] is obtained by randomly generating a single sample from
Pr(e[n]). The synthesis output of the narrowband LPCNet are
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pre-emphasized speech samples s[n] = 3[n] + e[n], filtered with
a de-emphasis filter J(z) = #852,. The operation of the nar-
rowband LPCNet algorithm stops when the last feature vector
is processed, and the sample-rate network synthesizes the last
speech frame.

Computing a feature vector from a set of vocal pa-
rameters (Pdec).t> Edec).t» Didec),¢) Tequires few steps.  Let
E¢ = guecyr - Didec),t © Diaec),c be a vector representing 9 band-
limited energies of the ¢-th encoded speech frame. Then, the
¢-th feature vector has the form [Cyp,Cpy, ..., Crg, pel”, where
Cro, Cr1, ..., Crg is the discrete cosine transform (DCT-II)
of the sequence log,,(E¢1), ..., log;o(Ero), and where p, =
(P(dec),e — 100)/50 is the scaled pitch period. Taking into con-
sideration the mel-scaled distribution of spectral windows used
in the speech encoder, the coefficients C,, C1, ..., Cg can be
viewed as 9-band Mel-Frequency Cepstral Coefficients (MFCC).

The prediction samples §[#n] are computed from the predictor
coefficients @y, ..., @, obtained from E, and updated for every
frame. The mel-scaled windowed energies in E, are firstly
interpolated into a linear-frequency PSD and then converted to
an autocorrelation using an inverse FFT. The LPC coefficients
are obtained from the autocorrelation using the Levinson-Durbin
algorithm [37].

Obtaining @; from the low-resolution bands is different than
in the classical approach, in which the autocorrelation and the
predictor a; are computed directly from speech samples [13].
As pointed out in [36], the sample-rate network in the LPCNet
learns to compensate for this difference.

4 DiScuUSSION

This section discusses several aspects associated with system
security, tolerance to channel distortion, selection of system
parameters, and the training the neural networks in the speech
synthesizer.

4.1 Security considerations

The security of the proposed speech encryption scheme cannot
be rigorously proved without an in-depth specification, which
may significantly differ in particular implementations. Instead,
we provide an informal justification for the asymptotic indistin-
guishability of encryptions in an experiment comparable with the
classical adversarial indistinguishability challenge [38, 18, 19].
By doing this, we want to emphasize that the security of our
encryption scheme depends primarily on the characteristics of a
real-world PRNG used and the entropy of the secret seed rather
than on signal processing and scrambling operations.

In the following analysis, we will assume that the encryption
scheme uses an asymptotically secure pseudo-random generator
[19] with a fresh and perfectly random seed s. A generator is
asymptotically secure when no PPT algorithm (distinguisher) D
can distinguish the generator’s output from a perfectly uniform
bitstring with a non-negligible probability. A definition of a
negligible function is detailed by Definition 4.

Definition 4. [/9] A function f : N — R, U {0} is negligible if
for every positive polynomial p there is an integer N such that
for all integers n > N it holds that f(n) <

L

p(n)”

12

Let A be an integer-valued security parameter, L be a polyno-
mial s.t. L(1) > A, X, be an arbitrary speech signal of finite
duration ¢ € [0, 320L(1)), RandGen be an asymptotically secure
binary PRNG and s € {0, 1}* be a random seed. In addition, let
IT = (RandGen, Enc, Dec) be the speech encryption scheme de-
scribed in Section 3, where Enc and Dec are respectively the en-
cryption and decryption algorithms. The algorithm Enc takes as
an input the speech signal x, and a vector r < RandGen(s) such
that r € {0, 1}192D and outputs a synthetic signal y, = Enc,(x,)
of the same duration as x,. Furthermore, let us define an adver-
sarial indistinguishability challenge PrivK%';(4):

Definition 5. The adversarial indistinguishability challenge
PrivK%'11(2) is defined as:

1. The adversary A is given input 1%, and he chooses
a pair of distinct signals Xo;, X1, of finite duration

t € [0,320L(2)).

2. A random seed s is chosen and a sequence r is gen-
erated by running RandGen(s). The challenge y, =
Ency(xp,) is given to A, where b € {0,1} is chosen
uniformly at random.

3. A outputs bit b'.

4. The output of the challenge is 1 if b = b’ and 0 other-
wise.

Below we present a proposition for the indistinguishability of
encryptions in the presence of an eavesdropper and provide the
sketch of the proof.

Proposition 1. Let IT = (RandGen, Enc, Dec) be the speech
encryption scheme described in Section 3. Then, 11 gives indis-
tinguishable encryptions in the presence of the eavesdropper,
meaning that there is a negligible function negl such that for
any PPT adversary A it holds:

[Pr(PrivK® (1) = 1) - 0.5] < negl(2).

Sketch of Proof.

Firstly, we can observe that the security of the speech en-
cryption scheme does depend neither on the speech analysis
nor the pseudo-speech synthesis algorithms. Indeed, the sin-
gle output of the speech encoder is a sequence of parame-
ters {(‘9(i11it),€,p(init),€, D(init),é’)}fi/})a which is forwarded to the
scrambling block. The result of enciphering is a new se-
quence {(Eenc).t> Plenc).ts f)(enc),[)}?i/i), being the single input of
the pseudo-speech synthesizer. In consequence, the indistin-
guishability of the synthetic pseudo-speech signal y, reduces
to the indistinguishability of the enciphered sequence from any
sequence taken uniformly at random.

The enciphering of the initial speech parameters is done
using a sequence of scrambling vectors veE | where

e=1"
Ve € 3, & Zys & L8 & Zy7 and {Vg}?g) produced from r by se-
quentially reading short bitstrings as unsigned integers. We
can easily show that if the binary pseudo-random generator
RandGen is secure, then the resulting sequence (ve)E™ s indis-

=1
tinguishable from any sequence {v;}f,g) produced from a random

binary sequence r* € {0, 1}'S°“™ output by the true entropy col-
lector TrueRandGen.
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The rest of the proof essentially repeats the reasoning from the
proofs of Theorem 2.9 and Theorem 3.18 in [19].

Let [T = (TrueRandGen, Enc,Dec) be a new encryption
scheme where RandGen is replaced by TrueRandGen. In
the first step, we may prove that the result of enciphering

- ~ ~ L) - L
{(afem.)f, pzem.)’[, Dz‘em_)yf)}[il) with a random sequence {v}} (i1)

obtained from TrueRandGen is perfectly secure, i.e., the en-
mphere@ Yalues.{é?enc),l’ﬁ:enc),l’ DZ’en@,wéZ_em),z’ iy D;enc),.L(/l)}
are statistically independent and have uniform distributions
over their respective discrete domains. Consequently, we get
Pr(PrivK7"; () = 1) = 0.5.

Then, we can show the indistinguishability of the sequence
{(Eenc),t> Dencyes f)(enc)’g)}?i/i) by contradiction: the existence of a
PPT adversary A who distinguishes the sequence from purely
random with a non-negligible advantage implies the existence
of a PPT distinguisher D breaking the security of RandGen.
From this, we conclude that there is a negligible function negl
such that the advantage of any PPT adversary (A participating in
the experiment PrivKgi‘l'1 is at most |Pr(PriVK;‘(‘f1’T(/l) =1)-0.5]
< negl(1). O]

Proposition 1 states that the encryption scheme produces in-
distinguishable encryptions in the presence of an eavesdrop-
per, provided that every speech signal is enciphered using a
secure pseudo-random bit generator with a fresh and uniformly
distributed random seed. However, selecting a proper binary
pseudo-random generator is far from being trivial and should
be done very carefully. In particular, it is not evident if a ‘good’
bit generator can always be adequately transformed into a non-
binary generator and vice-versa. For instance, in [39] it is shown
that a poorly designed non-binary sequence expanded into a
bitstream could pass a randomness test by some bit-oriented
distinguishers. Some statistical test suitable for checking the
randomness of non-binary ciphers can be found in [39, 40]

The selection of a suitable pseudo-random number generator is
out of the scope of this work. Nevertheless, some promising
candidates of binary pseudo-random number generators can be
found in the NIST Special Publication 800-90A [41]. Crucially,
the presented generators are evaluated for their potential use as
non-binary number generators over integer rings Z, n € N. An
example of such a generator uses Advanced Encryption Standard
(AES) in the CTR mode of operation and a secret 256-bit seed.
The generator is claimed to securely produce up to 2*? bitstrings
of length 2! if the input seed is taken uniformly at random.
Furthermore, the input seed is updated after every request for
backtracking resistance. The maximum bitstring length 2'° in
a unique request is sufficient to encipher more than one minute
of one-way voice communication. Finally, a parallelization of
bitstring generation provided by the CTR mode is an advantage
in real-time operation.

An obvious weakness of the presented scheme is the lack of
mechanisms providing data integrity. Since the enciphered
speech signal does not include any side information, the re-
cipient cannot verify the source and received data correctness.
Moreover, it is not clear whether a reliable data integrity mech-
anism even exists in this lossy framework, given that the re-
ceived signal is likely to differ from the initial signal and that
malleability-by-design is one of the basic features of the pre-
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sented speech encryption scheme. Instead, it is important to
ensure the proper authentication of the users and secure ex-
change of cryptographic keys (or secret seeds) before the session
starts [42, 19]. Some solutions include mutual authentication
using public certificates, symmetric pre-shared keys or a vocal
verification [43, 44, 45, 15].

Despite the absence of data integrity in real-time communication,
an adversarial manipulation on encrypted speech giving a mean-
ingful deciphered speech is technically challenging. Synthetic
signal fragility and high synchronization requirements between
the legitimate users suggest that the attacker is more likely to
interrupt the communication. However, such an interruption is
effectively not much different from signal blockage by a VAD.

If the enciphered speech signal is stored, a binary representation
of the signal in PCM or a compressed form should be accompa-
nied by a message authentication code (MAC) [19] computed
with a dedicated authentication key.

4.2  Tolerance to signal distortion and large deciphering
errors

Let y; be an encrypted speech signal sent over a voice chan-
nel, and §, be the signal received by the recipient. Due
to channel distortion, parameters (Egec).¢, ﬁ(,ec),g,f)(,ec),g) ex-
tracted from §, usually diverge from the enciphered sequence
(E(enc).t> Dencyt ﬁ(em-)’(). The transmission error propagates dur-
ing descrambling, causing a deciphering error between the initial

(&(nit).£» Pinin > Dinin,¢) and deciphered (&ec).£> Pidec).t> Didec).t)
values.

When the channel noise is low, transmission and deciphering
errors are related by inequalities:

log (g(init),[) < ( 216 loglo(gmax/smin))
10 E(dec),t B Ohigh — Olow loglo(émax/émin)
Etenc
- [logg (ﬂ) (34)
E(rec),t
< 216 Pmax — Pmin
|p(init),€ - p(dec),€| B Khigh — Kiow DPmax — Pmin
. |ﬁ(enc),£’ - ﬁ(rec),f‘ (35)
T ~ ~
[Dgininy.c = Deecre| < % [Dcencr.c = Direor| (36)

where | e | is the modulus and || e || denotes the Euclidean norm.
In consequence, the deciphering procedure is distortion-tolerant
with respect to parameters 10g,(Zenc).c)s Piency.c and Dieney ¢, With
three independent expansion factors.

The distortion-tolerant property with respect to pseudo-speech
parameters holds unless the amount of distortion in the
received signal §, becomes too large. =~ When the val-
UES | logIOSé(enC),f/é(rec),l’)la |]5(enc),£’ - ﬁ(rec),d and the distance
ID(eney,e = Direc).ll exceed some specific thresholds, there is a risk
of a deciphering error much larger than indicated by the bounds.
These large deciphering errors are perceived by the listener as
unpleasant flutter degrading the overall perceived speech quality,
and should be avoided.

A strong perceptual speech degradation is usually related to large
deciphering errors of energy or pitch. In the example depicted
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in Fig. 13, a silent speech frame with the energy & nir) = Emin 15
enciphered to &y and sent over a noisy channel in a form of
a pseudo-speech frame. Upon reception, the recipient observes
&(rec) such that [log;,(Eqrec)/Eenc))l > Olow /2'°. However, the
deciphering result is €y = Emax, the exact opposite of the
initial value.

Another factor is pitch detection accuracy in the pseudo-speech
analyzer. Voice-oriented pitch estimators analyze the signal
assuming small pitch variation over time [46, 13]. However,
the assumption is not valid in an encrypted signal for which the

pitch period changes randomly every 20 milliseconds.

The two most common types of pitch estimation errors in noisy
signals are transient errors, and octave errors [47]. A transient
error occurs when an abrupt change of fundamental frequency
within a speech frame violates the stationarity assumption. An
octave error describes a situation when the predictor incorrectly
outputs a multiple kwy or a fraction 1/kwy (k € N) of the correct
fundamental frequency wy. These errors are mitigated by pitch
tracking [12]. However, since the pitch period in the encrypted
signal is uncorrelated in time, pitch tracking seems redundant if
not harmful in our case. Instead, it is essential to maintain frame
synchronization and ensure that neither the adjacent frames nor
the guard periods damage the pitch estimation.

It may be noticed that deciphering error making a silent frame
maximally loud is more damaging for perceptual quality than
suppressing a loud frame into silence. A varying perceptual
impact of deciphering errors is the main justification for fine-
tuning the guard bounds for pitch and energy. Nevertheless,
in order to maintain a robust operation of the enciphering
scheme, it is important to ensure experimentally that the values
| log10(é(rec)f/§(enc),€)| and |ﬁ(rec),f - ij(enc),fl Stay within the guard
limits with the high probability.

10%10(5(/‘,m))
logo(€min) ¢ |

10g10(5nmr>

0 O(init) v O(enc) 96,
5 108;1()(5(r(~(-)) 1081()(5(«7;{')) -
logl()(gmm) —e—o——o——o—cot &istérti;n —o—o o] 1081()(&::::1‘)
0 =—l/2 O(rec) QI((I(f,) 961
Olow Ohigh

log(Emin) t 4

log0(Eman
l()g]()(&‘(;(‘{,)) 5"1()( nm.z)

Figure 13: Large deciphering error of energy due to excessive
distortion.

Another kind of a deciphering error occurs while processing
the spectral shape of a pseudo-speech frame D) ¢. As already
mentioned in Section 3.4, channel distortion may cause the

received lA)(em.),g € S to move away from the flat torus. When
the distance from the flat torus overreaches

2sin (sin™! (1/ V8) /2),

the vector ]A)(em‘)’g could be projected to f)(m),g on the opposite
side of the torus. Figure 14 illustrates a simplified scenario of
a wrong projection in R*. The projection of the vector ]~)(enc) to
D) along one dimension of the torus can be viewed as trans-
lation of the corresponding coordinate of x,,., = @;l(f)(enc))

(37

14

over P¢. A wrong projection causes an unpredictable change in
the spectral envelope shape of the deciphered frame.

RN
EEEREH
e ]
X((V‘I()[ ‘X(/u)

2m€,

Figure 14: Projection of ﬁ(enc) to the opposite side of the flat
torus along single dimension, seen as translation by 7&; in the
pre-image of the torus.

When the channel distortion is sub-proportional to the logarithm
of signal energy, the risk of a projection going on the wrong
side of the torus can be mitigated by increasing the minimum
pseudo-speech frame energy &,,;,. It is because the norm in the
denominator of Eq. (28) goes up when &,,;, is increased, making
the error ||l~)(e,,c),[ - ]~)(,ec)¢>|| relatively smaller.

4.3 The narrowband LPCNet training data

The quality of synthesized speech strongly depends on the capa-
bility of the narrowband LPCNet algorithm to operate in more
imperfect conditions than during the training [36]. As suggested
in [48], it is possible to improve the robustness of the network
by adding noise during the training stage.

In our speech encryption scheme, there exist two independent
sources of imperfections. The first source is the lower quality
of real-world speech recordings taken for encryption, and the
second source is channel noise. Motivated by this fact, the
training process of the narrowband LPCNet was divided into
two stages. During the two-step training, the ML networks
consecutively learn to cope with the non-idealities of speech
signals and the transmission channel. Splitting the training
overcomes several typical problems with learning convergence
as when the network cannot effectively compensate for both
kinds of distortion at the same time. Moreover, it seems to
be more practical if one considers re-training the network to
different channel conditions.

A diagram for producing the training data in two steps is shown
in Fig. 15. The process uses two noise sources, ‘Noise 1’ (active
in both training stages) and ‘Noise 2’ (active in the second stage
only). The first training stage is nearly identical to the training
process described in [36]. During the training, the network
learns to predict the excitation sequence e[x], using as input the
previous excitation samples e[n — 1], the previous signal samples
s[n — 1], the current prediction samples §[#] and the frame-rate
speech features (9-band Bark-scale cepstral coefficients, pitch).
Except for the frame features, the input data is y-law quantized
by the Q block [49]. The input noise is injected into the speech
signal in the y-law domain to make it proportional to signal
amplitude. Noise distribution varies across the training data
from no noise to a uniform distribution in the [-3,3] range. It
can be noticed that the injected noise propagates to all sample-
rate input data, effectively imitating speech recorded in noisy
environments.
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Figure 15: Computing the training data with noise injection to simulate a noisy channel (Noise 2 at the top) and a noisy speech
reception (Noise 1 at the bottom). The Q block denotes p-law quantization and Q' denotes conversion from u-law to the linear
domain. The prediction filter §[n] = ), ,ﬁl @,z "% is applied to the noisy and quantized input. The excitation samples e[n] are the
difference between the clear speech samples s[n] and the predicted ones. The second noise simulating a channel noise is injected
directly into speech parameters. The distribution of noise simulates distortion introduced by a transmission channel and can be
obtained by simulations or experiments. Triangle blocks are single sample delays.

After the first training stage, the network can produce intelli-
gible speech signals from noiseless feature vectors. However,
the output of the speech encryption scheme is likely to be dis-
torted. The second stage of the training simulates a scenario
when the frame-rate features are transmitted in encrypted form
over a noisy channel. Since channel distortion is independent
of the input signal, and the reception error linearly propagates
to deciphered values, it is possible to inject noise directly into
the speech parameters, as in Fig. 15. The distribution of in-
jected noise simulates channel distortion statistics obtained by
simulations or measurements.

The two-stage training of the networks on a GPU card Nvidia
Quadro RTX 4000 and using one hour of training speech takes
approximately five days. Furthermore, we experimented with
the speech quality produced by the synthesizer trained to English
or Japanese’ language. The results obtained suggest that the
synthesizer should be trained to the language used later for
secure communication.

5 EVALUATION

This section presents the test results from some experiments
with our speech enciphering algorithm. The tests verify the
scheme’s capability to decrypt pseudo-speech signals distorted
by noise. Furthermore, the section investigates a scenario when
the receiver is not fully synchronized in time and amplitude
with the sender. The simulations are validated by real-world
experiments.

Based on some measurements of a signal distortion introduced
by FaceTime and Skype, we estimated the SNR in a typical VoIP-
based voice channel to be between 10 dB and 15 dB. On the
other hand, similar experiments with 3G networks revealed that
signal distortion in cellular networks is much higher, and gives
SNR values closer to 3-5 dB. Due to excessive noise in cellular
networks, we decided to evaluate our encryption scheme for its
compatibility with VoIP-based applications. The robustness of
deciphering was evaluated by inserting additive white Gaussian

5Japanese has a very simple phonology, that makes it particularly
useful for experimenting with ML techniques.

noise (AWGN) into an encrypted signal or compressing the
encrypted signal with Opus-Silk 1.3.1 [50]. Opus-Silk was
chosen for experimentation because, unlike AMR [51] or Speex
[52], its compression rate can be easily adjusted.

The precomputed encrypted signal was successfully sent over
FaceTime between two iPhones 6 running iOS 12 connected
to the same WiFi network and decrypted offline. The use of
FaceTime on WiFi is justified by high connection stability (lim-
ited drop-outs, constant delay) which greatly simplifies signal
synchronization at the receiving end. Additionally, the selected
speech excerpts reconstructed from encrypted signals were eval-
uated in a speech quality/intelligibility assessment on a large
group of about 40 participants.

The section concludes with computational analysis in Sec-
tion 5.4. The system’s computational complexity was estimated
by measuring all floating-point operations performed during
running our experimental software. The measurements suggest
that the computationally optimized encryption algorithm may
operate in real-time on high-end portable devices.

Selected initial, encrypted, distorted, and decrypted speech sam-
ples are available online.°

5.1 Experimental setup

Table 1 and Table 2 present the encoding parameters of speech
and pseudo-speech signals. The intervals [y, €max] and
[Pmin> Pmax] Were obtained from the TSP English speech cor-
pus.” The selection of the intervals [&,in, Enax]s [Pmins Pmax]
and the bounds [k, Knighls [Olow» Onign] Was done based on
simulations.

The speech encryption and decryption algorithms were imple-
mented mainly in Python. The speech encoder and the speech
synthesizer were obtained from the LPCNet repository® and
adapted to the scheme. The pitch prediction with tracking for

®https://github.com/PiotrKrasnowski/Speech_
Encryption

"https://www-mmsp.ece.mcgill.ca/Documents/Data/

$https://github.com/mozilla/LPCNet/
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speech was based on open-loop cross-correlation search [13],
whereas prediction for pseudo-speech relies on a more accurate
maxi-mum-likelihood estimator® without tracking [53, 54]. In
the simulations, the enciphering stage takes as input a given
pseudo-random bitstring produced by a built-in NumPy'" ran-
dom sequence generator.

Table 1: Parameters used for speech encoding and synthesis.

[ Parameter [ Value |
frame length 20 ms
sampling frequency 8 kHz
sample representation | intl6
energy bounds (Emin> Emax) = (10, 10%)
pitch period bounds (Pmins Pmax) = (16, 128)
energy guard bounds | (0w, Onigh) = (213, 216213 1)
pitch guard bounds (Kiow» Knign) = (213, 216213 1)

Table 2: Parameters used for pseudo-speech encoding and syn-
thesis.

| Parameter | Value ‘
frame length 25 ms
guard period 5 ms
sampling frequency 16 kHz
sample representation | intl16
energy bounds Goins Emax) = (10°, 1010)
pitch period bounds (Pmin> Pmax) = (80, 160)

The narrowband LPCNet was trained in two steps on one hour
of speech from the multi-speaker TSP English corpus (12 male
and 12 female speakers). In the second step of the training,
inserted noise simulated channel distortion caused by a Gaus-
sian noise at SNR = 20 dB. Each network was trained for 100
epochs per training step, with a batch consisting of 64 speech se-
quences of 300 ms. The training was performed on a GPU card
Nvidia Quadro RTX 4000 with Keras'' and Tensorflow'? using
the CuDNN GRU implementation. The selected optimization
method was AMSGrad [55] with a step size @ = %, where
o = 0.001, 6 = 5 x 107 and b is the batch number.

5.2 Simulations

The first experiment tested the encryption and decryption op-
erations, assuming noise-less transmission. In the example in
Fig. 16, the time-domain envelopes of the initial and the re-
constructed speech sentence are very similar. A high degree
of similarity can also be observed in the spectrograms. It may
be noticed that the trained speech synthesizer faithfully recon-
structs the fundamental frequency and the formants of the initial
speech. On the other hand, the encrypted signal in the time and
the frequency domains resembles band-limited noise.

Adding distortion into the encrypted signal degrades the de-
crypted speech. The time-domain envelope of the decryp-ted
speech sentence in Fig. 17 is still similar to the initial speech but
not identical anymore. It may be observed that pseudo-speech

‘https://github.com/jkjaer/fastFONls/
Yhttps://numpy.org/
""https://keras.io/
2https://www.tensorflow.org/
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decryption has a denoising effect on low-amplitude speech and
silence.

The reception and deciphering errors of the same speech sen-
tence are depicted in Fig. 19. As can be seen, the errors on en-
ergy and timbre are non-negligible. However, in contrast to the
EITOT |O(init).c — O(dec),¢l» the impact of the error [[Dniny. ¢ — Didec) |l
on decrypted speech perception is more unpredictable. Unlike
energy and timbre, pitch is very well preserved.

The scheme’s robustness has been tested against AWGN at SNR
between 5-25 dB and Opus-Silk v1.3.1 compression at bitrates
between 28-64 kbps. In each case, the error of received and
deciphered parameters were expressed in terms of the RMSE
defined as:

L
1
RMSEE,(MC) = \ Z Z |Q(em‘),é’ - Q(rec),{’|2s

RMSE; dec) = lO(ininy.c — Odec),l?
\

|K(ency,e — Kdecy,eI?s

=1
lL
1 L

RMSE; o) = \

L
1
RMSE,, (gec) = \ 7 Z K(inin.e — Kidecy.l?s
=1

RMSEf),(rec) = \ ”D(enc),( - D(rec),f”z’

IDiniry.c — Didecy el

»
L=
)
RMSED,(dec) = —
\L &
As shown in Fig. 20, RMSE, (4. and RMSEp (.., gradually
rise when the signal distortion goes up. However, the nearly per-
fect alignment of RMSEg (re) and RMSE, (4. suggests that the
impact of large deciphering errors on energy is statistically neg-
ligible. In consequence, the guard bounds (01, Onigh) could be
relaxed. Additionally, it can be noticed that the error RMSEj (...,

is smaller than RMSEp (4. It is because the spherical angles
D gecy = y;l(,\/(da.)/ 2) are divided by 2 in the decoding stage.

The error RMSE,, (4.c) remains small for every analyzed distor-
tion. The rarely occurring errors on pitch are usually significant
and easy to detect. The observation suggests that a simple pitch
tracker added at the output of the descrambling block would
overperform guard bounds (ky, Kpign) as an error correction
mechanism.

In a realistic scenario, the receiver is not always perfectly syn-
chronized in time with the sender. Moreover, some voice chan-
nels equipped with adaptive gain control (AGC) may modify the
signal amplitude. As suggested by Fig. 21, the deciphering unit
is, to some extent, tolerant of energy mismatch in the encrypted
signal caused by AGC. Provided that the mismatch is no larger
than the energy guard intervals, a modified signal is decrypted
into an energy-scaled speech. On the other hand, the deciphering
unit is very vulnerable to synchronization error larger than 0.3
ms, as shown in Fig. 22.
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Figure 16: Waveforms at different stages of signal encryption. From top to bottom: initial speech, encrypted signal and
resynthesized speech. The spectrograms were obtained using a 1024-point Hann window.
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Figure 18: Consecutive stages of signal encryption in com-
munication over FaceTime between two iPhones 6. The
recordings are available online at https://github.com/
PiotrKrasnowski/Speech_Encryption.

Finally, the scheme’s robustness was checked over FaceTime
on WiFi between two iPhones 6 running iOS 12. The precom-
puted pseudo-speech excerpts of total duration 120 seconds and
enciphered with a predefined pseudo-random sequence were
uploaded on one of the phones, sent over FaceTime in chunks
about 10-20 second long, and recorded on the second device.
Figure 18 illustrates an example of the recorded signal and the
decrypted speech. Table 3 lists the RMSE of received and de-
ciphered parameters retrieved from 120 seconds of a recorded
signal.

Table 3: RMSE of received and deciphered values in communi-
cation over FaceTime between two iPhones 6. Results retrieved
from 120 seconds of a recorded signal.

RMSE, (7o) | 149330 || RMSE; .., | 1644.73
RMSE, (4ecy | 525.70 || RMSE;p ey | 867.30
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Figure 19: Distortion of received and deciphered parameters
caused by adding Gaussian noise at SNR = 15 dB to encrypted
speech.
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Figure 20: Root mean squared error (RMSE) of deciphered speech values and received pseudo-speech values caused by adding
Gaussian noise to encrypted speech (left column) or by compressing the encrypted speech with Opus-Silk (right column).
Simulation based on 100000 frames.
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5.3 Speech quality evaluation

As reported in [56], objective measures of speech quality (i.e.,
PESQ [57] and POLQA [58]) are suboptimal for evaluating Ma-
chine Learning based, non-waveform vocoders. Consequently,
we conducted a subjective listening test on a large number of
participants. The tests consisted of two parts. The first part
checked the subjective intelligibility of decrypted speech in
perfect transmission conditions. The second part assessed the
subjective quality of speech restored from an encrypted signal
with different distortion types. The subset of speech samples
used in the listening test has been selected from the LibriSpeech
corpus [59] and is available online.

The intelligibility experiment was inspired by the speech in-
telligibility rating (SIR) [60]. During the test, the participants
listened to 10 English sentences (4 female and 4 male speak-
ers) of about 10 seconds each. In the first round, the speech
utterances were consecutively encrypted and decrypted, without
noise insertion. In the second round, listeners were given the
initial sentences sampled at 8 kHz, which served as the refer-
ence. After listening to each speech sample, the participants
were asked to estimate the percentage of recognized words in the
sentence. The ratings were defined as numbers between 0 and
100, where 0 denoted no recognized word and 100 denoted that
all words were recognized (Fig. 23). As opposed to rigorous,
one-word or vowel/consonant intelligibility tests [61], testing
the word intelligibility of a sentence allows listeners to take ad-
vantage of the context. Because the participants were non-native
English speakers, they were allowed to listen to the sentences
multiple times.

All

1
100

None About 25% About 50% About 75%
L l 1 1

0 25 50 5

Figure 23: Rating scale used in the speech intelligibility test.
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l 1
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Figure 24: Rating scale used in the speech quality test.

The quality assessment followed a MUSHRA methodology [62]
adapted for perceptual evaluation of medium quality speech
signals. The method is believed to provide more reliable and
reproducible results than the Mean Opinion Score (MOS) mea-
sure [63], although it is not immune to biases either [64]. In
the MUSHRA test, a participant is given several test audio
files (called excerpts) which represent the same speech utter-
ance processed by different algorithms. To allow the participant
a thorough and unbiased evaluation, these excerpts are given
simultaneously and in randomized order. Among these random-
ized excerpts, some represent the actual speech samples under
test, whereas the remaining excerpts are a hidden reference, a
low-quality anchor, and a mid-quality anchor. During the quality
test, the listeners were asked to rate the subjective speech quality
(i.e., naturalness, fidelity) against the reference, as a number
between 0 and 100 (Fig. 24). The value 100 denoted ‘Excellent’

20

quality, meaning that the perceived quality of the test excerpt
was identical to the reference.

The MUSHRA tests were conducted in two rounds. The first
round aimed at evaluating the quality of sentences that were con-
secutively encrypted by our algorithm, distorted by AWGN of
varying intensity, and decrypted. In the second round, encrypted
signals were compressed by Opus-Silk at varying compression
rate. In addition, the test excerpts in the second round included
speech utterances decrypted from the signal sent over FaceTime
and recorded on iPhone 6. In both rounds, the participants had
to rate 6 different sentences (3 female and 3 male) of about 10
seconds each. The reference was a wideband signal sampled
at 16 kHz, the mid-anchor was a narrowband signal sampled
at 8 kHz, and the low-anchor was a narrowband speech signal
sampled at 8 kHz and with the MNRU distortion at SNR = 15
dB [65]. In contrast to the reference signal, the mid-anchor may
serve as a good benchmark to our tested signals due to the same
speech bandwidth. The systems tested in the speech quality
assessment are summarized in Table 4.

Table 4: Hidden anchors and tested systems in the MUSHRA-
based speech quality assessment.
Reference and anchors

Label Description
ref wideband speech sampled at 16 kHz
mid narrowband speech sampled at 8 kHz
low 8 kHz speech with MNRU at SNR = 15 dB

Systems under test in the assessment 1

Label Description
a-1 speech decrypted from undistorted signal
b-1 signal distorted by AWGN at SNR = 20 dB
c-I signal distorted by AWGN at SNR = 15 dB
d-1 signal distorted by AWGN at SNR = 10 dB

Systems under test in the assessment 2

Label Description
a-11 signal compressed by Silk at 64 kbps
b-11 signal compressed by Silk at 48 kbps
c-II | signal sent over FaceTime between iPhones 6
d-II signal compressed by Silk at 32 kbps

The assessment was carried out entirely online using web-
MUSHRA, the framework for Web-based listening tests [66, 67].
Table 5 lists the number of participants taking part in each test.
All listeners were non-native English speakers with unreported
hearing impairments. The participants were asked to wear head-
phones or earphones and were allowed to adjust the sound vol-
ume. Few participants were excluded from aggregated responses
because of rating the hidden reference below 90 more than once
in a single test (mostly accidentally).

Table 6 presents sample mean and sample standard deviation of
the intelligibility test. On average, the participants recognized
about 12% fewer words in synthesized speech samples than in
the reference. The average rating of particular sentences varied
slightly from 82% to 89%. On the other hand, a speaker-level
average ranged from 58% to 99%. This high variability of
average ratings explains a considerable standard deviation of
aggregated responses.
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Table 5: Number of participants in the listening test.

| Test [ Participants |
Intelligibility test 44
Quality test 1 40*
Quality test 2 37

* 18 listeners rated 5 utterances instead of 6
4 listeners excluded for reference underrating
** 3 listeners excluded for reference underrating

Table 6: Intelligibility test results.

| System [ Sample mean | Sample standard deviation
Reference 97.5 6.6
Decrypted 86.0 14.7

The results of the MUSHRA-based quality assessment are de-
picted in Figures 25 and 26. In both test rounds, the hidden
reference was rated correctly as ‘Excellent.” The average rating
of the mid-anchors given by the participants was about 75%
(‘Good’), and the average rating of the low-anchors was about
30% (‘Poor’).

The average rating of test excerpts decrypted from undistorted
signals (a-I) was 64% (‘Good’/‘Fair’). Compared with the av-
erage rating of mid-anchors, our algorithm reduced the speech
quality by about 10%. It may be noticed that this difference
in speech quality between the mid-anchors and the excerpts la-
beled a-I is similar to the intelligibility loss in the SIR-based
intelligibility assessment.

The introduction of distortion into encrypted signals resulted in
degraded speech quality. Gaussian noise at SNR equal to 20
dB, 15 dB, and 10 dB lowered the average ratings of speech
quality respectively to 59% (‘Fair’), 46% (‘Fair’), and 19%
(‘Poor’/‘Bad’). It can be noticed that a small channel distor-
tion, like the one introduced by AWGN at SNR = 20 dB, has
a relatively minor impact on perceived speech quality. On the
contrary, the quality becomes bad when SNR reaches 10 dB.
A similar observation can be made in the case of signal com-
pression by Opus-Silk. The compression of encrypted signals at
64 kbps, 48 kbps, and 32 kbps reduces the rated speech quality
respectively to 59% (‘Fair’), 52% (‘Fair’), and 28% (‘Poor’).
The excerpts decrypted from signals sent over FaceTime were
rated at 49% (‘Fair’).

The statistical similarity of given ratings was evaluated by the
non-parametric Kruskall-Wallis test [68], which is more suitable
for ordinal scales [69]. The ratings of speech signals labeled
a-I come from the same statistical distribution as speech signals
labeled b-I with the 0.09 confidence. Additionally, the ratings
of speech labeled b-II are similar to speech labeled c-I with 0.25
confidence, and the ratings of speech labeled d-II come from
the same distribution as the low-anchor with 0.59 confidence.
The ratings of the remaining systems were similar, with the
confidence much lower than 0.05.

The obtained results suggest that the speech encryption scheme
described in this study can produce intelligible speech. More-
over, the average speech quality of excerpts restored from signals
sent over FaceTime hints about the possibility of making our

system compatible with VoIP. However, high variability in lis-
teners’ responses indicates that the quality of decrypted speech
is insufficient for having a casual conversation. Thus, some
progress has to be made to improve the system’s robustness to
distortion and the quality of speech synthesis.

100 ? T T T T T T
75 |-

50 |-

25 l f
0 | | | | | |

Figure 25: Results of the MUSHRA-based subjective quality as-
sessment of speech decrypted from signals with added Gaussian
noise of different intensity. Bars mark standard deviation.
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Figure 26: Results of the MUSHRA-based subjective quality
assessment of speech decrypted from signals compressed by
Opus-Silk vocoder at different compression rates and from sig-
nals sent over FaceTime between two iPhones 6. Bars mark
standard deviation.

5.4 Algorithmic latency and computational complexity

The minimum algorithmic latency in our encryption scheme is
the sum of delays introduced respectively by the enciphering
and deciphering algorithms. The speech encoder introduces
30 ms of delay (20 ms frame and 10 ms look-ahead), and the
pseudo-speech analyzer introduces an additional 20 ms delay.
Finally, two 1x3 convolutional layers in the speech synthesizer
use a 40 ms look-ahead (2 frames). The combined 90 ms of
the minimum algorithmic latency is significant and may reduce
the perceived quality of conversation. A possible solution is
to reduce the analysis look-ahead to 5 ms, and the synthesis
look-ahead to 20 ms, like in the wideband LPCNet [70].

The speech encoder implemented in the encryption scheme is
reported to have a complexity of 16 MFLOPS, where about
8 MFLOPS are used for pitch prediction [70]. Moreover, the
authors hint at the possibility of significant optimizations. These
given values relate to the scenario when a speech signal is sam-
pled at 16 kHz. Thus, we roughly estimate our 8 kHz speech
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encoder’s complexity to about 8 MFLOPS, including spherical
mapping transformations.

Enciphering (and deciphering) is relatively lightweight, as it
requires only ten additions modulo per 20 ms frame. However,
a higher computational load is associated with producing secure
bitstrings by the pseudo-random generator at a rate 8 kbps. For
this reason, it is especially important to select a PRNG based on
well-established ciphers adapted for real-time applications, such
as AES-CTR [71, 72].

Pseudo-speech synthesis consists of two steps: computing the
harmonic parameters of a frame and producing the signal sam-
ples. The complexity of the first step is dominated by deriv-
ing the complex amplitudes of harmonics A of length K using
Eq. (22), where K is the number of harmonics in a particular
frame. Provided that all complex matrices (HE‘»wO)T are precom-

puted and stored in the memory, the vector A can be obtained
by searching the appropriate matrix from the look-up table, by
element-wise complex vector multiplication, and finally by one
complex matrix 16 X K multiplication. On the other hand, frame
synthesis requires O(400K) floating-point operations, where 400
is the number of samples within a frame with two guard periods.

The pseudo-speech analyzer is mostly occupied by estimat-
ing the received fundamental frequency. The maximum-
likelihood estimator implemented in the scheme has complexity
O(N log N) + O(NK), where N = 2'% is the number of possible
pitch values [53]. Consequently, lowering the resolution of es-
timations or replacing the pitch predictor with a more efficient
version will give considerable computational gains.

The most computationally involving element in the encryption
scheme is the final speech reconstruction. The LPCNet model
implemented in the scheme has complexity:

C= (3dN/§ + 3Np(Na + Np) + 2NpQ) - 2, (38)

where Ny = 384, Np = 16, d = 10%, Q = 256 is the number
of u-law levels, and f; is the sampling frequency. For f; = 16
kHz, the estimated complexity of the synthesizer is 3 GFLOPS
[70]. Additionally, it is reported that a C implementation of
the synthesizer requires 20% computing power of a 2.4 GHz
Intel Broadwell core, 68% of a one 2.5 GHz Snapdragon 845
core (Google Pixel 3), and 31% of a one 2.84 GHz Snapdragon
855 core. From this, we estimate that the complexity of the
lightweight, narrowband implementation of LPCNet is about
2 GFLOPS, and it could operate in real-time on portable devices.

Table 7 lists the computational complexity of various parts of our
algorithm estimated using PyPaPi'? library [73] when process-
ing 60 minutes of a recorded speech in Python. The measure-
ments were done under Ubuntu kernel 5.8.0-25 and using Intel
Core i7 2.9 GHz without multi-threading. The pseudo-random
bitstring used for enciphering and deciphering was precomputed
and stored in the memory.

The listed results suggest that every tested part has a complexity
low enough to be carried by a portable device, especially if one
considers migrating the experimental Python code to a compiled
code. Moreover, a replacement of the pitch predictor in the
pseudo-speech analyzer would lead to significant optimization
gains. On the other hand, the computational analysis does not

Bhttps://flozz.github.io/pypapi/
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include other essential elements of the system, such as keeping
signal synchronization or adaptive energy equalization.

Table 7: Estimated complexity using PyPaPi library.
| Process | MFLOPS |
speech encoding 8 [70]
enciphering 2

pseudo-speech synthesis 1032
pseudo-speech analysis 2756
e pitch prediction 2123
e remaining 634

deciphering 2
speech synthesis 2000 [70]

6 CONCLUSIONS

In this work, we proposed a new speech encryption scheme for
secure voice communications over voice channels. The lossy
speech encoding technique implemented in the system preserves
and protects only basic vocal parameters: fundamental frequency
(pitch), energy (loudness), and spectral envelope (timbre). The
vocal parameters are enciphered and then encoded to a synthetic
audio signal adapted for transmission over wideband voice chan-
nels. Speech is reconstructed by the narrowband vocoder based
on the LPCNet architecture.

Enciphering of vocal parameters is done using norm-preserving
techniques: pitch and fundamental frequency are enciphered by
translations, whereas spectral envelope by rotations on the hy-
persphere in 16 dimensions. These techniques enable successful
decryption of signals distorted by moderate transmission noise,
like AWGN, or processed by some wideband VoIP applications
such as FaceTime. However, the enciphering mechanism does
not provide any data integrity. Instead, it is crucial to ensure
strong identity authentication in the initial cryptographic key
exchange.

The robustness of the speech encryption scheme a-gainst chan-
nel noise was verified experimentally. Simulations showed that
the system could correctly decrypt pseudo-speech with additive
Gaussian noise at SNR = 15 dB or compressed by the Opus-Silk
codec at the 48 kbps rate. On the other hand, an encrypted signal
is sensitive to synchronization error larger than 0.3 millisec-
onds. Furthermore, the results of the speech quality assessment
indicated that the proposed encryption scheme could produce
intelligible speech with the quality depending on channel distor-
tion.

The preliminary complexity evaluation and the successful trans-
mission of encrypted signals between two mobile phones hint
that the proposed encryption scheme may work in real-time on
high-end portable devices. However, secure communication
is susceptible to short signal dropouts or de-synchronization.
Consequently, robust communication is possible only over a
stable vocal link between the users. Additionally, adaptive
voice-enhancing algorithms implemented in commercial mo-
bile phones (such as voice detection and noise suppression)
usually lead to considerable degradation of the speech quality.
This problem can be tackled using dedicated CryptoPhones or
stand-alone devices connected with mobile phones in tandem.
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Speech quality could be improved by replacing our narrowband
speech synthesizer exploiting the 4 kHz bandwidth with a wide-
band synthesizer with the 8 kHz signal bandwidth. The biggest
challenge is to find a new representation for the spectral enve-
lope that is compatible with the enciphering technique. The
presented algorithm uses 9 mel-scaled frequency windows that
are insufficient for encoding the wideband spectrum. A possi-
ble solution is to increase the number of mel-scaled windows
to 18 and apply a dimensionality reduction technique, such as
Principal Component Analysis (PCA) [74] or autoencoding [75].
Dimensionality reduction may increase encoding efficiency be-
cause the coefficients within a single speech frame tend to be
highly correlated.

Other improvements can be obtained in the pseudo-speech syn-
thesis. The proposed synthesis technique, while computationally
efficient, is very phase-sensitive and not enough speech-like. In-
stead of encoding the enciphered vector ]~)(e,,6) into the real part
of the complex frame spectrum, it would be advantageous to
encode ]~)(enc) into the power spectral density (PSD). The main
limitation is that the vector f)(em) contains both positive and
negative values, whereas PSD is always non-negative. For this
reason, envelope encoding could be performed in the cepstral
domain.

Furthermore, it may be worth adding a correction unit at the
deciphering output for detecting and smoothing deciphering
errors. Since the vocal parameters in natural speech do not
change quickly over time, the detection of large errors should
be relatively straightforward. For example, the correction unit
could use machine learning techniques to correct errors on a
particular channel. A clear separation between the correction
unit and the speech synthesizer could improve the quality of
synthesized speech and simplify the two-step network training.

Communication performance strongly depends on the stability
of a vocal link. The problem with fading channels could be
mitigated by combining distortion-tolerant speech encryption
and multiple description coding (MDC) [76, 77, 78]. Multiple
description coding is a technique that fragments one media
stream into several substreams. Each substream is decodable
into the initial stream, and decoding more substreams improves
the quality. The MDC could be used to split encrypted speech
into multiple audio streams and thus to increase communication
reliability.
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