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Abstract. Cloud computing continues to play a major role in transforming the IT
industry by facilitating elastic on-demand provisioning of computational resources
including processors, storage and networks. This is necessarily accompanied by the
creation, and refreshes, of large-scale systems including cluster, grids and datacenters
from which such resources are provided. These systems consume substantial amounts
of energy, with associated costs, leading to significant CO2 emissions. In 2014, these
systems consumed 70 billion kWh of energy in US; this is 1.8% of the US total en-
ergy consumption, and future consumption is expected to continue around this level
with approximately 73 billion kWh by 2020. The energy bills for major cloud service
providers are typically the second largest item in their budgets due to the increased
number of computational resources. Energy efficiency in these systems serves the
providers interests in saving money to enable reinvestment, reduce supply costs and
also reduces CO2 emissions. In this paper, we discuss energy consumption in large
scale computing systems, such as scientific high performance computing systems,
clusters, grids and clouds, and whether it is possible to decrease energy consumption
without detrimental impact on service quality and performance. We discuss a number
of approaches, reported in the literature, that claim to improve the energy efficiency
of such large scale computing systems, and identify a number of open challenges.
Key findings include: (i) in clusters and grids, use of system level efficiency tech-
niques might increase their energy consumption; (ii) in (virtualized) clouds, efficient
scheduling and resource allocation can lead to substantially greater economies than
consolidation through migration; and (iii) in clusters, switching off idle resources is
more energy efficient, however in (production) clouds, performance is affected due to
demand fluctuation.

1 Introduction

Large scale computing systems as observed in the top500 [1] supercomputers, clusters,
grids [2], and clouds [3] consist of a large number of Information & Communication Tech-
nology (ICT) resources that are connected through a network. Supercomputers and clusters
are non-distrusted systems which are used to solve large problems quickly where large math-
ematical calculations are involved like weather forecasting, defence & control systems etc.
Distributed systems (grids and clouds) are preferred over non-distributed systems for three
main reasons including reliability, distributed nature of applications and concurrent exe-
cution of applications [2]. These systems provide their services to users on either best or
commercially reasonable effort policy.
Cluster, grid, cloud and datacenter service providers maintain a large pool of computational
resources, that needs more energy to (i) operate properly and (ii) to cool down the heat
generated. A recent report [4] show that in 2015, across the world almost 416.2 terawatt
hours of energy was consumed by datacenters which is higher that the UK’s total consump-
tion. The amount of energy consumption will continue to increase with increasing capacity
unless energy efficient management techniques are established and applied [5]. The resource
allocation and management algorithms along with the physical infrastructure of the data-
center are needed to reduce the environmental impact (CO2 emission) and make them more
energy and cost efficient [6]. In this paper, we discuss energy consumption of clusters, grids
and clouds, and whether it is possible to minimize energy consumption without detrimental
impact on service quality and performance.
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1.1 Clusters

A cluster (computer cluster) ties together a number of computers through a LAN, that
essentially act as a single computer, that can be more cost effective than a single computer
of comparable performance. Typically clusters are homogeneous, however there are certain
heterogeneous HPC clusters like OSCAR [2]. A centralized job scheduler is responsible for
resource allocation and placement.

1.2 Grids

“A grid is a system in which computing and data resources belonging to many enterprisers
are organized into a single, virtual computing entity that can be transparently utilized to
solve compute and data intensive problems” [7]. Computational grids which are based on
the notion of virtual organizations [8], use high speed public networks for high availability
of computational resources or multiple clusters at low-cost. Grids are more heterogeneous
and geographically dispersed (distributed) than clusters. Due to multiple administrative do-
mains, a hierarchical job scheduler (local and meta) is responsible for resource management
in grids [2].

1.3 Clouds

According to National Institute of Standards and Technology’s (NIST), “cloud computing is
a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications and services)
that can be rapidly provisioned and released with minimal management effort or service
provider interaction” [3]. Compared to grids, a pricing model is associated to clouds, es-
sentially virtualized, where the resource demand can be unpredictable. A hierarchical job
scheduler [8] is used to provision resources for customers. Cloud computing is divided into
three major types including Software as a Service (SaaS), Platform as a Service (PaaS) and
Infrastructure as a Service (IaaS). Cloud computing provide ICT devices on lower costs to
customers, which can be elastic to fulfil the varying resource demand, flexible and can pro-
vide resources on lower Total Cost of Ownership (TCO). Customers are looking for QoS and
reliable services when they pay, therefore the focus of service providers is to satisfy customer
needs with minimum energy consumed – performance-cost-energy model. A cloud can be
public and/or private. Public clouds are operated by a third party such as Amazon1 and
Google2, so the enterprises do not need to manage and maintain their allocated resources.
Private clouds (based on the OpenStack3) are operated by large enterprises, who can afford
the cost of operating and maintaining cloud datacenters.

Datacenters: Datacenters provide an IT backbone for cloud computing which may consist
of large servers (in thousands) that process large tasks for businesses, complex scientific prob-
lems and facilitate customers to accomplish their business goals. A server can be virtualized
that runs multiple VMs possibly of different instance type, for different users. Virtualiza-
tion can provide opportunities for server consolidation that increases the ration of resource
usage. Datacenters are IaaS, which are located in different geographical areas – for exam-
ple Amazon EC2 regions that will have one or more virtualized datacenters. A high level
system architecture for OpenStack [9] cloud computing platform is shown in Figure 1. A
Global Resource Manager (GRM) is responsible for resource allocation, VM placement and
initiating migration at the controller level. A Local Resource Manager (LRM) is working on
each server, which monitor the resource usage, decide a host is under-loaded or over-loaded
and inform the GRM to take appropriate action on resource reallocation.

1 https://aws.amazon.com/
2 https://cloud.google.com/
3 https://www.openstack.org/
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Fig. 1: A high level system architecture for cloud computing [9]

1.4 High Performance Computing (HPC)

According to NIST, “HPC enables work on challenging problems that are beyond the capacity
and capability of desktop computing resources”. Supercomputers (such as INCITE [10]) and
production clusters are considered the two most reliable HPC systems, where the focus can
be to provision powerful resources for short period to complete the job quickly. These systems
differs from High Throughout Computing (HTC) like HTCondor, where powerful resources
are provisioned over a long period. Grids and clouds are not HPC, but they can certainly
support HPC workloads as observed in TeraGrid (grid) [11] and Amazon new generation C4
instances (cloud) [12]. Despite knowing the differences between these systems [13], in the
rest of document, by HPC we would mean any system amongst supercomputers, clusters,
grids or clouds.

1.5 Problem

The modern computing era and the problems we are facing like global warming, increased
fuel & energy cost and global crisis have driven scholars to investigate and decrease the
energy demand of ICT equipment in small and large scale datacenters which are currently
growing with the development of cloud infrastructure. As discussed in [14], the energy sector
is one of the major Greenhouse Gas (GHG) emitters throughout the world, which produces
43% of GHGs in total. Following green computing principles, it is essential to minimize
energy consumption in datacenters; ICT equipment that will lower GHG emissions. A key
challenge for the owners of datacenters is the energy shortfall/outages that will continue to
rise in future, due to the closure of all nuclear power plants in Germany, and reduction in
coal-based power plants in the UK. In 2007, [15] the IT sector energy requirements (including
PCs, cooling, servers, telephony, networks, mobiles, printers & office telecommunication) and
CO2 emissions were projected somewhat equal to that of airline industry, which is 2% of the
global emissions. In 2013, US datacenters consumed an estimated 91 billion KWh of energy
and were projected to be roughly consuming 140 billion KWh annually by 2020 [16]. However,
due to state-of-the-art energy efficiency techniques implemented, a recent study [17] report
that datacenters are accountable for 70 billion kWh of energy that is 1.8% of the total energy
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consumed in the US and are expected to consume approximately 73 billion kWh by 2020.
Currently, the share of ICT equipment to global GHG emissions is around 1.6% and it is
estimated to be around 2% by 2020 [18]. Table 1 shows the % of CO2 emissions from ICT
equipment.
The datacenter energy cost is in competition with the infrastructure cost. According to
Amazon [19], the server cost in their datacenter is about 53%, while the energy cost is
42%, including 23% for servers energy, 19% for cooling and 5% for other infrastructure like
lightning. Therefore, if money can be saved on the energy budget of the datacenters, this will
result in greater profit and will have improved environmental sustainability [15]. A number
of techniques are used to implement energy efficient mechanisms [20] in ICT equipment like
processors and network cards, to make them less power hungry. These include mechanisms to
reduce the energy consumption of processors especially in latest CPU architectures (multi-
processors and multi-cores).

Table 1: CO2 emissions (%) from ICT equipment (2005-2006)
PCs & Monitors Servers Telecom LANs Printers

Fixed Mobile Office

40 23 15 9 3.5 3.5 6

The focus of this paper is to discuss a number of state-of-the-art approaches, reported in the
literature, that claim to improve the energy efficiency of large scale computing systems, and
identify a number of open challenges. We will discuss energy efficient scheduling for single-
processor, multi-processor and multi-core systems first in Section 4, and later in Section 5, we
present a taxonomy to classify the existing work based on the methodology used for energy
efficiency. Efforts are made to summarize datacenter level resource management techniques
including virtualization, load balancing and server consolidation with migration.

1.6 Motivation

Both economical and environmental issues related to large scale datacenters motivate us
for this study. With the rapid uptake of cloud datacenters to host industrial applications,
reducing the operational costs of powering and cooling large scale datacenters is a major
economical concern. As for every 10◦C increase in temperature, the system failure rate
doubles, hence reduced temperature could also improve datacenters reliability [3]. Various
studies are conducted to elaborate and investigate green computing and datacenters. The
purpose of this survey is to analyze the energy consumption of ICT equipment in general
(including Laptops, PCs etc.) and focus on large scale HPC systems, clusters, grids and cloud
datacenters. We explain a taxonomy of techniques that are proposed to enhance the energy
efficiency of these systems. Conceptually clusters, grids and clouds are treated the same [2],
hence considerable efforts have been made to analyze and differentiate the energy efficiency
methods proposed for these systems. The contributions of the survey are as follows:

1. A taxonomy of energy efficient computing
2. System level energy efficient CPU scheduling in single systems and clusters
3. Datacenter level resource management for energy efficiency in grids and clouds

Our survey is different from those conducted in [9], [21], [14]. The techniques presented
in [9], provide a taxonomy of optimizations, but the energy efficiency techniques in virtual-
ized cloud environments have not been studied. Similarly, the surveys conducted in [21] [14],
only focus on energy efficient datacenters and have ignored the energy efficiency of system
level CPU and resource scheduling. These studies have also ignored the energy efficiency of
multi-processors, multi-cores and clusters that form a base for grids and cloud systems. We
start from the energy efficiency of a single system (its different components) and explore
the energy efficiency of large scale cloud datacenters, storage systems and networking. We
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believe that this survey will provide readers with an understanding of the essential concepts
of the resource management techniques (to achieve energy efficiency) in cluster, grids and
cloud systems. Furthermore, this survey will help researchers to identify the key and out-
standing issues for further investigation.
The rest of the paper is based on the following roadmap. In Section 2, we introduce cloud
datacenters and the need to make them more energy efficient. Modelling energy consumption
of a non-virtualized or virtualized server is discussed in Section 3. Section 4 is devoted to
system level (operating system level) green scheduling in terms of multi-processor and multi-
core technologies. A brief survey on the existing scheduling algorithms is presented. Section
5 introduces the taxonomy of power management techniques in computing systems. Section
6 introduces different approaches to make large scale HPC, clusters, grids and cloud data-
centers greener and more energy efficient. Application level green approaches are explained
in Section 7. In Section 8 we discuss metrics, which are used to measure the energy efficiency
of datacenters. Section 9 introduces new research challenges in the field of energy efficient
computing and datacenters. Section 10 concludes the article, by offering recommendations.

2 Clusters, Grids, Cloud Datacenters & Energy Consumption

Clusters, grids and cloud datacenters consists of hundreds to thousands servers, processing
large number of tasks for large businesses like Google [22] and Amazon, solve complex
scientific problems and assist customers to achieve their business and scientific goals. These
large scale cloud systems combined with clusters and grids are almost 90% idle (worldwide)
[23], consumes large amount of energy and produce large amount of CO2 emissions, which
costs billions of dollars energy bills for the major service providers. Various studies [17],
[21], [23], including the analysis by Natural Resources Defense Council [24] suggest that
approximately 30% of the running servers in US datacenters are idle and the others are
under-utilized, thus making it possible to save energy and money with state-of-the-art energy
efficient methods [21]. A cloud datacenter consists of the following components:

1. Computing equipment including servers, network, and storage equipment.
2. Un-interruptible power supply components including switch gear, generators, PDU and

batteries.
3. Cooling systems including Computer Room Air Conditioning units (CRACs), Heating

Ventilation and Air-Conditioning (HVAC), chillers, pumps, direct expansion air handler
(DX) units and cooling towers.

4. Supplementary equipment like workstations / laptops used to monitor, KVM switches.

Such components are also installed in large scale HPC clusters and grids. Various techniques
are used to minimize the energy consumption of these systems. At server level, CPU is con-
sidered as a major energy consumer (Table 2), and research has focused on reducing its
consumption (frequency or voltage scaling) as explained in Table 3. Other server compo-
nents like network card, fan and motherboard can be either completely switched off or put
into low power mode to save energy. Despite the potential benefits of switching components
off, the motherboard is a high consuming component (Table 2), that can be switched off
only if the whole server can [25]. Due to the nature of clusters workload, such techniques can
be more energy efficient in clusters. However, due to the elastic nature of cloud datacenters
and unpredictable customers resource demand, server level methods could not be used to
achieve greater energy efficiency in grid and cloud systems. Other high level resource man-
agement techniques would be more helpful to maintain system performance and SLAs with
customers.
Another technique is the use of virtualization technology, which allows a number of devices
(servers, networks) to execute more services on the same hardware, to improve resource uti-
lization. According to NIST “virtualization is the simulation of the software and/or hardware
upon which other software runs under the control of a hypervisor”. Virtualization is used to
achieve energy efficiency in grids and cloud datacenters through increased utilization that
can be achieved with server consolidation [27] through Virtual Machine (VM) migration
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Table 2: A typical server’s component energy consumption [26]
Component Peak power (W) Count Total power (W) %

CPU 40 2 40 37.6
PCI slots 25 2 50 23.5
Memory 9 4 36 16.9
Motherboard 25 1 25 11.7
Disk 12 1 12 5.6
Fan 10 1 10 4.7

Total 213

and with the use of energy efficient scheduling approaches [21]. Various studies shows that
virtualization raises the utilization ratio up to 50%, save more energy4 (through consolida-
tion) and consequently drop the CO2 emissions [28] [29]. Similarly, resource consolidation
moves the servers around to reduce the number of active resources and can switch off some
underutilized resources to save the resource idle energy. Load balancing [30] attempts to
distribute the load across different servers that can be achieved through server consolidation
in clouds and task consolidation [31] in clusters and grids. Load balancing can increase the
servers utilization level, and can possibly minimize the total energy consumption. However,
increasing the resource utilization does not always result in minimum energy consumption
due to workload variations [31], hence an Energy-aware Task Consolidation (ETC) method
is proposed in [31] to restrict the CPU usage below a specific threshold value. Estimating
such a threshold level for a server in clouds, where the demand varies over time, is a chal-
lenging task due to workload unpredictability and heterogeneity.
Recently, most software5 (applications) and hardware have delivered support for virtualiza-
tion. We can virtualize many aspects such as applications, hardware, OS and storage6, and
easily manage them. To make use of virtualization, competent scheduling algorithms are es-
sential, that are generally applied by cloud resource manager to provision only the required
(ideal) number of resources. There are a large number of scheduling algorithms that focus on
minimizing the total completion time of the tasks in distributed systems [32], [31], [33], how-
ever, these algorithms does not guarantee energy efficiency for large scale cloud datacenters
– because after finishing task execution, the resources may become idle that still consumes
energy. Some proposed system level techniques, scheduling, and switching off unused servers
through consolidating the workload on fewer servers in datacenters, their pros and cons are
discussed in Section 6.6.
Table 3 summarizes some techniques that are implemented in computing to achieve energy
efficiency [21], including Static Power Management (SPM) and Dynamic Power Management
(DPM). Dyanamic Voltage & Frequency Scaling (DVFS) scale the processor frequency up
or down, if feasible to minimize the amount of energy consumed at the system level. The
schedulers are designed to make use of such technologies at system level, to achieve energy
efficiency. Similarly, Selective connectedness allows resources to go idle or low power mode
for some time transparently in the network [34]. There is potential to increase the focus on
these methodologies in terms of green datacenters, where it might not be possible to switch
off servers due to demand variation and unpredictability. Such mechanisms including system
level and high level resource management are discussed in Section 4 and 5 respectively.

3 Modelling Energy Consumption for Non-Virtualized &
Virtualized Platforms

Due to the size of clouds, It is extremely difficult to conduct repeatable experiments on a real
infrastructure, which is required to evaluate and compare different scheduling and resource
management policies [9]. Hence, to ensure the repeatability of experiments, researcher use

4 http://www.vertatique.com/average-power-use-server
5 http://www.salesforce.com/
6 https://www.techopedia.com/definition/4798/storage-virtualization
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Table 3: Energy efficiency techniques to make ICT equipment greener
method Scope Explanation Benefits Shortcomings

DPM [Sec. 5] Server Switch ON/OFF
servers according to
workload [9]

More energy saving
as compared to SPM

A realistic methodology is
mandatory to coordinate,
predict future workload

Network Switch off network
when idle

Energy is not wasted
when no traffic or
packets are there

Degrades network perfor-
mance

Scheduling
with DVS &
DVFS [Sec.
4.2, 6.1]

Server Increase and decrease
frequency and volt-
age according to the
task criticality and
priority [35], [36]

Reduced carbon
emissions as servers
are utilized according
to voltage, frequency
and utilized as
needed

An approach essential to
scale voltage or frequency
independent of the work-
load. Insignificant energy
savings in large systems.
In heterogeneous datacen-
ters difficult to implement

Network Link sleep and ac-
tive, according to the
packets availability
through Adaptive
Link Rate (ALR)

ALR achieves negli-
gible energy savings
[21]

A strategy needed to decide
link rate, LPI states. ALR
can achieve significant en-
ergy savings if implemented
properly [37]

Virtualization
[Sec. 6.6]

Server Dynamically pro-
vision resources
according to QoS re-
quirements [38], [30]

More energy savings
and high utilization
ratio

Extensively used, live migra-
tion effect network perfor-
mance

Protocols
[Sec. 6.2]

Network Keep minimum
switches on for
tolerable through-
put energy effi-
cient Transmission
Control Protocol
(TCP) [39]

Data packets are
transferred only in
an energy efficient
state

Difficult to modify existing
protocols to save energy

Server consol-
idation [Sec.
6.6]

Server Consolidate the load
on minimum servers
[40] [41]

Increase utilization
ratio. Have overcome
the problems of
server sprawl

Categorization of the servers
needs proper planning and
large amount of time. Fail-
ure of single consolidated
server

Load Balanc-
ing [Sec. 4.3]

Server Balance the work-
load among differ-
ent servers to balance
utilization

Equal utilization as
no server is over-
loaded

Tough implementation in
heterogeneous platform [30]

Reduce num-
ber of active
servers [Sec.
6.5]

Server Decrease the number
of active servers in
datacenters (consoli-
dation) [23], [42]

Less active servers
produce less CO2

emissions and re-
quires less energy to
operate

Not essentially reduce the
energy consumption in a
heterogeneous cloud data-
center

simulations as a way to evaluate the performance of their proposed policies. To produce valid
results that can be achievable in a real platform, plausible assumptions and models based
on different characteristics of servers are still needed. As, the focus of this study is energy,
thus we explain how the energy consumption of a typical real server is modelled. As shown
in Table 2, the CPU is the chief energy consuming component in a typical server. Majority
of the proposed energy models7 are based on the assumption that a server total energy
consumption can be modelled as the energy consumed by its CPU [26], [43]. An empherical
study (based on the benchmarks) of CPU utilization and its energy consumption in [26],
suggests that a linear relationship can be made. This relationship of CPU utilization and
energy consumption can be used to estimate the server total energy/power consumption,

7 https://www.infoq.com/articles/power-consumption-servers
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given by Equation 1:
P (u) = Pidle + (Pmax − Pidle).u (1)

where P (u) is the estimated server power consumption, Pidle is static power consumed
by the CPU when the server is idle, Pmax is the power consumed by the CPU when the
server is fully utilized, and u is the current CPU utilization. The portion (Pmax − Pidle).u
is called dynamic power consumption, and is treated as a linear function of utilization.
The power model in Equation 1, allows an estimate of energy consumed by a server (non-
virtualized) given CPU utilization and the energy consumed at idle and fully utilized state.
Other models like PowerTOP and Joulemeter [25] are also accurate for non-virtualized
servers. However, in virtualized servers, there is a multi-layered software stack that contains
physical devices, native OS, a hypervisor and several VMs on the same hardware. The
privileged hypervisor have control over virtualised server – they can get coarse-grained energy
consumption of the server. However, fine-grained VM level energy consumption cannot be
measured in this way [44], as the capability of server is multiplexed across several VMs, whose
real energy consumption is decided by the characteristics of running application. Moreover,
the virtualization layer makes it challenging to isolate application’s energy consumption
from server’s total energy consumption.
Energy consumption of a physical server can be measured by metering the provided energy
(through sensors or watt-meters), but VMs are made in software and cannot be attached
with a meter, which makes it challenging to measure VMs energy consumption. The skill to
measure the energy consumption of a VM or a virtualized server is significantly important
for several reasons. For instance, if a VM is consuming too much energy it may be migrated
to a more energy efficient server. VMs are sized such that a certain number will fit on a
server. Efficiency (of a server) for a VM is going to be a factor of how many are running on
that server. Assuming a constant power use for a server that is switched on with no VMs,
the first VM is going to be least energy efficient – the baseline energy use gradually spreads
across all VMs. Therefore new VM level energy consumption models are needed to measure
accurate levels of total energy consumption across virtualized platform [44]. In our previous
work [45], we proposed an energy consumption model for virtualized systems, to decide
which type of host could run a VM more energy efficiently. Ibrahim at el. [46] also proposed
a VM level energy-aware profiling model that attributes the host’s energy consumption to
VMs. Similar to our approach, they divide the host’s idle (static) energy consumption evenly
amongst the number of VMs running on it. However, the dynamic energy consumption of
the host is divided based on the VM CPU utilisation level only. The proposed model could
estimate the energy consumption of homogeneous VMs accurately, however, heterogeneity
is not considered.

4 Scheduling

The idea of scheduling (system level) is to allocate jobs to processors considering job ex-
ecution time, deadline (in case of real-time systems) and other characteristics. A job may
contain multiple tasks that can be executed on different processors. Tasks can be indepen-
dent or dependent, where the output of one task provides input for other tasks (workflow).
The two terms, jobs and tasks are used interchangeably in the rest of this document. In
literature [25], [47], energy aware scheduling algorithms either focus on scheduling of tasks
in such a manner that their execution completes in minimum time with reduced energy
consumption or tasks are balanced over a number of processors so that all processors runs
with similar utilization level. For example, if the deadline of a job can be extended, then
the processor frequency may be scaled down to minimize the energy consumption. An idle
processor still consumes significant amount of energy that can be 60% of its peak energy
consumption. However, switching off an idle processor is not feasible in a single system,
so keeping processors always doing some workload would also save significant amount of
energy. Other techniques like delaying the execution of a job (with the hope that another
job will finish in near future) [48] and migrating a job to another system (in case some job
on the system have finished execution) [25] would also save significant amount of energy for
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non-critical applications. In this section we discuss energy efficient scheduling techniques in
single-processor, multi-processor and multi-core systems as they are very common in HPC
clusters and cloud datacenters.

4.1 Single-processor scheduling

The scheduling problem has been predominantly studied on a uniprocessor system, which
contains a single processing unit in which all the jobs must be executed after satisfying some
scheduling constraints. The focus of the job scheduling is to allocate n jobs to m homoge-
neous or heterogeneous processors, such that the total makespan is reduced. The job total
makespan is the length or duration of schedule when all of its tasks have finished processing.
Job scheduling approaches are normally categorized as static (off-line) and dynamic (on-
line) as shown in Figure 2. In static scheduling, the workload8 size – number of required
clock cycles in millions of instruction per second (MIPS), required physical resources (CPU),
and job priorities are determined prior to their execution. Information about workload size,
Worst Case Execution Time (WCET), job deadline and communication time is thought to
be known at execution time. Min-Min (schedule small tasks for execution first) & Min-Max
(schedule large task for execution first) are two common static scheduling techniques [47].
In dynamic scheduling, algorithms may change jobs priority level during execution and re-
sources to running processes are allocated dynamically to maximize resource utilization. We
know from the previous discussion (section 4) that maximizing resource utilization could ex-
ecute the given workload more efficiently, however it strongly depends on the workload. The
workload size and runtime is also not known in advance, which makes dynamic algorithms
more challenging and complex. An on-line scheduler decides the job placement on the fly,
and then the obtained results can be compared to estimate its optimality and efficiency to
optimal off-line algorithm using competitive analysis [49]. Dynamic scheduling algorithms
can be either (i) static priority - job priorities are fixed, or (ii) dynamic priority - jobs prior-
ities varies over the execution time. Another category of scheduling is real time scheduling
which comprise of static and dynamic priority scheduling algorithms as well, as shown in
Figure 2. Similarly, scheduling can be categorized as centralized, distributed and hierarchical
policies as explained in [2]. In centralized scheduling, a single scheduler is responsible for
all users jobs, while in a distributed model, several schedulers cooperate with each other
to satisfy the user experience. Distributed schedulers are able to schedule from the same
pool. In hierarchical models the scheduling is a combination of centralized and decentralized
schedulers, where a centralized scheduler is working at the top level and a decentralized
scheduler is installed at the lower level [2].

Scheduling

Dynamic scheduling

Dynamic priority

EDFDM

Static priority

RM

Realtime scheduling

Dynamic priorityStatic priority

Static scheduling

Fig. 2: Scheduling techniques for single / multi processors (RM - Rate Monotonic, DM -
Deadline Monotonic, EDF - Earliest Deadline First)

8 http://www.omgwiki.org/hpec/files/hpec-challenge/metrics.html
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4.2 Multi-processor Scheduling

In multi-processor system the tasks can be executed in more than one processor (SMP9 –
simultaneous multi-processing). There are two major types of multi-processor scheduling: (i)
partitioned and (ii) global scheduling. In partitioned scheduling [50], every job is allocated
to a processor statically and then it is executed there without being migrated to other
processors/cores. Each processor or core (based on the system architecture) have its own
on ready queue. In global scheduling [51], jobs are kept in a single priority queue (shared)
and the scheduler picks the job having the highest priority for execution. Unlike partitioned
scheduling, jobs can migrate freely amongst different processors/cores. One of the optimal
scheduling algorithms for multi-processor system is fair (Pfair) scheduling. Pfair works on
the notion of “fair share of processor” where each task receives amount of CPU time slots
proportional to its utilization, and hence guarantees that no deadline is missed. Assigning
tasks optimally to multiple processors is a bin-packing NP-hard problem [52] and different
heuristics approaches (on-line, off-line based on the nature of problem and workload) or
approximation algorithms (to find approximate optimal solutions/schedule) [52] are used in
the literature. Heuristics are fast enough and only provide good solutions but not optimal,
however, approximation techniques are near to optimal. The main purpose of heuristics
is to find out that all tasks are schedulable within the deadline (task feasibility), however
they are not responsible for efficient and optimal allocation of tasks. Currently, for interested
researchers, several other heuristic based multi-processor scheduling algorithms are suggested
and offered in [9], [36], [53], [54] and [55].
The feasibility test of a job on a specific resource is to find out either all the tasks (real-time)
in that job will meet their deadlines or not. Many parallel applications consist of several
computational tasks that can be modelled as a weighted Directed Acyclic Graph (DAG). A
vertex denotes a task, its weight represents task computational size and the edge (directed)
shows the dependency between two tasks. An arc shows communication among two tasks,
and its weight is the cost of communication [55]. While the execution of some of these tasks
depends on the completion of other tasks, others can be executed at the same time, that
increases parallelism of the scheduling problem. When the feasibility of such application is
checked, then the communication overhead of tasks must also be considered. If all tasks
are executing on the same processor, then their communication overhead is zero. However,
if tasks are executing on separate processing units, then their communication overhead is
positive and it is possible that the job will take longer to complete. The following postulations
may be made, when designing a multi-processing unit scheduling algorithm to achieve energy
efficiency:

– Task pre-emption is allowed.

When the task is running on a processor, then it could be pre-empted by some higher
priority task and could be resumed later on. We assume that there is no penalty (on energy
efficiency) linked with such pre-emption.

– Task migration is allowed.

The task that is executed on a processor may be pre-empted by another high priority task,
and can resume its execution on another processor or even on the same processor later. And
there is no penalty allied with such migration and pre-emption.

– Task parallelism is prohibited.

That is, it can only execute on one processor at a particular instant of time.
Those scheduling algorithms that are implemented for energy optimizations on uni-processor
systems need to be redesigned for multi-processor platforms. Several scheduling techniques
including Rate Monotonic (RM), Deadline Monotonic (DM) and Earliest Deadline First
(EDF) are already optimized to achieve energy efficiency in multi-processor systems [47].

9 http://superuser.com/questions/214331/what-is-the-difference-between-multicore-and-
multiprocessor
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The communication overhead must be considered while implementing such techniques as
it might reduce the system performance and increase the energy consumption in case of
workflow scheduling.

4.3 Multi-core Scheduling

A Multi-core processor consists of multiple execution cores which performs different arith-
metic and logical operations (CMP10 – chip-level multi-processing). These systems provide
similar performance to multi-processor systems where multiple processors (single core) work
in parallel11, but probably at lower cost. Theoretically, adding an extra core to the same
chip doubles the performance of the chip. However, in practice performance of each core is
slower than a single core processor. The communication amongst cores and main memory is
achieved in two different ways: (i) through a single communication bus, which is also known
as a shared memory model and (ii) through an interconnected network approach which
is also known as a distributed memory model. The multi-core processor provides 4 times
greater bandwidth, decreased energy consumption and running at lower frequency with the
same voltage as a single core processor [56], [47].
Increasing the frequency of a single-core processor also increases the energy consumption due
to the linear relationship of frequency to energy consumption [9]. For that reason, vendors
adopted an approach of multiple cores on a single chip against the single core processor to
increase the performance with lower energy consumption. There are several major challenges
involved in using multi-core architectures to minimize energy usage [47]. “Multi-cores have
the potential to be more energy efficient, however, they does not save energy unless you sim-
plify each individual core to make it more energy efficient”12. Several industry organizations
have been making enhancement in solving those challenges with streamlining applications
and splitting them amongst the cores. The idea to divide the task set t1, t2, t3, ..., tn into
k subsets where every subset is feasible on a single core is called partitioning. To use mul-
tiple cores energy efficiently, the partitioning problem is an important concern. Multi-core
hardware can increase the running application performance and minimize the energy con-
sumption even more, if all the cores stay similarly active [47], [56]. If the cores are not equally
loaded, it can waste CPU cycles and can increase message passing amongst different cores
which reduces the running applications performance [50] and increases energy consumption.
There are several basic steps involve in designing parallel applications for these systems. In
the first step of designing algorithm, designers need to find out the opportunities for parallel
execution of the application (as an application might consist of several tasks). The main
purpose of this, is to define number of small tasks that can run in parallel on different cores.
The output of one task may provide input for other task (workflow), so the data must be
transferred between tasks to continue processing normally. This message passing or data
transfer between tasks is specified in the communication phase [40]. In the last stage, de-
signers needs to identify where tasks will execute. The load balancers [56] which are used
to balance the workload amongst available servers in a compute cluster, to increase utiliza-
tion level and minimize the chances of server overloading – such techniques are also used in
multi-core processors.
Apart from these, different techniques have been also implemented at processor level to save
energy. For example, processor speed controlling using DVFS (low utilization) [57] [58], a
possibility of on/off switching (power cycling) [59] can save more energy but still consid-
erable efforts are needed to find a conciliation between keeping a core idle, in on state or
switch it off [60]. The deadline of a job must also be kept in mind, when scaling down
the frequency or voltage of the core, as the job might miss the deadline due to increase
in execution time while running on lower frequency [56]. Switching on/off a core also cost
more energy (reconfiguration cost) and can degrade the system performance which increases

10 https://software.intel.com/en-us/blogs/2008/04/17/the-difference-between-multi-core-and-
multi-processing

11 http://forum.cakewalk.com/Difference-between-3939multicore3939-and-
3939multiprocessor3939-m1098367.aspx

12 http://www.futurechips.org/chip-design-for-all/a-multicore-save-energy.html
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energy consumption. Such techniques at server level can be more energy efficient, which are
further explained in Section 6.5.

5 Taxonomy of Energy Efficient Computing

With the prompt growth of people experience in Internet, volume of mobile devices and size
of datacenters, there is more demand to green ICT devices for sustainable environment and
to reduce their energy usage. Largely, datacenters are overwhelmed with many thousands
of servers consuming enormous amount of energy, remains almost 30% idle [24] and are
hardly utilized only 10% to 40% [29]. The scheduling and load balancing methods which are
suggested for system level energy efficiency [section 4 ], are also used at high level resource
management in compute clusters, grids and large scale cloud datacenters to manage the
computational resources more efficiently. Some energy management techniques (system and
high level) suggested so far in the literature are discussed in this section.
In computing equipment, energy saving techniques have been categorized as Static Power
Management (SPM) and Dynamic Power Management (DPM) [61]. SPM falls under the
category of hardware level techniques and are most efficient at single system while DPM
are application level resource management methods, which are more energy efficient in large
systems. Figure 3 outlines a fleeting overview of various energy management schemes in
computing equipment [9]. Most of the work in SPM techniques are related to hardware level
efficiency, for example low power consumption circuit designing. DPM techniques are mostly
implemented in software or on network layer, for example protocol design and algorithms.
Energy aware scheduling like DVFS [62], energy efficient routing [63], ALR [64], fan con-
trol [65], load balancing, virtualization [6], resource consolidation and migration [27] are
mostly studied by a number of researchers in energy efficient computing [Table 3 ]. Some
work on selective connectedness (turn off the network devices) when they are not in use for
some period, are also proposed [61]. The problem is that high availability, QoS and perfor-
mance guarantee are still ignored, which is most desirable in such distributed environments
as the customers pay for their provisioned resources. If QoS and expected performance level
is not achievable, then the customers would not even pay or may alternately switch to
other similar service providers [2]. In some environment where mobility is involved (mobile
cloud computing), energy issues are critical and needs to be managed properly as power
batteries are not much reliable [66]. There are also application/software level methods to
limit the amount of energy used by the applications though green compilers and robust
programming [67]. However, application level efficiency techniques are not the focus of this
document. Interested readers are recommended to read [67], [68]. In next sections we discuss
hardware level and high level resource management techniques to achieve energy efficiency
at single system, clusters, grids and cloud datacenters. Frequency scaling [62] and ALR [69]
are hardware level efficiency techniques and are discussed in Section 6.1 and Section 6.2 re-
spectively. The system level scheduling for single processor, multi-processors and multi-core
systems were discussed in Section 4, that make use of certain hardware applicabilities to save
energy. In Section 6, we limit our study to energy efficient resource scheduling, communica-
tion, storage and resource management for large scale clusters and grids. A complete section
i.e. Section 6.6 is devoted for datacenter level energy efficiency techniques. Cloud systems
implements a hybrid architecture from clusters and grids, hence those methods which are
also applicable to these systems, are clearly indicated where appropriate.

6 Energy Efficiency Techniques in Clusters, Grids and Clouds

In the literature [9], [14], [25], [68], [70] energy efficiency of computing devices is considered
at three different levels including efficiency of hardware, resource management systems and
applications as shown in Figure 3. In this section we have categorized our study in different
sections including energy efficient CPU scheduling (system level technique), communication,
storage and resource management (cluster/grid/datacenter level techniques including server
consolidation, migration and power cycling). We have discussed latest techniques which are
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Fig. 3: Taxonomy of energy management techniques in computing systems

claimed to make large scale datacenters more energy efficient. As discussed before, a cloud
datacenter consist of different ICT equipment which consumes enormous amount of energy
[9], [71]. Table 4 shows the energy usage of different components in a typical datacenter. It is
clear that datacenters and servers energy consumption are in competition for infrastructure.
Therefore, the main focus of researchers is to decrease the energy consumption of VMs and
physical servers (IaaS) in datacenters. Some methods like (i) shut down idle servers to save
the idle power which is almost 70% of the peak and (ii) execution on those servers that
are powered by Renewable Energy Sources (RES), are also proposed in the literature [9],
[14] to minimize datacenters energy consumption. We will shortly discuss several state-of-
the-art approaches in Section 6.6 for green and energy efficient datacenters. According to
Environmental Protection Agency (EPA) energy efficiency report on US datacenters [72],
about 70% energy saving can be achieved by implementing modern state-of-the-art efficiency
techniques [9] at the cooling, power delivery & management levels of the datacenters. Table 5
shows the total energy consumption of datacenters, in 2011, along with the savings that can
be achieved with state-of-the-art energy management techniques [21]. Datacenters are also
accountable for GHGs productions because the energy production units (i.e energy grids)
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Table 4: Energy usage of a typical datacenter (2006)
ICT Component energy usage (TWh) total usage %

Infrastructure 30.7 50.0
Network devices 3.0 5.0
Storage 3.2 5.0
Servers 24.5 40.0

Overall 61.4 100.0

Table 5: Energy savings from using state-of-the-art methods (2011) [21]
Module energy usage (billion kWh) energy usage with state-of-art

(billion kWh)

Infrastructure 42.1 18.1
Network devices 4.1 1.7
Storage 4.1 18
Servers 33.7 14.5

Overall 84.1 36.1

which are used to operate these datacenters, release a large amount of CO2 when fossil fuels
including coal, oil or natural gases are used to generate electricity. Similarly, datacenter
cooling equipment also emit CO2 during operation. In 2006, the ICT sector was estimated
to produce 2% of the worldwide CO2 emissions. It has been shown that datacenters due
to their large size and energy requirements are one of the key contributors to global GHGs
emission that further increases global warming [73]. Hence there is a solid need to address
this issue for environmental sustainability as well.

6.1 High Level Scheduling

The most considerable units of a system (or datacenter) where there is more space for re-
ducing energy consumption are computation, communication, cooling and storage units.
According to Moore’s law, the performance per watt ratio is increasing, but the total energy
drawn by the machine is scarcely decreasing [5]. If this tendency continues, the energy cost
of a server during its lifespan will beat the hardware cost in near future [73]. The problem
is even more worse for large scale clusters, grids and clouds which consumed energy of $4.5b
in 2006 [9]. As stated before that system level approaches might not be energy efficient in
large systems due to (i) energy consumed in idle state is much more than dynamic energy
consumption, (ii) large number of idle resources, and (iii) varying demand and performance
loss (heterogeneity of resources and workload). Therefore, other resource management sys-
tems are required to monitor the system state and take appropriate energy efficiency action
in large systems. The term scheduling, for large systems is very similar to resource allocation
and VM placement. VM placement [6] is treated as a bin packing optimization problem in
the literature, and several heuristics have been proposed to allocate the provisioned resources
more efficiently [74]. In [15], an energy consumption model is suggested for the private cloud
datacenter based on three steps, (i) optimization, (ii) monitoring and (iii) reconfiguration.
The entire state of the datacenter is continuously monitored by the optimization module to
find out energy efficient software alternatives and service deployment configurations. Once
it detects suitable energy efficient configuration, the deployment is reconfigured for energy
efficiency. A 20% decrease in energy consumption is claimed for a private cloud datacenter.
The proposed model is generic and can be implemented in traditional, super or cloud com-
puting for energy minimization.
A brief survey on resource allocation (high level scheduling) problem in clusters, grids and
cloud computing systems is conducted in [2]. Clusters support centralized job management
and scheduling, grids follows a decentralized resource management system and clouds are
based on hybrid architecture of clusters and grids. As clusters did not support virtualization,
hence load balancing and job/process migration are more feasible to save energy in these
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systems. In [20], the authors have briefly surveyed the energy efficiency in clusters using load
balancing, power scalable processors (DVFS) and low power memory chips. Another work
in [57], scales up and down the processor frequency based on the current demand (DVFS),
to minimize the CPU energy consumption. For systems like clusters and grids, where the de-
mand does not frequently change, DVFS can be efficient. However in clouds, as the demand
varies over time, it cannot be feasible to switch processor frequency frequently. It should
be kept in view, that the performance of the processor is affected when running on lower
frequency and the task would take longer to complete – more energy is consumed. Thus,
for application that needs a hard deadline met (hard real-time systems), it is not feasible to
reduce the clock frequency. Grids are very similar to clouds, and previous studies [75] have
shown that the grid nodes are mostly idle; thus consuming significant energy which can
be saved by switching them off. Machine learning based load prediction techniques can be
more helpful to decide when to switch on nodes again to accommodate the varying demand.
Switching nodes on and off (power cycling) also cost more energy and affect the system
performance, customer SLAs, resource reliability and lifetime [76].
In [29], virtualization is briefly discussed to achieve energy efficiency in computational grids
and large scale clouds using server consolidation with migration technique. In virtualized
platforms, server consolidation increases the utilization ratio up-to 50%, and can save large
amount of energy by turning off the idle servers. Server consolidation ensures that IT setup
subsidizes as little as possible to CO2 emissions, and recover cooling & power capacity
which exponentially drop energy costs. However, we found in our previous work [45], that
consolidation is some time more expensive and cost extra energy due to migrations. Largely,
efficient scheduling (resource management) techniques are more cost-energy efficient than
migration based methods. In Section 6.6, we will briefly discuss several recently proposed
energy efficient techniques in cloud datacenters.

6.2 Energy Efficient Communication

With the rising electrification and connectedness of the society including smart phones, lap-
tops, ad-hoc and Wi-Fi networks, a report [73] has suggested that 1% to 3% of US electricity
use comes from datacenters. This figure is even larger if energy use also accounts for the
consumer devices and networks (fixed and wireless). In [77], it is estimated that access net-
works including consumer devices use as much energy as datacenters, and these have a faster
growth rate of usage. Table 6 shows the network devices estimated energy consumption in
Italy by 2020 – where due to scaling effect, reducing the least consuming equipment energy
consumption can still lead to large savings [78]. The study in [77], [21] also signifies the need
of energy efficient techniques to reduce the energy consumed by access networks and servers
in cloud datacenters. In [21], it is estimated that a typical datacenter network accounts for
30% of the total energy consumed – including 15% for access switches, 10% for aggregate
switches and 5% for core switches. In state-of-the-art literature [64], [77], [78], [21], server

Table 6: Networks energy consumption forecast 2015–2020 [78]
Network Energy No of Energy consumption
type consumption (W) devices (GWh/year)

Home 10 17,500,000 1,533
Access 1,280 27,344 307
Transport 6,000 1,750 92
Core 10,000 175 15

Total 1,947

communication is one of the prime energy consumers where energy optimization must deal
with performance, QoS and energy savings trade-offs. There are network hardware that of-
fers different features, creating a chance for energy-efficient operations including turning off
network interfaces when there is no traffic and the media is idle. Using such techniques,
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significant amount of energy can be saved [78], however despite its benefits, these techniques
raises other problems including loss of connectivity and long re-synchronization periods.
Additionally, constantly power cycling network devices can be more energy consuming than
keeping them on all the time. Therefore, the underlying communication protocols must be
optimized and re-designed to enhance the energy-efficient operations of the network [79].
To enhance the network performance with minimal energy consumption, other techniques
like ALR [69], [64], [80] slowdown speed of the communication media whenever there is no or
less data packets to transfer. As stated in [25], the difference between an idle and a fully uti-
lized Ethernet link is negligible, hence the energy savings with ALR are not much significant.
Similarly, the congestion control mechanism should be re-designed to minimize data transfer
in such a way that the throughput is never affected; during a congested network. Energy
efficient TCP [39] has overcome the two major problems of simple TCP, (i) the acknowledge-
ment scheme that does not provide sufficient information about the state of the destination
server to the sending server, and (ii) the window management that makes TCP aware of the
burst errors. These two optimizations cause a 75% reduction in energy overhead. Such type
of energy efficient protocols can reduce the energy consumption of datacenter networks [34]
as shown in Table 7. The problems with ALR implementation include queue management,

Table 7: Energy consumption of datacenter network devices
LAN Switches Hubs Routers WAN Switches

54% 26% 18% 2%

increased packet delay, packet loss ratio and QoS, which effect the network performance
and throughput. Low power idle (LPI) mode [25] for Ethernet devices are defined by IEEE
802.3az standard, which can save at least 50% of the network controller energy consump-
tion in the US, which consumed an estimated 5.3 terawatts hours in 2005. Switching off
network devices, adapting the speed to the need (ALR), or a combination of both is more
energy efficient but are worst in transfer time and performance. In clusters and grids, for
certain workloads & QoS constraints, this delay can be acceptable or shortened with an
accurate traffic prediction technique. However, in clouds, where the demand varies in an
unpredictable way and the customers pay for their expected service time – such techniques
can be less energy efficient or may result in SLA violation and performance degradation. To
minimize the energy consumption of the global networks, the work in [63] has considered the
problem as a NP-hard bin-packing problem. The objective function is to minimize the num-
ber of network elements needed for the communication and an Integer Linear Programming
(ILP) formulation (heuristic) is proposed to solve it. In large scale datacenter networks with
thousands of devices, ILP is not an efficient and faster approach to achieve the objective [27].
For such systems, high level energy efficient techniques like Green TCP, network algorithms,
Clean-slate approaches and energy-aware framework (network virtualization) [25] can be
more performance-energy efficient.

6.3 Energy Efficient Storage

Industry reviews [81], [17] have illustrated that US datacenters energy cost had increased by
15% per year since 2011. Along with numerous modules installed in a datacenter, storage
devices are one of the prime energy consumers. One of these survey report has further sug-
gested that storage module consumes approximately 27% energy in datacenters. Increasing
demand for performance had introduced storage devices with higher energy needs; and this
trend is continuously rising annually by 60% [82]. Given the well-known growth in datacen-
ter TCO, several solutions that can decrease the energy consumed by storage module, and
keeping customers data highly available, are proposed in the literature [25]. On one side,
efforts are continued to make the drives more energy efficient. On the other side, efficient
algorithms are proposed to decrease the energy consumption.
Using High Capacity (HC) drives can considerably change the storage energy consumption.
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Classic Serial Advanced Technology Attachment (SATA) drives available in the market con-
sume 50% less energy than capacity fiber channel drives per TB. Having the highest storage
density per drive, HC drives minimize storage energy consumption. Table 8 shows the po-
tential savings from HC drives [82]. The article [82] has discussed several findings to make
the storage more energy efficient including consolidation of storage module, usage of HC
drives, protection against storage module failure, migration of data to more energy efficient
module, increase in disk utilization, backup of data, elimination of storage overhead and
measure energy efficiency of the storage module & datacenter on a regular basis. In [83]

Table 8: Savings from greater volume drives [82]
Old System New System Improvements

Number of systems 11 1-FAS 3020 with
Systems details : 3-F810 3 disk shelves

4-F880
2-F820
1-F840
1-F825

Energy savings
without cooling (KWh) 113651 20919 81% decrease

Space (Cubic Feet) 63.0 4.3 93% decrease
Capacity (GBs) 9776 14000 16% increase

an efficient buffer-disk scheduling algorithm is suggested which is 38% more energy efficient
and keep idle disks in sleep mode to save energy. In [84] a new architecture is proposed for
energy efficient Redundant Array of Independent Disks (RAID) system to save energy us-
ing RAID redundant information. New controller-level cache management & I/O scheduling
techniques are proposed for energy efficient RAID-5 and RAID-1 respectively. The experi-
mental study for single speed disks show that RAID-1 can save 30% energy and would save
11% more along with RAID-5. Similarly, for multi speed disks RAID-1 can save 22% energy,
and would save 11% additional energy with RAID-5. Also, energy-aware cache management
systems have been suggested in the literature [85], [86] to save more energy. Belady’s Off-
line Power-aware Greedy (OPG) algorithm [86] has minimized cache misses and the idea is
extended for greater efficiency to an on-line energy-aware cache replacement method in [85].
Although their results are interesting however, OPG is designed for single disk and the on-
line algorithm is considered for several disks. It can be more efficient if the proposed on-line
algorithm can be implemented on a single disk. Similarly, the storage cache is active all the
time and both techniques have ignored its energy consumption.
Pergamum [87] is a network of smart storage modules that stores data energy efficiently and
reliably. At present, Massive Arrays of Idle Disks (MAID) systems retain storage modules
idle to save energy. However, Pergamum complements Non-Volatile Random-Access Mem-
ory (NVRAM) at each node to store data signatures, raw data and allowing data requests
to be completed while the storage module is switched off to minimize energy consumption.
Several other techniques have been proposed to minimize the energy consumption in storage
module include DPM schemes [88], cache management [85], pre-fetching [89], software di-
rected power management [89], redundancy [89] and multi-speed setting [90]. However, the
study of energy efficient parallel and distributed storage module in large scale systems is
still in its infancy and need more attention of the research community.

6.4 Renewable Energy Sources (RES)

Renewable Energy Sources (RES) like wind, solar etc. also play a major part in decreasing
clusters, grids and clouds energy consumption. As grids and datacenters are distributed in
multiple regions, that are powered by different energy sources. Routing more user requests
to the region which is powered by cheaper production technology (RES), can save enough
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energy. However, RES are intermittent and require policies to tackle the variability in supply.
There are at least three benefits: (i) all oversupply of renewables allows for more energy
to be provided back to the electricity grid; (ii) low supply of renewables means lessened
demand on non-renewable sources from the electricity grid; (iii) lessened reliance on means
to store renewable energy reduces the costs of management and replenishment of storage
mechanisms, such as batteries, and extending the life of these mechanisms. RES region can
also provide other benefits to on-cite local clusters and datacenters including (i) free cooling
with outside air (as in Sweden) and/or (ii) cooling with sea water (as in Google Finland
datacenter). Cooling costs almost 33% of the total datacenter energy consumption, hence
significant energy can be saved that can be up-to 40% for large production clouds such as
Google13.

6.5 Resource Management

Resource management is significant to the victory of large scale computing, as it regulates
the efficiency with which resources are used and that QoS is provided to the customers.
Today’s computing systems deliver simply a best-effort or reasonable (in clouds) service
to their consumers. There are certain complex applications which involve immense compu-
tational power, strict delay and other best effort services; failure to provide the required
performance makes consumers unwilling to pay. In order to provide QoS and guaranteed
performance to the customers there is a strong need for efficient performance based resource
management and scheduling techniques. Performance based resource management provides
assured services to premium consumers (SLA) and reasonable services to other consumers.
Such approaches are able to allocate resources (VM placement) near-optimally, in view of
task characteristics and performance requirements [2]. Modern methodologies of energy ef-
ficient resource management for datacenters typically model this interesting problem as a
bin-packing optimization problem with the objective to decrease the number of required
servers to accommodate current demand (VMs). However, decreasing the number of servers
may not essentially reduce the energy consumption of a heterogeneous cluster due to varying
demand and resources reconfiguration cost.
In [91], energy saving in clusters is discussed in terms of two methods, (i) local and (ii)
cluster-wide. Local methods focus on decreasing energy consumption of a single server ei-
ther with (i) reduced processor clock speed/voltage (DVFS) and/or (ii) energy savings in
network modules (switches) etc. DVFS, Dynamic Link Scaling (DLS) and request batching
are the common examples of such implementation. Cluster-wide methods aggregate total
workload on minimum number of servers and savings are achieved by switching off the idle
servers in the cluster. The energy saved from slowing down the processor speed and then
scale it back, is far less than the savings with switching off idle servers (idle processor con-
sumes more energy). Therefore, cluster wide techniques like Independent Voltage Scaling
(IVS), Coordinated Voltage Scaling (CVS) [61] etc. are used to save more energy in clusters.
These homogeneous systems are for specific applications and sometime go to failure state
for reallocation of the workload. The proposed stable framework runs in an energy efficient
way, and have little influence on system performance. Inner job and outer job blocking prob-
lems [91] are mostly influencing the QoS, performance and throughput of a cluster. Solution
to the former one is to balance the jobs among servers; however it require that the CPU
and the memory requirement are known in advance. The second problem happens due to a
large task having incredible requirement that cannot be fulfilled. MAGNET [91] has tried
to solve these two problems and thus save more energy with improved performance score.
In [23], an energy efficient resource management system for virtualized datacenters is pro-
posed which decreases operational expenses (OPEx) without affecting the QoS and response
time. Energy savings are achieved by VMs consolidation that matches to current resource
utilization, inter-networking topology and thermal states of servers. A similar approach is
also presented in [42] where a workload power-aware on-line provisioning technique reduces
the energy consumption by turning off subsystems that are not needed by VMs. Other re-
source management schemes, for example [92], [93], [76] have also discussed energy efficiency

13 https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/



Zakarya M. and Gillam L. 19

but have ignored the heterogeneity of clusters and workloads.
Reducing the number of servers involve consolidation of current demand on fewer servers,
and switching off the idle servers to save energy [76]. The idle servers also consume significant
amount of energy, however a researcher from a cloud provider states that it is infeasible to
switch off idle servers in their datacenter [94]. Also consolidation involves migration which
have energy overhead, and sometime it is more energy efficient to run the VM without mi-
grating it to a less efficient target server. It is also possible that the VM got terminated
before or just after its migration is completed, hence the migration effort is wasted. Migra-
tion would be more feasible if the VM is migrated to a more energy efficient target server
where the VM will be able to recoup back its migration energy overhead. A comprehensive
research is required to know which VMs (of which runtime) should be able to recoup back
their migration energy and how much energy savings can be made if the VM is subsequently
running more efficiently [45].
We found in a simulated experiment, that server consolidation is more energy efficient if the
idle servers are switched off, as they are consuming more energy. However, the tasks arrival
and unpredictable resource demand are challenging to estimate when and which servers to
be switched on/off. A server consumes more energy during the boot and shut-down process
(server reconfiguration costs), that should be kept into consideration with increased failure
rate. According to [95], the transition energy spent when switching a server from sleep state
to on state is 4260 Joules, and that when switching a server from on state to sleep state
is about 5510 Joules. If a server takes longer to boot (setup delay) [76], and if the demand
suddenly rises, then the performance (in terms of scheduling delay [42]) and QoS is also
affected. Efficient scheduling and resource management techniques are required to minimize
the number of used servers without affecting the system performance [76]. The problem of
this type - scaling the resources dynamically to meet the current resource demand, is called
Dynamic Capacity Planning and is vastly studied by the research community in [96], [97].
Additionally, a major role in energy consumption is also played by the end user equipment.
Although these equipment are rarely used in datacenters but still it should be noted that
they also affect the environmental sustainability and increases global warming. Table 9 shows
the energy consumed by end user desktops and monitors in three different states [98].

Table 9: Energy demand of user monitors [98]
Energy consumption (Wh)

Type On Sleep Standby

Desktop 74.16 4.60 2.80
CRT 61.39 3.68 2.03
LCD 35.51 1.15 0.96

6.6 Datacenter Level Energy Efficiency Techniques

Largely, the energy efficiency techniques in datacenters fall into three broad categories; (i)
Dynamic Capacity Planing (DCP) which allows hosts to switch on/off dynamically to save
energy, (ii) Dynamic Voltage Frequency Scaling (DVFS) where a host adjusts its operating
frequency (voltage) to lower power mode, dynamically, and (iii) Dynamic Power Management
(DPM) schemes (resource management), which allows host’s components to be in sleep
state (to save energy) and decides when and for how long the component should be put
to sleep [99]. Lim [100] proposed a hybrid scheduling scheme consisting of all these three
approaches and demonstrated through extensive simulations that the proposed approach is
50% more energy efficient.
Figure 4 shows a taxonomy of different approaches that are proposed in the literature to
achieve energy efficiency in cloud datacenters [9], [25], [100]. Virtualization allows different
VMs running on a single server, thus creating more opportunities to consolidate the workload
on lessened servers to save energy in datacenters. DCP [96] allows switching on/off the



20 Energy Efficient Computing, Clusters, Grids and Clouds: A Taxonomy and Survey

available resources to meet only the current demand, that could save more energy costs
for production clouds - where the resource demand is low [22]. In [38], the authors have
suggested that light sensors could be installed inside a datacenter to observe environmental
influences to subordinate the energy costs and increase the energy efficiency.

Energy efficient
techniques

Geographic level Renewables

Virtualized level

DCP

Load balancing

Consolidation

Resource
allocation

VM Migration

VM Placement

VM Selection

Thermal-aware Free cooling

Network level

ALR

Routing

Host level

Sleep, on/off

DPM

ALR

DVS/DVFS

Fig. 4: Different approaches to make datacenters greener

Table 10 summarizes some techniques implemented in current cloud datacenters to make
them greener and more energy efficient. There are several other ways to reduce the energy
use of these large systems, which we will discuss in following subsections.

Virtualization: In terms of cloud computing and datacenters, virtualization [3] is consid-
ered as the most promising approach to save energy, which increases the resource utilization
ratio. For different types of workload scheduled on physical and virtualized servers, the study
in [38] has suggested that two virtualized servers would save 51.7% more energy as com-
pared to two physical servers treating the same type of workload. If the electricity cost is 10p
per kWh, a server that operates 24/7 will save £259.99 per year using server virtualization
technique. There are many idle servers which waste a lot of energy, while do not process
any important information [24]. Therefore, many researchers are looking for a novel comput-
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Table 10: Current approaches to make datacenters energy efficient
Technique Explanation Benefits Shortcomings

Virtualization Dynamically provision
resources [38], [101],
[102]

Efficient energy
saving

Widely used, VM live mi-
gration effect network per-
formance

Server con-
solidation &
encapsulating
application

Reduces active servers
by consolidating the
workload of multiple
servers [102]

Increases the
utilization ratio
of servers, reduce
SLA violation
ratio [102]

Categorization of servers
failure of single consolidated
server [103]

DCP Adjust the available re-
sources to current de-
mand [100]

More energy effi-
cient [96], [97]

DCP involved additional
cost of switching on/off the
resources that could violate
customers SLA’s [99]

Load Balancing Balance the workload
among different servers
to fully and average uti-
lization [6], [104]

Equal utilization Tough job to implement
in a heterogeneous platform
[103]

Scheduling &
VMs Placement

Place VMs onto a suit-
able (most energy effi-
cient) servers [105], [106]

Server and
Communication
system energy
efficient

Planning and live migration
SLA violation [91], [107]

Live migrations Migrate VMs from over-
utilized & under-utilized
to more efficient servers

Less energy con-
sumption

Service level of running ap-
plication affected

Renewables Migrate VMs to servers
operated by renewable
energy sources

More energy ef-
ficient and eco-
nomical

Renewables are intermit-
tent, involves migrations
that cost extra energy

ing prototype to realize green computing infrastructure. Some centralized-based computing
models based on virtualization including clouds, began to advance the quality, efficiency
and high availability of IT resources. Although these approaches are abolishing the old “one
server, one application” model and it becomes a trend that different VMs run on a server.
Therefore, the security issue has become a barrier of virtualization in such open Internet
platform [101].
In cloud computing the communication amongst consumers and service providers is depen-
dant on brokerage that provides negotiation techniques. It also manages available system
resources to understand the goals of both communicating parties. The work in [101] has
focused on building brokerage and related services which results in growth of clouds. SLA
also plays a major role in such activities. Bin Li [108] has analyzed current issues in SLA and
has categorized necessary characteristics required in cloud SLAs. Computing as a utility is
discussed and it also explores the SLA frameworks with contemplations for building cloud
SLAs. It recommends cloud brokerage as a suitable option for providing management in dy-
namic cloud platforms and presents autonomic SLA (ASLAs) framework for utility purpose.
The authors have compared Amazon EC2 (public cloud), Eucalyptus (private cloud) and
HTCondor (grid) [2] from which they find that public cloud are faster than a supercomputer
for some specific applications with well-known requirements and performance.

Consolidation: In 2010, the energy consumption by datacenters was expected to be in the
range of 1.1% to 1.5% of the global energy use and is likely to rise more in the near future.
The goal of consolidation (server/task) is to increase the computing resources utilization and
diminish energy consumption under workload independent QoS constraints [49]. Energy con-
sumption of the physical machines is decreased by vigorously activating and disabling (power
cycling) them to fulfill current resource demand (DCP). The technique proposed in [49] is
scalable, distributed and enable service providers to offer elastic resource provisioning with
minimum energy, OPEx and CO2 emissions. The extraordinary heat produced from large
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processing at datacenters leads to a number of issues like reduced reliability, availability
and hardware life time. The released heat must be dissipated properly to keep the system
modules operating safely, avoiding system failures and crashes. To reduce the cooling cost,
the thermal state of each server is continuously observed and VMs are reallocated to other
servers (server consolidation [27]) in case if the server is overheated.
The consolidation problem can be divided into four sub-problems including (i) server under-
load detection, (ii) server over-load detection, (iii) VMs selection for migration and (iv)
placement of the selected VMs on servers. The Global Resource Manager (GRM) decides
VM allocation and placement. The burden on the GRM is condensed as it only sorts VM
placement nominated for migration [107]. Furthermore, the GRM can be duplicated to elim-
inate the single point of failure and making the system entirely decentralized & distributed.
Experimental results have shown that dynamic VM consolidation can minimize 30% of the
total energy consumed (in case of no consolidation), having a minor impact on system per-
formance [107]. Advanced distributed VM placement algorithms, VM network topologies,
exploiting VM resource usage patterns, thermal-aware dynamic VM consolidation, dynamic
and heterogeneous SLAs, power capping, VM consolidation algorithm analysis and repli-
cated GRMs are the main issues that need researchers attention to further advance this area
of interest.
In [102] an energy efficient approach is presented where the volume of resources assigned to
a VM is adjusted based on application utilities, existing resources and energy costs. A min,
max and share parameter concept is presented. Many proposed techniques like [109], [41]
analyzed server utilizations which can result in a consolidation plan to virtualize servers.
However, all these fails to yield benefit of the min, max and shares parameters. Although
these three parameters are valuable only under high load circumstances as shown in [102]
and it is of worth that high load circumstances will occur frequently in recent virtualized
datacenters.
Dynamic VM consolidation lets cloud service providers to improve resource usability and
minimize energy consumption. Each server is continuously monitored, and an appropriate
action is taken, if certain threshold value (lower/upper) is reached. For example, if a server
is underutilized, the current accommodated demand on it can be migrated to another server,
and it is switched off to save energy. Setting proper threshold values is difficult and wrong
values might reduce the cloud energy efficiency and performance. Hence, in [107] as shown
in Table 11, a new idea of estimating the server’s threshold values adaptively is introduced
that use statistical guesses based on VM resource usage. The upper and lower utilization
threshold values are dynamically determined according to the server’s workload. The model
consists of a local manager, a global manager and a VM monitor. The VM monitor perform
actual VMs resizing, VMs migration and also monitor changes in the energy states of the
servers. For efficient VM placement all VMs are sorted in decreasing order of their utilization
values and assign each VM to a server having a minimum growth of energy consumption.
The article concludes that it is essential to reduce number of VM migrations which may
originate certain SLA violations and performance degradation. The proposed methodology
beats other strategies (migration-aware) in total number of SLA violations, which are less
than 1% and the amount of VMs migrated still providing comparable energy consumption.
Unsuitability between servers design and customer requirements in datacenters clues to is-
sues like reduced load-balancing and large amount of energy consumption. In [104], the
authors have described a power-aware load-balancing policy based on adaptive VM migra-
tion technique. If the current demand is greater or lesser than upper & lower utilization
threshold values respectively, some VMs are migrated to increase resource utilization and
thus minimize total energy consumption. The authors have also reduced the total number of
migrations using minimum migration time strategy [49] that results in load balancing and
meeting SLA requirements. The data collected from more than 5000 servers in 6 months
shows that server’s utilization hardly approaches 100%. Similarly, idle servers still consumes
70% of their peak energy. So underutilized servers are enormously fruitless from an energy
consumption point of view.
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Table 11: Basic architecture proposed in [110]

GM (master node) gathers information from the LM to
maintain the total sight of resource utilization and issues
commands to optimize VM placement

Global Manager (GM)

LM (each node) module of VMM continuously monitor
utilization of a node, resize VMs according to the current
resource requirements and decide VM migrations

Local Manager (LM)

VM Monitor (VMM)

VM | VM | VM | VM

Virtualization
Physical Node

VM Placement: How to place VM requests into available servers concerning to power
intake, has turn out to be a crucial research problem [74], [111]. The placement problem is
NP-hard and a number of heuristics like first fit, fill-up etc, are proposed to solve it [30], [105]
as a bin-packing problem. Pietri et al. [70] has conducted a systematic review of VM place-
ment techniques in clouds, however, energy efficiency is not discussed. EnaCloud [103] has
allowed VMs placement onto servers in an energy efficient way. To save energy, VM encapsu-
lates application that supports live migration to decrease the amount of active servers. The
tactic is implemented as an advantageous module in internet-Oriented Virtual Computing
(iVIC) platform. The results have shown that a single desktop machine having 2 cores idle,
consumes 85W, and the consumption is even double when the machine is fully utilized. In
distributing systems like clusters, tasks scheduling focus on how to allocate independent
tasks to balance the workload amongst different servers to maximize throughput. In clouds,
the placement problem is more challenging due to heterogeneity of resources, applications,
and especially with the focus how to run an individual VM more efficiently.
There are a number of approaches [25] to balance the load amongst different servers, however
these approaches are not suitable for cloud systems. Different techniques like DVS, DVFS,
switching off display, sleep mode etc. are only suitable for a single server. They cannot be
used to attain enough energy savings in HPC systems like grids and clouds datacenters
because energy saved by decreasing the processor speed is less than switching off a server.
Current approaches have implemented workload-aware (server/vm) consolidation, but still
in some situations the associated SLA is violated [103]. As consolidation can be more ex-
pensive for certain workload, efficient placement policies are more cost-energy efficient. In
cluster and grids, a server efficiency factor like the one used by [112], might be of significant
importance to run the task on most efficient server. However, in virtualized platform, as the
efficiency of a server is dependent on how many VMs are running on it (the baseline idle
power in divided amongst all running VMs), new metrics like the one proposed in [45] are
sill required.

Dynamic Capacity Planing (DCP): “Capacity planning is a process through which the
procurement of IT resources, infrastructure and services are planned over a specific period of
time. It is an IT management practice to predict and forecast the future requirements of an
enterprise IT environment and its associated essential entities/services/components”14. The
purpose of the DCP is to plan so well that new resources are added dynamically (just in time)
to meet the expected resource demand but not so early that resources go unused for longer
periods. The successful capacity planning and management is one that makes the trade-offs
between the present and the future that overall prove to be the most cost-efficient15. The
question that why would the service providers switch off a host, is also studied in the liter-

14 https://www.youtube.com/watch?v=WivORAcBhV8
15 http://searchenterprisewan.techtarget.com/definition/capacity-planning
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ature [113]. As discussed before, an idle host still consumes approximately half the amount
of energy consumed when running at peak load. Most datacenters are utilized in the range
of 20 to 40% [114], which means there are a lot of hosts idling (not being used, but consum-
ing energy), that can be switched off to save energy. However, what type of hosts can be
switched off [96], because it is impractical to switch off servers (like web servers) that should
be running 24 hours a day, 7 days a week.
Zhang et al. [96] proposed a framework for DCP and analyzed it with extensive simula-
tions using real workload traces from Googles compute clusters. Their framework consist
of five different modules – (i) a scheduler which assign tasks to active hosts, (ii) a moni-
toring module which is responsible for collecting CPU and memory usage statistics, (iii) a
prediction module which estimate the future resource usage, (iv) a controller to control the
resources considering the reconfiguration costs and (v) a capacity provisioning module which
identifies which hosts should be switched off or switched on. They suggest that DCP could
save significant amount of energy and hence cost, while maintaining an acceptable average
scheduling delay (the performance objective in term of SLAs). However, their findings are
only limited to homogeneous hosts with identical resource capacities. In [113], it is claimed
that switch off technique can save 8% energy at a cluster operated by Cornell University by
switching off 16% servers over a period of six months. Zhang et al. extends their own work
in [96] with HARMONY [97], a heterogeneity-aware framework that dynamically adjusts
the number of hosts to strike a balance between energy savings and scheduling delay (SLA),
while considering the hosts reconfiguration cost.

Migration: Greater performance, fault tolerance and enriched resource manageability (server
or task consolidation) are some of the benefits of virtualization technology. VM live migration
in clouds and task or process migration in clusters lets the current demand to be consoli-
dated on fewer servers with small service downtime. Service levels of active applications are
negatively affected during a migration, therefore, there is a need to better understand its ef-
fects on system performance and energy efficiency. In [115], the authors have discussed such
an important study area inside Xen VMs. In general, the migration overhead is tolerable
but cannot be ignored in datacenters where service availability is managed by strict SLAs
and the customer pay for their services. Beloglazov et al. [110] have discussed a distributed
resource allocation & management policy with focus on live VM migration approach. To
avoid performance degradation VMs are migrated from overloaded servers; and to increase
the resource utilization and decrease the amount of energy consumed, VMs are migrated
from under-loaded servers to switched them off. Which, when and where to migrate VMs
are the main points that have distinguished this work from earlier techniques.
In [116] authors have presented a bi-phase optimization technique that decreases energy
consumption by decreasing the total number of VM migrations while maintaining QoS to its
best level. In the first phase i.e. VM selection; determine the list of all VMs to migrate from
over-utilized & under-utilized servers and add them to the VMs pool. In the second phase
i.e. VM placement; all VMs available in the pool are placed on suitable servers subject to
particular heuristic functions. The problem, to find which server is over utilized and which
one is underutilized is solved by defining some lower and upper utilization threshold values.
As discussed before, estimating these threshold values are difficult and are not guaranteed
to produce correct measurement if the workload is more diverse and/or is memory intensive.
When migrating VMs amongst different servers, the migration energy overhead [115] must
also be kept in view. As discussed earlier, migration would be more costly if the VM (in
migration) got terminated during or just after the migration process is completed. A VM
migration would be more economical and energy efficient if the migration is performed to a
more energy efficient target server, enabling the VM to recover back its migration cost and
runs subsequently more efficiently on the target server [45].
Table 12 summarizes different approaches (discussed in this survey), based on system charac-
teristics (clusters, grids, clouds) and the approach (scheduling, virtualization, consolidation
etc.) used for energy efficiency. It will help the research community to find the gap for fur-
ther research, that still exists to make HPC systems and large scale cloud datacenters more
energy efficient.
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Table 12: Techniques for energy efficient computing and cloud datacenters
WORK PLT SCD DCP DPM VRT CNSL DVS LB NET STR COL RES GHGs

Cluster Grid Cloud System High App Server Net Server Task
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Acronym used in the table are as given below:
LB – Load Balancing, DVS – Dynamic Voltage & Frequency Scaling, PLT – Platform, SCD – Scheduling approach, DPM – Dynamic Power Management
VRT – Virtualization, CNSL – Consolidation technique using power cycling, STR – Storage system, COL – Cooling system, NET – Networks
RES – Renewable Energy Sources, GHGs – Greenhouse Gases, DCP – Dynamic Capacity Planing
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7 Green Compilers and Applications

Apart from all these techniques, applications and compilers can also be designed in such a
way that they can run with minimum energy consumption. Programming techniques like
active polling and waiting loop16, frequently wake up the CPU and could waste signifi-
cant amount of energy. The authors in [25], have discussed several examples of applications
that wake up the CPU hundreds times/second unnecessarily. Similarly, Universal Serial Bus
(USB) adapter also takes time to initialize and cost more energy, that can be avoided in
HPC systems where they are used hardly. In [67] an energy efficient compiler is proposed
which executes instructions with minimum energy consumption. As software drives the bare
hardware; hence design and development phase decisions will have momentous control on
energy consumption of the server [123]. The proposed solution [67] have focused on power
management measures for software level and their utilization in scheduler and compiler. A
hardware independent Distributed Green Compiler (DGC) is presented that distributes soft-
ware source code over a grid, redesigns binary code after applying green tactics which give
green recommendation to programmer for energy savings. Performance evaluation of DGC
showed that it preserves 40% energy clock cycles. Similarly, in clouds, similar applications
would have different runtimes due to the performance variations (heterogeneity of resource
and instances) and would cause different energy consumption as; Zhang et al. demonstrated
in [122]. Therefore, it is of worth to know different applications (workloads) and their en-
ergy consumption, to schedule and run them more efficiently. Piraghaj et al. [68] have briefly
discussed application level energy efficiency techniques for PaaS.

8 Metrics used to measure Energy Efficiency

Energy efficiency metrics are used to analyse and conclude if a datacenter can be boosted up
before a new energy efficient datacenter is desirable. A typical datacenter consumes substan-
tial volume of energy and results in enormous amounts of CO2 emissions. Additionally, the
humidity in a datacenter can origin hardware failures and increases cooling costs. A num-
ber of metrics like Power Usage Effectiveness (PUE) and Data Center Efficiency (DCE) are
proposed in the literature [118]. Figure 5 summarizes a few of the most widely used metrics
to measure datacenter efficiency. Methods like (i) reduce datacenter temperature [33], [119],
(ii) increase server utilization [120], [124] and (iii) decrease the energy consumption of com-
putational resources [125], [117] have their contributions towards green datacenters, however
these articles lacks measurement for green quality i.e. how much energy is consumed, how
much useful work done and how much CO2 is produced etc.
PUE and DCE will facilitate service providers to guess the energy requirements and energy
usage of their datacenter equipment. This will also enable them to match their obtained
outcomes with outcomes obtained from other datacenters, which will help them to easily
decide, are energy efficiency improvements needed in their datacenters or not [126]. PUE
was given proper importance in the literature, however, DCE is not enough successful to
measure energy efficiency. PUE is given by equation 2:

PUE =
PIT

Ptotal
(2)

Where Ptotal is total facility power measured through a utility meter and PIT is the en-
ergy consumed by IT equipment in a datacenter. DCE actually shows the percentage of IT
equipment energy efficiency, which is given by following equation 3:

DCE =
1

PUE
=

PIT

Ptotal
(3)

In [127], a new metric Data Center Infrastructure Efficiency (DCiE) is proposed, which is
given by equation 4 below:

DCiE =
1

PUE
=

PIT

Ptotal
∗ 100% (4)

16 https://software.intel.com/en-us/articles/benefitting-power-and-performance-sleep-loops
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The above equation 2 shows that larger PUE values represent less efficiency and vice versa.
Therefore, PUE benchmarks the amount of energy deployed usefully (used by IT equipment)
and the amount of energy wasted (used by other facilities) in datacenters.

Performance metrics

Power

DCePDCiEPUE

Thermal

CoolingTemperature

HumidityGHG

Fig. 5: Performance metrics

Table 13 shows the PUE values based on several experiments which were performed in a
small datacenter [128]. The authors demonstrated that overall performance of the datacen-
ter is very poor in terms of energy efficiency which have a PUE of 3.2. The study in [128]
also suggested that the main reason of this inefficiency is that; the datacenter contains 150
racks and 85% of these racks are underutilized which consume significant amount of energy
without doing any useful work.

Table 13: PUE efficiency values [128]
PUE DCE (%) Level of efficiency

3.0 33 Very inefficient
2.5 40 Inefficient
2.0 50 Average
1.5 67 efficient
1.2 83 very efficient
1.1 87 standard

These energy efficiency metrics are energetic tools for service providers to use when judging
their services performance and deciding which resource should be considered for enhance-
ment in terms of energy efficiency. Unfortunately, PUE is just a measure of how much energy
is consumed by the compute equipment in a datacenter; it does not describes how the energy
is used i.e. how much the equipment are energy efficient17. The energy sources powering a
datacenter, the amount of useful work done and the underlying network used to move data
around are also important, as they govern the amount of energy consumed and CO2 emit-
ted. A better Data Center Productivity (DCP) metric has been identified by TGG [118] as
DCeP which is given by following equation 5.

DCeP =
W

Euse−dc
(5)

Where W is the useful amount of work done and Euse−dc is the total amount of energy
consumed by datacenter to produce W . The key problem with this efficiency metric is cal-
culating an accurate measure of the quantity in numerator [118]. A green datacenter must
maintain the requirements of achieving good computational performance and hence cost
w.r.t customers and minimum energy (more profit) w.r.t providers. Other metrics like perfor-
mance per watt (PPW) and performance to power ratio (PPR) are used by the well known

17 http://www.datacenterknowledge.com/archives/2011/11/15/pue-is-dead-the-case-for-
performance-per-watt/
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GREEN50018 List to rank energy efficient supercomputers worldwide and SPECpower19

benchmarks organization to estimate the server energy efficiency, respectively. Similar per-
formance based metrics are still needed that mirrors how datacenters performance will per-
form, after the implementation of green approaches.

9 Research Challenges

System level approaches: Current approaches proposed in the literature like [96], [99], [9]
expects homogeneity of the physical resources in a datacenter. Only a few researchers
like [97], [122] have addressed solutions for heterogeneous datacenters. Furthermore, most
of these methodologies have considered the server processor as the only resource that con-
tributes greater to the energy consumption. Other important system components such as
memory, fan and disks that also consume significant energy, are ignored. Runtime energy
reduction techniques can decrease the energy consumption in large systems to some extent.
However, the system level techniques like DVFS and ALR are not able to save more energy
due to the cost of running an idle server [68]. Additionally, in systems with hard deadlines,
performance [129] and QoS is affected with running processors at lower frequencies [47].
Hence, there is a need for other higher level resource management methods for energy sav-
ings in HPC and datacenters.

Virtualization: A simple way to reduce the hardware cost is to use virtualization technol-
ogy (see Table 14). Virtualization can be useful to numerous resource types i.e. hardware
or software including network links, software resources and storage modules etc. A classic
illustration of virtualization is to share servers that reduces hardware cost, improves energy
management, reduces cooling cost and carbon footprints in datacenters [34]. Due to sharing
a single server, the security issue has become a barrier of virtualization in open Internet
platform. The authors in [101] have highlighted several crucial security issues in green cloud
computing platform, and suggest a secure virtualization model for energy efficiency. Sec-
ondly, as virtualization allows multiple VMs of different capacities to share a host resources
(co-location or sibling VMs) that comes at a price of contention for the available resources
– which leads to high variation in performance and hence cost [100].

Consolidation: Resource allocation & placement, VM selection, consolidation with migra-
tion and replacement algorithms have greater research potentials. In server consolidation,
which VM, when and where (which server) to migrate the VM, are the basic questions that
needs more research. These procedures are strongly dependent on (i) the system performance
in case if servers are overloaded (SLA violation may occur) and (ii) on energy efficiency if sev-
eral servers are under loaded (the demand can be consolidated on fewer servers to switch-off
some servers to save idle energy consumption). Another important issue is the VM perfor-
mance that could lead to more cost or SLA violation; and needs to be considered when a
VM is migrated from one server to another target server [129].
Network consolidation [121] could save considerable energy, however they are habitually
treated as too expensive in large systems where the objective is to deliver extreme through-
put and QoS at slightest latency. Similarly, consolidating traffic and switching off network
devices have effects on network performance, QoS, latency, throughput, packets overcrowd-
ing and the underlying communication protocols [21]. There are still certain gaps, such as
when to switch-on the network switches back (sleep state delay) and the size of the queue
(used to hold the requests when the device is in sleep state), that are keys to meet the
performance-cost-energy model.

DCP: Effective capacity planning and management for cloud allows the service providers
to predict the system performance (to avoid SLAs with customers) and enables them to

18 https://www.top500.org/green500/
19 https://www.spec.org/power ssj2008/
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take important business decisions for cost saving purposes at capital (how much hardware
resources to buy) and operational (energy and licences costs) levels. Cloud capacity manage-
ment is claimed as an underrated problem that still need to address20. To be cost effective, it
is very important to study different types of cloud workload and the future demand (work-
load estimation models) to avoid under and over provisioning of resources [130]. Also, DCP
might not be feasible in large production clouds like Google21, involves hosts reconfiguration
cost and could affect the hosts lifetime [100].

Migration: As discussed in Section 6.5, server consolidation involves migration that have
energy cost. It is possible that the efforts for migration are wasted if a VM terminates during
or just after the migration process is completed. A migration would be more energy efficient
if it can recoup back its migration cost and subsequently run on a more energy efficient
target server [45]. Knowing which VMs of runtimes, would recoup back their migration
energy cost is an interesting research problem. An analysis of real workload traces from
public cloud providers [22] can be more helpful is such energy efficient migration decisions.
Currently majority of cloud researchers rely on parallel systems workload, which is different
from cloud workload. Public cloud data [22], would be more realistic and accurate to study
the performance of different scheduling and migration techniques.

Performance: Several performance studies like [129], [131] conducted on EC2 demonstrates
that VM runtimes over different CPU models backing a single instance class will have con-
sistent, i.e. largely predictable, performance variations with respect to the CPU model. The
distribution of runtimes of application benchmarks within the VMs shows a lognormal distri-
bution (multi-modal) with positive skewness - which describes the variation in performance.
There are at least two benefits in understanding such performance variation for different
CPU models in a cloud platform:

1. knowing the relationship between CPU model and runtime means decisions over schedul-
ing can be made to optimize overall energy efficiency;

2. migration of a VM to a host which leads to an increase in runtime would increase costs
for the customer, and as a consequence may violate SLAs.

In respect to (1), if a VM can be migrated to a better performing host, for its workloads,
better energy efficiencies may be achieved. But, in respect to (2) if migration would make
performance worse, not migrating may be better. Hence it is important to study the variation
in energy efficiencies in heterogeneous clusters with different hosts having the abilities to run
different kinds of workload. Ideally, a cloud provider should look to the best trade-off between
performance, cost and energy requirements. However, a realistic and in practice approach
for resource provisioning and consolidation is needed such that the energy requirements to
run the service and the expected performance/price goals can be met.

Renewables: The current trends of cloud service providers towards using renewable energy
sources that may operate intermittently [132], and hence necessitate falling back to the
energy grid, also implies a need for consolidation policies to be able to effectively switch
between the available energy sources, as well as to reduce the replacement cycle of renewable
capture and storage equipment. With 640 datacenter outages in the UK alone in 2015 and
outages expected to be more common in near future [133], there is a need at least for
proper capacity planning, consolidation of workloads onto servers powered by renewables,
and migration of workloads when it is most energy, and therefore cost, efficient, to safeguard
supply and reduce the drain on renewable generation and storage equipment.

20 http://enterprise.netscout.com/cio brief/capacity-management-cloud-underrated-problem-you-
need-address

21 https://www.youtube.com/watch?v=7MwxA4Fj2l4
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Real-time Services: As Cloud computing becomes growing for Anything as a Service
(XaaS) model, modern real-time cloud services including gaming applications, flight-control
systems and image processing are also becoming popular and accessible over the cloud [134].
Real-Time Services (RTSs) are those whose precision depends not only on the logical results
but also on the time in which these results are made [47]. RTSs need large volume of com-
putational resources to scale user requests and satisfy timely deadlines simultaneously. An
usual RTS involves numerous Real-Time Applications (RTAs) that are further divided into
subtasks. As long as a group of applications or tasks for a given RTS meet all their deadlines,
the service achieves the QoS settled with the customers. Cloud computing model can provide
this scalability within the timing constraints to these RTSs but is more challenging in case
if energy efficient scheduling and consolidation approaches are considered22. For example,
as discussed earlier, scaling down the processor frequency or even migrations can increase
application runtime, which can result in deadline miss. Hence, it is very important to have a
look on application types and their deadlines before the implementation of green techniques
to save energy.

Datacenter Costs: Total Cost of Ownership (TCO) of a typical datacenter (as shown in
Table 14) includes cost of IT equipment, infrastructure, energy and other operating cost
like management and maintenance. Reducing TCO including CapEx (capital expenses) and
OpEx (operational expenses) is an active research issue. Infrastructure costs includes cooling,
power distribution, backup power, and power conditioning costs and needs to be considered
for reduction. Other momentous costs like architectural and engineering, land and property,
IT build-out rack, electric wiring, routers, bridges, switches, wide area networking & com-
munications, electricity, safety, operations & maintenance must also be considered [5] for
possible decrease.

Table 14: Total Cost of a datacenter ownership
Infrastructure ICT equipment Energy Operating

31% 47% 10% 12%

Datacenter Simulators: Due to time and the amount of resources available to the re-
searchers in academia, it is often infeasible for them to conduct extensive and repeatable
experiments in order to validate and verify their research findings [107], [111], [49]. Therefore
majority of the researchers use different kinds of simulator and then, based on several plau-
sible assumptions, generalize their findings [135]. However, simulators are not guaranteed
to produce accurate and verifiable results due to the lake of mathematical proofs and real
testbeds. Therefore, concrete studies like the one presented in [136], are needed to facilitate
the researchers and even service providers to validate their hypotheses before they put it on
the cloud.

10 Concluding Remarks

Large systems like clusters, grids and datacenters energy costs can be divided into two es-
sential types; (i) energy consumption of ICT equipment and (ii) infrastructure level energy
consumption like servers cooling etc. A recent study [17] shows that in 2014, the US data-
centers almost consumed 70 billion kWh of energy that is 1.8% of the total consumption and
is expected to reach 73 billion kWh by 2020. Similarly, the current share of ICT equipment
to global GHG emissions is around 1.6% and it is estimated to be around 2% by 2020 [18].
It has been reported that a typical datacenter energy consumption accounts for more than

22 https://aws.amazon.com/it/hpc/
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12% of monthly operational expenditures. For large industries like Google and Amazon, a
3% reduction in energy cost can translate into over a million dollars in cost savings [96].
As, the typical datacenter energy consumption has increased significantly since 2006 [137]
and is expected to increase more in near future, the survey provides a detailed comparison
and description of the energy efficient techniques in three broad categories of distributed
systems namely clusters, grids, and cloud datacenters. In this review article we studied the
energy efficiency of these systems at three levels i.e. (i) hardware, (ii) resource management
and (iii) applications.
We found that for certain kinds of workload, the system level efficiency techniques might
increase cluster energy efficiency with some performance loss, however in grids, scheduling
and efficient resource allocation are more efficient than system level methods. Similarly,
in virtualized clouds, efficient scheduling and resource allocation is more economical than
consolidation with migration technique, for certain types of workload (application). From a
datacenter perspective, the two major points of energy efficient techniques are: (i) reduce the
energy consumption of ICT equipment and (ii) minimize CO2 emissions for environmental
sustainability. To meet the challenges of today’s elastic cloud systems and unpredictable
customers workload, efficient scheduling techniques are still required as this would be more
economical and energy efficient to implement as compared to server consolidation and VM
migration techniques. The survey will help the readers to analyse the gap between what is
already available in existing systems and what is still required, so that outstanding research
issues can be identified.
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