
27 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Scheduling-based power capping in high performance computing systems / Borghesi, Andrea; Bartolini,
Andrea; Lombardi, Michele; Milano, Michela; Benini, Luca. - In: SUSTAINABLE COMPUTING. - ISSN 2210-
5379. - ELETTRONICO. - 19:(2018), pp. 1-13. [10.1016/j.suscom.2018.05.007]

Published Version:

Scheduling-based power capping in high performance computing systems

Published:
DOI: http://doi.org/10.1016/j.suscom.2018.05.007

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/634977 since: 2018-12-13

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.suscom.2018.05.007
https://hdl.handle.net/11585/634977

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Borghesi, A., et al. "Scheduling-Based Power Capping in High Performance
Computing Systems." Sustainable Computing: Informatics and Systems, vol. 19,
2018, pp. 1-13.

The final published version is available online at:
http://dx.doi.org/10.1016/j.suscom.2018.05.007

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1016%2Fj.suscom.2018.05.007

Scheduling-based Power Capping in High Performance Computing Systems

Andrea Borghesia,b, Andrea Bartolinib,c, Michele Lombardia, Michela Milanoa, Luca Beninib,c

aDISI, University of Bologna. Viale Risorgimento 2, 40123, Bologna, Italy
bDEI, University of Bologna. Viale Risorgimento 2, 40123, Bologna, Italy

cIntegrated Systems Laboratory at ETH Zurich, Switzerland

Abstract

Supercomputer installed capacity worldwide increased for many years and further growth is expected in the future. The next goal
for High Performance Computing (HPC) systems is reaching Exascale. The increase in computational power threatens to lead
to unacceptable power demands, if future machines will be built using current technology. Therefore reducing supercomputer
power consumption has been the subject of intense research. A common approach to curtail the excessive power demands of
supercomputers is to hard-bound their consumption, power capping. Power capping can be enforced by reactively throttling system
performance when the power bound is hit, or by scheduling workload in a proactive fashion to avoid hitting the bound. In this
paper we explore the second approach: our scheduler meets power capping constraints and minimizes Quality-of-Service (QoS)
disruption through smart planning of the job execution order. The approach is based on Constraint Programming in conjunction
with a Machine Learning module predicting the power consumptions of HPC applications. We evaluate our method on the Eurora
supercomputer, using both synthetic workloads and historical traces. Our approach outperforms the state-of-the-art power capping
techniques in terms of waiting time and QoS, while keeping schedule computation time under control.

Keywords: Constraint Programming, Optimization, HPC, Power Consumption, Scheduling, Machine Learning, Power Modeling

1. Introduction

Power consumption is a critical limiter for next generation
High Performance Computing systems: supercomputers are ex-
pected to reach Exascale in 2023 [1], as revealed by the increase
of the worldwide supercomputer installation [2], but at the price
of unsustainable power demand growth. Today’s most power-
ful system is Sunway TaihuLight which reaches 93 PetaFlops
with 15.371 MWatts of power dissipation [3]. An Exascale ma-
chine built with current technology would consume an exces-
sive amount of power (hundreds of MWatts), while a commonly
accepted upper bound for a supercomputer power consumption
is around 20MW [4]. Therefore, in the last years the HPC com-
munity put great effort in finding effective ways to reduce power
consumption of HPC facilities, either developing new hardware
and software solutions or optimizing the management of exist-
ing systems.

Many strategies try to limit the power consumption within a
certain power budget, never to be exceeded. These methods are
generally referred to as power capping [5]. A big challenge for
the adoption of power capping solutions is the need to find a
good balance between curtailing power consumption and keep-
ing a high level of Quality-Of-Service for the system users. In
particular, most power capping approaches rely on decreasing

Email addresses: andrea.borghesi3@unibo.it (Andrea Borghesi),
a.bartolini@unibo.it, barandre@iis.ee.ethz.ch

(Andrea Bartolini), michele.lombardi2@unibo.it (Michele Lombardi),
michela.milano@unibo.it (Michela Milano),
luca.benini@unibo.it,luca.benini@iis.ee.ethz.ch (Luca Benini)

the performance of the computing nodes (i.e. imposing a node
power budget and/or decreasing the operational frequency as a
reactive countermeasure when the power cap is reached) which
in turn leads to increased duration of HPC jobs or longer wait-
ing times. Increased durations can produce user dissatisfaction
due to longer completion times and possibly increased costs. In
fact the accounting policy in some current supercomputers links
the price for the user to the duration (number of CPU-hours) of
the job.

We reckon that a key role in this challenge can be played by
the scheduling software that decides where and when a job has
to execute, a software module commonly referred to as job dis-
patcher. We claim that with a “clever” job dispatcher it is pos-
sible to operate a power capped system at a higher Quality-of-
Service than using reactive performance throttling techniques
that are in common use today. Constraint Programming (CP) is
a paradigm to solve NP-hard problems by exploring a set of fea-
sible solutions optimizing one or multiple objective functions.
However, this technique is not widely used in HPC facilities,
because the run-time of solvers are not compatible with the on-
line nature of job schedulers for supercomputers. On the other
hand, supercomputer jobs do have a significant duration and
their arrival rate is significantly lower than that of e.g. data cen-
ters and enterprise servers workload. This creates opportunity
for an optimization-based scheduling. The feasibility of this ap-
proach has been already demonstrated by several works [6, 7].

In this paper we propose a job dispatcher able to limit a su-
percomputer power consumption acting only on the workload
scheduling. Our approach satisfies the power constraint work-

Preprint submitted to Sustainable Computing: Informatics and Systems March 21, 2018

ing on the job execution order and minimizes QoS degradation
thanks to proactive planning. We used the Constraint Program-
ming methodology to develop a proactive job scheduler: we
adopt a rolling horizon approach, where our scheduler is awak-
ened at certain events. At each of such activations, we build a
full schedule and resource assignment for all the waiting jobs,
but then we dispatch only those jobs that are scheduled for im-
mediate execution. By taking into account forthcoming jobs,
we avoid making dispatching decisions with undesirable con-
sequences; by starting only the ones scheduled for immediate
execution, the system can manage uncertain execution times.
An essential requirement for such a dispatcher is the knowledge
of job power consumptions at schedule-time. Therefore we also
developed a prediction model to estimate the power consump-
tion of each job before its execution; this predictor relies on
Machine Learning methodologies.

The contributions of this paper are the following:

1. A job dispatcher which combines a module to predict
power consumptions and a job scheduler able to run HPC
applications while bounding the overall power consump-
tion.

2. An analysis of the impact of prediction errors.
3. A hybrid dispatcher combining our proactive scheduling

with reactive power management from the literature.
4. A comparison between our method and several approaches

from the current state-of-the-art; the experiments reveal
that our method performs extremely well, with an aver-
age improvement of 8.5% w.r.t. the best state-of-the-art
techniques.

The paper is organized as follows: we first discuss related
works in Section 2, then we introduce the exact scheduling and
allocation problem considered in this paper in Section 3. Sec-
tion 4 presents the job dispatcher with power cap and the related
power consumptions predictor. Finally in Section 5 we discuss
the results of the comparison between our methods and other
approaches for power capped job dispatchers described in the
literature.

2. Related Works

Since the HPC community widely recognizes the need to re-
duce power consumption in supercomputers, several research
avenues have been explored for this purpose, in particular
power capping solutions. Many techniques have been pro-
posed to bound the power consumption of HPC machines,
ranging from Dynamic Voltage and Frequency Scaling (DVFS)
[8, 9, 10, 11, 12], energy proportional systems [13], over-
provisioning [14], turning off idle resources [15], exploiting
components variability [16] , optimizing the placements of jobs
and tasks in order to reduce communication costs [17]. In the
rest of this Section 2.1 we are going to discuss power capping
methods found in the literature.

An orthogonal but strictly related research direction explores
the possibility to predict the power consumption (or other met-
rics) of HPC applications. Knowing jobs powers before their

execution may lead to several benefits, such as taking well-
informed scheduling decision, robust algorithm, power savings.
We are going to review power prediction methodologies in Sec-
tion 2.2.

2.1. Power Capping methods
We divide the power capping approaches in four different

(and quite broadly defined) areas: 1) techniques which exploit
some system related characteristics (i.e. node variability) or
make assumptions on the nature of the workload; 2) techniques
employing some form of frequency scaling; 3) techniques em-
ploying Intel’s Running Average Power Limit (RAPL) [18];
4) techniques which use heuristic or proactive algorithms and
works on the job execution order.

2.1.1. System/workload-dependent techniques
In [19], Sarood et al. describe an ILP model to enforce power

capping in a HPC cluster through over-provisioning. Their ap-
proach combines over-provisioning with a power-aware sched-
uler. However, this work focuses on data centers and is based
on assumptions that do not hold in typical HPC workloads. For
example, the proposed method requires to change the number
of nodes used by a job during its execution. In the majority of
today’s HPC environments this is not possible yet1, since re-
sources are locked to a job for its entire runtime. Mammela et
al. [20] present an energy-aware scheduler that can be applied
to HPC systems without any changes in hardware components.
The idea is to turn off idle nodes whenever possible, that is ev-
ery time the scheduler detects that no activity can be scheduled
for a sufficiently long time on a certain node. The main draw-
back of this approach is the fact that it strongly depends on
the possibility to turn off idle nodes, which cannot be taken for
granted in every HPC system and usually has non negligible
associated costs (i.e. reliability loss and wake-up time).

Several approaches use the possibility offered by “mold-
able jobs”, i.e. jobs which can run with different configura-
tions (number of nodes, cores or threads) [21]: given the cur-
rent power consumption and power budget, the best configu-
ration is chosen for each job before its start - the configura-
tion will not change during the execution. For example Patki
et al. [22] propose a job dispatcher that operates on top of
a EASY-BF [23] scheduler and decides the best configuration
of the application to be run. The choice is based on the pre-
dicted power consumption and duration for each combination
of application-configuration. While these techniques proved to
be effective, their dependence on the moldable job model lim-
its their adoption. Furthermore, deciding the best configuration
requires to perform multiple off-line runs of each application
in all possible configurations, to understand the configurations
power-performance trade-offs. Other authors tried to exploit
the power and performance variability among nodes and com-
ponents within the same system. For example Inadomi et al.
[24] analyze the impact of differences introduced by the manu-
facturing process in power-capped supercomputers; they prove

1Current research activities in malleable jobs are working in this direction

2

that a job scheduler which takes into account such differences
can obtain a speed up w.r.t. an unaware scheduler. Shoukourian
et al. [16] devise a power-aware configuration adviser that tries
to dispatch the job on a supercomputer minimizing the total en-
ergy consumption. The main limitation of such methods is their
reliance on system/component-specific characteristics, which
prevent their use on different machines.

2.1.2. Frequency Scaling techniques
Nowadays most of power constrained supercomputers em-

ploy some form DVFS, i.e. they exchange processor perfor-
mance for lower power consumption. With DVFS, a processor
can run at one of the supported frequency/voltage pairs lower
than the nominal one. The main issue with DVFS-based ap-
proaches is the trade-off between power savings and decrease
in performance: reducing the operating clock clearly increases
the duration of the applications which run on the power-reduced
resources. To overcome this issue, several methods try to apply
DVFS only in periods of low system activities or in particu-
lar phases of a job execution. For example, in [25], Freeh et
al. study the energy-time trade-off of high performance clus-
ter nodes with several power states available. They conclude
that applying DVFS to applications with memory or communi-
cation bottlenecks does not imply large time penalties. A clear
weakness of this strategy is that it strongly relies on the nature
of the running applications, which must be known and mod-
eled in advance, before their actual execution. In [26] Hsu et
al. propose to solve this problem through a power-aware adap-
tive algorithm which does not employ any application-specific
information a priori, but implicitly gathers such information at
run-time. Unfortunately, this requires specific monitoring in-
struments to collect the required information and these tools
are not currently available in the majority of supercomputers.

A method to extend the EASY-backfilling algorithm with
power budgeting capability through frequency scaling is dis-
cussed by Etinski et al. [27]. The results show good results
in terms of energy savings and also a better utilization of the
system and reduced waiting time for the users, thanks to the
possibility to execute more jobs concurrently if their frequency
(thus power) is reduced. In [28], Etinski et al. propose an ap-
proach which tries to minimize the performance loss by reduc-
ing the frequency only when the system is in a low level of
utilization. They combine the EASY backfilling algorithm as
scheduling policy with a frequency assignment module. When
a new job is dispatched the system assigns an operational fre-
quency to its execution node (such frequency will be kept for all
the job lifetime); this frequency may be lower than the maximal
one depending on the current level of workload. Their results
show that it is possible to obtain good energy savings without
decreasing the overall performance of the system. The same
authors present also a different approach in [29]: in the latter
work they propose a novel scheduling policy based on integer
linear programming (ILP). Instead of relying on the backfilling
algorithm the new scheduler decides which jobs need to be ex-
ecuted and the optimal frequency solving a optimization prob-
lem. This method offers better performance in terms of average
job wait time over various power budget, but it has the disad-

vantage of having been tested on a relatively simple case-study
(i.e. homogeneous resources) and the corresponding ILP model
cannot directly extended to different kinds of problems.

Kumar et Al. [30] employs DVFS to create an energy-aware
scheduler for heterogeneous data centers. The main idea is to
use frequency scaling during slack periods, that is when the
system workload is relatively low. The proposed scheduling
approach is promising but it is not directly comparable to ours
due to the different characteristics of data centers w.r.t. to HPC
machines.

2.1.3. RAPL-based techniques
An alternative to direct frequency scaling is RAPL, which

provides a software configurable and hardware enforced power
cap. Instead of setting a specific frequency, this mechanism
takes as input the power budget for a socket and subsequently
forces the power consumption to be within the limit. Methods
using this mechanism usually employ simple scheduling and al-
location policies (such as EASY-BF and First-Fit); at run time
the power consumption are measured and kept under control.
For example, Bodas et al. propose a power-aware scheduler
[31] that decides the power available to each node of the system
depending on the current power consumption and power bud-
get. The effectiveness of this method is limited by the simplic-
ity and rigidity of the rules that assign the power to the nodes.
Ellsworth et al. [32] present a more complex scheme to decide
the power allocated to each node - which they call Dynamic
Power Sharing. Initially the overall available power budget is
uniformly divided among all nodes; periodically the algorithm
adjusts the allocated power depending on actual consumptions,
i.e. if a node consumes less power than the allocated one the ex-
cess capacity can be transferred to a different node which needs
it. RAPL is used to enforce the node power limit at run time.
The main drawback of these techniques is the same that troubles
DVFS mechanisms, namely the indiscriminate power reduction
implies an increase in job duration (performance loss).

2.1.4. Proactive/Heuristic techniques
Another strategy to impose a power constraint is to act on

the job execution order alone, without requiring any hardware
modification nor any change in the operational frequencies of
the computing nodes. Most of the research works belonging to
this category are more focused on minimizing the energy con-
sumption and/or the related energy costs [33, 34, 35, 36] rather
than enforcing a power cap. Furthermore, they are more related
to data centers and federated grids field, therefore the proposed
techniques are not directly comparable with our approach to
curtail the power consumption of HPC machines under a thresh-
old.

A first method to enforce power capping through job ordering
is to modify the common EASY-backfilling algorithm (EASY-
BF) [23], a policy used in many real systems due to its simplic-
ity and scalability. The algorithm tries to fit as many jobs as
possible on the system (selecting them from a FIFO queue); a
job fits in the system if enough resources are available. In order
to add power awareness it is sufficient to consider the power
as an additional resource - a job fits in the system only if its

3

power consumption will not cause the overall power to exceed
the given budget.

A different approach requires to devise a proactive dis-
patcher, i.e. able to plan in advance the execution of all the
activities to be run (taking decision for all the jobs in the waiting
queue). The dispatcher can then solve an optimization problem
to find the best scheduling and allocation while respecting the
power constraint. In this approach the dispatcher needs to have
information about the power consumption of the tasks to sched-
ule in order to take the correct decisions. Since these power
information are needed at schedule time, before the execution
of the job, power consumption estimates are required. In the
rest of the paper we are going to discuss a job dispatcher of this
kind.

Li provides [37] an example of how the dispatching process
can influence a supercomputer power and energy efficiency.
The author presents a heuristic algorithm to compute an allo-
cation of tasks on a system composed by a set of heterogeneous
resources. The algorithm does not focus on power consumption
but rather aims at constraining the energy consumption or, alter-
natively, minimizing the workload execution time. The core of
the algorithm is the identification of the optimal resource par-
titions guaranteeing minimal energy consumption. The main
limitation of the proposed technique is that it does not consider
multiple goals, namely it can optimize either the energy con-
sumption or the execution time.

2.2. Predicting Power Consumptions
As in our approach we want to obtain a dispatcher able to

enforce power capping without employing real-time correction
system such as RAPL. To do that we must a priori generate
job schedules that will never exceed the power budget - at least
within a confidence range. We therefore need a mechanism to
estimate the future power consumption of a job using the in-
formation available at schedule-time. The importance of such
predictions was underlined by several works [38, 39, 40]. Fur-
thermore, a greater prediction accuracy is related to a better per-
formance of a power capped dispatcher (in terms of higher ma-
chine utilization and greater energy savings) [41]. Intuitively
if we could know the exact power consumption of each appli-
cation we could generate optimal schedules; conversely, imper-
fect estimates may lead to possibly infeasible solutions.

A common way to estimate an application energy or power
consumption exploits hardware performance counters which
monitors the system’s components usage during the workload
execution [42, 43, 44]. Despite the good accuracy obtained
with these models the need to know the performance counters
- to be measured at runtime - clashes with the idea of having
power consumption predictions available during the dispatch-
ing phase. A model to predict energy and power consumptions
is presented by Shoukourian et al [45]. The suggested approach
does not require any application code instrumentation and al-
lows power and energy consumption prediction. The main limit
of the described method is that it considers only jobs that use
entire computational nodes (this is due to the characteristics of
the considered supercomputer). This on one hand simplifies the
power consumption prediction but on the other hand cannot be

directly generalized to different systems where multiple appli-
cations can possibly concurrently run on the same node.

Auweter et al [46] propose an energy aware scheduler to re-
duce energy consumption of supercomputers. For this purpose
they introduce a prediction model to forecast power and perfor-
mance of HPC applications. This model heavily relies on pre-
cise information about the application executables and requires
the user to provide a tag identifying similar jobs. While we
think this is an interesting direction, currently users provided
information cannot be taken for granted.

3. Preliminaries

We are now going to describe the context of the job dis-
patcher presented in the paper and to give a quick glance at
an essential enabling technology. Section 3.1 details the job
dispatching problem in HPC systems; Section 3.2 presents the
supercomputer that served as our case-study. Section 3.3 intro-
duces the Constraint Programming methodology.

3.1. The HPC Dispatching Problem

Dispatching jobs in a HPC system can be described as fol-
lows. We have a set of jobs J = { j1, .. jNJ}. Every job ji ∈ J en-
ters the system at a certain arrival time eqti, by being submitted
to a specific queue (depending on the user choices and on the
job characteristics), qh ∈ Q where Q = {q1, .., qm}. Each queue
is characterized by its expected waiting time ewth, which pro-
vides a rough indication of the queue priority. Each job speci-
fies a maximal expected duration (its wall-time) di. Each job is
composed by a set of sub-units; the number of job units of job i
is ui. Each job unit starts and ends with the job, and requires a
certain amount of resources.

HPC machines are composed by sets of nodes N =

{n1, .., nNN} and sets of resources R = {r1, .., rNR}, i.e. cores,
GPUs and MICs. Each node n j ∈ N has a capacity cap jr for
every resource r ∈ R. If a resource is absent from a node the
corresponding capacity is zero. Each job unit k of job i requires
an amount of resource reqikr,∀r ∈ R. Formally, the power cap
can be seen as an additional constraint on an artificial resource,
the power consumption, that must never be violated; we assume
that each job unit has a fixed power consumption.

The dispatching problem at time τ requires to assign a start
time sti ≥ τ to each waiting job i and a node to each of its units.
All the resource and power capacity limits should be respected,
taking into account the presence of jobs already in execution.
Once the problem is solved, only the jobs having sti = τ are
actually dispatched. The single activities have no deadline or
release time (i.e. they do not have to end within or start after
a certain date), nor the global makespan is constrained by any
upper bound.

3.2. EURORA System

The Eurora supercomputer, developed by Eurotech and
Cineca [47] has ranked first in the Green500 list in July 2013,
achieving 3.2 GFlops/W on the Linpack Benchmark with a

4

peak power consumption of 30.7 KW. Eurora has been sup-
ported by PRACE 2IP project [48] and serves as testbed for
next generation Tier-0 system. Its outstanding energy effi-
ciency is achieved by adopting a direct liquid cooling solution
and a heterogeneous architecture with best-in-class general pur-
pose hardware components (Intel Xeon E5, Intel Xeon Phi and
NVIDIA Kepler K20). The system was hosted at the Cineca
inter-universities consortium [49] facilities in Bologna, Italy.
As described in [50] Eurora has a heterogeneous architecture
based on nodes (blades). The system has 64 nodes, each with
2 octa-core CPUs and 2 expansion cards configured to host an
accelerator module: currently, 32 nodes host 2 powerful NVidia
GPUs, while the remaining ones are equipped with 2 Intel Xeon
Phi accelerators. Every node has 16GB of installed RAM mem-
ory.

Jobs are submitted by the users into one of multiple queues,
each one characterized by different access requirements and by
a different estimated waiting time. Users submit their jobs by
specifying 1) the number of required nodes; 2) the number of
required cores per node; 3) the number of required GPUs and
Xeon Phi per node (never both of them at the same time); 4)
the amount of required memory per node; 5) the maximum ex-
ecution time. In other HPC systems the users might not be re-
quired to specify a queue at submission time; in this case it
would be trivial to implement a preprocessing phase that sends
different jobs to different queues (i.e. according to the requested
resources) before the job scheduling phase that is our concern
in the paper.

3.3. Constraint Programming
Constraint Programming (CP) is a declarative programming

paradigm suitable for solving constraint satisfaction and opti-
mization problems[51]. A constraint program is defined on a
set of decision variables, each ranging on a discrete domain of
values that the variable can assume, and a set of constraints lim-
iting the combination of variable-value assignments. For exam-
ple, variable x with domain [1..10] means that variable x can be
assigned to one integer value between 1 and 10.

After the creation of the model, the CP solver alternates
two main phases. First, constraint propagation: constraints
are propagated by removing provably inconsistent values from
variable domains. The constraint x < y where both x and y do-
mains are [1..10] removes value 10 for x and 1 for y. Second,
the search strategy explores alternative assignments of variable-
values until either a solution is found or a failure is detected. In
case of optimization problems, finding a solution does not guar-
antee its optimality. The solver then looks for better solutions
if they exist, otherwise it proves optimality.

Historically, CP techniques have shown great success when
dealing with scheduling and resource allocation problems,
thanks to the expressive and flexible language used to model
the problem and powerful algorithms to quickly find good qual-
ity solutions[52]. Activities are modeled through decision vari-
ables; each activity a is characterized by its start time st(a) and
its duration d(a).

The CP community has developed a class of particularly
powerful constraint called global constraint, whose strength

relies on efficient propagation algorithms tailored on spe-
cific problems. For scheduling problems many specialized
global constraints have been developed, the most important be-
ing the cumulative constraints for managing resource usage.
cumulative([a], [r],C) holds if and only if all activities in [a]
whose resource requirements are specified in [r] never exceed
the resource capacity C. Several propagation algorithms are
embedded in the cumulative constraint for removing inconsis-
tent assignments of activity start time variables.

4. The Dispatcher Model

In this section we describe our job dispatcher with power
capping. An earlier version of our approach was already part of
previous works [53, 54]. We developed two different dispatch-
ers: 1) a heuristic algorithm, 2) a hybrid method which decom-
poses the problem and uses both Constraint Programming and a
heuristic technique. The first method is faster while the second
method manages to find the best solutions. A key point of our
approach is that it requires the power consumption estimate for
each job to be scheduled; this knowledge must be know before
the actual job execution. The method we use to generate these
estimates is discussed in the next section.

4.1. Power Predictor

In our dispatcher we employ a power consumption predic-
tion model that we previously developed [55]. In order to be of
any use, a fundamental requirement for this prediction model is
the capability to estimate power consumption depending only
on the information available at schedule time (and not at execu-
tion time, such as sensors measurements). Therefore, our model
can estimate the power consumptions of HPC applications us-
ing only the information provided by the users when they sub-
mit their job in the system. Namely, the information needed to
make a prediction are the following: user, queue, requested du-
ration, number of requested nodes, number of requested cores,
number of requested GPUs, number of requested Xeon Phi2,
amount of requested memory.

The model predicts exclusively the CPU power consumption
of HPC applications. We assume the power consumption of ad-
ditional resources (GPUs, MICs, etc.) is directly proportional
to the amount of resources used and their TDP3. For example if
a job requires 2 GPUs, its estimated power consumption is the
sum of the CPU power predicted with the prediction model and
the maximum power consumption of the required GPU multi-
plied by two. An important aspect of the prediction model is
that it returns a single value, that is the mean power consump-
tion of a job over its lifetime. As demonstrated in [55] this is
not a limitation: although each job power consumption is not
constant when we consider a realistic workload composed by

2The number of requested hardware accelerators is important because GPUs
adn Xeon Phi are mounted on computing nodes with different power consump-
tions, i.e. a job requiring a GPU will necessarily run on a CPU consuming more
power than those with a Xeon Phi

3Thermal Design Power

5

many jobs the sum of their mean powers closely tracks the sys-
tem overall power consumption.

The predictor relies on Machine Learning techniques and it
was trained and later tested using historical job traces and sen-
sors data gathered in the Eurora system. The essential steps
are the following. 1) We create a training set: using historical
data (18 months of Eurora life time) we are able to associate a
power consumption to each job that executed on the supercom-
puter. Part of the data is kept to be used for testing – as it is
mandatory practice in ML, training and test sets do not overlap.
2) We train several prediction models (one for each user plus
one for users who are submitting jobs for the first time) in order
to learn the association between a job request and its power con-
sumption. We used prediction models based on Decision Trees
Regression [56] and Random Forests Regression [57]. 3) After
the training phase we try the models on the test set: we predict
the power for every job in the test set and then we compare the
prediction and the real value.

The mean absolute error over the whole training set is 8.87%.
In Figure 1 we can see some results; the figures correspond to
a two-days period4. Figure 1a compares the predicted trend to
the real power trend and Figure 1b displays the histograms of
the prediction errors. For this particular time span the results
are very good, with a mean absolute error smaller than 6%.

An important thing to point out is that our prediction model
might be inaccurate. This issue has an obvious impact on our
approach: since our dispatcher relies on the power predictions
in order to generate schedule that will never exceed the power
budget, mispredictions may lead to situations where the power
cap enforced differs from the desired one. This can happen
especially in case of under-predictions, when the real power
actually exceeds the predicted value and consequently the cap
planned in the dispatcher.

Our dispatcher (as well as all the others that rely on estimat-
ing power consumption to decide a schedule) can guarantee not
to violate the power budget only within a certain confidence
interval, given by the accuracy of the prediction. There are sev-
eral ways to cope with this issue. On one hand, we can back
up our dispatcher with a hardware-based mechanism to ensure
to never exceed the reserved power budget. Another solution
could be to require the dispatcher to respect a power constraint
tighter than the real one, thus guaranteeing never to surpass the
desired power budget. We evaluate the impact of safety margins
in Section 5.2.4.

4.2. Heuristic Approach

The first approach belongs to a class of scheduling tech-
niques known in the literature as Priority Rules Based schedul-
ing (PRB)[58]. The main idea is to order the set of tasks to
be scheduled, constructing the ordered list by assigning priority
for each task. Tasks are selected according to their priorities
and each selected task is assigned to a node; even the resources
are ordered and the ones with higher priority are preferred - if

4We used a one month long interval as a test set but the resulting plot would
not be readable

available. This is a heuristic technique and it is not able to guar-
antee an optimal solution but has the great advantage of being
extremely fast. More details on the algorithm can be found in
[54].

The jobs are ordered w.r.t to their expected waiting times,
with the “job demand” (job requirements multiplied by the job
estimated duration) used to break ties. Therefore, jobs which
are expected to wait less have higher priority, subsequently
jobs with smaller requirements and shorter durations are pre-
ferred over heavier and longer ones. The mapper selects one
job at time and maps it on a available node with sufficient re-
sources. The nodes are ordered using two criteria: 1) at first,
more energy efficient nodes are preferred (i.e. cores that oper-
ate at higher frequencies also consume more power) 2) in case
of ties, we favour nodes based on their current load (nodes with
fewer free resources are preferred5).

The PRB algorithm proceeds by iteratively trying to dispatch
all the activities that need to be run and terminates only when
there are no more jobs to dispatch. We suppose that at time
t = 0 all the resources are fully available, therefore the PRB al-
gorithm starts by simply trying to fit as many activities as pos-
sible on the machine, respecting all resource constraints and
considering both jobs and nodes in the order defined by the pri-
ority rules. Jobs that cannot start at time 0 are scheduled at the
first available time slot. At each time-event the algorithm tries
to allocate and start as many waiting jobs as possible and it will
keep postponing those whose requirements cannot be met yet.

The algorithm considers and enforces constraints on all the
resources of the system, including power. A job can be sched-
uled in the machine if there are enough available physical re-
sources (such as cores or GPUs) and if adding its predicted
power to the current system consumption would not cause a vi-
olation of the power budget. We note that since in this problem
we have no deadline on the single activities , the PRB algorithm
will always find a feasible solution, for example delaying the
least important jobs until enough resources become available
due to the completion of previously started tasks.

4.3. Hybrid Approach

The task of obtaining a dispatching plan on Eurora can be
naturally framed as a resource allocation and scheduling prob-
lem. We decompose the dispatching problem in two stages: 1)
obtain a schedule using a relaxed CP model of the problem 2)
find a feasible mapping using a heuristic technique. Since we
used a relaxed model in the first stage, the schedule obtained
may contain some inconsistencies; these are fixed during the
mapping phase, thus we eventually obtain a feasible solution,
i.e. a feasible allocation and schedule for all the jobs. To make
this interaction effective, we devised a feedback mechanism be-
tween the second and the first stage, i.e. from the infeasibilities
found during the allocation phase we learn new constraints that
will guide the search of new scheduling solutions at following
iterations. This two stages are repeated n times, where n has

5This criterion should decrease the fragmentation of the system, trying to fit
as many job as possible on the same node

6

(a) Predicted VS Real Power (b) Error Histogram

Figure 1: Comparison between the real total power and the predicted total power. Mean Absolute Error: 0.056. Figures taken from [55]

been empirically chosen after an exploratory analysis, keeping
in mind the trade-off between the quality of the solution and the
computational time required to find one.

We implemented the power capping requirements as an addi-
tional constraint: on top of the finite resources available in the
system such as CPUs or memory, we treat the power as an artifi-
cial resource with its own fixed capacity (i.e. the user-specified
power cap), which we cannot “over-consume” at any moment.

The scheduling problem consists in deciding the start times
of a set of jobs i ∈ J satisfying the finite resource constraints
and the power capping constraint. Since all the job-units be-
longing to the same jobs must start at the same time, during
the scheduling phase we can overlook the different units since
we need only the start time for each job. Whereas in the ac-
tual problem the resources are split among several nodes, the
relaxed version we use in our two-stages approach considers all
the resources of the same type (cores, memory, GPUs, MICs)
as a pool of resources with a capacity CapT

r which is the sum of
all the node resource capacities, CapT

r =
∑

j∈N capk,r ∀r ∈ R.
As mentioned before the power is considered as an another re-
source type of the system, so we have a set of indexes R

′

cor-
responding to the resource types (cores, memory, GPUs, MICs
plus the power); the overall capacity CapT

power is equal to the
user-defined power cap.

The CP model represents every job as an activity τ. Each
activity is defined by its start time s(τ) and its end time e(τ);
the duration is d(τ). The activity may or may not be present;
if not present it does not affect the model). The activities
can be subject to several different constraints, among them the
cumulative constraint[59] to model finite capacity resources.

∀r ∈ R
′

cumulative(A, reqr,CapT
r) (1)

where A is the vector with all the interval vars, where reqr are
the job requirements for resource r (for all jobs in A); the job
power consumptions are those predicted as mentioned in Sec-
tion 2.2. The cumulative constraints in 1 enforce that at any
given time, the sum of all job requirements will not exceed the
available capacity (for every resource type).

With this model it would be easy to define several differ-

ent goals, depending on the metric we optimize. Currently we
use as objective function the weighted queue time [60, 61], i.e.
we want to minimize the sum of the waiting times of all the
jobs, weighted on estimated waiting time for each job (greater
weights to job which should not wait long):

min
∑
i∈I

max ewti
ewti

(s(τi) − qi) (2)

where s(τi) − qi represents the waiting time (the time when a
job begins its execution minus the time when it was submitted)
and max ewti

ewti
is a coefficient that serves to giver higher priority to

job that should wait less. The Expected Waiting Time of a job
ewti depends on its queue and lower values indicate that a job
should have a higher priority; max ewti represent the expected
waiting time of the queue with lower priority. Hence, the ratio
max ewti

ewti
has bigger values for jobs with higher priority (smaller

denominator) and thus increases the weight of these jobs.
To solve the scheduling model we implemented a custom

search strategy that begins from the solution obtained by the
heuristic algorithm (described in Section 4.2) and then tries to
improve it (shifting the starting time of the job variables towards
the origin, thus “squeezing” the resulting schedule). The time
limit allowed to explore the solutions space may vary: we first
try to find a solution within 1 second, if the time is not sufficient
(the complexity grows exponentially with the number of jobs)
we double the time limit. The maximal time limit is one minute.
In practice, since the search starts from the heuristic solution a
first solution is always found within the first 10 seconds.

5. Experimental Evaluation

After having described our approach, in this Section we com-
pare it to state-of-the-art methods. In order to make such a com-
parison we created a simulation framework to implement all
dispatchers. The simulator takes as an input an instance com-
posed by a set of job requests (user name, job id, resource re-
quested, etc.) and then the chosen dispatcher takes the schedul-
ing and allocation decisions. Applications fall in one of three

7

possible categories: CPU-bound, memory-bound, and mixed
(average workload slightly skewed toward CPU usage).

The job instances used are both historical job traces which
ran on the Eurora system and synthetic benchmarks, created
following the traces. The features of each job (its duration, re-
quested resources, etc.) are drawn from random distributions
defined by parameters learned from past workloads. Each job
in an instance has an arrival time, i.e. the moment when it en-
ters the system; the arrival times are distributed within a time
window. The arrival times distribution can follow three differ-
ent models: 1) uniform distribution; 2) left-skewed distribution
(a larger fraction of the jobs starts close to the window origin);
3) grouped distribution (also referred as burst), where jobs ar-
rive in groups. For example a job instance might be composed
by 400 jobs that enter in the system in 15 minutes.

5.1. State-of-The-Art Comparison
We selected a sub-set of the methods from the State-of-the-

Art for the comparison with our approach. First we excluded
all methods based on moldable or malleable jobs since we con-
sider only rigid ones6. We also disregarded methods relying
on system-specific features, i.e. node variability. Finally, our
dispatcher deals with a non-trivial problem (multi-resource sys-
tem, jobs composed by sub-units, etc) and therefore we did not
considered approaches not applicable to such problem. For ex-
ample we implemented [27] instead of a more recent technique
from the same authors [29] because the latter would have re-
quired to develop an entirely different ILP model than the one
presented in their paper.

The following are the chosen methods. Our two approaches:
I) the heuristic algorithm LS (Section 4.2) and II) the hybrid
approach DEC (Section 4.3). III) The power-aware EASY-
backfilling extension described in Section 2 - referred to as BF.
IV) A technique employing frequency scaling based on [27] -
referred to as DVFS. Two methods relying on RAPL: V) Sim-
ple power-aware scheduler presented in [31] and VI) a dynamic
power-sharing methods discussed in [32] - referred to as Dyn-
Share.

5.1.1. Impact of the power reduction/frequency scaling
A key aspect of some implemented models is the possibility

to reduce the power consumption in a node via RAPL or fre-
quency scaling (DVFS, Simple, DynShare). As the comparison
between the different policies is done on the hardware testbed
and we focus on approaches which uses RAPL and DVFS for
power capping instead of energy optimization, we can remove
from the power estimation the idle power of each resources
which is a constant offset in the total power consumption. As
result of this we consider in the following power modeling only
the dynamic power component, the one dependent on the clock
frequency. Since we are not considering application-level op-
timization, such as reducing the frequency only for memory-
intensive task or tasks reordering, it is safe to assume that, in
general, the duration of a “power reduced” job will increase.

6Most current HPC systems employ rigid jobs

The amount of the change is a non-trivial issue: it depends on
the hardware implementation (RAPL is a proprietary solution),
the nature of the application, technological parameters, etc. In
our work we tested different power-duration relation scenarios.

Let assume that we decrease the power on a certain node by
a certain amount, for example we go from P to P′ = MPP, 0 <
MP ≤ 1. The ideal case is that the duration is not affected: D′ =

D - this is a limit case and can be used to compare a method
against an idealized situation that favours to the extreme tech-
niques that reduce power by changing operating frequency. The
opposite case defines the duration increase as directly propor-
tional to the power decrease: D′ = MDD,MD = 1/MP,MD ≥

1. Between the best-case and this worst-case scenario (from the
point of view of RAPL based solutions) we can have intermedi-
ate cases, where the duration increase is modulated by a factor
F: D′ = FMDD,MD = 1/MP,MD ≥ 1, 0 < F ≤ 1. This
general formula can also include the first two extreme cases.
Intermediate cases indirectly models non-linearities in both the
power dependency with the clock frequency as well as the dura-
tion dependency on the clock frequency. In our experiments we
tried the following factors: 0.25, 0.5, 0.75. We must note that
this model starts from a power reduction, neglecting the internal
mechanisms with which this is obtained (DVFS, or RAPL, or
throttling, ecc) to model the application slowdown. We chose
a simple and yet effective linear model even if non-linearities
may be present between the processor performance and power
reduction[62], and between the processor performance and TtS
relation[63]. By choosing F this model covers both the corner
cases and the intermediate ones.

In the scenarios discussed so far we applied indiscriminately
the same power-decrease/duration-increase model to all jobs.
We also implemented a mixed model where each job has its
own factor (given that we apply the more general formula). The
factor of each job is drawn from one among three random dis-
tributions, one for each application type - memory-bound jobs
will obtain lower factors (smaller duration increase) than the
CPU intensive ones.

5.1.2. Evaluation Metric
To compare the different techniques we chose the so called

Bounded Slowdown (BSLD), a metric commonly used in the lit-
erature [64, 28, 27, 65, 29, 66] and defined by the ratio between
the time spent waiting in the system and the job runtime.

BS LD = max(
wait time + run time′

max(θ, run time)
, 1) (3)

where wait time is the time spent waiting for execution,
run time is the “original” duration (i.e. the duration specified
when the job is submitted), run time′ is the final duration (pos-
sibly changed due to power reduction or frequency scaling), θ is
a threshold used to avoid the bias of very short jobs on the av-
erage value. In all our experiments we set a threshold of five
minutes. This metric takes into account both the slowdown
introduced by the dispatchers that enforce power capping by
postponing jobs and the slowdown caused by the performance
penalty due to frequency scaling. The BSLD assumes values

8

≥ 1 (with 1 being the optimal value); lower values indicate bet-
ter performance.

In the BSLD computation we do not include the times needed
to compute a schedule: the “simulated” time is not affected by
scheduling delays due to the event-based nature of our simula-
tion framework. Furthermore, even in the case of our slowest
dispatching approach (DEC), we set a time limit of 10 seconds
for the scheduling & allocation phase, which is an almost in-
significant amount of time compared to duration of HPC ap-
plications. We are also going to disregard the time needed to
run the simulation, although given the same set of jobs the vari-
ous SoA techniques require different time: these differences are
due to the different implementations and a comparison would
be unfair.

5.2. Results
For every job instance we performed several experiments:

first we run each dispatcher without power cap, to establish the
uncapped maximal power consumption. Then we run again the
dispatchers on the same instance imposing a power cap with
decreasing power budget values (expressed as percentage of
the uncapped power consumption). We run experiments on in-
stances of varying size and arrivals window width, ranging from
50 jobs in five minutes to 1000 jobs in half an hour; different
initial conditions were also tested, from an initially empty sys-
tem to a machine where 70% of the nodes are already fully
occupied. For every combination of number of jobs/time win-
dow/starting condition we ran experiments on at least 20 dif-
ferent job instances and gathered the corresponding evaluation
metric for each run. The results displayed in the following plots
are the average values of the collected statistics.

The first thing we noticed is the very poor performance of the
Simple dispatcher; in any possible condition (low or high power
budget) and any instance size this method provides schedules
that are an order of magnitude worse (in terms of average
BSLD) compared to the other ones. This is due to the lack
of a power sharing mechanism among nodes and this leads to
extremely unbalanced situations that penalize jobs that did not
enter in the system as first. We decided to exclude this method
from the following plots because it would have not added any
significant information.

A second point we are not going to discuss further concerns
the performance of our methods LS and DEC. As it was ex-
pected due to their implementation DEC always provides better
- or equal - results than LS, due to the fact that they share the
first solution and only DEC runs an additional search to im-
prove it. When the problem grows in size DEC might not be
able to find improving solutions (due to the tight time limit we
impose) and the distance between our methods narrows.

Figure 2 portrays the result obtained with instances of 50
jobs arriving in 5 minutes, uniform distribution of arrival times.
In Figure 2a the machine was empty at the initial state, hot
start (HS) = 0%. The power budget ranges from the maximum
(100%) till a value of 10% of the maximum - we want to stress
out that values lower than 40% of the unconstrained power are
extremely small and quite rare in real systems. Each column
corresponds to the average BSLD obtained by a dispatching

method. We show our methods (LS & DEC), backfilling with
power cap BF, frequency scaling DVFS and several scenarios
for the RAPL methods DynShare; the different scenarios corre-
spond to the different power/duration models (see Sec. 5.1.1).
The number at the end of the name indicates the factor: 0 and
1 for the extreme cases (no duration increase and proportional
increase); 0.25, 0.5 and 0.75 are the intermediate values; mixed
denotes the scenario where each application has its own factor.

With such small instances the machine resources are almost
never fully occupied (50 jobs for 64 nodes) and therefore the
only obstacle preventing jobs to run in the system is the power
constraint; this can be clearly seen noticing the small BSLD
values at higher power budget - only slightly larger than one. It
is clear that our methods offer very good performance: both LS
& DEC perform better than all remaining methods except the
DynShare 0 at power budgets between 30% and 70%. As men-
tioned before DynShare 0 represents an optimal, unrealistic
lower bound (power decrease does not affect job duration and
BSLD metric) and obviously performs better than all other ap-
proaches - especially when the power is the main issue. The av-
erage BSLD of the other DynShare techniques worsens rapidly
with the increase of the power-duration factor (from 0.25 up
to 1); DynShare mixed has a performance close to a factor of
about 0.5-0.6. As expected DVFS offers better results than BF
(both better than RAPL with such small instances and empty
machine). In our tests the improvement of DVFS w.r.t. BF is
smaller than the one presented in [27] and this happens due
to the more complex problem tackled (job and job-units versus
jobs only, multi-resource machine versus single resource, nodes
of different types).

5.2.1. Initial State Impact
The situation changes when we consider a non empty ma-

chine; in Fig. 2b we can observe the results if the 70% of the
nodes are occupied before the jobs arrival. Now the methods
using RAPL perform much better (w.r.t. the other ones), only
the case with duration increase proportional to the power de-
crease maintains its bad performance; DVFS and BF provide
much worse results. LS & DEC manage to remain on par with
all RAPL methods only until the power budget does not get
too low (smaller than 30%); at a (quite unrealistic) power bud-
get of 10% only DEC obtains an average BSLD close to Dyn-
Share mixed and DynShare 0.75. If we look at the numbers
we see that the differences in relative performance are due to
the better results obtained by DynShare, while the other meth-
ods performance is worse than the empty machine case. We
would expect to observe a generalized performance deteriora-
tion: in an occupied machine jobs are forced to wait until more
resources become available.

To understand why this is happening we have to distinguish
between two different kinds of dispatchers. RAPL-based meth-
ods are dynamic dispatchers, they let all jobs enter the sys-
tem and then dynamically adjust their power consumptions -
no power-check is performed before admitting jobs. The other
methods can be seen as static: they decide before dispatching
which jobs can be executed and their strength is based on the
quality of the generated schedule. When the machine is al-

9

(a) Hot Start = 0%

(b) Hot Start = 70%

Figure 2: Average BSLD; 50 jobs 300s; HS=0%; uniform distribution

ready occupied static approaches suffer from the lack of opti-
mization possibilities, thus reducing their effectiveness7. Con-
versely, one of the weakest point of reactive methods is the lack
of a power-based admission control that may lead to too many
jobs in the system and therefore widespread slowdown gener-
ated by mandatory power reductions. With a partially occupied
machine fewer jobs can enter the system due to the fewer avail-
able resources (cores, GPUs, etc.), large power reductions hap-
pen less frequently and as a result the average BSLD improves.

5.2.2. Instance Size Impact
In Figure 3 we can observe the behaviour of the different

dispatchers when the instance size increases, in particular up
to 200 jobs in 300 seconds - in this case the jobs arrive in
groups (burst arrival). We restrict the analysis to more realis-
tic power budget (namely we discard the 10% case). The first
thing worth to be noted is the fact that the different dispatchers
obtain different results even at maximum power budget. The
reason is that when the instance size increases the problem be-
comes harder in terms of resource availability, therefore an ap-

7LS & DEC can also be seen as proactive dispatchers: they take into account
all jobs which need to be executed when creating an optimal schedule

Figure 3: Average BSLD; 200 jobs in 300s; HS=0%; burst arrival

proach able to generate better schedules leads to better perfor-
mance. In other words, even with no power constraint (power
budget equal to 100%) some jobs must wait for free resource
and our more sophisticated methods (LS & DEC) manage to
produce lower queue times than the simple EASY-BF - hence
lower BSLD. This is an extremely important point because it al-
lows our method to outperform even DynShare 0, because this
method (like all RAPL-based ones) focuses only in minimizing
the runtime-increase penalty (see Equation 3).

With higher power budget (75%-100%) both LS and DEC
outperform all remaining methods; when the power constraint
gets tighter the RAPL begins to be effective and the gap with
our methods is reduced - but at 50% it is still the best approach.
When the power budget gets even lower (30%) the quality of
the generated schedule becomes relatively less important and
RAPL-based approaches take the lead - though DEC perfor-
mance is still roughly equal to DynShare 075 and better than
DynShare mixed. Both DVFS and BF generally provide worse
results than the other methods.

When we increase again the size of the instance, with a num-
ber of job ≥ 400, we notice a clear limit of the RAPL-based
methods in their simpler implementations. We can see this in
Figure 4. Figure 4a displays the average BLSD for instances
of 400 jobs in 300 seconds, burst arrival mode, empty initial
state of the system. We see that for smaller power budgets (≤
30%) the RAPL-based methods are not able to find solutions:
it is impossible to satisfy the power constraint just by applying
the RAPL-mechanism. This happens for two reasons: 1) there
is no power-aware job admission control - the basic EASY-BF
scheduler always let jobs enter the system; 2) we assumed that
there is a lower bound on the minimal power consumption of
a job - we cannot arbitrarily decrease the job power below a
certain threshold (1 Watt in our experiments). These two con-
ditions (all jobs in an instance can enter the systems - provided
enough resources are available - and a non-zero minimal power
consumption) prevent pure reactive techniques such as the Dyn-
Share methods from keeping the system power consumption
within the desired budget. This is not a problem for the remain-
ing approaches due to the capability to limit a priori the number
of jobs entering the system.

10

As we identified, the problem lies in the basic implementa-
tion of the RAPL-based methods, lacking a power-aware ad-
mission control mechanism. Even though this is not discussed
in the literature, we assume that real supercomputers employ
some form of admission control and therefore we modified the
DynShare methods to add such a mechanism. We therefore
substituted the EASY-BF scheduler of the basic implementa-
tion with the power-aware version; in practice we combined
a first scheduling stage that employs BF and a second stage
where the power is dynamically managed with RAPL. Directly
assigning the desired power budget to the BF algorithm makes
no sense because the power cap would be already enforced and
the RAPL-mechanism would never be triggered. Therefore the
power budget considered in the first stage is three times the tar-
get power budget8; the remaining power slack is covered by
RAPL action.

In Fig. 4b we can observe the results obtained after the
change. Now even RAPL-based approaches provide solutions
at lower power budgets. As we saw for instances composed by
200 jobs, LS & DEC clearly outperform the remaining methods
when the problem is less power constrained and good schedul-
ing decisions have a greater impact. With the tightening of the
power constraint (power budget ≤ 30%), the possibility to de-
crease power consumption at run times starts to reap its bene-
fits; nevertheless DEC still trails very closely DynShare 0 and
provides lower average BSLD than all other methods.

The results obtained with larger instances (up to 1000 jobs,
window size ranging between 15 and 30 minutes) show an iden-
tical behaviour and thus they are not reported in the paper. The
RAPL-based methods cannot find solutions without a previous
power-guided admission control. When we add the admission
control, LS & DEC perform equally or slightly worse (higher
BSLD) than DynShare with lower power-performance factor (0
and 0.25). This happens only for lower budgets; again, with
budgets ranging from 50% to 100% our methods clearly outper-
form all remaining ones (decisive advantage when the problem
is less power constrained).

5.2.3. Historical Traces
We performed experiments using real historical traces of jobs

that run on Eurora. The experiment setup is the same used for
the synthetic benchmark, with the only difference that in this
case the arrival window and mode are defined by the trace itself.

On the historical traces we tested all previous dispatchers
plus an additional type of RAPL-based approach; in particu-
lar we added a new scenario for the relationship between power
decrease and duration change (see Section 5.1.1 for the other
scenarios). In this case we link the duration increase to the
nature of the application, defined by its Clock-Per-Instructions
(CPI) value. The CPI can range between values 0 < CPI < 1,
when more than one instruction per clock cycle is executed, to
CPI >> 1, when the execution of an instruction is bounded by
the access to far memory (Last Level Cache, LLC, and DRAM)
as well as in case of multi-cycle instructions – such as multi-
plications and divisions. In the rest of the paper we consider

8“Three times” is an empirically computed value

(a) No admission control

(b) Power-based admission control

Figure 4: Average BSLD; 400 jobs in 300s; HS=0%; burst arrival. Testing the
importance of a power-aware job admission control for DynShare methods

for simplicity only the first case, as better predictions can be
obtained by using CPI information in conjunction with other
monitored events (i.e. LLC misses). With this assumption, we
can recap the situation in this way: low values of CPI (≤ 1)
indicate CPU-bound applications while higher values (≥ 5) are
related to memory-bound applications; intermediate values sug-
gest less unbalanced applications. The CPI values of the histor-
ical jobs were measured by Eurora monitoring infrastructure.

For a job of duration D executing at the maximum frequency
of the core FMAX the number of instructions is computed as:
#INS = D ∗ FMAX/CPI. When applying DVFS or RAPL, the
frequency decreases by a factor MF which we assume to be
equal to the target power multiplier MP (the ratio between the
new desired value P′ and the original power P). With these
considerations, given a value of clock-per-instructions CPI the
new duration D′ is:

D′ =#INS

(
(CPI − 1) + 1/MF)

FMAX
=

=D
(
(CPI − 1) + 1/MF)

CPI
=

=D(1 −
1

CPI
+

1
CPI ∗ MP) (4)

11

The above mentioned model assumes that the LLC and DRAM
domain have an independent clock, different from the core one.
This implies that when slowed down of a factor MP the CPUs
slow down only the fraction of the clock cycles executing on
the core region (1 cycle if multi-cycle ALU instructions are ne-
glected). We assume CPI < 1 equal to 1 as this case refers to
multiple instruction executed in parallel which depends on the
core speed with the same proportionality of a single instruction
executed in one cycle.

The new approach for historical traces (called Dyn-
Share CPI) shares the same algorithm with the other RAPL-
based methods (DynShare) and uses the factor defined in Eq. 4
to compute the job duration change given a required power
modification. With historical traces we run experiments us-
ing the following approaches: LS, DEC, BF, DVFS, Dyn-
Share mixed and DynShare CPI. Figure 5a portrays the average
BSLD computed on 80 historical traces with a job size equal
to 100; Figure 5b consider the case of 400 jobs. Both figures
present an additional column DEC+RAPL representing an addi-
tional approach that combines DEC and DynShare mixed; be-
fore discussing this last method more in detail we need to make
a couple of observations.

First, we notice that using the CPI-based criterion to compute
the duration increase (DynShare CPI) produces worst average
BSLD compared to the DynShare mixed case. This is due to
the fact that the historical traces are mostly composed by CPU-
intensive jobs with low CPI values and therefore the impact of
power reduction is heavier. Then, compared to the synthetic
benchmarks case we observe a relative decrease of the perfor-
mance of LS & DEC w.r.t. DynShare mixed (and other methods
able to modulate the power).

The discrepancy of results between historical and synthetic
traces needs to be explained. The key difference between the
two types of benchmarks is the job arrival frequency, which is
much higher in the synthetic benchmarks. For example if we
look at the case of instances of 100 jobs, while time windows
of synthetic benchmarks range from 5 minutes to 2 hours the av-
erage time window of historical traces is more or less 6 hours.
These characteristics of the historical workload are probably
due to the fact that Eurora has been used as a prototype and it
was never heavily loaded in the measurement period, while a
machine in production would be much more loaded on average.
Another key difference is that many jobs in the historical traces
have extremely short durations - around 15%-20% of jobs last
less than 1 minute; in the synthetic benchmarks there are no
such short jobs. Drastically decreasing the job arrival frequency
changes the difficulty of the dispatching problem because fewer
jobs are in the system, fewer jobs are forced to wait due to un-
available resources and using a “smart” scheduling policy loses
its benefits. Moreover, the power aspect acquires greater rele-
vance and the methods able to modulate the power consumption
become preferable.

The correlation between the performance difference of the
proactive methods (LS & DEC) w.r.t. methods using RAPL
and the job arrival time window can be easily seen in Fig-
ure 6, which illustrates the performance difference between
DEC and DynShare mixed with varying time windows. On the

(a) 100 Jobs

(b) 400 Jobs

Figure 5: Average BSLD; historical traces

x-axis the job arrival time window is displayed and the y-axis
shows the BLSD percentage difference, for each power cap9,
between the considered methods; negative values correspond to
the cases when DEC outperforms DynShare mixed and vice-
versa. The figure presents the results for 4 different power cap
values and for the average results computed on all power cap
(yellow square markers). The arrival times follow a random
uniform distribution. It can be easily observed that if the win-
dow size increases (thus the job arrival frequency decreases)
DynShare mixed begins to outperform DEC if the power cap is
smaller than 50%; even with larger power budget the relative
performance of DEC degrades with the increase in time win-
dow size - experiments performed with even larger time win-
dows, not shown in this graph, confirm the trend observed here.
This correlation gave us an insight to combine the benefits of
proactive and power-modulating methods in order to obtain a
dispatcher well suited to cope with any type of workload. The
main idea is that if the job arrival frequency is high LS & DEC
provide better results when job arrival frequency decreases un-
der a threshold the best method is some variant of DynShare.
We therefore implemented the new approach DEC+RAPL that

9%DIF pcap = 100 ×
BS LDpcap

DEC−BLS Dpcap
RAPL MIX

BLS Dpcap
RAPL MIX

12

Figure 6: Average BSLD; 100 jobs from historical traces

uses both DEC and DynShare mixed, depending on the job ar-
rival frequency. The correct threshold was obtained through
empirical evaluation and it is equal to one job every two min-
utes. The experiments prove that combining the best of both
world yields the best results. Looking again at Fig. 5a and
Fig. 5b we focus now on the last column on the right which
represents DEC+RAPL. The new dispatcher obtains better or
equal results than the other methods in almost all situation (ex-
cept the case of 30% power budget and 200 jobs). Even tough
not shown here, the results of the experiments conducted on the
synthetic benchmarks are analogous. For example, with an ar-
rival window of 5 minutes (such as the one of previous figures)
DEC+RAPL has the same performance of DEC because with
such a high arrivals frequency the RAPL component is never
activated.

5.2.4. Mispredictions Impact
As noted in Section 4.1 the power consumption predictions

can be inaccurate. This is a problem especially in the case
of under-prediction, i.e. the forecast power consumption is
smaller than the real one, because LS & DEC might produce
schedules violating the power budget (they enforce a constraint
based on the predictions). A possible solution is to impose
them a tighter power cap than the target one, so that if under-
predictions happen the desired budget would still be respected;
however, decreasing the power cap has the downside of perfor-
mance degradation. We conducted a set of additional experi-
ments to quantify the performance decrease due to handling the
under-predictions for our proactive dispatchers, LS & DEC.

In the new batch of experiments we use the previous jobs
instances but we impose that 10% of the job in an instance
are under-predicted; for these jobs the predicted power is 40%
smaller than the real one. In order to provide a robust anal-
ysis we are forcing an under-prediction rate more severe than
the one observed when testing our prediction models in [55].
We then run again LS & DEC (RAPL-based methods use the
real power thus do not require additional experiments) using a
smaller power budget, i.e. power cap = 0.95 · power target.
After a preliminary analysis we discovered that an extremely
small power cap decrease is sufficient to ensure that the target

Figure 7: Average BSLD; 100 jobs in 900s; HS=0%; uniform distribution

power cap is respected; for example, using a power cap 1%
smaller than the target cause both LS & DEC not to violate the
budget.

In Figure 7 we see the results of the experiments with under-
predictions in the case of 100 jobs (synthetic benchmark). We
see the main dispatchers shown before plus LS & DEC using
a power cap value 1% smaller than the target, represented by
the hatched columns LS vU99 & DEC vU99. The target power
budget is respected while the BSLD slightly rises; taking into
account all the instances, given a 1% power cap reduction w.r.t.
target, the average BSLD increases by 4.2% for LS and by 4.4%
for DEC. For a more conservative reduction of 5% the BSLD
increases by around 6%-7%.

6. Conclusion

In this paper we have dealt with the problem of limiting the
power consumption of a HPC system. We developed a job dis-
patcher to enforce such power constraint acting on the job ex-
ecution order alone. We proposed two different approaches: 1)
a heuristic algorithm (inspired by the class of Priority-Rules-
Based algorithm) and 2) a hybrid approach that decomposes
the dispatching problem in its two components, the scheduling
phase (solved using Constraint Programming) and the alloca-
tion phase (solved through a heuristic technique). The heuristic
method is quicker but the hybrid approach can provide the best
solutions - while still amply respecting real-time execution con-
straints.

A fundamental aspect of our approach is the requirement to
know the power consumption of a job before its real execu-
tion. This estimate is used to dispatch all jobs while guarantee-
ing that the power budget will never be violated. Therefore we
proposed a predictive model (created using Machine Learning
techniques) capable of estimating the power consumption of a
job with high accuracy, using only the information available at
dispatching-time. Given that high accuracy does not imply per-
fect prediction, we can guarantee that our dispatcher will en-
force a power cap only in a confidence interval specified by the
quality of the prediction.

13

We then implemented several alternative power capping
methods taken from the literature and we compared their per-
formance against the one obtained with our methods. We run
experiments with different level of power budgets, instances of
different sizes and different initial conditions. The results show
that our methods (particularly the hybrid one) perform better
than the vast majority of remaining methods in most of the sit-
uations. This is especially true if we consider problems where
the power constraint is not extremely tight, due to the proactive
nature of our approach (we generate optimal plans consider-
ing all jobs in the system queue). Even in the worst situations,
for example with systems in a non-empty initial state, our dis-
patchers offer performance comparable to the one provided by
the methods from the literature. We also proved that our meth-
ods have a very good scalability, continuing to outperform the
competition even with larger instances.

The experiments performed with historical traces revealed
the impact of the workload characteristics (i.e. the job arrival
frequency) on the quality of the solutions found by our meth-
ods. Therefore we also proposed an additional dispatcher that
mixes the smart planning of our job dispatchers and the abil-
ity of modulating the power consumption at run time typical
of the best techniques from the state-of-the-art. This method
combines the strengths of both approaches and manage to out-
performs all remaining dispatchers. As noted before, a crucial
component of our approach is the accuracy of the power predic-
tion, with higher accuracy leading to better performance. We
also took into account the robustness of our method to inaccu-
rate predictions; we studied this aspect by using varying level
of power caps to cope with possible mispredictions. The re-
sults reveal that using a tighter power bound than the target one
guarantees the robustness of the approach without decreasing
significantly the overall performance.

We have identified some future research directions. We want
to test our approach on a real environment and implement it
on a real production machine. We will apply our power pre-
diction methodology to other HPC systems to test its accuracy
on different workloads; for this purpose we are working in strict
collaboration with Cineca consortium to obtain power measure-
ments from other Top500 and Green500 supercomputers. Fi-
nally, in this paper we only considered rigid jobs in terms of re-
sources while nowadays an emerging trend points towards the
adoption of moldable (and/or malleable) jobs; including this
class of workload in our dispatcher is a very promising area we
are keen on exploring.

Acknowledgements

This work was partially supported by the FP7 ERC Advanced
project MULTITHERMAN (g.a. 291125). We also want to
thank CINECA and Eurotech for granting us the access to their
systems.

[1] P. Kogge, D. R. Resnick, Yearly update: exascale projections for 2013.,
2013. doi:10.2172/1104707.

[2] J. J. Dongarra, H. W. Meuer, E. Strohmaier, 29th top500 Supercomputer
Sites, Tech. rep., Top500.org (Nov. 1994).

[3] H. Fu, J. Liao, J. Yang, et Al., The sunway taihulight supercomputer:
system and applications, Science China Information Sciences 59 (7).

[4] K. Bergman, S. Borkar, D. Campbell, et al., Exascale computing study:
Technology challenges in achieving exascale systems (September 2008).

[5] C. Lefurgy, X. Wang, M. Ware, Power capping: a prelude to power shift-
ing, Cluster Computing 11 (2).

[6] T. Bridi, A. Bartolini, M. Lombardi, et Al., A constraint program-
ming scheduler for heterogeneous high-performance computing ma-
chines, IEEE Transactions on Parallel and Distributed Systems 27 (10)
(2016) 2781–2794. doi:10.1109/TPDS.2016.2516997.

[7] A. Bartolini, A. Borghesi, T. Bridi, et Al., Proactive workload dispatching
on the EURORA supercomputer, in: Principles and Practice of Constraint
Programming - 20th International Conference, CP 2014, Lyon, France,
September 8-12, 2014. Proceedings, 2014.

[8] M. Etinski, J. Corbalan, J. Labarta, M. Valero, Understanding the future of
energy-performance trade-off via {DVFS} in {HPC} environments, Jour-
nal of Parallel and Distributed Computing 72 (4).

[9] C.-Y. Lee, T.-Y. Lin, R.-G. Chang, Power-aware code scheduling assisted
with power gating and dvs, Future Generation Computer Systems 34
(2014) 66–75.

[10] J. Wu, Energy-efficient scheduling of real-time tasks with shared re-
sources, Future Generation Computer Systems 56 (2016) 179–191.

[11] S. K. Tesfatsion, E. Wadbro, J. Tordsson, A combined frequency scaling
and application elasticity approach for energy-efficient cloud computing,
Sustainable Computing: Informatics and Systems 4 (4) (2014) 205–214.

[12] K. De Vogeleer, G. Memmi, P. Jouvelot, Parameter sensitivity analysis of
the energy/frequency convexity rule for application processors, Sustain-
able Computing: Informatics and Systems 15 (2017) 16–27.

[13] G. Varsamopoulos, S. K. Gupta, Energy proportionality and the future:
Metrics and directions, in: Parallel Processing Workshops (ICPPW), 2010
39th International Conference on, IEEE, 2010.

[14] T. Patki, D. K. Lowenthal, B. Rountree, et Al., Exploring hardware over-
provisioning in power-constrained, high performance computing, in: Pro-
ceedings of the 27th International ACM Conference on International Con-
ference on Supercomputing, ICS ’13, ACM, New York, NY, USA, 2013.

[15] J. Hikita, A. Hirano, H. Nakashima, Saving 200kw and $200 k/year by
power-aware job/machine scheduling, in: Parallel and Distributed Pro-
cessing, 2008. IPDPS 2008. IEEE International Symposium on, 2008,
pp. 1–8. doi:10.1109/IPDPS.2008.4536218.

[16] H. Shoukourian, T. Wilde, A. Auweter, A. Bode, Power variation aware
configuration adviser for scalable hpc schedulers, in: High Performance
Computing Simulation (HPCS), 2015 International Conference on, 2015.

[17] J. Meng, S. McCauley, F. Kaplan, V. J. Leung, A. K. Coskun, Simulation
and optimization of hpc job allocation for jointly reducing communication
and cooling costs, Sustainable Computing: Informatics and Systems 6
(2015) 48–57.

[18] H. David, E. Gorbatov, U. R. Hanebutte, et Al., Rapl: Memory power
estimation and capping, in: Proceedings of the 16th ACM/IEEE Interna-
tional Symposium on Low Power Electronics and Design, ISLPED ’10,
ACM, New York, NY, USA, 2010. doi:10.1145/1840845.1840883.

[19] O. Sarood, A. Langer, A. Gupta, L. Kale, Maximizing throughput of over-
provisioned hpc data centers under a strict power budget, in: Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’14, 2014.

[20] O. Mämmelä, M. Majanen, R. Basmadjian, et Al., Energy-aware job
scheduler for high-performance computing, Computer Science-Research
and Development 27 (4) (2012) 265–275.

[21] P. E. Bailey, D. K. Lowenthal, V. Ravi, et Al., Adaptive configuration
selection for power-constrained heterogeneous systems, in: Proceedings
of the 2014 Brazilian Conference on Intelligent Systems, BRACIS ’14,
IEEE Computer Society, Washington, DC, USA, 2014.

[22] T. Patki, D. K. Lowenthal, A. Sasidharan, et Al., Practical resource man-
agement in power-constrained, high performance computing, in: Pro-
ceedings of the 24th International Symposium on High-Performance Par-
allel and Distributed Computing, HPDC ’15, ACM, New York, NY, USA,
2015, pp. 121–132. doi:10.1145/2749246.2749262.

[23] A. W. Mu’alem, D. G. Feitelson, Utilization, predictability, work-
loads, and user runtime estimates in scheduling the ibm sp2 with
backfilling, IEEE Trans. Parallel Distrib. Syst. 12 (6) (2001) 529–543.
doi:10.1109/71.932708.

[24] Y. Inadomi, T. Patki, K. Inoue, et Al, Analyzing and mitigating the im-
pact of manufacturing variability in power-constrained supercomputing,
in: Proceedings of the International Conference for High Performance

14

Computing, Networking, Storage and Analysis, SC ’15, ACM, New York,
NY, USA, 2015, pp. 78:1–78:12. doi:10.1145/2807591.2807638.

[25] V. W. Freeh, D. K. Lowenthal, F. Pan, et Al., Analyzing the energy-time
trade-off in high-performance computing applications, IEEE Trans. Par-
allel Distrib. Syst. 18 (6). doi:10.1109/TPDS.2007.1026.

[26] C. Hsu, W. Feng, A power-aware run-time system for high-performance
computing, in: Proceedings of the 2005 ACM/IEEE conference on Su-
percomputing, IEEE Computer Society, 2005.

[27] M. Etinski, J. Corbalan, J. Labarta, M. Valero, Optimizing job
performance under a given power constraint in hpc centers,
in: Green Computing Conference, 2010 International, 2010.
doi:10.1109/GREENCOMP.2010.5598303.

[28] M. Etinski, J. Corbalan, J. Labarta, et Al., Utilization driven power-aware
parallel job scheduling, Computer Science - Research and Development
25 (3) (2010) 207–216.

[29] M. Etinski, J. Corbalan, J. Labarta, M. Valero, Parallel job schedul-
ing for power constrained {HPC} systems, Parallel Computing 38 (12).
doi:http://dx.doi.org/10.1016/j.parco.2012.08.001.

[30] N. Kumar, D. P. Vidyarthi, An energy aware cost effective scheduling
framework for heterogeneous cluster system, Future Generation Com-
puter Systems.

[31] D. Bodas, J. Song, M. Rajappa, A. Hoffman, Simple power-aware sched-
uler to limit power consumption by hpc system within a budget, in: Pro-
ceedings of the 2Nd International Workshop on Energy Efficient Super-
computing, E2SC ’14, IEEE Press, Piscataway, NJ, USA, 2014, pp. 21–
30. doi:10.1109/E2SC.2014.8.

[32] D. A. Ellsworth, A. D. Malony, B. Rountree, M. Schulz, Dynamic power
sharing for higher job throughput, in: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’15, ACM, New York, NY, USA, 2015, pp. 80:1–80:11.
doi:10.1145/2807591.2807643.

[33] A. A. Bhattacharya, D. Culler, A. Kansal, S. Govindan, S. Sankar, The
need for speed and stability in data center power capping, Sustainable
Computing: Informatics and Systems 3 (3) (2013) 183–193.

[34] B. Khemka, R. Friese, S. Pasricha, A. A. Maciejewski, H. J. Siegel,
G. A. Koenig, S. Powers, M. Hilton, R. Rambharos, S. Poole, Utility
maximizing dynamic resource management in an oversubscribed energy-
constrained heterogeneous computing system, Sustainable Computing:
Informatics and Systems 5 (2015) 14–30.

[35] K. Leal, Energy efficient scheduling strategies in federated grids, Sustain-
able Computing: Informatics and Systems 9 (2016) 33–41.

[36] A. Kaushik, D. P. Vidyarthi, A green energy model for resource alloca-
tion in computational grid using dynamic threshold and ga, Sustainable
Computing: Informatics and Systems 9 (2016) 42–56.

[37] K. Li, Energy-efficient task scheduling on multiple heterogeneous com-
puters: Algorithms, analysis, and performance evaluation, IEEE Transac-
tions on Sustainable Computing 1 (1) (2016) 7–19.

[38] S. Pakin, C. Storlie, M. Lang, et Al., Power usage of production super-
computers and production workloads, Concurr. Comput. : Pract. Exper.
28 (2) (2016) 274–290. doi:10.1002/cpe.3191.

[39] C. Storlie, J. Sexton, S. Pakin, et Al., Modeling and predicting
power consumption of high performance computing jobs, arXiv preprint
arXiv:1412.5247.

[40] H. Huang, M. Fan, G. Quan, Thermal aware overall energy minimization
scheduling for hard real-time systems, Sustainable Computing: Informat-
ics and Systems 3 (4) (2013) 274–285.

[41] J. Choi, S. Govindan, B. Urgaonkar, et Al., Profiling, prediction, and cap-
ping of power consumption in consolidated environments, in: Modeling,
Analysis and Simulation of Computers and Telecommunication Systems,
2008. MASCOTS 2008. IEEE International Symposium on, IEEE, 2008.

[42] G. Chetsa, L. Lefevre, J. Pierson, et Al., Exploiting performance coun-
ters to predict and improve energy performance of hpc systems, Future
Generation Computer Systems 36.

[43] G. Contreras, M. Martonosi, Power prediction for intel
xscale R©processors using performance monitoring unit events, in:
Proceedings of the 2005 International Symposium on Low Power
Electronics and Design, ISLPED ’05, ACM, New York, NY, USA, 2005,
pp. 221–226. doi:10.1145/1077603.1077657.

[44] M. Jarus, A. Oleksiak, T. Piontek, J. Weglarz, Runtime power usage esti-
mation of hpc servers for various classes of real-life applications, Future
Generation Computer Systems 36 (2014) 299–310.

[45] H. Shoukourian, T. Wilde, A. Auweter, A. Bode, D. Tafani, Predicting the
energy and power consumption of strong and weak scaling hpc applica-
tions, Supercomputing frontiers and innovations 1 (2) (2014) 20–41.

[46] A. Auweter, A. Bode, M. Brehm, et Al., A case study of energy aware
scheduling on supermuc, in: J. Kunkel, T. Ludwig, H. Meuer (Eds.), Su-
percomputing, Vol. 8488 of Lecture Notes in Computer Science, Springer
International Publishing, 2014.

[47] Eurora page on the cineca web site,
http://www.cineca.it/en/content/eurora.

[48] Prace. partnership for advanced computing in europe.
[49] Cineca inter-university consortium web site, http://www.cineca.it//en, ac-

cessed: 2014-04-14.
[50] A. Bartolini, M. Cacciari, C. Cavazzoni, et Al., Unveiling eurora - thermal

and power characterization of the most energy-efficient supercomputer in
the world, in: Design, Automation Test in Europe Conference Exhibition
(DATE), 2014, 2014.

[51] F. Rossi, P. Van Beek, T. Walsh, Handbook of constraint programming,
Elsevier, 2006.

[52] P. Baptiste, C. L. Pape, W. Nuijten, Constraint-based scheduling, Kluwer
Academic Publishers, 2001.

[53] A. Borghesi, C. Conficoni, M. Lombardi, et Al., MS3: A mediterranean-
stile job scheduler for supercomputers - do less when it’s too hot!, in:
2015 International Conference on High Performance Computing & Sim-
ulation, HPCS 2015, Amsterdam, Netherlands, July 20-24, 2015, 2015.
doi:10.1109/HPCSim.2015.7237025.

[54] A. Borghesi, F. Collina, M. Lombardi, et Al., Power capping in high per-
formance computing systems, in: Principles and Practice of Constraint
Programming - 21st International Conference, CP 2015, Cork, Ireland,
August 31 - September 4, 2015, Proceedings, 2015.

[55] A. Borghesi, A. Bartolini, M. Lombardi, et Al., Predictive Modeling for
Job Power Consumption in HPC Systems, Springer International Publish-
ing, Cham, 2016, pp. 181–199.

[56] J. R. Quinlan, Induction of decision trees, Mach. Learn. 1 (1) (1986) 81–
106. doi:10.1023/A:1022643204877.

[57] L. Breiman, Random forests, Mach. Learn. 45 (1).
doi:10.1023/A:1010933404324.

[58] R. Haupt, A survey of priority rule-based scheduling, Operations-
Research-Spektrum 11 (1). doi:10.1007/BF01721162.

[59] P. Baptiste, P. Laborie, C. Le Pape, W. Nuijten, Constraint-based schedul-
ing and planning, Foundations of Artificial Intelligence 2 (2006) 761–799.

[60] S. Wallace, X. Yang, V. Vishwanath, et Al., A data driven scheduling ap-
proach for power management on hpc systems, in: Proceedings of SC16:
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC, Vol. 16, 2016.

[61] A. P. Marathe, Evaluation and optimization of turnaround time and cost
of hpc applications on the cloud.

[62] A. Bartolini, M. Cacciari, A. Tilli, L. Benini, M. Gries, A virtual plat-
form environment for exploring power, thermal and reliability manage-
ment control strategies in high-performance multicores, in: Proceedings
of the 20th symposium on Great lakes symposium on VLSI, ACM, 2010,
pp. 311–316.

[63] F. Fraternali, A. Bartolini, C. Cavazzoni, L. Benini, Quantifying the im-
pact of variability and heterogeneity on the energy efficiency for a next-
generation ultra-green supercomputer, IEEE Transactions on Parallel and
Distributed Systems.

[64] M. D. De Assunção, R. Buyya, Performance analysis of multiple site re-
source provisioning: Effects of the precision of availability information,
in: Proceedings of the 15th International Conference on High Perfor-
mance Computing, HiPC’08, Springer-Verlag, Berlin, Heidelberg, 2008.

[65] M. Stillwell, F. Vivien, H. Casanova, Dynamic fractional resource
scheduling for hpc workloads, in: Parallel & Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, IEEE, 2010, pp. 1–12.

[66] E. Gaussier, D. Glesser, V. Reis, D. Trystram, Improving backfilling by
using machine learning to predict running times, in: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ACM, 2015, p. 64.

15

	Copertina_postprint_IRIS_UNIBO
	eurora_sustainableComputing_elsevier

