
Citation:
Baker, T and Aldawsari, B and Asim, M and Tawfik, H and Maamar, Z and Buyya, R (2018)
Cloud-SEnergy: A bin-packing based multi-cloud service broker for energy efficient composition and
execution of data-intensive applications. Sustainable Computing: Informatics and Systems. ISSN
2210-5379 DOI: https://doi.org/10.1016/j.suscom.2018.05.011

Link to Leeds Beckett Repository record:
https://eprints.leedsbeckett.ac.uk/id/eprint/5046/

Document Version:
Article (Accepted Version)

The aim of the Leeds Beckett Repository is to provide open access to our research, as required by
funder policies and permitted by publishers and copyright law.

The Leeds Beckett repository holds a wide range of publications, each of which has been
checked for copyright and the relevant embargo period has been applied by the Research Services
team.

We operate on a standard take-down policy. If you are the author or publisher of an output
and you would like it removed from the repository, please contact us and we will investigate on a
case-by-case basis.

Each thesis in the repository has been cleared where necessary by the author for third party
copyright. If you would like a thesis to be removed from the repository or believe there is an issue
with copyright, please contact us on openaccess@leedsbeckett.ac.uk and we will investigate on a
case-by-case basis.

https://eprints.leedsbeckett.ac.uk/id/eprint/5046/
mailto:openaccess@leedsbeckett.ac.uk
mailto:openaccess@leedsbeckett.ac.uk

Cloud-SEnergy: A Bin-Packing Based Multi-Cloud Service Broker

for Energy Efficient Composition and Execution

of Data-intensive Applications

Thar Baker1, Bandar Aldawsari1, Muhammad Asim2, Hissam Tawfik3

Zakaria Maamar4 and Rajkumar Buyya5

1Department of Computer Science, Liverpool John Moores University, UK
2Department of Computer Science, National University of Computer and Emerging Sciences, Pakistan

3School of Computing, and Creative Technologies, Leeds Beckett University, UK
4College of Technological Innovation, Zayed University, UAE

5School of Computing and Information Systems, The University of Melbourne, Australia

t.baker@ljmu.ac.uk; B.M.Aldawsari@2012.ljmu.ac.uk;

muhammad.asim@nu.edu.pk; H.Tawfik@leedsbeckett.ac.uk;

zakaria.maamar@zu.ac.ae; rbuyya@unimelb.edu.au

Abstract

The over-reliance of today’s world on Information and Communication Technologies (ICT) has led to an

exponential increase in data production, network traffic, and energy consumption. To mitigate the ecological

impact of this increase on the environment, a major challenge that this paper tackles is how to best select

the most energy efficient services from cross-continental competing cloud-based datacenters. This selec-

tion is addressed by our Cloud-SEnergy, a system that uses a bin-packing technique to generate the most

efficient service composition plans. Experiments were conducted to compare Cloud-SEnergy’s efficiency

with 5 established techniques in multi-cloud environments (All clouds, Base cloud, Smart cloud, COM2,

and DC-Cloud). The results gained from the experiments demonstrate a superior performance of Cloud-

SEnergy which ranged from an average energy consumption reduction of 4.3% when compared to Based

Cloud technique, to an average reduction of 43.3% when compared to All Clouds technique. Furthermore,

the percentage reduction in the number of examined services achieved by Cloud-SEnergy ranged from 50%

when compared to Smart Cloud and average of 82.4% when compared to Base Cloud. In term of run-time,

Cloud-SEnergy resulted in average reduction which ranged from 8.5% when compared to DC-Cloud, to

28.2% run-time reduction when compared to All Clouds.

Keywords: Multi-cloud; Bin-packing; Service composition; Energy efficiency; Data-intensive application

Preprint submitted to Journal of LATEX Templates April 14, 2018

1. Introduction

It is largely accepted in the ICT community that cloud computing is one of the technologies of choice

when deploying Web services business-applications. In addition to elasticity and pay-per-use appealing

features to ICT practitioners, cloud computing revolves around a simple provisioning model: providers offer

services1 to users, users search for the services they need, and high-speed networks ensure the connection

between users and providers when invoking services. This provision model is straightforward when a single

provider/cloud has all the necessary Web services (services for short) that business applications require.

However, this is not always the case because of the diversity and complexity of today’s applications; one size

fits all does not hold. Thus, service composition becomes crucial to alleviate these diversity and complexity.

Composition refers to decomposing a user’s request according to the clouds hosting the necessary services,

invoking concurrently and/or sequentially these services, and finally collecting the partial results prior to

their combination and presentation to the user.

This scenario increases in complexity as the number of providers increases. This is typically manifested

in service composition built upon a broker-based cloud service model [1] that necessitates the collaboration

among a number of cloud service providers, which formulates what is so-called multi-cloud environment,

whether explicitly or implicitly to yield the service outcomes and end results to the user. We assume that

Web services from separate businesses coordinate their activities in such a way that any conflict with service

clouds, such as sharable resources, order dependencies, or communication delays, is avoided [1–4]. The

resulting service may be directly used by a service user or be recursively incorporated in further service

compositions [5, 6]. Today’s service composition approaches in a multi-cloud environment overlook the

impact of cloud locations (i.e., datacenters) and resource consumption (e.g., bandwidth and CPU) when

identifying the necessary services. In fact, they prioritize non-functional requirements (aka Quality-of-

Service (QoS)) such as service cost, response time, and availability regardless of how much carbon footprint

will be generated due to increase in data traffic and processing power [2].

The growing demand of Web services and the increase in service providers and datacenters to offer and

host these Web services across every geographical region have led to significant increases in network traffic

and the associated energy consumption of the extensive infrastructure (e.g., extra servers and switches) re-

quired to respond quickly and effectively to user requests. Moreover, transferring data between datacenters

and between datacenters and users can consume even larger amounts of energy compared to just process-

1In this paper, we focus on Web services as other forms of services exist in clouds, namely infrastructure and platform

2

ing and storing the data on the datacenters themselves [7–9]. In addition, higher bandwidth and network

speed required to cope with the cloud network traffic and to speed up data transformation process generate

higher carbon footprint [2]. This has become a major concern to different bodies (e.g., governments and

environmental NGOs) in term of meeting environmental requirements such as those published by the 2011

report of PBL Netherlands Environmental Assessment Agency and JRC European Commission [10] and

also reducing the energy consumption [11].

Effective ways of reducing cloud computing energy-consumption are relatively under-explored and re-

quire further research and development to be fully achieved. Several approaches exist in the literature aim

at selecting appropriate service components to optimize the overall quality of the composition according

to a set of pre-defined QoS metrics. Energy efficiency, however, tends to get relatively less attention when

it comes to the optimization priorities for service composition aiming to achieve the most efficient service

components. There exist several approaches in the literature [12–14] consolidated the multi-dimensional

bin-packing problem for allocating and minimizing migrating workloads to achieve energy optimal opera-

tions. This paper presents and evaluates a novel bin-packing based energy efficient service broker, named

Cloud-SEnergy, using Integer Linear Programming (ILP) [15]. The main novelty of our approach lies in

that Cloud-SEnergy searches for and integrates the least possible number of most energy efficient services,

from the least possible number of service providers. The proposed service composition is based on the mul-

tidimensional bin-packing problem [16]; where items of possibly different capacities’ need to fit into bins

in a way that the total number of bins used, is minimized. An efficient green ICT strategy should address 3

concerns:

1. Amount of energy consumed by the datacenters’ equipment, such as Computer Room Air Condition-

ing (CRAC) unit.

2. Amount of energy consumed when transporting data between users and datacenters.

3. Amount of energy consumed when processing service composition over datacenters.

In contrast to existing approaches that address concerns 1 and 2, as is detailed in Section 3, this paper ad-

dresses concern 3 by presenting a novel service composition approach/broker in a multi-cloud environment.

The new broker acts as an intermediary bridge between the user and subscribed datacenters. It finds the

most energy efficient services that match the user needs, from the least possible number of cloud services’

providers in a multi-cloud environment; while meeting the user’s needs. The main objective is to pack items

of different capacities (i.e., finding energy efficient services) into a minimum number of bins (i.e., from

the effective number of datacenters) characterised by their total power consumption. To accomplish this

3

aim, we first formalise the datacenter-broker communication model, which shows the kind of data that each

datacenter is required to send to the broker to facilitate how the broker algorithm finds the most energy effi-

cient composition at a later step, using ILP. An improved service composition algorithm that exhibits better

performance compared to 5 competing algorithms is presented and evaluated.

The rest of the paper is organised as follows. The next section presents the problem addressed. Related

work is summarised in Section 3 and the proposed broker model is discussed in Section 4. A detailed

discussion on how the broker works and its time complexity is presented in Section 5; and the evaluation

is detailed in Section 6. Finally, the paper draws some conclusions and paves the way for future work in

Section 7.

2. Problem statement

In a traditional multi-cloud environment scenario, a user submits a request to a service broker stating the

specifications of the required services. The broker should then find the appropriate service providers that

satisfy the request. Currently, locating the best-fit service that matches the user needs and broker aims is

considered to be the most challenging task for a multi-cloud broker for the following reasons:

1. Energy efficient cloud services/resources searching and allocation involves identifying and assigning

resources to each incoming user request in such a way, that the user needs are met with the least

possible number of resources allocated from the least possible number of cloud service providers

per request. There have already been vast amount of research work in the area of cloud service

discovery and composition, along with techniques and tools that are powerful enough for cloud service

consumers to rely on. However, the attention was paid to the Infrastructure-as-a-Service (IaaS) layer

and virtualisation types [17–20], as opposed to energy efficient service searching, allocation, and

provision.

2. A range of heuristic solutions for IaaS were proposed [21–23] but there is still a lack of powerful algo-

rithms that would ensure energy efficient resource allocation. New hybrid cloud solutions that combine

IaaS and Platform-as-a-Service (PaaS) (e.g., openstack Heat), from a single cloud, are evolving over

time and being considered more attractive since they enable the joint deployment of infrastructure and

platforms. However, these solutions tend to overlook the need for energy efficient resource allocation

and little attention is paid to address the problem at this level.

3. Finding the most energy efficient service that satisfies a user needs is currently under investigated,

4

including how a broker can assist in locating multiple services to serve the request when there is no

one service that can match the request.

4. There is a need for efficient algorithms for comparing the energy required to compute and execute the

various services that can fulfil the user request on different clouds, in order to choose the most energy

efficient one, and creating a composition plan from the least possible number of clouds to ensure that

the energy efficiency target is met.

As the number of cloud providers and services increase, the composition of many services from differ-

ent providers becomes more complicated in a real multi-cloud environment. This would require a massive

amount of data interchange among all service participants and will consequently lead to high levels of energy

consumption [2]. Brokers and service providers tend to priorities QoS metrics, such as service security [24],

availability, response time, as these factors attract clients. The communication cost, and sending and receiv-

ing data among the composite Web services from different cloud providers can be expensive and time and

energy consuming. Finding the required services from the least possible number of cloud service providers

is as important as finding the services themselves. However, what continues to be a challenging and an

under-investigated issue is to find the most energy efficient service composition plan, which should have the

least possible number of composite services from an effective number of cloud service providers, that fulfils

the user request.

3. Related Work

Energy efficiency has been an important research topic that attracted significant interest well before the

emergence of cloud systems where the focus was on saving energy in computing appliances by for instance,

extending their battery lifetimes [25, 26], and developing energy efficient hardware. Many of these energy

saving techniques were initially adopted for cloud systems. However, what makes cloud more challenging

is the huge number of servers that reside in datacenters and services that need to be managed, and the

fact that multi-cloud datacenters need to support clients’ on-demand requests for services at any time and

anywhere. Several strategies have been developed to effectively reduce server power consumption for cloud

systems [27–29]; however, energy efficiency of service composition is still in its infancy and requires further

attention from all stakeholders.

Wajid et al. in [30] extend the approach of Lecue and Mehandjiev [31] and analyse its performance

for service composition optimization and its application in cloud computing to streamline resource usage

5

that in turn contributes towards energy efficiency. The composition is optimized based on functional and

non-functional criteria to determine a set of cloud services representing energy efficient deployment config-

uration. The work of Bartalos and Blake in [32] discusses the impact of power consumption of Web services

on creating a green cloud computing infrastructure. However, these approaches [30–32] focus on the power

consumption of a Web service when it is migrated from a physical server to another to avoid situations that

lead to server overload or service under-utiuselisation [33]. Bartalos et al. [34] introduce a decision sup-

port procedure to provide a deterministic understanding of power consumption of modular software assets

or services that reside in the hardware devices/servers. The procedure relies on power estimation models

that predict power consumption of a software service considering the type of server upon which it resides.

Guo et al. [35] proposed a joint inter- and intra-datacenter workload management scheme, Joint ElectriciTy

price-aware and cooling efficiency-aware load balancing (JET), to cut and reduce the electricity cost of geo-

graphically distributed datacenters. Chen et al. [36] present StressCloud, a tool for profiling the performance

and energy consumption of cloud systems. They profile the energy consumption of cloud-based application

under various task workloads and resource allocation strategies. The procedures of [34, 36] are proposed

for a single cloud environment; hence do not tap into opportunities of multiple cloud collaboration [37]. In

contrast, we aim at examining energy efficient service composition in multi-cloud environment.

Five different algorithms currently exist in the literature (All Cloud [38], Base Cloud [38], Smart Cloud

[38], COM2 [39], DC-Cloud [37]), which examine how service composition can be created by efficiently

utilizing multiple clouds. Section 6 presents a comparative evaluation of our proposed algorithm with these

algorithms. The All Clouds considers all clouds as inputs for the composition and determines all possible

solutions. The algorithm locates a service composition sequence with a least execution time, but does not

minimize the number of clouds nor the energy consumption in the final composition. The Base Cloud algo-

rithm recursively enumerates all cloud combination possibilities in increasing order until an optimal solution

is identified. It begins by analyzing all singleton sets of clouds and stop searching if the required combi-

nation can be found utilizing a single cloud. Otherwise, it extends its search to cloud sets of size 2, then 3

until the required combination is found. It generates an optimal composition solution with a small number

of clouds, despite of the energy consumed by the selected clouds. The Smart Cloud algorithm locates a near

optimal composition plan based on approximating a multiple cloud environment as a tree and then identifies

a minimum demand set from searching the tree. The Smart Cloud locates a sub-optimal solution at a reduced

cost while using a reduced cloud set. Heba kurdi et al. [39] propose a novel combinatorial optimization al-

gorithm (COM2) that considers multiple clouds and performs service composition with a short execution

6

time and minimal number of clouds, thereby reducing communication energy and costs. DC-Cloud algo-

rithm is proposed as a theoretical model for service composition in the multi-cloud environment with focus

on minimizing service composition overhead. The overhead is measured through two fundamental met-

rics: (i) average number of clouds involved in service composition and (ii) average number of service files

examined.

Luo et el. [40] propose a technique to select a composite service by using the path with the best QoS

and lowest cost. The technique is based on the Dijkstra search, which assumes that QoS attributes, such as

duration and throughput, are additive. However, Hang in [41] suggests that the additive attributes depend

on the nature of the composite service. For example, when constituent services of a composite service are

invoked in parallel then the overall duration is not the addition of the durations of the constituent services.

The construction of an optimal QoS-aware service composition often leads to inefficient compositions

with redundant services. According to Rodriguez-Mier et al. in [42], the main drawbacks of the above-

mentioned service composition approaches are their low performance and the lack of emphasis on reducing

data sharing overhead. When minimizing the number of composite services in a multi-cloud environment

is not a priority, the number of selected services and the input/output interaction among them can become

high. The number of services involved in a composition has a direct impact on a number of QoA measures.

For example, the work of Rodriguez-Mier et al. in [12] suggest that minimising the number of services in a

composition will help in minimising the total response time and maximising the throughput. Wang et al. [13]

propose a greedy algorithm to minimise the number of required service composition during a persistent

query’s life-time such that the routing update cost and transmission cost are minimised.

Several works in the literature observe the similarity between Virtual Machines(VM) placement problem

in a single datacenter and the well-known bin-packing problem, in which items of given capacity must be

packed into a minimum number of bins. The survey of Wolke et al. [14] discusses on the usefulness of

bin packing for dynamic resource allocation in cloud datacenters. Song et al. [43] propose a practical bin

packing resource allocation algorithm that uses virtualization technology to allocate datacenter resources

dynamically and support green computing by optimizing the number of servers actively used. Cloud man-

agement tools such as OpenStack [44] and Eucalyptus [45] are commonly used in many IaaS cloud environ-

ments for resource allocation, and utilize bin packing heuristics for placing incoming VMs on servers [14].

In [46], Liu and Baskiyar develop a heuristics approach, which integrates the classical bin packing algorithm

to address the problem of scheduling independent tasks in computational grid with different priorities and

deadline constraints.

7

To conclude, multiple works exist in the literature consolidating the multi-dimensional bin-packing prob-

lem for allocating and minimizing migrating workloads to achieve energy optimal operations [21, 43, 47].

However, there currently exist no previous work, which uses the bin packing approach to optimize the re-

sulting composition in a multi-cloud environment. Given the large number of cloud resources available

from multiple clouds, we prioritize energy efficiency by adopting a bin packing approach for searching and

integrating the least possible number of services, from the least possible number of service providers.

4. The System Model

In order to formulate the problem and proposed solution in this paper, we need to identify the main

stakeholders reported in Figure 1: user, broker and cloud service providers. The next subsections formalise

the interrelationship among those stakeholders and show how the new broker works.

4.1. Formal datacenter-broker model

In a multi-cloud environment, the requested services may come from different commercial cloud providers.

These services can be integrated and used together via mutual communication protocols to satisfy a com-

plex service request. The Multiple Cloud service Providers (MCP) is a set of cloud providers, such that

MCP = {CPi,CPi+1, ...,CPh} where (1 ≤ i ≤ h) represents a CP identifier. Since energy required for service

computation is a significant factor in our proposed model, services’ providers are required to send to the

broker the Total Energy Consumption (T EC) of all atomic services available at their datacenters. As such,

each service provider will be described by the proposed broker using a 2-tuple format 〈CPh,T EC〉. For illus-

tration purposes, 〈CP3,174〉 denotes the total power consumption of 174KW by all services available at cloud

provider 3. In addition, we use π j(CPh,T EC j
) to denote the pre-defined composition plan (j), that is created

by the cloud provider‘(h) with a total energy of T EC.

The proposed broker is based on the notion of Bin-Packing including a valid condition in the form of

a constraint. The role of the broker is to pack items (finding services in our case) into a least set of bins

(from minimum number datacenters) characterized by their total power consumption. Alternatively, one can

think about it as to pack the user request of services into an effective number of datacenters. To this end, we

define CPi as a key decision variable for each cloud provider i that is set to 1 if cloud provider i is selected

to provide a service, or 0 otherwise. The objective function used to find all requested services from a least

8

Multiple Clouds Providers (MCP)

CP2

 π1 π2 πn

CP3

 π1 π2

CP1

 π1

 s1

 s2

 s3

 s1 s2

 s1

 s2

Client Layer

Broker Layer

Service providers layer

User

TEC= 2.56kW
#services = 3
S= {s, EC}

π(CP)

Step 4:
Building-up a
composition

Step 1:
Ordering the
clouds in a

ascending order
based on the

energy
consumption

Step 2:
Checking atomic

services
individually

Step 3:
Checking pre-

defined
composites

CP2

CP3

CP1

 s2 s1
 s2 s1

 s2 s1
 s2 s1

 s2 s1
 s2 s1

 s2 s1 s2 s1
 s2 s1

 s2 s1
 s2 s1

 s2 s1
 s2 s1

 s2 s1

 πn πn

 πn πn

s1!s2!"""!sn

TEC= 1.47kW
#services = 2
S= {s, EC}

π(CP)

TEC= 2.33kW
#services = 2
S= {s, EC}

π(CP)

OROR

Request/Response

Figure 1: Conceptual representation of the proposed approach

possible number of cloud providers is expressed in (equation 1) as follows:

min I =

h
∑

i=1

CPi (1)

9

where

CPi =



























1, if the cloud provider i is used;

0, otherwise.

(2)

Each cloud service provider offers a set of services S , where S (CPi) = {sk, sk+1, sm} where (1 ≤ k ≤ m);

k is the identifier of each of the m atomic services of CPi. In this sense, in order to satisfy the user request

with a least possible number of selected services (equation 2), we use another decision variable sk as in

(equation 3), which is set to 1 when the service has been selected, otherwise 0 as in (equation 4).

min K =

m
∑

k=1

sk |{∀s : s ∈ S ∈ CPi ∈ MCP} (3)

where

sk =



























1, if the service k is used;

0, otherwise.

(4)

To reach the objectives of this work, the following assumptions are made:

1. Each service provider provides information regarding the total amount of energy consumed through

the computation of all atomic services’ computation at the designated datacenter (T EC), the number

of atomic services, the actual pre-defined composition plans π(CP), and a list of atomic services in the

form of 〈si, EC〉, where EC is the energy consumption of service si.

2. In Step 1, the broker lists the cloud providers in an ascending order based on the least total energy

consumed (lT EC) by all atomic services at the cloud service provider, such that the cloud provider

that consumes less energy will be examined first.

3. In Step 2, the broker examins the atomic services of all ascending-ordered providers first to search for

a one that matches the user request, from one provider.

4. Still in Step 2, if many atomic single services are found that match the user request, the broker will

compare their energy consumption in order to choose the atomic service that consumes less power.

5. In Step 3, if none is found to match the user request, the broker will examine the pre-defined compo-

sition plans of all ascending-ordered providers to search for a one that matches the user request from

one provider.

6. Otherwise, in Step 4, the broker will create a composition plan such that

πB = {〈si, EC(si),CPp〉 ∪ 〈s j, EC(s j),CPq〉∪, ...,∪〈sk, EC(sk),CPr〉} is a set of services from either

10

the same provider or different providers, subject to the following (equation 5):

minCons|

k
∑

i=1

{EC(si)} |{∀s : s ∈ S ∈ CPr ∈ MCP} (5)

Figure 1 depicts how the 4 steps feature the Broker Layer interact with each other. It can be seen that

the first step starts to sort the subscribed-to-broker cloud providers in an ascending order based on the total

energy consumption. To bin-pack the coming request to a single cloud service provider, the broker will start

checking the atomic services suitability, within each cloud service provider individually, and then responds

back to the user if a match is found. If not, the broker moves to Step 3 to check the pre-defined compositions

by each provider separately to search for a “ready” composition from a single provider. If none of the

previous steps have found a matching service or composition, the broker moves to Step 4 to build up an

effective composition plan.

4.2. Service composition plan

As per Section 4.1, the best service, or a composition plan, must be one that satisfies the three decision

variables listed in Equations 1, 2, and 3. Hence, the best one will be either an atomic service, a pre-defined

composition plan by one of the subscribed cloud providers, or a set of atomic services from the same or

different cloud providers that guarantee the least possible number of cloud providers involved with the least

amount of energy required to compute each service selected.

To further illustrate this, consider a multi-cloud environment where a broker deals with 4 cloud providers

{CP1,CP2,CP3,CP4}. Each of these providers provides a set of atomic services, which is a subset of the

services {a, b, c, d, e}, and a set of π(CP), as shown in Table 1.

Table 1: Multiple-cloud providers and services

Cloud providers 〈CP4,2.601〉 〈CP1,2.35〉 〈CP2,1.04〉 〈CP3,1.65〉

Atomic services a, b, c, e a, b, c c, d, e c, d

EC (kW) 0.52, 0.8, 0.721, 0.56 0.65, 0.5, 1.2 0.72, 0.32 1.2, 0.45

TEC (kW) 2.601 2.35 1.04 1.65

π(CP) {a, e}, {b, c, e},{c, e}, {b, e} {a, b}, {a, c}, {b, c} {d, e} {c, d}

Upon receiving the USer Request (USR), the broker starts re-listing the cloud providers in an ascending

order using Algorithm 1 to produce Table 2. It then examines all atomic services listed in row 2 in a bid

11

to find the most energy efficient one, from all providers, that matches the user request. It starts first with

the service provider that would consume the least total energy, which is CP2,1.04 in the case of Table 2. For

example, if the user requests service c, then service c from CP2 will be chosen given that it consumes less

energy than any service c from any other service provider.

Table 2: Multiple-cloud providers and services sorted by energy consumption

Cloud providers 〈CP2,1.04〉 〈CP3,1.65〉 〈CP1,2.35〉 〈CP4,2.601〉

Atomic services c, d, e c, d a, b, c a, b, c, e

EC (kW) 0.72, 0.32 1.2, 0.45 0.65, 0.5, 1.2 0.52, 0.8, 0.721, 0.56

TEC (kW) 1.04 1.65 2.35 2.601

π(CP) {d, e} {c, d} {a, b}, {a, c}, {b, c} {a, e}, {b, c, e},{c, e}, {b, e}

In the case where no match is found, the predefined composition plans of the 4 subscribed service

providers will be tested next. For example, if the user asks for services {b, c, e}, then the providers will be

checked in the following order: CP2, CP3, CP1, CP4. The broker will start checking all compositions of

the cloud providers to find out if there is a pre-defined composition plan that satisfies USR, and where more

than one possible match is found, it selects the least energy consuming one. Hence, given that CP4 has the

requested composition plan already defined, this arrives at the least possible number of providers involved

in the composition, in combination with the least energy consumption.

5. Algorithmic Design of Cloud-SEnergy

The new broker deals with the user request via 4 main algorithms; which are based on the multi-cloud

environment, subscribed providers, available services, and the pre-defined composition plans, as follows:

(i) Step 1: in this step, Algorithm 1 orders the cloud service providers in an ascending order according to

their total energy consumption.

(ii) Step 2: in which Algorithm 2 checks the individual atomic services and energy consumption of each

to find the best possible match.

(iii) Step 3: if Algorithm 2 is unable to find a suitable service(s), Algorithm 3 checks the pre-defined

composition plans in each cloud provider and the energy consumption of each composition plan to find

the best possible match.

(iv) Step 4: otherwise, Algorithm 4 creates an effective composition plan using the most energy efficient

services from the least possible number of providers.

12

5.1. Time complexity

Although the proposed Cloud-SEnergy algorithm can find the most energy efficient service composi-

tion, its time complexity is exponential in the number of cloud providers, atomic services, and predefined

composition plans as it may need to enumerate all possible cloud providers and their services in the worst

case. Therefore, there are three significant dimensions involved in determining the performance of Cloud-

SEnergy: (i) the number of available cloud providers, (ii) the number of available atomic services, and

(iii) the number of the predefined service composition plans. In other words, the computational complexity

increases exponentially with the number of providers and their services, as follows:

(i) The time complexity of Algorithm 1 is O(n2) time; this sort all cloud providers in an ascending order,

where n is the number of cloud providers (nCP in Algorithm 1). Hence, the more cloud providers, the

more time requires to sort them ascendingly.

(ii) Algorithm 2 takes O(n.m
′

) time to search for all available m
′

atomic services in all n cloud providers,

such that n=nCP and m
′

is the number of atomic services (j in Algorithm 2).

(iii) Algorithm 3 consumes O(n.m
′′

) time to search all available m
′′

predefined composition plans in all n

cloud providers, where m
′′

has been represented as πB in Algorithm 3.

(iv) It represents the worst case scenario as it necessitates exhausting the previous steps before it starts.

Algorithm 4 requires O(n.m
′

) time to search for all available atomic services in all cloud providers in

order to build up a new effective service composition.

As a result, the performance of Cloud-SEnergy is dominated by Algorithm 4.

Algorithm 1: Sorting Clouds in an Ascending Order

input : number of cloud providers (nCP), Total Energy Consumption
{TEC(CPi) | ∀i : 0 < i ≤nCP }

output : an ascending ordered list of cloud providers
1 Get(nCP, TEC(CPi) | ∀i : 0 < i ≤ nCP)
2 foreach i = 1 to i ≤ nCP − 1 step 1 do
3 lTEC← i
4 foreach j = i + 1 to j ≤ nCP do
5 if EC(j) < EC(i) then
6 lTEC← j
7 end

8 end
9 Temp← EC(I)

10 EC(I)← EC(lT EC)
11 EC(lTEC)← Temp

12 end
13

13

Algorithm 2: Check Atomic Services

input : user service request (USR), number of Cloud Providers (nCP)
output : most energy efficient service from most “possible” energy efficient data centre

(S erk(CPi,lT EC)), actual energy consumption of the selected service (minCons)
1 Get(USR, nCP)
2 foreach i = 1 to i ≤ nCP step 1 do
3 Select (CPi,lT EC)
4 Get #(Ser(CPi,lT EC))
5 j← #(Ser(CPi,lT EC))
6 foreach k = 1 to k ≤ j step 1 do
7 if ((S erk(CPi,lT EC) ∩ USR) == Ø) then
8 go to 26
9 else

10 if (k==1) then
11 minCons← EC(Serk(CPi,lT EC))
12 return Serk(CPi,lT EC),minCons
13 go to 6
14 else
15 if (EC(S erk(CPi,lT EC)) < minCons) then
16 minCons← EC(S erk(CPi,lT EC))
17 return Serk(CPi,lT EC),minCons
18 go to 26
19 else
20 go to 26
21 end

22 end
23 return Serk(CPi,lT EC),minCons
24 go to 6
25 end
26 if (k==j) then
27 go to 2
28 else
29 go to 6
30 end

31 end
32 if (i==nCP) then
33 go to 37
34 else
35 go to 2
36 end

37 end

14

Algorithm 3: Check Predefined Composition Plans

input : user service request US R, multiple cloud providers MCP, largest number of
composition plan m

output : Effective Composition Plan πB

1 USR← Ø, πB ← NULL, minCons← NULL, m← largest number of composition plan;
2 Get(USR, nCP)
3 Select (CPm)
4 i← m
5 if (i is True) then
6 foreach j = 1 to j ≤ i step 1 do
7 if ((π j(CPi) ∩ USR) == Ø) then
8 if (j = i) then
9 go to 35

10 else
11 go to 6
12 end

13 else
14 if (j = 1) then
15 minCons← EC(π j(CPi))
16 else
17 if (EC(π j(CPi)) < minCons) then
18 minCons← EC(π j(CPi))
19 else
20 go to 6
21 end

22 end

23 end

24 end
25 return minCons
26 if (i = m) then
27 πB ← minCons
28 else
29 if (minCons < πB) then
30 πB ← minCons
31 end

32 end
33 return πB ⊲ Optimal composition plan

34 end
35 i=i-1
36 if (i ≥ 1) then
37 Select(CPi)

38 go to 5

39 else
40 Invoke Algorithm 4
41 end
42

15

Algorithm 4: Creating an Effective Services Composition from Multiple Providers

input : user service request (USR), number of multiple cloud providers (nCP)
output : most energy efficient service from most “possible” energy efficient datacenter

(S erk(CPi,lT EC)), actual energy consumption of the selected service (minCons)
1 serList← Ø; cldList ← Ø; minCons← Ø; totalCons← Ø
2 Get(USR, nCP)
3 foreach i = 1 to i ≤ nCP step 1 do
4 Select (CPi,lT EC)
5 Get #(Ser(CPi,lT EC))
6 j← #(S er(CPi,lT EC))
7 foreach k = 1 to k ≤ j step 1 do
8 if ((S erk(CPi,lT EC) ∩ USR) − serList == Ø) then
9 if ((S erk(CPi,lT EC) ∩ USR) ∈ serList == true) then

10 if (EC((S erk(CPi,lT EC) ∩ USR) − serList) < EC(S erk(CPi,lT EC) ∈ serList)) then
11 Swap
12 minCons← EC((S erk(CPi,lT EC) ∩ USR) − serList)
13 totalCons← totalCons + minCons
14 go to 7
15 else
16 go to 7
17 end

18 else
19 go to 7
20 end

21 else
22 minCons← EC((S erk(CPi,lT EC) ∩ USR) − serList)
23 serList← serList ∪ ((S erk(CPi,lT EC) ∩ USR) − serList)
24 totalCons← totalCons + minCons
25 go to 7
26 end

27 end
28 if (i < nCP) then
29 i = i + 1
30 go to 4
31 else
32 go to end
33 end

34 end

16

6. Performance Evaluation

This section discusses the settings of the experiments we performed and then analyses the results.

6.1. Experimental settings

To evaluate the performance and potential efficiency gains of our broker model, it is important to bench-

mark the results against well established models and quantify the percentage of consumption that can be

expected when running Cloud-SEnergy algorithm. Five different algorithms for selecting the cloud services

combination were adopted for our comparative evaluation purposes: (All Clouds [38], Base Cloud [38],

Smart Cloud [38], COM2 [39], and DC-Cloud [37]). We use identical simulation parameters of the 5 al-

gorithms in order to enable a systematic and consistent evaluation. The experimental data were based on

the default Web service test-set provided in the OWL-S XPlan package [48]. A dedicated simulator is de-

veloped to conduct the performance assessments and the comparison, using Java EE 8 as the programming

language to implement the proposed algorithm on IBM ILOG CPLEX Optimization Linear Solver [49] as

the simulator environment. The experiments were run on an Apple iMac (Retina 5K display, 3.2GHz Intel

Core i5, and 8GB 1867MHz DDR3). To evaluate the effectiveness of Cloud-SEnergy, we simulated 4 cloud

providers {CP1,CP2,CP3,CP4}. Each of these providers provides a set of pre-defined composition plans,

which are subsets of {π1, π2, π3, π4, π5}, and are based on the MCPs environment as shown in Table 3.

Table 3: Cloud providers composition set per MCP

MCPs CP1 CP2 CP3 CP4

MCP1 π1, π2, π3 π4, π5 π3, π4 π1, π2, π3, π5

MCP2 π1, π2 π3 π2, π5 π1, π4, π5

MCP3 π1, π3, π5 π5 π1, π2 π3, π4

MCP4 π2, π3, π5 π3, π4 π1, π2, π3 π4, π5

MCP5 π1, π2 π2, π3 π3 π1, π4, π5

In addition, {2, 3, 8, 3, 3} in Table 4, represents the number of services involved in each of the aforemen-

tioned composition plans respectively.

Table 4: Number of services per compositions

Composition plan π1 π2 π3 π4 π5

Number of services 2 3 8 3 3

17

The cloud providers are listed in an ascending order based on the Total Energy Consumption (TEC) by

the available set of services, as per Algorithm 1 (Table 5.a). As such, this order will be different in each

MCP, for the same provider as shown in Table 5.b. For example, CP4 comes first in MCP1 as the most

energy efficient one, and last in MCP4 as the least energy efficient one.

Table 5: CPs and energy consumption per MCPs

(a) Before sorting the CPs ascendingly

MCPs CP1 CP2 CP3 CP4

MCP1 〈CP1,2.7〉 〈CP2,3.1〉 〈CP3,3.5〉 〈CP4,2.2〉

MCP2 〈CP1,1.9〉 〈CP2,2.9〉 〈CP3,2.6〉 〈CP4,1.7〉

MCP3 〈CP1,2.2〉 〈CP2,2.8〉 〈CP3,2.4〉 〈CP4,2.5〉

MCP4 〈CP1,2.5〉 〈CP2,2.8〉 〈CP3,2.7〉 〈CP4,3.7〉

MCP5 〈CP1,2.4〉 〈CP2,2.8〉 〈CP3,3.5〉 〈CP4,2.2〉

(b) After sorting the CPs ascendingly

MCPs Sorting order of CPs

MCP1 〈CP4,2.2〉 〈CP1,2.7〉 〈CP2,3.1〉 〈CP3,3.5〉

MCP2 〈CP4,1.7〉 〈CP1,1.9〉 〈CP3,2.6〉 〈CP2,2.9〉

MCP3 〈CP1,2.2〉 〈CP3,2.4〉 〈CP4,2.5〉 〈CP2,2.8〉

MCP4 〈CP1,2.5〉 〈CP3,2.7〉 〈CP2,2.8〉 〈CP4,3.7〉

MCP5 〈CP4,2.2〉 〈CP1,2.4〉 〈CP2,2.8〉 〈CP3,3.5〉

6.2. Experimental results

The results for the 5 benchmark algorithms, the All Clouds in Table 6.a, the Base Cloud in Table 6.b, the

Smart Cloud in Table 6.c, COM2 in Table 6.d and DC-Cloud in Table 6.e are all consistent with previously

published results in [37–39]. We list the results of evaluating the new broker in Table 6.f such that it can be

compared against the aforementioned approaches.

In this paper, we follow the same evaluation methodology and adopt the same cloud simulation environ-

ment. In the first experiment, we evaluate two performance measures, which are:

• The number of cloud providers that are involved in the final composition |CP|, and

• The number of services checked before reaching into the final composition |S |.

Table 6 indicates that Cloud-SEnergy algorithm produced performance improvement compared to other

algorithms in maintaining a low number of examined services and composite clouds. The number of services

examined |S | did not exceed 38, and the number of combined clouds was as low as 2 clouds and never

18

exceeded 3 in the worst in MCP2. In addition, the total number of services and clouds examined by our

broker were the smallest among all other approaches, 152 and 11 respectively, which has a direct impact on

the time spent to find the final composition.

Table 6: CPs and number of (π) composition plans per MCPs

(a) All Clouds algorithm

Performance CP involved |CP| |S|

MCP1 CP1CP2 CP4 3 46

MCP2 CP1CP2 CP3CP4 4 27

MCP3 CP1CP3 CP4 3 32

MCP4 CP1CP2 CP3CP4 4 44

MCP5 CP1CP2 CP3CP4 4 32

Total 18 181

(b) Based Cloud algorithm

Performance CP involved |CP| |S|

MCP1 CP1CP2 2 65

MCP2 CP1CP2 CP4 3 148

MCP3 CP3CP4 2 128

MCP4 CP2CP3 2 68

MCP5 CP2CP4 2 112

Total 11 521

(c) Smart Cloud algorithm

Performance CP involved |CP| |S|

MCP1 CP1CP3 2 70

MCP2 CP1CP2 CP4 3 48

MCP3 CP3CP4 2 48

MCP4 CP2CP3 2 140

MCP5 CP1CP2 CP4 3 56

Total 12 362

(d) COM2 algorithm

Performance CP involved |CP| |S|

MCP1 CP4CP2 2 35

MCP2 CP4CP2 CP3 3 45

MCP3 CP1CP4 CP3 3 50

MCP4 CP1CP3 CP2 3 49

MCP5 CP2CP4 2 30

Total 14 209

(e) DC-CLoud algorithm

Performance CP involved |CP| |S|

MCP1 CP4CP2 2 46

MCP2 CP4CP2 CP3 3 27

MCP3 CP1CP4 2 29

MCP4 CP1CP4 2 44

MCP5 CP2CP3 CP4 3 32

Total 12 178

(f) Cloud-SEnergy algorithm

Performance CP involved |CP| |S|

MCP1 CP4CP2 2 35

MCP2 CP4CP1 CP2 3 26

MCP3 CP1CP3 2 29

MCP4 CP1CP3 2 38

MCP5 CP1CP3 2 24

Total 11 152

Figure 2 shows a comparison analysis of the % reduction in the number of examined atomic services

(relative to the baseline case for each MCP) by Cloud-SEnergy, All Clouds, Base Cloud, Smart Cloud,

and COM2. The baseline for each MCP refers to the case of the maximum number of atomic services

examined for that particular MCP, which is then used as the reference point for calculating the percentage

reduction (relative improvement). Figure 3 shows a comparison of the average number of examined atomic

services in Cloud-SEnergy across all MCPs, compared to the average number of examined services of all

other algorithms. This reduction in number of examined services (Cloud-SEnergy is lowest at 30.4) impacts

positively on the time needed and energy consumed to find the suitable service(s), as will be further discussed

19

in the following experiment.

Figure 2: % reduction in the number of examined atomic services.

Figure 3: The average number of examined services.

To further validate Cloud-SEnergy algorithm’s time and efficiency gains, the second experiment mea-

sured the running time and energy consumption of the 5 algorithms to find the requested composition, and

to compare the results gained in terms of time and energy consumption when Cloud-SEnergy is used to

find the same composition. Figure 4.a shows the performance of Cloud-SEnergy algorithm compared to all

other algorithms in term of the actual running time, measured in seconds, for running the algorithm until

an appropriate composition is reached. It can be seen that Cloud-SEnergy requires less running time to find

20

the requested services, across all MCPs, compared to the 5 benchmark algorithms. This is due to the fact

that Cloud-SEnergy only checks services that match the user request and ignores the others as per lines 7, 7,

and 8 of algorithms 2, 3 and 4, respectively. Hence, the number of tested services (Table 6.f) and run time

(Figure 4.a) to find the appropriate ones are lower. The average run time improvement of Cloud-SEnergy

compared to the 5 benchmarks run time, for all MCPs, are listed in Table 7. For example, Cloud-SEnergy

spends 28.2% less time to find the requested services when compared to All Clouds algorithm. Figure 4.b

also depicts that Cloud-SEnergy algorithm consumes less energy to find the requested services compared to

the rest. These results are obtained based on a pre-sorted list of clouds in an ascending order of total energy

consumption, as per Step 1/Algorithm 1. The average energy consumption improvement of Cloud-SEnergy

over other algorithms are listed in Table 7. For instance, there is 43.3% average reduction in energy con-

sumption when finding requested services, across the 5 used MCPs, using Cloud-SEnergy than All Clouds,

and so on so forth. Table 7 demonstrates the significant efficiency gains of Cloud-SEnergy compared to the

other 5 approaches in terms of both runtime and energy efficiency.

Figure 4: Running time and energy consumption for finding the requested service

21

Table 7: Percentage performance improvement of Cloud-SEnergy over other algorithms

% Run-time reduction % Energy consumption reduction

All Clouds 28.2 43.3

Based Cloud 20.6 4.3

Smart Cloud 14.2 13.1

COM2 8.9 18.7

DC-Cloud 8.5 16.9

7. Conclusion and Future Work

A novel multi-cloud service computing approach (Cloud-SEnergy) is presented, focusing on the selection

of energy-efficient services and service composition plans that meet user requirements. Our Bin-packing-

based service composition approach determines the least possible number of composite services based on an

effective combination of cloud services’ providers that satisfy the user request. Our approach addresses the

increasing need for optimising energy consumption associated with the rise in complex real-world cloud-

based service and user request scenarios, which are characterised by a large number of cloud providers and

services. Our findings were evaluated against 5 established service computing algorithms for multiple cloud

environments and the simulation results demonstrated that Cloud-SEnergy produces significant relative per-

formance improvements in terms of both running time and energy consumption.

Future extensions to this work include the potential incorporation of other energy efficiency relevant

factors, such as the power consumption of switches and links in datacenters, in our objective optimisation

function. Other future research avenues include evaluating our approach using other complex service se-

lection scenarios and assessing its applicability and performance in key application domains such as smart

cities, mobile commerce, and smart government.

References

[1] B. Aldawsari, T. Baker, D. England, Towards a holistic brokerage system for multi-cloud environment,

in: 10th IEEE International Conference on Internet Technology and Secured Transactions (ICITST),

IEEE, 2015, pp. 249–255.

[2] T. Baker, B. Al-Dawsari, H. Tawfik, Y. Ngoko, Greedi: An energy efficient routing algorithm for big

data on cloud, Ad Hoc Networks 35 (2015) 83–96.

22

[3] Z. Maamar, N. Nanjangud, P. Thiran, Towards a coordination model for web services, in: Technologies

for Collaborative Business Process Management, 2006.

[4] B. Benatallah, Q. Sheng, M. Dumas, The self-serv environment for web services composition, IEEE

Internet Computing 7 (2003) 40–48.

[5] D. L.-J. Muhammad Asim, B. Lempereur, B. Zhou, Q. Shi, M. Merabti, Event driven monitoring

of composite services, in: In the International Conference on Social Computing (SocialCom), IEEE,

2013, pp. 550–557.

[6] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, X. Xu, Web services composition: A

decade’s overview., in: Information Sciences, 2014, pp. 218–238.

[7] F. Owusu, C. Pattinson., The current state of understanding of the energy efficiency of cloud com-

puting., in: In IEEE 11th International Conference on Trust, Security and Privacy in Computing and

Communications (TrustCom), IEEE, 2012, pp. 1948–1953.

[8] S. K. Garg, C. S. Yeo, A. Anandasivam, R. Buyya, Environment-conscious scheduling of hpc applica-

tions on distributed cloud-oriented data centers., Journal of Parallel and Distributed Computing 71 (6)

(2011) 732–749.

[9] Y. Sverdlik. Hong kong, china’s data center gateway to the world. [online, cited 16 March 2018].

[10] J. Olivier, G. J. Maenhou, M. Muntean, J. Peters. Trend in global co2 emissions: Pbl netherlands

environmental assessment agency and jrc european commission report [online] (2016).

[11] P. Baer. Exploring the 2020 global emissions mitigation gap [online] (2008) [cited 16 March 2018].

[12] P. Rodrguez-Mier, M. Mucientes, J. C. Vidal, M. Lama, An optimal and complete algorithm for auto-

matic web service composition, International Journal of Web Service Research 9 (2) (2012) 1–20.

[13] X. Wang, J. Wang, Z. Zheng, Y. Xu, M. Yang, Service composition in service-oriented wireless sen-

sor networks with persistent queries, in: 2009 6th IEEE Consumer Communications and Networking

Conference, IEEE, 2009, pp. 1–5.

[14] A. Wolke, B. Tsend-Ayush, C. Pfeiffer, M. Bichler, More than bin packing: Dynamic resource alloca-

tion strategies in cloud data centers., Information Systems (52) (2015) 83–95.

23

http://www.datacenterknowledge.com/archives/2016/02/01/hong-kong-data-center-market-growing-thanks-to-china-effect/
http://www.ippr.org/uploadedFiles/globalclimatenetwork/Exploring_the_Mitigation_Gap%5b1%5d.pdf

[15] J. de Souza, M. J. Rider, J. R. S. Mantovani, Planning of distribution systems using mixed-integer linear

programming models considering network reliability, Journal of Control, Automation and Electrical

Systems 26 (2) (2015) 170–179.

[16] Christensen, Henrik, Arindam, Pokutta, Approximation and online algorithms for multidimensional

bin packing: A survey, Computer Science Review 24 (2017) 63–79.

[17] S. Kuma, R. Buyya, Green Cloud Computing and Environmental Sustainability, John Wiley and Sons,

Ltd, 2012, pp. 315–339. doi:10.1002/9781118305393.ch16.

URL http://dx.doi.org/10.1002/9781118305393.ch16

[18] A. L. Lemos, F. Daniel, B. Benatallah, Web service composition: a survey of techniques and tools.,

ACM Computing Surveys (CSUR) 48 (3) (2016) 33.

[19] W. Lin, C. Zhu, J. Li, B. Liu, H. Lian, Novel algorithms and equivalence optimization for resource

allocation in cloud computing, International Journal of Web and Grid Services 11 (2) (2015) 193–210.

[20] W. Lin, S. Xu, L. He, J. Li, Multi-resource scheduling and power simulation for cloud computing,

Information Sciences 397-398 (2017) 168–186.

[21] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation heuristics for efficient manage-

ment of data centers for cloud computing, Future generation computer systems 28 (5) (2012) 755–768.

[22] J. Wang, C. Huang, K. He, X. Wang, X. Chen, K. Qin, An energy-aware resource allocation heuristics

for vm scheduling in cloud, in: 10th IEEE International Conference on High Performance Comput-

ing and Communications IEEE International Conference on Embedded and Ubiquitous Computing

(HPCCEUC),, IEEE, 2013, pp. 1–7.

[23] D. Kumar, B. Sahoo, B. Mondal, T. Mandal, A genetic algorithmic approach for energy efficient task

consolidation in cloud computing, International Journal of Computer Applications 118 (2) (2015) 1–6.

[24] B. Gupta, D. P. Agrawal, S. Yamaguchi, Handbook of Research on Modern Cryptographic Solutions

for Computer and Cyber Security, Springer, 2016.

[25] B. Hamdaoui, T. Alshammari, M. Guizani, Exploiting 4g mobile user cooperation for energy conser-

vation: challenges and opportunities, IEEE Wireless Communications 20 (5) (2013) 62–67.

24

http://dx.doi.org/10.1002/9781118305393.ch16
http://dx.doi.org/10.1002/9781118305393.ch16
http://dx.doi.org/10.1002/9781118305393.ch16

[26] T. Taleb, M. Corici, C. Parada, A. Jamakovic, S. Ruffino, G. Karagiannis, T. Magedanz, Ease: Epc as

a service to ease mobile core network deployment over cloud, IEEE Network 29 (2) (2015) 78–88.

[27] Y. C. Lee, A. Y. Zomaya, Energy efficient utilization of resources in cloud computing systems, The

Journal of Supercomputing 60 (2) (2012) 268–280.

[28] L. Luo, W. Wu, D. Di, F. Zhang, Y. Yan, Y. Mao, A resource scheduling algorithm of cloud comput-

ing based on energy efficient optimization methods, in: Proceedings of the 2012 International Green

Computing Conference (IGCC ’12), IEEE Computer Society, pp. 1–6.

[29] A. Uchechukwu, K. Li, Y. Shen, Improving cloud computing energy efficiency, in proceedings of the

cloud, in: Proceedings of the Cloud Computing Congress (APCloudCC), IEEE Asia, 2012, pp. 53–58.

[30] U. Wajid, C. A. Marı́n, A. Karageorgos., Optimizing energy efficiency in the cloud using service com-

position and runtime adaptation techniques., in: In IEEE International Conference on Systems, Man,

and Cybernetics (SMC), IEEE, 2013, pp. 115–120.

[31] L. F, M. N., Seeking quality of web service composition in a semantic dimension, IEEE Transactions

on Knowledge and Data Engineering (TKDE) 23 (6) (2010) 942–959.

[32] P. Bartalos, M. B. Blake, Engineering energy-aware web services toward dynamically-green comput-

ing, in: Proceedings of the Service-Oriented Computing-ICSOC 2011 Workshops, Springer, 2012, pp.

87–96.

[33] E. Park, H. Shin, Reconfigurable service composition and categorization for power-aware mobile com-

puting, Parallel and Distributed Systems 19 (11) (2008) 1553–1564.

[34] P. Bartalos, Y. Wei, M. B. Blake, H. Damgacioglu, I. Saleh, N. Celik, Modeling energy-aware web

services and application., Journal of Network and Computer Applications 67 (2016) 86–98.

[35] Z. Guo, Z. Duan, J. Xu, Electricity cost-aware dynamic workload management in geographically dis-

tributed datacenters, Computer Communications 50 (2014) 162–174.

[36] F. Chen, J. Grundy, J.-G. Schneider, Y. Yang, Q. He, Automated analysis of performance and energy

consumption for cloud applications., in: In Proceedings of the 5th ACM/SPEC international conference

on Performance engineering, ACM, 2014, pp. 39–50.

25

[37] J. Lu, Y. Hao, L. Wang, M. Zheng, Towards efficient service composition in multi-cloud environment,

in: IEEE International Conference on Computational Science and Computational Intelligence, IEEE,

2015, pp. 1–6.

[38] G. Zou, Y. Chen, Y. Xiang, R. Huang, Y. Xu, Ai planning and combinatorial optimization for web

service composition in cloud computing, in: Annual International Conference on Cloud Computing

and Virtualization (CCV 2010), 2010, pp. 1–8.

[39] H. Kurdi, A. Al-Anazi, C. Campbell, A. A. Faries, A combinatorial optimization algorithm for multiple

cloud service composition, Computers and Electrical Engineering 42 (C) (2015) 107–113.

[40] J.-Z. Luo, J.-Y. Zhou, Z.-A. Wu, An adaptive algorithm for qos-aware service composition in grid

environments., Service Oriented Computing and Applications 3 (3) (2009) 217–226.

[41] C.-W. Hang, A. K. Kalia, M. P. Singh, Behind the curtain: Service selection via trust in composite

services, in: In IEEE 19th International Conference on Web Services (ICWS), IEEE, 2012, pp. 9–16.

[42] P. Rodriguez-Mier, C. Pedrinaci, M. Lama, An integrated semantic web service discovery and compo-

sition framework, IEEE Transaction on Services Computing 9 (4) (2016) 537–550.

[43] W. Song, Z. Xiao, Q. Chen, H. Luo, Adaptive resource provisioning for the cloud using online bin

packing., IEEE Transactions on Computers 63 (11) (2014) 2647–2660.

[44] OpenStack. [link].

URL https://www.openstack.org/

[45] Eucalyptus. [link].

URL https://www.eucalyptus.com

[46] C. Liu, S. Baskiyar, Scheduling mixed tasks with deadlines in grids using bin packing, in: 14th IEEE

International Conference on Parallel and Distributed Systems (ICPADS’08), 2008, pp. 229–236.

[47] S. Srikantaiah, A. Kansal, F. Zhao., Energy aware consolidation for cloud computing., in: In Proceed-

ings of the 2008 conference on Power aware computing and systems, 2008, pp. 1–5.

[48] R. Karunamurthy, F. Khendek, R. H. Glitho, A novel architecture for web service composition, Journal

of Network and Computer Applications 35 (2011) 787–802.

26

https://www.openstack.org/
https://www.openstack.org/
https://www.eucalyptus.com
https://www.eucalyptus.com

[49] IBM. Optimization model development toolkit for mathematical and constraint programming [online]

(2017) [cited 20 March 2018].

27

http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud

	Introduction
	Problem statement
	Related Work
	The System Model
	Formal datacenter-broker model
	Service composition plan

	Algorithmic Design of Cloud-SEnergy
	Time complexity

	Performance Evaluation
	Experimental settings
	Experimental results

	Conclusion and Future Work

