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Abstract

Electricity supply must be matched with demand at all times. This helps reduce the chances of issues such as
load frequency control and the chances of electricity blackouts. To gain a better understanding of the load that is
likely to be required over the next 24 hours, estimations under uncertainty are needed. This is especially difficult in a
decentralized electricity market with many micro-producers which are not under central control.

In this paper, we investigate the impact of eleven offline learning and five online learning algorithms to predict the
electricity demand profile over the next 24 hours. We achieve this through integration within the long-term agent-
based model, ElecSim. Through the prediction of electricity demand profile over the next 24 hours, we can simulate
the predictions made for a day-ahead market. Once we have made these predictions, we sample from the residual
distributions and perturb the electricity market demand using the simulation, ElecSim. This enables us to understand
the impact of errors on the long-term dynamics of a decentralized electricity market.

We show we can reduce the mean absolute error by 30% using an online algorithm when compared to the best
offline algorithm, whilst reducing the required tendered national grid reserve required. This reduction in national
grid reserves leads to savings in costs and emissions. We also show that large errors in prediction accuracy have a

disproportionate error on investments made over a 17-year time frame, as well as electricity mix.
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1. Introduction

The integration of higher proportions of intermittent
renewable energy sources (IRES) in the electricity grid
will mean that the forecasting of electricity supply and
demand will become increasingly challenging !. Exam-
ples of IRES are solar panels and wind turbines. These
fluctuate in terms of power output based on localized
wind speed and solar irradiance. As supply must meet
demand at all times and the fact that IRES are less pre-
dictable than dispatchable energy sources such as coal
and combined-cycle gas turbines (CCGTs), extra atten-
tion must be made in predicting future demand if we
wish to keep, or reduce, the current frequency of black-
outs [1]. A dispatchable source is one that can be turned
on and off by human control and is able to adjust output
just in time at a moment convenient for the grid.
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"Matching of supply and demand will be referenced as demand
from this point onwards for brevity.

Preprint submitted to Sustainable Computing: Informatics and Systems

Typically, peaker plants, such as reciprocal gas en-
gines, are used to fill fluctuations in demand that had
not been previously planned for. Peaker plants meet the
peaks in demand when other cheaper options are at full
capacity. Current peaker plants are expensive to run and
have higher greenhouse gas emissions than their non-
peaker counterparts. Whilst peaker plants are also dis-
patchable plants, not all dispatchable plants are peaker
plants. For example coal, which is a dispatchable plant,
is run as a base load plant, due to its inability to deal
with fluctuating conditions.

To reduce reliance on peaker plants, it is helpful to
know how much electricity demand there will be in the
future so that more efficient plants can be used to meet
this expected demand. This is so that these more effi-
cient plants can be brought up to speed at a time suitable
to match the demand. Forecasting a day into the future
is especially useful in decentralized electricity markets
which have day-ahead markets. Decentralized electric-
ity markets are ones where electricity is provided by
multiple generation companies, as opposed to a cen-
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tralized source, such as a government. To aid in this
prediction, machine learning and statistical techniques
have been used to accurately predict demand based on
several different factors and data sources [2], such as
weather [3], day of the week [4] and holidays [5].

Various studies have looked at predicting electricity
demand at various horizons, such as short-term [6] and
long-term studies [7]. However, the impact of poor de-
mand predictions on the long-term electricity mix has
been studied to a lesser degree.

In this paper, we compare several machine learning
and statistical techniques to predict the energy demand
for each hour over the next 24-hour horizon. We chose
to predict over the next 24 hours to simulate a day-ahead
market, which is often seen in decentralized electricity
markets. However, our approach could be utilized for
differing time horizons. In addition to this, we use our
long-term agent-based model, ElecSim [8, 9], to simu-
late the impact of different forecasting methods on long-
term investments, power plant usage and carbon emis-
sions between 2018 and 2035 in the United Kingdom.
Our approach, however, is generalizable to any country
through parametrization of the ElecSim model.

Within energy modelling different methodologies are
undertaken to understand how an energy system may
develop. In this paper we used an agent-based model
(ABM). An other approach is the use of optimization
based models. Optimization based models develop sce-
narios into the future by finding a cost-optimal solution.
These models rely on perfect information of the future,
assume that there is a central planner within an energy
market and are solved in a normative manner. That is,
how a problem should be solved under a specific sce-
nario. Agent-based models on the other hand can as-
sume imperfect information and allows a scenario to de-
velop. We believe that ABMs closely match real-life in
decentralised electricity markets.

As part of our work, we utilize online learning meth-
ods to improve the accuracy of our predictions. On-
line learning methods can learn from novel data while
maintaining what was learnt from previous data. On-
line learning is useful for non-stationary datasets, and
time-series data where recalculation of the algorithm
would take a prohibitive amount of time. Offline learn-
ing methods must be retrained every time new data is
added. Online approaches are constantly updated and
do not require significant pauses.

We trial different learning algorithms for different
times of the year. Specifically, we train different algo-
rithms for the different seasons. We also split weekdays
and train both weekends and holidays together. This is
due to the fact that holidays and weekends exhibit sim-

ilar load profiles due to the reduction in industrial elec-
tricity use and an increase in domestic use. This enables
an algorithm to become good at a specific subset of the
data which share similar patterns, as opposed to having
to generalize to all of the data. Examples of the algo-
rithms used are linear regression, lasso regression, ran-
dom forests, support vector regression, multilayer per-
ceptron neural network and the box-cox transformation.

We expect a-priori that online algorithms will outper-
form the offline approach. This is due to the fact that the
demand time-series is non-stationary, and thus changes
sufficiently over time. In terms of the algorithms, we
presume that the machine learning algorithms, such as
neural networks, support vector regression and random
forests will outperform the statistical methods such as
linear regression, lasso regression and box-cox trans-
formation regression. This is due to the fact that ma-
chine learning has been shown to be able to learn more
complex feature representations than statistical methods
[10]. In addition, our previous work has shown that the
random forest was able to outperform neural networks
and support vector regression [11].

It should be noted, that such a-priori intuition, is no
substitute for analytical evidence and can (and has) been
shown to be wrong in the past, due to imperfect knowl-
edge of the data and understanding of some of the black
box algorithms, such as neural networks.

Using online and offline methods, we take the error
distributions, or residuals, and fit a variety of distribu-
tions to these residuals. We choose the distribution with
the lowest sum of squared estimate of errors (SSE). SSE
was chosen as the metric to ensure that both positive and
negative errors were treated equally, as well as ensuring
that large errors were penalized more than smaller er-
rors. We fit over 80 different distributions, which in-
clude the Johnson Bounded distribution, the uniform
distribution and the gamma distribution. The distribu-
tion that best fits the respective residuals is then used
and sampled from to adjust the demand in the ElecSim
model. We then observe the differences in carbon emis-
sions, and which types of power plants were both in-
vested in and utilized, with each of the different statis-
tical and machine learning methods. To the best of our
knowledge, this is the most comprehensive evaluation
of online learning techniques to the application of day-
ahead load forecasting as well as assessing the impacts
of the errors that these algorithms produce on the long-
term electricity market dynamics.

We show that online learning has a significant im-
pact on reducing the error for predicting electricity con-
sumption a day ahead when compared to traditional of-
fline learning techniques, such as multilayer perceptron



artificial neural networks, linear regression, extra trees
regression and support vector regression, which are al-
gorithms used in the literature [1, 12, 13].

We show that the forecasting algorithm has a non-
negligible impact on carbon emissions and use of coal,
onshore, photovoltaics (PV), reciprocal gas engines and
CCGT. Specifically, the amount of coal, PV, and recip-
rocal gas used from 2018 to 2035 was proportional to
the median absolute error, while wind is inversely pro-
portional to the median absolute error.

Total investments in coal, offshore and photovoltaics
are proportional to the median absolute error, while in-
vestments in CCGT, onshore and reciprocal gas engines
are inversely proportional.

In this work, we make the following contributions:

1. The evaluation of different online and offline learn-
ing algorithms to forecast the electricity demand
profile 24 hours ahead. This work extends previ-
ous work by utilizing a vast array of different on-
line and offline techniques.

2. Evaluation of poor predictive ability on the long-
term electricity market in the UK through the per-
turbation of demand in the novel ElecSim simula-
tion. There remains a gap in the literature of the
long-term impact of poor electricity demand pre-
dictions on the electricity market.

In Section 2, we review the literature. We introduce
the dynamics of the ElecSim simulation as well as the
methods used in Section 3. We demonstrate the method-
ology undertaken in Section 4. In Section 5 we demon-
strate our results, followed by a discussion in Section 6.
We conclude our work in Section 7.

2. Literature Review

Multiple papers have looked at demand-side fore-
casting [10]. These include both artificial intelligence
[14, 15, 16] and statistical techniques [6, 17]. In addi-
tion to this, our research models the impact of the per-
formance of different algorithms on investments made,
electricity sources dispatched and carbon emissions
over a 17 year period. To model this, we use the long-
term electricity market agent-based model, ElecSim [9].

2.1. Offline learning

Multiple electricity demand forecasting studies have
been undertaken for offline learning [13, 18, 19]. Stud-
ies have been undertaken using both smart meter data,
as well as with aggregated demand, similar to the work
in this paper. Smart meters are a type of energy meter

installed in each house, which monitor electricity usage
at short intervals, such as every 15 or 30 minutes. All
of the papers reviews in this subsection focus on offline
learning, as opposed to online learning like in this work.
Additionally, we look at the long-term impact of poor
predictions on the electricity market.

Fard et al. propose a new hybrid forecasting method
based on the wavelet transform, autoregressive inte-
grated moving average (ARIMA) and artificial neu-
ral network (ANN) [20]. The ARIMA method is uti-
lized to capture the linear component of the time se-
ries, with the residuals containing the non-linear com-
ponents. The non-linear parts are decomposed using
the discrete wavelet transform which finds the sub-
frequencies. These residuals are then used to train an
ANN to predict the future residuals. The ARIMA and
ANNS s outputs are then summed. Their results show that
this technique can improve forecasting results.

Humeau et al. compare MLPs, SVRs and linear re-
gression at forecasting smart meter data [21]. They ag-
gregate different households and observe which algo-
rithms work the best. They find that linear regression
outperforms both MLP and SVR when forecasting indi-
vidual households. However, after aggregating over 32
households, SVR outperforms linear regression.

Quilumba et al. also apply machine learning tech-
niques to individual households’ electricity consump-
tion by aggregation [20]. To achieve this aggregation,
they use k-means clustering to aggregate the households
to improve their forecasting ability. The authors also use
a neural network based algorithm for forecasting, and
show that the number of optimum clusters for forecast-
ing is dependent on the data, with three clusters optimal
for a particular dataset, and four for another.

In our previous work, we evaluate the performance
of ANNs, random forests, support vector regression and
long short-term memory neural networks [2]. We uti-
lize smart meter data, and cluster by household using
the k-means clustering algorithm to aggregate groups of
demand. Through this clustering we are able to reduce
the error, with the random forest performing the best.

2.2. Online learning

There have been several studies in diverse applica-
tions on the use of online machine learning to predict
time-series data, however, to the best of our knowledge
there are limited examples where this is applied to elec-
tricity markets. In our work, we trial a range of algo-
rithms to our problem. Due to time constraints, we do
not trial the additional techniques discussed in this liter-
ature review within our paper.



Johansson et al. apply online machine learning al-
gorithms for heat demand forecasting [22]. They find
that their demand predictions display robust behaviour
within acceptable error margins. They find that artificial
neural networks (ANNSs) provide the best forecasting
ability of the standard algorithms and can handle data
outside of the training set. Johansson et al., however, do
not look at the long-term effects of different algorithms,
which is a central part to this work.

Baram ef al. combine an ensemble of active learners
by developing an active-learning master algorithm [23].
To achieve this, they propose a simple maximum en-
tropy criterion that provides effective estimates in real-
istic settings. Their active-learning master algorithm is
shown to, in some cases, outperform the best algorithm
in the ensemble on a range of classification problems.

Schmitt ef al also extends on existing algorithms
through an extension of the FLORA algorithm in [24,
25]. The FLORA algorithm generates a rule-based al-
gorithm, which has the ability to make binary decisions.
Their FLORA-MC enhances the FLORA algorithm for
multi-classification and numerical input values. They
use this algorithm for an ambient computing applica-
tion. Ambient computing is where computing and com-
munication merges into everyday life. They find that
their algorithm outperforms traditional offline learners.
Our work focuses on electricity demand, however.

Similarly to us, Pindoriya et al. trial several differ-
ent machine learning methods such as adaptive wavelet
neural network (AWNN) for predicting electricity price
forecasting [26]. They find that AWNN has good pre-
diction properties when compared to other forecasting
techniques such as wavelet-ARIMA, multilayer percep-
tron (MLP) and radial basis function (RBF) neural net-
works. We, however, focus on electricity demand.

Goncalves Da Silva et al. show the effect of predic-
tion accuracy on local electricity markets [27]. They
compare forecasting of groups of consumers. They trial
the use of the Seasonal-Naive and Holt-Winters algo-
rithms and look at the effect that the errors have on trad-
ing in an intra-day electricity market of consumers and
prosumers. They found that with a photovoltaic pene-
tration of 50%, over 10% of the total generation capac-
ity was uncapitalized and roughly 10, 25 and 28% of the
total traded volume were unnecessary buys, demand im-
balances and unnecessary sells respectively. This repre-
sents energy that the participant has no control. Uncap-
italized generation capacity is where a participant could
have produced energy, however, it was not sold on the
market. Additionally, due to forecast errors, the partici-
pant might have sold less than it should have. Our work,
however, focuses on a national electricity market, as op-

posed to a local market.

3. Material

Examples of online learning algorithms are Passive

Aggressive (PA) Regressor [28], Linear Regression,
Box-Cox Regressor [29], K-Neighbors Regressor [30]
and Multilayer perceptron regressor [31]. For our work,
we trial the stated algorithms, in addition to a host of
offline learning techniques. The offline techniques tri-
alled were Lasso regression [32], Ridge regression [33],
Elastic Net [34], Least Angle Regression [35], Extra
Trees Regressor [35], Random Forest Regressor [36],
AdaBoost Regressor [37], Gradient Boosting Regressor
[38] and Support vector regression [39]. We chose the
boosting and random forest techniques due to previous
successes of these algorithms when applied to electric-
ity demand forecasting [11]. We trialled the additional
algorithms due to availability of these algorithms using
the packages scikit-learn and Creme [40, 41].
Linear regression. Linear regression is a linear ap-
proach to modelling the relationship between a depen-
dent variable and one or more independent variables.
Linear regressions can be used for both online and of-
fline learning. In this work, we used them for both on-
line and offline learning. Linear regression algorithms
are often fitted using the least squares approach. The
least squares approach minimizes the sum of the squares
of the residuals.

Other methods for fitting linear regressions are by
minimizing a penalized version of the least squares cost
function, such as in ridge and lasso regression [32, 33].
Ridge regression is a useful approach for mitigating the
problem of multicollinearity in linear regression. Mul-
ticollinearity is where one predictor variable can be lin-
early predicted from the others with a high degree of
accuracy. This phenomenon often occurs in algorithms
with a large number of parameters.

In ridge regression, the OLS loss function is aug-
mented so that we not only minimize the sum of squared
residuals but also penalized the size of parameter esti-
mates, in order to shrink them towards zero:

m
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Where A is the regularization penalty which can be cho-
sen through cross-validation, or the value that mini-
mizes the cross-validated sum of squared residuals, for
instance. n is the number of observations of the response
variable, Y, with a linear combination of m predictor



variables, X, and we solve for [3, where ﬁ’ are the OLS
parameter estimates. Where y; is the outcome and x; are
the covariates, both for the i”* case.

Lasso is a linear regression technique which performs
both variable selection and regularization. It is a type
of regression that uses shrinkage. Shrinkage is where
data values are shrunk towards a central point, such as
the mean. The lasso algorithm encourages models with
fewer parameters and automates variable selection.

Under Lasso the loss is defined as:

Luso®) = D 0= X+ A ) Bl ()
i=1 j=1

The only difference between lasso and ridge regres-
sion is the penalty term.

Elastic net is a regularization regression that linearly
combines the penalties of the lasso and ridge methods.
Specifically, Elastic Net aims to minimize the following
loss function:
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where « is the mixing parameter between ridge (o = 0)
and lasso (@ = 1). The parameters A and « can be tuned.
Least Angle Regression (LARS) provides means of
producing an estimate of which variables to include in a
linear regression, as well as their coefficients.
Decision tree-based algorithms. The decision tree is an
algorithm which goes from observations to output using
simple decision rules inferred from data features [42].
To build a regression tree, recursive binary splitting is
used on the training data. Recursive binary splitting is a
greedy top-down algorithm used to minimize the resid-
ual sum of squares. The RSS, in the case of a partitioned
feature space with M partitions, is given by:

M
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Where y is the value to be predicted and J is the pre-
dicted value for partition R,,.

Beginning at the top of the tree, a split is made into
two branches. This split is carried out multiple times
and the split is chosen that minimizes the current RSS.
To obtain the best sequence of subtrees cost complexity,
pruning is used as a function of @. « is a tuning param-
eter that balances the depth of the tree and the fit to the
training data.

The AdaBoost training process selects only the fea-
tures of an algorithm known to improve the predictive

power of the model [37]. By doing this, the dimension-
ality of the algorithm is reduced and can improve com-
pute time. This can be used in conjunction with multiple
different algorithms. In our paper, we utilized the deci-
sion tree based algorithm with AdaBoost.

Random Forests are an ensemble learning method for
classification and regression [36]. Ensemble learning
methods use multiple learning algorithms to obtain bet-
ter predictive performance. They work by constructing
multiple decision trees and output the predicted value
that is the mode of the predictions of the trees.

To ensure that the individual decision trees within a
Random Forest are not correlated, bagging is used to
sample from the data. Bagging is the process of ran-
domly sampling with replacement of the training set and
fitting the trees. This has the benefit of reducing the
variance of the algorithm without increasing the bias.

Random Forests differ in one way from this bagging
procedure. Namely, using a modified tree learning al-
gorithm that selects, at each candidate split in the learn-
ing process, a random subset of the features, known as
feature bagging. Feature bagging is undertaken due to
the fact that some predictors with a high predictive abil-
ity may be selected many times by the individual trees,
leading to a highly correlated Random Forest.

ExtraTrees adds one further step of randomization
[35]. ExtraTrees stands for extremely randomized trees.
There are two main differences between ExtraTrees and
Random Forests. Namely, each tree is trained using the
whole learning sample (And not a bootstrap sample),
and the top-down splitting in the tree learner is random-
ized. That is, instead of computing an optimal cut-point
for each feature, a random cut-point is selected from a
uniform distribution. The split that yields the highest
score is then chosen to split the node.

Gradient Boosting. Gradient boosting is also an ensem-
ble algorithm [38]. Gradient boosting optimizes a cost-
function over function space by iteratively choosing a
function that points in the negative gradient descent di-
rection, known as a gradient descent method.

Support vector regression (SVR). SVR is an algorithm
which finds a hyperplane and decision boundary to map
an input domain to an output [39]. The hyperplane is
chosen by minimizing the error within a tolerance.

Suppose we have the training set:
1,915y (XY ooy (X, Yu), Where x; is the in-
put, and y; is the output value of x;. Support Vector
Regression solves an optimization problem [13, 43],
under given parameters C > 0 and & > 0, the form of
support vector regression is [44]:



Inputs Hidden Units ~ Outputs

Figure 1: A three-layer feed forward neural network.
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x; is mapped to a higher dimensional space using the
function ¢. The e-insensitive tube (w! ¢(x;) + b) — y; <
£ is a range in which errors are permitted, where b is
the intercept of a linear function. & and & are slack
variables which allow errors for data points which fall
outside of €. This enables the optimization to take into
account the fact that data does not always fall within the
£ range [45].

The constant C > 0 determines the trade-off between
the flatness of the support vector function. w is the al-
gorithm fit by the SVR. The parameters which control
regression quality are the cost of error C, the width of
the tube &, and the mapping function ¢ [43, 13].
K-Neighbors Regressor. K-Neighbors regression is a
non-parametric method [30]. The input consists of a
new data point, and the algorithm finds the k closest
training examples in the feature space. The output is
the mean value of the k nearest neighbours.

Multilayer perceptron. A neural network can be used in
offline and online cases. Here, we used them for both.

Artificial Neural Networks is an algorithm which can
model non-linear relationships between input and out-
put data [46]. A popular neural network is a feed-
forward multilayer perceptron. Fig. 1 shows a three-
layer feed-forward neural network with a single output
unit, kK hidden units, » input units. w;; is the connection
weight from the i input unit to the j hidden unit, and
T; is the connecting weight from the j™ hidden unit to
the output unit [47]. These weights transform the input
variables in the first layer to the output variable in the
final layer using the training data.

For a univariate time series forecasting problem,
suppose we have N observations yi,ys,...,yny in

the training set, and m observations in the test set,
YN+1> YN+25 - - - » YN+m» and we are required to predict m
periods ahead [47]. The training patterns are as follows:

yp+m=fW(y[79yp*1"~"yl) (7)
Yp+m+1 :fW(Yp+]ayp,~--’y2) (8)

YN = JwON=m> YN-m=15 -+ s YN-m—p+1)  (9)

where fy(-) represents the MLP network and W are
the weights. For brevity we omit W. The training
patterns use previous time-series points, for example,
YpsYp-1,---,¥1 as the time series is univariate. That is,
we only have the time series in which we can draw in-
ferences from. In addition, these time series points are
correlated, and therefore provide information that can
be used to predict the next time point.
The m testing patterns are

s yN—m—p+2) (10)
,yN—m—p+3) (11)

YN+1 = SwON+1=m> YN-ts - - -

YN+2 = fwON+2-m> YN-mt1s - - -

YN+m = JwINs YN-15 -« s IN—ps1)- (12)

The training objective is to minimize the overall pre-
dictive mean sum of squared estimate of errors (SSE)
by adjusting the connection weights. For this network
structure the SSE can be written as Zf\i pem Vi~ ¥;) where
9; is the prediction from the network. The number of
input nodes corresponds to the number of lagged obser-
vations. Having too few or too many input nodes can
affect the predictive ability [47].

It is also possible to vary the the number of input
units. Typically, various different configurations of units
are trialled, with the best configuration being used in
production. The weights W in f are trained using
a process called backpropagation, which uses labelled
data and gradient descent to optimize the weights.

3.1. Online Algorithms

Box-Cox regressor. In this subsection, we discuss the
Box-Cox regressor. Ordinary least square is a method
for estimating the unknown parameters in a linear re-
gression algorithm. It estimates these unknown param-
eters by the principle of least squares. Specifically, it
minimizes the sum of the squares of the differences be-
tween the observed variables and those predicted by the
linear function.



The ordinary least squares regression assumes a nor-

mal distribution of residuals. However, when this is not
the case, the Box-Cox Regression may be useful [29].
It transforms the dependent variable using the Box-Cox
Transformation function and employs maximum likeli-
hood estimation to determine the optimal level of the
power parameter lambda.
Passive-Aggressive regressor. The goal of the Passive-
Aggressive (PA) algorithm is to change itself as little as
possible to correct for any mistakes and low-confidence
predictions it encounters [28]. Specifically, with each
example PA solves the following optimisation [48]:

1
Wil <—argmin§||w,—w||2 st yiw-x)>1. (13)

Where x; is the input data and y; the output data, and
w; are the weights for the PA algorithm and w is the
weight to be optimised. Updates occur when the inner
product does not exceed a fixed confidence margin - i.e.,
yi(w - x;) = 1. The closed-form update for all examples
is as follows:

Wil < Wi + @YX (14)
where
1-— .
@ = max{M,O}. (15)
(||

a, is derived from a derivation process which uses the
Lagrange multiplier [28].

3.2. Long-term Energy Market Model

In order to test the impact of the different residual
distributions, we used the ElecSim simulation [8, 9].
ElecSim is an agent-based model which mimics the be-
haviour of decentralized electricity markets. In this pa-
per, we parametrized the model with data of the United
Kingdom in 2018. This enabled us to create a digital
twin of the UK electricity market and project forward.
The data used for this parametrization included power
plants in operation in 2018 and the funds available to
the GenCos [49, 50].

ElecSim is made up of six components: 1) power
plant data; 2) scenario data; 3) the time-steps of the al-
gorithm; 4) the power exchange; 5) the investment al-
gorithm and 6) the GenCos as agents. ElecSim uses
a subset of representative days of electricity demand,
solar irradiance and wind speed to approximate a full
year. Representative days are a subset of days which,
when scaled up, represent an entire year [9]. We show
how these components interact in Figure 2 [8]. Namely,
electricity demand is matched with the supply provided
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Figure 2: System overview of ElecSim [8].

by power plants through the use of a spot market. Gen-
erator companies invest in power plants based upon in-
formation provided by the data sources and expectation
of the data provided by the configuration file.

ElecSim uses a configuration file which details the
scenario which can be set by the user. This includes
electricity demand, carbon price and fuel prices. The
data sources parametrize the ElecSim simulation to a
particular country, including information such as wind
capacity and power plants in operation. A spot market
then matches electricity demand with supply.

The market runs a merit-order dispatch model, and
bids are made by the power plant’s short-run marginal
cost (SRMC). A merit-order dispatch model is one
which dispatches the cheapest electricity generators
first. SRMC is the cost it takes to dispatch a single MWh
of electricity and does not include capital costs. Invest-
ment in power plants is based upon a net present value
(NPV) calculation. NPV is the difference between the
present value of cash inflows and the present value of
cash outflows over a period of time. This is shown in
Equation 16, where ¢ is the year of the cash flow, i is the
discount rate, N is the total number of years, or lifetime
of power plant, and R, is the net cash flow of the year :

N
Ry
NPV(t,N) = vl (16)
; 1+

Each of the Generator Companies (GenCos) estimate
the yearly income for each prospective power plant by
running a merit-order dispatch electricity market simu-
lation ten years into the future. However, it is true that
the expected cost of electricity ten years into the future
is particularly challenging to predict. We, therefore,
use a reference scenario projected by the UK Govern-
ment Department for Business and Industrial Strategy
(BEIS), and use the predicted costs of electricity cali-
brated by Kell et al [9, 51]. The agents predict the future
carbon price by using a linear regression algorithm.



More concretely, the GenCos make investments by
comparing the expected profitability of each of the
power plants over their respective lifetime. They invest
in the power plant which they deem to be the most prof-
itable. A major uncertainty in power plant investment is
the price of electricity whilst the power plant is in oper-
ation. This is often a 25 year period. This is where the
predicted costs of electricity calibrated in [9] is used.

4. Methods

Data Preparation. Similarly to our previous work in
[2], we selected a number of calendar attributes and de-
mand data from the GB National Grid Status dataset
provided by the electricity market settlement company
Elexon, and the University of Sheffield [52]. This
dataset contained data between the years 2011-2018 for
the United Kingdom. The calendar attributes used as
predictors to the algorithms were hour, month, day of
the week, day of the month and year. These attributes
allow us to account for the periodicity of the data within
each day, month and year.

It is also the case that electricity demand on a public
holiday which falls on a weekday is dissimilar to load
behaviours of ordinary weekdays [14]. We marked each
holiday day to allow the algorithm to account for this.

As demand data is highly correlated with historical
demand, we lagged the input demand data. In this con-
text, the lagged data is where we provide data of previ-
ous time steps at the input. For example, for predicting
t+ 1, we use n inputs: t,t — 1, —2,...,t —n. This
enabled us to take into account correlations on previous
days, weeks and the previous month. Specifically, we
used the previous 28 hours before the time step to be
predicted for the previous 1st, 2nd, 7th and 30th day.
We chose this as we believe that the previous two days
were the most relevant to the day to be predicted, as well
as the weekday of the previous week and the previous
month. We chose the previous 28 hours to account for
a full day, plus an additional 4 hours to account for the
previous day’s correlation with the day to be predicted.
We could have increased the number of days provided to
the algorithm. However, due to time and computational
constraints, we used our previously described intuition
for lagged data selection.

In addition to this, we marked each of the days with
their respective seven seasons. These seasons were de-
fined by the National Grid Short Term Operating Re-
serve (STOR) Market Information Report [53]. These
differ from the traditional four seasons by splitting au-
tumn into two further seasons, and winter into three sea-

sons. Finally, to predict a full 24-hours ahead, we used
24 different algorithms, 1 for each hour of the day.

The data is standardized and normalized using min-

max scaling between -1 and 1 before training and pre-
dicting with the algorithm. This is due to the fact that
the inputs such as day of the week, hour of day are sig-
nificantly smaller than that of demand. Therefore, the
demand will influence the result more due to its larger
value. However, this does not necessarily mean that de-
mand has greater predictive power.
Algorithm Tuning. To find the optimum hyperparam-
eters, cross-validation is used. As this time-series data
were correlated in the time-domain, we took the first six
years of data (2011-2017) for training and tested on the
remaining year of data (2017-2018).

Each machine learning algorithm has a different set
of parameters to tune. To tune the parameters in this
paper, we used a grid search method. Grid search is a
brute force approach that trials each combination of pa-
rameters at our choosing; however, for our search space
was small enough to make other approaches not worth
the additional effort.

Tables 1 and 2 display each of the algorithms and re-
spective parameters that were used in the grid search.
Table 1 shows the offline machine learning methods,
whereas Table 2 displays the online machine learning
methods. Each of the parameters within the columns
“Values” are trialled with every other parameter.

Whilst there is room to increase the total number of

parameters, due to the exponential nature of grid-search,
we chose a smaller subset of hyperparameters, and a
larger number of regressor types. Specifically, with neu-
ral networks, there is a possibility to extend the num-
ber of layers as well as the number of neurons, to use a
technique called deep learning. Deep learning is a class
of neural networks that use multiple layers to extract
higher levels of features from the input. For this paper,
however, we decided to trial a large number of different
algorithms, instead of a large number of different con-
figurations for neural networks.
Implementation methodology. The implementation
slightly differs between online and offline learning. In
offline learning, batch processing occurs. That is, all
the data from 2011 to 2017 is used to train the algo-
rithm. Once each of the algorithms had been trained,
the algorithms are used to predict the electricity de-
mand from 2017 to 2018. For hyper-parameter tun-
ing cross-validation is used. Specifically, the training
data is randomly split ten times to select the best hyper-
parameters. This allowed for an unbiased assessment of
the data.

For online learning a similar process is undertaken.
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That is, the algorithms are trained in a batched approach
using data from 2011 to 2017. Between the year 2017
and 2018, the next time-step is predicted and the error
recorded between actual value and the predicted value.
Next, the algorithm is updated using the actual value,
and the next value predicted again.

Prediction Residuals in ElecSim. Each of the algo-
rithms trialled will have a degree of error. Prediction
residuals are the difference between the estimated and
actual values. We collect the prediction residuals to
form a distribution for each of the algorithms. We then
trial 80 different closed-form distributions to see which
of the distributions best fits the residuals from each of
the algorithms. These 80 distributions were chosen due
to their implementation in scikit-learn [40].

Once each of the prediction residual distributions are
fit with a sensible closed-form distribution, we sample
from this new distribution and perturb the demand for
the electricity market at each time step within ElecSim.

By perturbing the market by the residuals, we can ob-
serve what the effects are of incorrect predictions of de-
mand in an electricity market using ElecSim.

ElecSim has previously been validated in [9]. In this
work, we validated our algorithm between the years
2013 and 2018, and recorded the difference between ob-
served electricity mix to predicted electricity mix. We
found that we were able to predict each different elec-
tricity source better than the naive approach. The naive
approach, in this case, was predicting the electricity mix
at the last known point in 2013. However, we were able
to better predict coal, solar and wind by achieving a
mean absolute scaled error (MASE) of ~0.4 for these.
CCGT and nuclear on the other hand had slightly worse
results, achieving a MASE of ~0.7.

5. Results

In this Section, we detail the accuracy of the algo-
rithms to predict 24 hours ahead for the day-ahead mar-
ket. In addition to this, we display the impact of the er-
rors on electricity generation investment and electricity
mix from the years 2018 to 2035 using the agent-based
model ElecSim.

5.1. Offline Machine Learning

In this work, the training data was from 2011 to 2017,
and the testing data was from 2017 to 2018.

Figure 3 displays the mean absolute error of each
of the offline statistical and machine learning algo-
rithms on a log scale. It can be seen that the differ-
ent algorithms have varying degrees of success. The



least accurate algorithms were linear regression, mul-
tilayer perceptron (MLP) and the Least Angle Regres-
sion (LARS), each with mean absolute errors over
10,000MWh. This error would be prohibitively high
in practice; the max tendered national grid reserve is
6,000MWh, while the average tendered national grid re-
serve is 2,000MWh [53].

A number of algorithms perform well, with a low
mean absolute error. These include the Lasso, gradient
Boosting Regressor and K-neighbours regressor. The
best algorithm, similar to [2], was the decision tree-
based algorithm, Extra Trees Regressor, with a mean
absolute error of 1, 604MWh. This level is well within
the average national grid reserve of 2,000MWh.

Table 3 displays different metrics for measuring the
accuracy of the offline machine learning techniques.
These include Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE)
and the Mean R-Squared. The results largely compli-
ment each other. With high error values in one metric
correlating to high error metrics in others for each of the
estimators.

Linear Regression
Lasso

Ridge

ElasticNet

LARS

Extra Trees
Random Forest
AdaBoost

Regressor Model

Gradient Boosting
SVR

MLP

K-Neighbors

" v
10° 108

T
10*
Mean Absolute Error (Log)

Figure 3: Offline algorithms mean absolute error comparison, with
95% confidence interval for 5 runs of each algorithm.

Figure 4 displays the distribution of the best offline
machine result (Extra Trees Regressor). It can be seen
that the max tendered national grid reserve falls well
above the 5% and 95% percentiles. However, there are
occasions where the errors are greater than the maxi-
mum tendered national grid reserve. In addition, the
majority of the time, the algorithm’s predictions fall
within the average available tendered national grid re-
serve. Therefore, there is room for improvement, to
ensure that blackouts do not occur and predictions fall
within the max tendered national grid reserve.

Figures 5 and 6 display the time taken to train the al-
gorithm and time taken to sample from the algorithm
versus the absolute error respectively for the offline al-
gorithms. Multiple fits are trialled for each parameter

10
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Figure 4: Best offline machine learning algorithm (Extra Trees Re-
gressor) distribution.

type for each algorithm. The error bars indicate the re-
sults of multiple cross-validations.

It can be seen from Figure 5 that the time to fit varies
significantly between algorithms and parameter choices.
The multilayer perceptron consistently takes a long time
to fit, when compared to the other algorithms and per-
forms relatively poorly in terms of MAE. There are
many algorithms, such as the random forest regressor,
and extra trees regressors which perform well, however,
take a long time to fit, especially when compared to the
K-Nearest neighbours.

For a small deterioration in MAE it is possible to de-
crease the time it takes to train the algorithm signifi-
cantly. For example, by using the K-Nearest neighbours
or support vector regression (SVR).

1e-01

1e+04 1e+05 1e+06
Mean Absolute Error log10(MAE)

1e+07

AdaBoost ElasticNet ExtraTrees
. GradientBoosting KNeighbors LARS
Estimator Lasso Linear MLP
RandomForest Ridge SVR

Figure 5: Time taken to train the offline algorithms versus mean abso-
lute error. Error bars display standard deviation between points.



Estimator Mean Fit Time = Mean Score Time =~ Mean MSE Mean RMSE ~ Mean MAE  Mean R-Squared
LinearRegression 57 4.84 9444808.95 3073.24 2249.34 0.81
Lasso 787.97 3.13 9446957.22 3073.59 2249.55 0.81
Ridge 26.99 5.03 9444701.58 3073.22 2252.23 0.81
ElasticNet 54.49 6.13 31139231.96  5580.25 4628.64 0.36
llars 46.85 8 10164815.45  3188.23 233331 0.79
ExtraTreesRegressor 9321.52 58.06 5562579.53 2358.51 1605 0.89
RandomForestRegressor 16567.46 13.99 5882618.89 2425.41 1646.29 0.88
AdaBoostRegressor 8897.55 26.9 18551963.36  4307.2 3544.49 0.62
GradientBoostingRegressor ~ 6417.62 8.16 6744402.87 2597 1833.62 0.86
SVR 19170.82 5221.66 51217167.5 7156.62 5926.75 -0.05
KNeighborsRegressor 118.89 15215.87 10107201.23  3179.18 2246.6 0.79

Table 3: Different metrics for offline machine learning results.

The scoring time, displayed in Figure 6, also displays
a large variation between algorithm types. For instance,
the MLP regressor takes a shorter time to sample predic-
tions when compared to the K-Neighbors algorithm and
support vector regression. It is possible to have a clus-
ter of algorithms with low sample times and low mean
absolute errors. However, often a trade-off is required,
with a fast prediction time requiring a longer training
time and vice-versa. Practitioners, therefore, must de-
cide which aspect is most important for them for their
use case: speed of training or of prediction.

1e+02
S 1e+01

o 1e+00

me log

1e-01

Score Ti

1e-02

1e+03 1e+04 1e+05 1e+06

Mean Absolute Error log10(MAE)

1e+07

AdaBoost ElasticNet ExtraTrees
. GradientBoosting KNeighbors LARS
Estimator Lasso Linear MLP
RandomForest Ridge SVR

Figure 6: Time taken to score the offline algorithm versus mean abso-
lute error. Error bars display standard deviation between points.

5.2. Online Machine Learning

To see if we can improve on the predictions, we uti-
lize an online machine learning approach. If we are suc-
cessful, we should be able to reduce the national grid
reserves, reducing cost and emissions.

Figure 7 displays the comparison of mean absolute
errors for the different trialled online regressor algo-
rithms. To produce this graph, we show various hyper-
parameter trials. Where the hyperparameters had the
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Figure 7: Comparison of mean absolute errors (MAE) for different
online regressor algorithms. MLP results for all parameters are shown
in a single barchart due to the very similar MAEs for the differing
hyperparameters.

same results, we removed them. For the multilayer per-
ceptron (MLP), we aggregated all hyperparameters, due
to the similar nature of the predictions.

It can be seen that the best performing algorithm was
the Box-Cox regressor, with an MAE of 1100. This is an
improvement of over 30% on the best offline algorithm.
The other algorithms perform less well. However, it can
be seen that the linear regression algorithm improves
significantly for the online case when compared to the
offline case. The passive aggressive (PA) algorithm im-
prove significantly with the varying parameters, and the
MLP performs poorly in all cases.

Table 4 displays the metrics for each of the online
methods. This includes the mean MSE, mean RMSE
and mean MAE. Again, the metrics largely correlate
with each other. Meaning, that the favoured metric can
be used when selecting an estimator.

Figure 8 displays the best online algorithm. We can
see a significant improvement over the best online algo-
rithm distribution, shown in Figure 4. We remain within
the max tendered national grid reserve for 98.9% of the
time, and the average available tendered national grid
reserve is close to the 5% and 95% percentiles. This
model, therefore would be highly recommended over



Estimator Mean Fit Time = Mean Score Time =~ Mean MSE Mean RMSE ~ Mean MAE
(PA) C = 0.1, fit intercept = false ~ 173.52 24.63 103015609.55  9497.47 5888.4
(PA) C = 0.1, fit intercept = true 168.66 24.07 63201775.28 7430.63 4605.94
(PA) C = 2, fit intercept = false 165.23 23.75 7451087.49 2723.25 1927.33
(PA) C = 2, fit intercept = true 174.91 24.65 7223163.14 2681.2 1907.59
(MLP) (all parameter variations) 71.36 6.58 9612351.37 3076.77 2221.48
(Box Cox) power = 0.1 38.61 4.88 2921934.52 1703.79 1214.95
Linear Regression 38.61 4.85 5629651.14 2368.3 1785.02
Table 4: Different metrics for online machine learning results.
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Figure 8: Best online algorithm (Box-Cox Regressor) distribution.

Figure 9 displays the residuals for a algorithm with
poor predictive ability, the passive aggressive regressor.
It displays a large period of time of prediction errors
at -20,000MWh, and often falls outside of the national
grid reserve. These results demonstrate the importance
of trying a multitude of different algorithms and param-
eters to improve prediction accuracy.

Figure 10 displays a comparison between the actual
electricity consumption compared to the predictions. It
can be seen that the Box-Cox algorithm better predicts
the actual electricity demand in most cases when com-
pared to the best offline algorithm, the Extra Trees re-
gressor. The Extra Trees regressor often overestimates
the demand, particularly during weekdays. Whilst the
Box-Cox regressor more closely matches the actual re-
sults. During the weekend (between the hours of 120
and 168), the Extra Trees regressor performs better, par-
ticularly on the Saturday (between hours of 144 and
168).

Figures 11 and 12 display the mean absolute error
versus test and training time respectively. In these
graphs, a selection of algorithms and parameter com-
binations are chosen.
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Figure 9: Online machine learning algorithm distribution. (Passive
Aggressive Regressor (C=0.1, fit intercept = true, maximum iterations
= 1000, shuffle = false, tolerance = 0.001), chosen as it was the worst
result for the passive aggressive algorithm.
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Figure 10: Best offline algorithm compared to the best online algo-
rithm over a one week period.

Clear clusters can be seen between different types of
algorithms and parameter types. With the passive ag-
gressive (PA) algorithm performing the slowest for both
training and testing. Different parameter combinations
show different results in terms of mean absolute error.

The best performing algorithm is the Box-Cox algo-
rithm, which is also the fastest to both train and test. The
linear regression, which performs worse in terms of pre-
dictive performance, is as quick to train and test as the
Box-Cox algorithm. Additionally, the multilayer per-
ceptron (MLP) is relatively quick to train and test when
compared to the PA algorithms. We, therefore, recom-



mend the Box-Cox algorithm as an optimal for training
and testing speed as well as accuracy.

It is noted that when compared to the offline algo-
rithms, the training time is a good indicator to the test-
ing time. In other words, algorithms that are fast to train
are also fast to test and vice-versa.
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Figure 11: Time taken to test the online algorithms versus mean abso-
lute error.
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Figure 12: Time taken to train the online algorithms versus mean ab-
solute error.

5.3. Scenario Comparison

In this Section we explore the effect of these residuals
on investments made and the electricity generation mix.
To generate these graphs, we perturbed the exogenous
demand in ElecSim by sampling from the best-fitting
distributions for the respective residuals of each of the
online methods. We did this for all of the online learning
algorithms displayed in Figure 7. We let the simulation
run for 17 years from 2018 to 2035.

Running this simulation enabled us to see the effect
on carbon emissions on the electricity grid over a long
time period. For instance, does underestimating elec-
tricity demand mean that peaker power plants, such as
reciprocal gas engines, are over utilized when other, less
polluting power plants could be used?
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5.3.1. Mean Contributed Energy Generation

In this Section we display the mean electricity mix
contributed by different electricity sources from 2018 to
2035.

Figure 13 displays the mean power contributed be-
tween 2018 and 2035 for each source vs. mean abso-
lute error of the various online regressor algorithms dis-
played in Figure 7. A positive correlation can be seen
with PV contributed and mean absolute error. This is
similar for coal and nuclear output. However, it can be
seen that offshore wind reduces with mean absolute er-
ror. Output for the reciprocal gas engine also increases
with mean absolute error.

The reciprocal gas engine was expected to increase
with times of high error. This is because, traditionally,
reciprocal gas engines are peaker power plants. Peaker
power plants provide power at times of peak demand,
which cannot be covered by other plants due to them
being at their maximum capacity level or out of service.
It may also be the case, that with higher proportions of
intermittent technologies, there is a larger need for these
peaker power plants to fill in for times where there is a
deficit in wind speed and solar irradiance.

It is hypothesized that coal and nuclear output in-
crease to cover the predicted increased demands of the
service. As these generation types are dispatchable,
meaning operators can choose when they generate elec-
tricity, they are more likely to be used in times of higher
predicted demand.

5.3.2. Total Energy Generation

In this Section, we detail the difference in total tech-
nologies invested in over the time period between 2018
to 2035, as predicted by ElecSim.

CCGT, onshore, and reciprocal gas engines invest-
ment is less with an increase in MAE, as shown in Fig-
ure 14. While coal, offshore, nuclear and photovoltaics
all exhibit increasing investments with MAE. Therefore,
a smaller error leads to an increased usage of onshore
wind, where lulls in wind supply are covered by CCGT
and reciprocal gas engines.

It is hypothesized that coal and nuclear increase in
investment due to their dispatchable nature. While on-
shore, non-dispatchable by nature, become a less attrac-
tive investment.

CCGT and reciprocal gas engines may have de-
creased in capacity over this time, due to the increase
in coal. This could be because of the large consistent
errors in prediction accuracy that meant that reciprocal
gas engines were perceived to be less valuable.

Figure 15 shows an increase in relative mean car-
bon emitted with mean absolute error of the predic-
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Figure 13: Mean outputs of various technologies vs. mean absolute error from 2018 to 2035 in ElecSim.
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Figure 14: Total technologies invested in vs. mean absolute error from 2018 to 2035 in ElecSim.
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Figure 15: Mean carbon emissions between 2018 and 2035.

tions residuals. The reason for an increase in relative
carbon emitted could be due to the increased output of
utility of the reciprocal gas engine, coal, and decrease
in offshore output. Reciprocal gas engines are peaker
plants and, along with coal, can be dispatched. By be-
ing dispatched, the errors in predictions of demand can
be filled. It is therefore recommended that by improving
the demand prediction algorithms, significant gains can
be made in reducing carbon emissions.

5.3.3. Sensitivity Analysis

In this Section we run a sensitivity analysis to visu-
alise the effects of different errors on the average elec-
tricity mix over the 2018 to 2035 time period. To con-
duct this sensitivity analysis, we used a normal distribu-
tion with a mean of 0 and modified the standard devia-
tion between 1,000 and 20,000, in increments of 1,000.
We selected the normal distribution due to its observa-
tion in nature, and its symmetric properties. We chose
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to increase the standard deviation until 20,000 due to it
being 33% larger than the errors shown in the previous
subsection. This gave us a larger error than had previ-
ously been explored.
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Figure 16: Sensitivity analysis of changing demand prediction er-
ror using a normal distribution and varying the standard deviation vs.
mean contributed energy per type between 2018 and 2035.

Figure 16 displays the results of this sensitivity anal-
ysis. At all standard deviations, photovoltaics displays
the highest contributed energy, CCGT the second most
and nuclear the third most. Coal, onshore and the others
contribute less energy than the top three.

Whilst photovoltaics remains high throughout, it re-
duces up until a standard deviation of 14,000MW, af-
ter which it begins to increase. This reduction up until
14,000MW may be due to the fact that the predicted
demand changes so quickly, that photovoltaics are un-
able to be reliably dispatched on the day-ahead market
to meet this changing predicted demand. Nuclear is,
however, able to fill the demand that photovoltaics can



not, due to its dispatchable nature.

After a standard deviation of 14,000MW, photo-
voltaics increases, whilst nuclear decreases. This may
be due to the large positive error predictions, which pho-
tovoltaics believes it is able to be dispatched on and dis-
places the more expensive nuclear energy technology.

6. Discussion

From our results, it can be seen that different algo-
rithms yield differing prediction accuracies. Online al-
gorithms can result in a decrease in 30% of prediction
error on the best offline algorithms. We calculated this
by comparing the MAE for Extra Trees to the MAE for
the Box-Cox regressor. We, therefore, recommend the
use of online machine learning for predicting electricity
demand in a day-ahead market.

Similar to our assumptions, the online learning algo-
rithms were able to outperform the offline algorithms.
This is due to the non-stationary nature of the data. An
online method is able to use the most up-to-date knowl-
edge of the complex system of energy demand. For
instance, a certain year may have a particularly warm
winter when compared to previous years, reducing the
amount of electricity used for heating.

However, contrary to our assumptions, the online lin-
ear regression techniques outperformed the online ma-
chine learning techniques. This may be due to their sim-
pler nature and ability to learn from a smaller subset of
new data as opposed to relying on a large historic sub-
set. For the offline algorithms, the best performing algo-
rithms were the decision tree approaches such as extra
trees and random forests. This is a similar outcome to
our previous work, which showed that the best perform-
ing method for demand forecasting were random forests
[11]. Contrary to our assumptions, however, the lasso
and ridge regression outperformed the machine learn-
ing techniques support vector regression and multilayer
perceptron. This may be due to the ability of feature se-
lection by lasso and ridge regression, which only uses
the most important features.

To the best of our knowledge, more work has been
done using offline learning to predict electricity de-
mand. This may be due to the additional complexity
of running online algorithms, and a smaller number of
available algorithms to run in an online fashion.

In terms of computing power, finding the optimal in-
put parameters, hyperparameters and algorithms to use
can be a large undertaking. This is due to the exponen-
tial growth of the number of choices that can be made.
This can be an issue where accuracy is of importance,
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especially when the data changes over time, meaning it
may be necessary to retest previous results. However,
due to the financial and sustainability implications, we
believe the trade-off between compute time and accu-
racy is balanced towards compute time. There are also
large implications if the algorithm were to break at a
certain point in time. We, therefore, recommend the
reliance on multiple well-performing algorithms, as op-
posed to solely the best performing algorithm at any one
time.

For training time and prediction time, there is often a
trade-off between training and predicting. For instance,
the k-nearest neighbours is fast to train, but slow to sam-
ple from. Therefore stakeholders must make a decision
based upon accuracy, speed of training and sampling.

The amount of time taken to test and cross-validate
the algorithms increases exponentially with the num-
ber of algorithms and hyper-parameters trialled. It is,
therefore, suggested that cloud computing is used to
train the algorithms. This would enable the trialling of
many different algorithms and hyper-parameters within
a reasonable time limit for this time-sensitive applica-
tion. However, once the algorithms have been trained
and are used for making predictions the predictions can
be made within a two minutes in the worst case. For
the application of predicting 24-hours ahead, this falls
within a reasonable time.

The impact on the broader electricity market has been
shown to be significant. Principally, the investment be-
haviours of GenCos change as well as the dispatched
electricity mix. The relative mean carbon emitted over
this time period increases, due to an increase in the uti-
lization of coal and reciprocal gas engines, at the ex-
pense of offshore wind.

7. Conclusion

In this paper, we evaluated 16 different machine
learning and statistical algorithms to predict electricity
demand in the UK for the day-ahead market. Specif-
ically, we used both online and offline algorithms to
predict electricity demand 24 hours ahead. We com-
pared the ability for the offline algorithms: lasso re-
gression, random forests, support vector regression, for
both online and offline learning: linear regression, mul-
tilayer perceptron and for just online learning: the Box-
Cox transformation and the passive aggressive regres-
sor, amongst others. The Box-Cox, as well as the pas-
sive aggressive regressors, were used as online learning
algorithms, the multilayer perceptron and linear regres-
sion were used as both, whereas the rest were used as
offline learning algorithms.



We measured the errors and compared these to each
algorithm as well as the national grid reserve. We found
that through the use of an online learning approach, we
were able to significantly reduce error by 30% on the
best offline algorithm. We were also able to reduce our
errors to significantly below the national grid’s mean
and maximum tendered reserve, thus significantly re-
ducing the chances of blackouts.

In addition to this, we took these errors, or residuals,
and perturbed the electricity market of the agent-based
model ElecSim. This enabled us to see the impact of
different error distributions on the long-term electricity
market, in terms of investment and electricity mix.

We observed that with an increase in prediction er-
rors, we get a higher proportion of electricity generated
by coal, offshore, nuclear, reciprocal gas engines and
photovoltaics. This could be due to the fact that more
peaker and dispatchable plants are required to fill in for
unexpected demand. In addition, a higher proportion of
intermittent renewable energy sources leads to a higher
use of peaker power plants to fill in the gaps of intermit-
tency of wind and solar irradiance. However, by reduc-
ing the mean absolute error, we are able to reduce the
amount of reciprocal gas engine and coal usage.

In future work, we would like to trial a different selec-
tion of algorithms inputs to the algorithms, for instance,
by providing the algorithm with two months worth of
historical data as dependent variables. Additionally, we
would like to see the impact of predicting wind speed
and solar irradiance to see how these impact the overall
investment patterns and electricity mix. We would also
like to use ensemble models in future, which combine
the results of multiple algorithms.
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