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Abstract— Parallel to the rising debates over sustainable energy and artificial intelligence solutions, the world is currently discussing 
the ethics of artificial intelligence and its possible negative effects on society and the environment. In these arguments, sustainable AI is 
proposed, which aims at advancing the pathway toward sustainability, such as sustainable energy. In this paper, we offered a novel 
contextual topic modeling combining LDA, BERT and Clustering. We then combined these computational analyses with content analysis 
of related scientific publications to identify the main scholarly topics, sub-themes and cross-topic themes within scientific research on 
sustainable AI in energy.  Our research identified eight dominant topics including sustainable buildings, AI-based DSSs for urban water 
management, climate artificial intelligence, Agriculture 4, convergence of AI with IoT, AI-based evaluation of renewable technologies, 
smart campus and engineering education and AI-based optimization. We then recommended 14 potential future research strands based 
on the observed theoretical gaps. Theoretically, this analysis contributes to the existing literature on sustainable AI and sustainable 
energy, and practically, it intends to act as a general guide for energy engineers and scientists, AI scientists, and social scientists to widen 
their knowledge of sustainability in AI and energy convergence research. 

Keywords— Artificial intelligence; sustainability; energy; topic modeling; content analysis; 
sustainable energy;
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1. Introduction 

The rise of unsustainable practices and procedures co-occurred with the rising urbanization and civilization 

have driven the emergence of AI- based solutions to assist the path toward sustainability [1–3]. Excessive 

consumption and unsustainable energy sources, which have increased at an unprecedented rate due to factors 

such as urbanization, improper building construction, transportation, environmental changes, and population 

growth, have pressured the energy industry to pursue clean energy sources and smart solutions [4]. The 

deployment of alternative energy sources and access to sustainable energy are pillars of global economic 

growth [5] and fight against environmental hazards, in particular climate change [6]. Thus, the energy sector 

has focused its efforts not only on developing new sources of energy, but also on inventing novel technical 

solutions that increase the efficiency of existing mitigation measures [7]. AI-based interventions, which are 

available in the form of both hard and soft solutions, such as robots and algorithms and models, are one of 

these solutions that have come to assist humanity [8]. Artificial intelligence can provide a wide range of 

intelligent solutions, from predictive and prescriptive energy consumption insights to intelligent energy 

generation and distribution. 

Parallel to the escalating discussions over sustainable energy and artificial intelligence solutions, the world is 

now debating the ethics of artificial intelligence and its potentially negative effects on society and the 

environment. Ethical AI considers not just AI's moral dimensions, but also its epistemic perspectives [9]. 

While prior studies have urged scholars to focus on the epistemological aspects of sustainable AI and to open 

the black box of algorithms to develop sustainable models and algorithms [10], other researches have 

concentrated on AI for social good and its favorable societal and environmental circumstances [11,12]; such 

as the development of sustainable AI. 

 In this article, we define sustainable AI as AI that is designed to achieve sustainability and is called AI for 

sustainability, as differed from AI that is designed to be sustainable and is called sustainability of AI [10]. In 

this paper, the term "sustainable AI" refers to the extent to which artificial intelligence can help society 

accomplish their sustainability goals [13,14]. The energy industry is one of the core industries that will benefit 

from sustainable AI, which will aid in the development of energy sustainability [15]. Sustainable energy strives 

to fulfill today's energy demand without depleting energy supplies or harming the environment. Sustainable 

energy systems are regarded as a requirement for achieving all the Sustainable Development Goals (SDGs) 

[16]. Sustainable artificial intelligence can help to expedite the development of sustainable energy [14]. To 

advance sustainable energy, the industry has supplied a wide variety of choices, including wind energy, fossil 

fuels, solar energy, and bioenergy. It's also vital to recognize how academics have dealt with the confluence of 

sustainability, artificial intelligence, and energy. 
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This research is novel from various perspectives. First, this study intends to foster discussions on sustainable 

AI by identifying the most important research issues in the area, highlighting intellectual gaps, and proposing 

potential research streams. It is obvious that the energy sector and scientific research and innovation are 

inextricably linked. Scientific research is seen to be the cornerstone of technological advancements [17]. 

Identifying the intellectual frameworks of scientific research across time and the historical progression of its 

themes can have a huge influence on the effectiveness or failure of new technological solutions. To our 

knowledge, scientific research on sustainable energy is lacking a coherent understanding of how artificial 

intelligence has been integrated into this domain and how it should be conducted in the future. It is therefore 

imperative to perform a mixed-method literature review to have a deeper understanding of the deployment of 

AI to achieve sustainable energy in order to identify existing research gaps and potential future research 

streams. The second aspect of this research that distinguishes it from prior research is its novel methodology. 

Extensive literature reviews are conducted by scholars using bibliometric methodologies [18–20] or topic 

modeling techniques such as Latent Dirichlet Allocation (LDA) [21,22] or qualitative content analysis [23]. As 

a result, we incorporated all the aforementioned review methodologies to ensure that their findings were 

complementary. Furthermore, because both bibliometric and LDA topic modeling are based on keyword co-

occurrence analysis, we included a contextual embedding-based topic modeling analysis that incorporates use 

of sentences as fundamental units of analysis. This method which is the latest development in natural 

language processing (NLP) is offered by Google under the name of Bidirectional Encoder Representations 

for Transformers (BERT) [24] . BERT makes use of the Transformer library, which uses machine learning to 

discover contextual relationships between words in a text. Our integrated adoption of computational and 

advanced topic modeling tools, as well as qualitative analysis, enables us to gain highly objective, coherent, 

superior, and meta-analytical insight into present research on sustainable artificial intelligence in energy and to 

forecast its future. The final contribution of this research is that we offer a thorough list of research gaps and 

potential research agendas that may be used to increase the depth of research on sustainable artificial 

intelligence in the energy industry 

In sum, the theoretical contribution of this research is to extent the literatures on sustainable AI and 

sustainable energy by determining the key academic themes, sub-themes and cross-topic common themes 

addressed by scientists working on sustainable AI in energy, as well as how these subjects have evolved over 

time.  Practically, this research attempts to enlighten policymakers, the energy sector, and engineers and 

developers of artificial intelligence about the productivity of science while emphasizing the challenges that 

require more AI-based responses. Additionally, it encourages policymakers to design artificial intelligence 

regulations that promote the development of sustainable AI in the energy sector while mitigating the 

unintended consequences of unsustainable energy sources and AI solutions. 
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The study is structured as follows: we begin with an explanation of our methodology and then go on to the 

findings, which include our topic modeling and content analysis of topics. We conclude the study by 

discussing our findings, theoretical research gaps, and potential future research directions. We also discussed 

the theoretical and practical contribution of the study. We conclude the paper with a conclusion. 

2. Methodology 

It is a widely held belief among researchers that each quantitative and qualitative research technique has 

inherent strengths and weaknesses; hence, combining both methods is advised to ensure that their results 

complement one another. We drew on and included four complimentary sets of research methodologies in 

our study. Three of these, BERT, LDA topic modeling and clustering are connected with text mining 

techniques. Additionally, we supplemented these quantitative findings with a qualitative topic-based content 

analysis. Our mixed-methods approach is new in three ways.  First, we employed computational approaches 

such as BERT, LDA, and clustering to discover the thematic content of research on sustainable AI in energy. 

Second, we conducted a comprehensive analysis of the retrieved topics using content analysis as a qualitative 

approach. Third, we integrated LDA and BERT topic modeling approaches in this study to achieve the 

highest level of topic identification accuracy. Our suggested mixed-method methodology may be used by 

researchers from a variety of disciplines to improve our understanding of quantitative and computational 

analyses through the use of topic-based content analysis. 

 

 

LDA is predicated on the premise that documents are made of topics and that some words are more likely to 

occur in certain topics than others  (Xie et al., 2020). While LDA has been regularly used by academics to 

identify topics, it does have some limitations due to the fact that it is a word co-occurrence analysis and so 

cannot incorporate the entire content of the sentence. Additionally, it does not do well on short texts [26]. 

Additionally, the outcomes of LDA may be challenging for humans to comprehend and consume [27]. By 

contrast, BERT topic modeling is focused on detecting semantic similarity and integrating topics with pre-

trained contextual representations [28] It substantially enhances the coherence of neural topic models by 

including contextual information into the topic modeling process [29]. BERT makes use of the Transformer 

library, which has an Autoencoder technique: an encoder that scans the text input. We combined the LDA 

and BERT vectors in this study to improve topic recognition and clustering. Moreover, because one of the 

most difficult aspects of word-sentence embedding is dealing with high dimensions, we applied the Uniform 

Manifold Approximation and Projection (UMAP) approach. In comparison to other approaches, UMAP is 

one of the most efficient implementations of manifold learning [30]. 
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1.2. Corpus Building 

On May 29th 2021, we searched the following keywords inside the title, keyword, and abstract: "artificial 

intelligence" OR "AI" AND "sustainable" OR "sustainability" AND "energy". This search resulted in the 

retrieval of 981 documents. Following that, we restricted the document type to Articles and the language to 

English. This exclusion resulted in 296 articles. Following that, we manually evaluated the titles and abstracts 

of the articles to identify the most pertinent ones that examined the role of artificial intelligence in ensuring 

the energy sector's sustainability. This screening yielded 182 publications spanning the years 2004 to 2022. 

Given that abstracts of research articles are the most succinct summary of key ideas [22], we included 

abstracts of the final publications in the study's corpus. 

2.2. Preprocessing and Post-Processing Stages  

Python 3.7.9 was utilized for pre- and post-processing, as well as for topic modeling analysis. We 

preprocessed our corpus using the NLTK and Scikit-learn packages, as well as Regular Expressions or 

RegEX. We import the word tokenize from the NLTK to begin the tokenization process. After removing 

punctuation, we lowercased our characters and deleted all numeric characters, punctuation, and whitespace. 

Additionally, we eliminated no-word repetitions and anything enclosed in parenthesis. Additionally, we 

eliminated the NLTK library's stopwords. 

We reviewed the first findings and created a manual exclusion list for more relevant topic identification 

during the postprocessing step. We added the core keywords (i.e. artificial intelligence, AI, energy, sustainable, 

sustainability) in the exclusion list to enhance the coherence of the findings. We used stemming throughout 

the preprocessing step; however, after observing the first results, we decided to remove the stemming to 

make the words displayed in the word clouds more understandable. We next used the lemmatization 

procedure, which we abandoned following the findings of the word clouds in order to make our topic 

labeling approach more comprehensible. Additionally, we estimated the TF-IDF score for each word in the 

corpus. We eliminated words with scores that were lower than the median of all TF-IDF values. We 

calculated the TF-IDF scores using the Scikit-learn package. The maximum TF-IDF score was set to 0.8 and 

the minimum value at 0.11. Additionally, we incorporated unigrams and bigrams. 

3.2. Topic Modeling 

We applied the following libraries to conduct the topic modeling: Pandas to read the dataset, Gensim to 

perform LDA, Transformers to perform BERT, Keras to perform auto-encoding, and Seaborn and 

Matplotlib to visualize the results. We imported the TFID vectorizer from the Scikit-learn feature extraction 

and KMeans from the Scikit-learn cluster. The probabilistic topic assignment vector was constructed using 

LDA, while the sentence embedding vector was constructed using BERT. To begin, we used the TF-IDF, 
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LDA, and BERT to model the topics (Figure 1). The LDA and BERT vectors were then concatenated in 

order to balance the information content of each vectors. We incorporated the Keras package to process the 

auto-encoder in order to learn a lower-dimensional latent space representation for the concatenated vector. 

To ensure the clusters were of good quality, we calculated the Silhouette Score, which was 0.566 and near to 

one for LDA+BERT+ Clustering. TFIDF+clustering received a score of 0.048, while BERT+clustering 

received a score of 0.095 (Figure 2). The Silhouette Score is used for cluster quality [31]. The score ranges 

from -1 to 1. If the score is near to one, the cluster is dense and well isolated from neighboring clusters. In 

comparison to other topic modeling techniques, LDA BERT Clustering is closer to 1, indicating that the 

clusters are of excellent quality.  

 

 

 

 

Figure 1 The concatenating and encoding LDA and BERT vectors to extract contextual topics 
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Figure 2 The separate and independent results of topic modeling of research on sustainable AI in energy by using TF-IDF, BERT 

and LDA algorithms 

The final topic identification obtained by LDA+BERT+Clustering Algorithms is depicted in Figure 3. We 

utilized the UMAP package to do dimension reductions and set the topic count to eight. We also evaluated 

several topic clustering, including 10, 4, and 6. The authors determined that eight topics were better separated 

from one another and had a greater density within each topic; this demonstrates the excellent quality of 

clustering. As indicated by the percentage of documents contained inside each topic, approximately 11% of 

documents belong to topic 0 and approximately 16% to topic 1. Clustering resulted in a balanced distribution 

of documents within each topic, confirming the clustering's excellent quality. 

TF-IDF Clustering BERT

LDA
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Figure 3 The global view of the topic model on sustainable AI in energy research area. We integrated LDA, BERT and clusetering 

for topic modeling detection.  

 

3. Results 

1.3. Descriptive Analysis 

Figure 3.0 shows a representation of the topic model on sustainable AI in energy research field with respect 

to the overall global view. This visualization represents the topic modeling results, where topics are illustrated 

as clusters on a two-dimensional plane. Also shown in Figure 4 is the word cloud visualization of the topics 

with the most frequently used terms in each topic. Topics 1, 2, and 3 represent the greatest research interest 

in the model based on 8 topics and including 21.67%, 17.22%, and 15.0% of the corpus. Our research 

uncovered eight different topics. These topics will be described, and then a content analysis of the papers that 

are associated with each one will be carried out throughout this part of the article. 

These articles were organized according to their relative likelihood of belonging to each topic. As seen in 

Figure 4.0, the three most-covered topics by academia are topic 1: Sustainable buildings (22.5%), Topic 2: AI-

based DSSs for urban water management (16.5%) and Topic 3: Climate Artificial Intelligence (14.8%). About 

54% of the articles in the corpus are concerned with these three themes. 

The word cloud visualization (Figure 6.0) shows the identified topics after labeling based on the topic three 

keywords. The Figure 6 shows that the first three most-used terms in each subject are as follows: Topic 

1(building, consumption, environment); topic 2 (design, water, decision); topic 3 (building, climate, fuel); 

topic 4 (decision, agriculture, improve); topic 5 (IoT, devices, consumption); topic 6 (urban, technology, 

industrial); topic 7 (engineering, efficiency, students); topic 8 (optimization, efficient, building). 
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Figure 4 The distribution of documents across topics  

2.3. The evolution of topics over time 

Once we scoured the corpus for hidden topics, we determined how often they appear throughout time. 

Figure 5 depicts the ratios of all the eight topics (beginning in 2004 and extending into 2021). Since 2018 

forward, topics have garnered a substantial amount of academic interest. Specifically, the first topic, which is 

about the design of sustainable buildings and minimizing energy usage via the application of artificial 

intelligence. This subject gained considerable attention between 2012 and 2014, but then slipped off the 

spotlight between 2015 and 2018. The discussions about AI-based evaluation of renewable energy solutions 

peaked around 2008 but then became less prominent until 2019. Climate artificial intelligence experienced 

two distinct phases, with the second one peaking in 2015 and 2016 and the first between 2009 and 2012; 

however, topic reached its apex in 2019 and 2020. The topic of AI for energy efficiency has shown a 

reasonably steady increase from 2013, with its greatest growth occurring between 2020 and 2021. In 2020, 

significant academic focus was given to AI-based DSSs for urban water management.  
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Figure 5 The evolution of topics over time 

3.3. Content analysis to detect topics, sub-themes and cross-topic common themes 

In this part of the paper, we conducted content analysis of detected topics for three purposes: First, to detect 

the general topics from articles; second, to identify the sub-themes from each topic, and third to find the 

cross-topic common themes.   

Topic 1: Sustainable Buildings and Energy Consumption   

The primary concerns of topic 1 are related to the design of automated and intelligent systems and the 

incorporation of cutting-edge technologies, particularly IoT and AI-based DSSs, in order to construct 

sustainable buildings. These buildings will be part of the sustainable cities initiative, which aims to promote 

sustainable energy consumption and smart grids. 

One of the primary scholarly interests is the creation of sustainable buildings and smart grids for the purpose 

of reducing energy consumption. One way to accomplish this aim is to redefine the design and architecture of 

buildings, whether residential, public, commercial, industrial, or manufacturing. According to studies, the 

application of automation and intelligent systems in the construction of sustainable buildings will result in 

sustainable energy usage [32,33]. Several AI-based approaches are proposed to achieve a more sustainable 

building, including building management systems, knowledge-based engineering (KBE), fuzzy logic, neural 
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networks, genetic algorithms, and Monte-Carlo simulation [34]. From a broad standpoint, sustainable building 

development falls under the umbrella of sustainable smart cities and reducing building energy consumption 

[35]. Additionally, scholars have drawn inspiration from nature and advocated regenerative design influenced 

by nature for pattern detection, prediction, optimization, and planning of buildings [36]. Additionally, scholars 

discuss the potential of AI in reducing CO2 emissions in buildings, suggesting that AI may be used to 

construct smart multi-energy systems, such as those found in industrial districts, resulting in significant energy 

savings and CO2 emission reductions (Simeoni, Nardin and Ciotti, 2018 ). As a result, sustainable building 

design would be a way to combat climate change. 

Several additional studies integrate AI solutions with other cutting-edge technologies, most notably the 

Internet of Things and big data, to improve not only the design and optimization of sustainable buildings, but 

also the efficiency of their power usage (Chui, Lytras and Visvizi, 2018). For instance, one project focused on 

the application of IoT in public buildings in order to discover and anticipate energy usage trends [39]. A 

preceding study, for illustration, outlines the obstacles involved in understanding the semantics of IoT devices 

using machine learning models. Image Encoded Time Series has been identified as an alternate method 

to other statistical feature-based inference[35]. Sustainability analysts from [40] and [41] studies have also 

advocated for continual monitoring of sustainability metrics by integrating AI with DSSs or ambient 

intelligence. 

Both residential buildings and plants and commercial buildings and offices have the same issue in regard to 

energy usage. Previous studies incorporated multi-objective and multi-attribute decision making modeling as 

well as impact evaluation of the emission outputs to help designers and manufacturers to make 

environmentally sustainable decisions about the designs and production of facilities [42]. Researchers also 

believe that in order to provide bulk energy consumption forecast, control, and management, simulation 

techniques could be utilized [15], for instance in public buildings, offices and factories. Due to new modes of 

consumption and distributed intelligence, the electrical power grids have been also influenced, and as a result, 

smart energy grids have been generated to achieve sustainability [43]. 

Topic 2: AI-based DSSs for Sustainable Urban Water Management  

The second topic is sustainable water management, which includes utilizing AI to create DSSs for 

consumption and water usage. Forecasting, real-time monitoring, and customized and adjustable pricing and 

tariffs are the primary strategies. AI is used with other sophisticated technologies to assist in the development 

of a smart city. 

The previous studies have postulated several approaches, such as optimization and AI-based decision support 

systems, for water infrastructure management [44], better delivery of public services of smart cities such as 

water treatment and supply [45], AI-based water pricing and tariff options [46] and sustainable water 
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consumption [47]. For this goal, AI is integrated with recent technological advances in urban life. This 

includes using open source data, employing deep learning algorithms, and developing smart street lighting 

systems. Such decisions about social impacts of smartphone applications or smart travel behavior are also 

examined [48]. 

AI techniques are utilized to anticipate water resource management [49], such as water quality by adopting 

algorithms such as neuro-fuzzy inference system [50]. Real-time optimization of water resources and cloud 

technologies are integrated with visual recognition techniques and created to improve efficiency with 

irrigation systems [51]. A study conducted on ecological water governance implementation using AI found 

that including algorithms into the system yields higher-quality information and better prediction models for 

accurate evaluation of water quality [52]. AI may be used for tracking water use and demand as well as 

forecasting water quality, but it can also be used for estimating water infrastructure maintenance, monitoring 

dam conditions, water-related diseases and disasters [53] and water reuse [54]. 

 By critiquing conventional decision support systems, research offer alternatives based on artificial 

intelligence, such as a systematic decision process [55], sustainability ranking framework based on Mamdani 

Fuzzy Logic Inference Systems to develop a sustainable desalination plant [56] or an comprehensive and 

flexible decision-making process fueled by social learning and engagement aimed at ensuring the urban water 

system's environmental and energy sustainability [57]. One research offers a unique DSS for analyzing the 

energy effect of each of the urban water cycle's macro-sectors, including assessing the system's energy balance 

and proposing potential energy-efficient solutions ( Puleo et al., 2016). 

Topic 3: Climate Artificial Intelligence (Climate Informatics)  

Climate informatics, specially climate artificial intelligence as a new field of study is concerned with issues 

such as AI-based DSSs to reduce greenhouse gas emissions, optimizing grid assets, enhancing climate 

resiliency and reliability, increasing energy efficiency, forecasting energy consumption and modeling earth 

systems. Moreover, within this topic, scholars have addressed the issue of explainable and trustworthy AL 

models due to the controversial nature of climate change.  

Climate change has compelled societies to seek alternate energy sources and fuels [59]. Climate informatics 

[60], such as several AI-based solutions, including novel algorithms and DSSs, have been hugely beneficial in 

lowering greenhouse gas emissions in the energy sector. By improving grid assets, and strengthening climate 

adaptability these innovations have greatly contributed to this ultimate goal [15]. Reliable and explainable 

artificial intelligence models, as advocated in prior studies, might help stakeholders and decision-makers 

achieve climate-resilient and sustainable development goals [61]. By integrating advanced machine learing 

techniques, AI can propose fresh insights in complex climate simulations in the field of climate modeling [62]. 

Energy consumption patterns might undergo considerable changes due to climatic change, which means AI 
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forecasts can aid in estimating future energy use for various climate scenarios [63]. It's not only businesses 

and other organizations that are using AI algorithms these days—AI algorithms are also being utilized to 

foster sustainable urban growth and mitigate climate change by examining how future urban expansion will 

affect material and energy flows [64]. Fossil fuel, used as the primary energy source, is the primary contributor 

to human greenhouse gases that influence the climate. AI is extensively utilized for decreasing carbon 

footprints and for avoiding fossil fuel combustion [65] as prior studies show that AI can act as an automated 

carbon tracker [66]. Artificial intelligence-powered technologies may help investors in analyzing a company's 

climate effect while making investment choices [67]. By drawing attention to climate change through 

visualization techniques, they help to educate the public on the effects of climate change [68]   

Ultimately, AI algorithms may provide great resources for climate change conflicts, including in the field of 

modeling earth systems [69], teleconnections [70], weather forecasting ( McGovern and Elmore, 2017), future 

climate scenarios [72], climate impacts [73] and climate extremes[74]. 

Topic 4: Agriculture 4.0 and Sustainable Sources of Energy  

The fourth area that academics in the field of sustainable AI for energy extensively address is the 

development of smart agriculture and sustainable energy sources. The primary issue in this subject is how to 

combine advanced technologies like IoT, drones, and renewable energy with AI in order to create automated 

and real-time systems. 

According to some researchers, the agriculture industry is suffering from an insufficient application of 

responsible innovation[75]. As a result, the researchers are calling for a system referred to as Responsible 

Agriculture 4.0, which incorporates drones, IoT, robotics, vertical farms, AI, and solar and wind power linked 

to microgrids [76–78]. When it comes to the productivity of agriculture, factors such as the cost of energy for 

cultivation are equally significant [79]. Based on the premise that most agricultural machinery operates on 

fossil fuels, it may potentially contribute to climate change. Thus, new energy solutions, and AI-based 

approaches are provided. One way in which bioproduction and renewable energy may positively influence 

sustainable agriculture and farming is via the development of bioproduction and renewable energy [80]. 

Proposing new AI methods to forecast agricultural energy use has also been researched [79]. biomass may 

also be used to provide sustainable energy in agriculture, and care should be taken to avoid any injuries [81]. 

Real-time alerting systems, AI-based DSSs, real-time DSS forecasting models, and alternative energy sources 

such as solar and wind play a vital role in sustainable agriculture [82]. Maximizing agricultural production and 

economic stabilization while minimizing the use of natural resources and their harmful environmental 

consequences may be accomplished using renewable energy and AI [82]. Artificial intelligence enables 

academics to provide accurate forecasts of agricultural energy use [83]. Especially, a drastic shift toward 

sustainability in agricultural practices has occurred because of its confluence with other cutting-edge 
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technology, including sensors, DSSs, greenhouse monitoring, intelligent farm equipment, and drone-based 

crop imaging. [84].  
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Figure 6 Topics detected by the combination of LDA+BERT+Clustering algorithms on sustainable AI in energy sector 
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Topic 5: Convergence of IoT & AI for Sustainable Smart Cities   

A significant step in the implementation of sustainable energy solutions is to implement smart cities and 

services using internet of things technology. This topic exhibits how AI and IoT operate together to drive 

environmental progress. Much of this topic focuses on measure such as smart buildings, smart grid systems, 

green IoT, and smart campuses. 

AI is used in tandem with a number of cutting-edge technologies for sustainable energy development, such as 

improved energy conservation [85] and building intelligent energy management [86] such as building 

management systems [35]. Internet of Things (IoT) is one of the most promising and pervasive technologies 

[85]; whose integration with AI has generated a revolution in the energy sector. There are many functions in 

creating sustainable energy in the IoT-enabled smart city dubbed City 4.0 [87] such as simulation and 

optimization of power plant energy sustainability [86]. City systems such as water and electricity, as well as 

other infrastructures, such as data analytics, will be driven by sensor and data collection in the smart city [87]. 

A significant use of IoT is in the design of intelligent buildings, which with AI included may support a goal of 

energy or water conservation [39,88], for instance, by educating the citizens on how to use energy more 

effectively and giving them warnings if they are using excessive amounts of energy. [89]. IoT is integral to 

modern grid development as well. In particular, it seeks to transform the traditional, fossil-fuel-based power 

grids with distributed energy resources and integrate it with cutting-edge technology such as artificial 

intelligence for improved grid management [90]. In the same manner, Blockchain has also been considered to 

be a viable alternative for smart cities. Fusing blockchain with AI may be leveraged for smart services, 

including energy load forecasting, categorizing customers, and evaluating energy load [91]. Smart connected 

devices such as IoT devices have successfully employed blockchain in time to retain these devices safe and 

secure in a blockchain network [92].  

The effect of IoT and AI on agriculture and food sectors is also substantial [93,94]. Manufacturing facilities 

such as food factories and plants may be transformed more intelligent and more environmentally friendly via 

the use of IoT and AI, which merge with nonthermal and advanced thermal technologies [94]. Sustainable 

and green IoT are other topics covered in this subject. The two main objectives of the literature on green IoT 

are to increase the recyclability and usefulness of IoT devices, as well as to minimize the carbon footprints of 

such devices. The second objective is to incorporate more effective life cycle assessment (LCA) methods 

integrating artificial intelligence (AI) in order to cut costs and time [95]. Another of the many topics that 

apply to IoT is with developing smart campuses, which are carbon neutral, energy efficient, use less water, 

and are laced with various high-quality green energy tools [96] and smart teaching and learning platforms [97]. 

Researchers have identified the positive traits of IoT devices, but they've also forewarned about the possible 
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risks of the devices and proposed various techniques for detecting weaknesses [93] or challenges regarding 

the heterogeneity of smart devices and their associated meta-data [35]. 

Topic 6: AI-based Evaluation of Renewable Energy Technologies 

Scholarly interest has been generated by the discussion of leveraging AI for DSSs to enhance the efficiency of 

conventional system evaluations for renewable energy technologies. To a great extent, a sustainable future will 

depend on maximizing the use of energy sources that cannot be depleted [98]. Artificial intelligence is 

important for the survival of the future by leveraging a wide range of renewable energy technologies such as 

biomass energy, wind energy, solar energy, geothermal energy, hydro energy, marine energy, bioenergy, 

hydrogen energy, and hybrid energy [99]. AI is used to evaluate renewable energy solutions based on their 

cost of energy production, carbon footprint, affordability of renewable resources, and energy conversion 

efficiency [100]. Artificial intelligence will ensure the most effective use of these resources while also pushing 

for improved management and distribution systems [14]. Distributed energy management, generating, 

forecasting, grid health monitoring, and fault detection are also made more efficient by using automated AI 

systems [101]. AI can help disperse the supply and demand of energy in real-time and improve energy 

consumption and storage allocation  (Sun, Dong and Liang, 2016).  

To mitigate against the barrier of utilizing renewable energy technology, the following measures are taken: 

Renewable energy sustainability is evaluated [103]; in addition, the turbulent and sporadic character of 

renewable energy data is addressed [104]. One research group claims that standard techniques such as LCA 

and EIA (Environmental Impact Assessment) may be improved by developing more advanced digital 

intelligent decision-making systems, or DSSs. It is feasible that improved assessments of renewable energy 

sources may be achieved via intelligent and automated technologies [105]. With the smart mechanisms in 

place, long-term detrimental consequences can be calculated, as well as visible and invisible factors [106]. 

Artificial intelligence (AI) increases the adaptability of power systems, providing DSSs for energy storage 

applications [107]. For instance, to ensure more use of battery-electric buses, and minimize the effect on the 

power grids, the researchers developed an AI-powered DSS [108]. Another research leveraged AI to create a 

DSS for forecasting future energy consumption patterns, and to provide a solution for utilizing renewable 

energy alternatives [109]. 

Topic 7: Smart Campus & Engineering Education 

It is possible to break down the discussions inside this topic into two distinct types: those about engineering 

education and those which deal with using AI and IoT to construct intelligent campuses to help maintain 

sustainability objectives. The two themes represent two elements of education: one dealing with the learning 

contents, and the other with behavioral outcomes of developing smart campuses.To build a model of smart 

campuses, we should focus on incorporating IoT into the infrastructure, with subsequent implementations of 
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smart apps and services, with smart educational tools and pedagogies and smart analysis as well [97]. A 

smart campus is in charge of energy consumption scheduling, while its telecommunications infrastructure 

serves as the place where data transfers are conducted [110]. Integrating cutting-edge technology, a smart 

campus captures real-time data on energy usage, renewable energy power generation , air quality, and more 

[111]. 

Another point of view is that higher education should equip itself with relevant skills and competences to 

help in realizing long-term sustainable objectives [112]. The energy sustainability in this respect may be 

addressed via engineering education and engineering assistance for high-level strategic decision-making [113]. 

This objective can be achieved by using innovative instructional programs, alongside cutting-edge technology 

such as artificial intelligence and the Internet of Things. A living lab campus equipped with technology, as 

well as a deep well of talent and competency, may serve as a digital platform for education and sustainable 

growth [114]. For illustration, to support ongoing research, teaching, and learning on sustainable 

development, the University of British Columbia (UBC) implemented the Campus as a Living Laboratory 

project, which included AI and IoT and other cutting-edge technologies [115]. Furthermore, there have been 

several research done to help AI seamlessly integrate with current educational institutions in order to aid in 

sustainable development learning [116]. 

Topic 8: AI for Energy Optimization  

Conventional optimization methods may be a roadblock for making progress toward sustainability, and AI-

based solutions can help eliminate such roadblocks. Whilst renewable energy sources, like solar and wind, 

have many merits, there are some downsides to consider. They are usually not always available and often rely 

on the climate, which renders employing them complicated [117]. A proper optimization of energy may be 

utilized to minimize greenhouse gas emissions and cut energy usage. Efforts to reduce costs and side effects 

of energy consumption are facilitated using optimization models [118]. Computational and intelligent 

resources have enabled academics to progress with optimization problems by employing advanced AI 

methods. Manufacturers have developed numerous energy-efficient appliances for this reason. Even if the 

deployment of digital technologies in buildings will likely lead to improved energy efficiency, that is not the 

sole solution. Studies recommend implementing energy-saving measures that don't just target environmental 

variables, but also include building inhabitants' comfort and preferences, which is achievable via the 

integration of AI-augmented algorithms [119]. For illustration, AI algorithms that not only monitor current 

actions but also give real-time alerts and warnings to users and providers allow optimization to be 

significantly accelerated. Some approaches, such as algorithms that use energy consumption data to lower 

energy costs in buildings that use advanced AI, are only one example of how AI and advanced technology 

may be used to benefit society [120].  
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Weather has a direct effect on energy consumption, which is indisputable. To ensure the winter heating 

demand of non-residential buildings was calculated correctly, researchers used an optimized artificial neural 

network method to determine and forecast this need [121]. By utilizing AI along with the use of smart 

metering and non-intrusive load monitoring, one may improve energy efficiency by evaluating the electricity 

use of appliances [38]. Using a new approach, researchers found that the GP model was capable of making 

accurate predictions and a multi-objective genetic algorithm, NSGA-II, was also capable of optimizing 

sustainable building design [32]. The use of a fuzzy-enhanced energy system model to represent a route to a 

sustainable energy system has also been presented in another research [122]. The views of other researchers in 

the field include techniques based on artificial neural networks, evolutionary algorithms, swarm intelligence, 

and their hybrids, all of which rely on biological inspiration. These findings imply that sustainable energy 

development is computationally challenging  conventional optimization, demanding advanced techniques 

[123]. 

4. Discussion, Theoretical Gaps, and Future Strands of Research  

To identify the relevant research topics in the literature on artificial intelligence for sustainability in the energy 

industry, we performed a contextual topic modeling combined with qualitative cluster analysis. We went 

beyond previous approaches in developing this novel analysis by combining three algorithms of topic 

modeling (LDA, BERT, and clustering) with content analysis. In this research, eight academic topics were 

discovered including sustainable buildings and energy consumption, AI based DSSs for sustainable urban 

water management, climate artificial intelligence, agriculture 4.0 and sustainable sources of energy, 

convergence of IoT and AI for sustainable smart cities, AI-based evaluation of renewable energy 

technologies, smart campus and engineering education and AI for energy optimization. Concerns and 

problems addressed in each topic are summarized in Figure 7.  The Figure illustrates that each topic addresses 

a number of specific issues, which some of them overlap.  

For topic 1, the key problems are the importance of sustainable buildings for smart city development and 

smart grid services. The issue of AI and its application in decision-making, pricing, forecasting, and 

sustainable consumption are all addressed in this topic. To reach sustainability, various cutting-edge 

technologies are tied to AI. One problem which may be especially neglected is the use of AI technology to 

make buildings eco-friendlier and enhance their inhabitants' feeling of accountability toward sustainability. 

One approach might be to design real-time warning systems to ensure people are prohibited from excessive 

energy use, while also ensuring that they benefit from the AI-based solutions. Convergence research may 

also explore how green architecture is uniquely enabled to deal with complex issues, including environmental 

efficiency, such as using eco-lighting, natural ventilation, shading, green roofs, and artificial intelligence. Most 

of prior research focuses on eco-design and overlooks other factors of green architecture. 
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Topic 2 addresses sustainable urban water management via the use of AI-based DSSs. Conventional DSSs 

were under criticism from academics who suggested alternatives, and innovative approaches to DSSs were 

revealed, particularly with regard to water utilities in a smart city. The second discussion point, focused on 

sustainable consumption and real-time and predictive modeling, is also addressed in topic 2. Mitigating 

urban problems, notably air pollution, waste management, and wastewater management, are applicable here 

to exemplify how smart energy management leveraging AI improves environmental sustainability. Topic 3 

deals with the connection between climate change and artificial intelligence, and the emergence of the climate 

informatics field. This topic highlights the role of trustworthy of explainable AI algorithms, an issue which is 

marginalized in other topics. As a result, a future potential study direction may be the development of ethical 

artificial intelligence in other topics to help with the sustainable management of energy. One prospective 

future study area is the confluence of smart grids, renewable energy, and 5G technology, since these 

technologies have the potential to generate enormous volumes of big data. Furthermore, the use of AI in 

transportation seems worthy of analysis, for example, with regard to traffic predictions, public transit 

planning, and so on. 

The agricultural 4.0 and sustainable energy sources are examined in Topic 4. Many problems relevant to the 

subject of "prosperity, sustainable consumption, forecasting, and convergence with other automated and real-

time technologies" are covered in this topic. There is only a limited body of studies dedicated to precision 

farming and digital mapping, but both developments promise to lead to better knowledge of the environment 

and to improved energy management. Precision farming by assessing soil nutrients, detecting humidity in the 

air, and monitoring crops allows farmers to leverage digital maps for better energy management and fight 

against climate change. Other related areas of study include developing automated working environments. It 

is worthwhile to investigate the effect that artificial intelligence and other green technologies will have onthe 

working conditions of farmers and farm operators, since AI may help with deeper speculations of working 

conditions in farms. 
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Figure 5 Sub-themes extracted from each topic  

In Topic 5, convergent IoT and AI technologies for smart city development were addressed. The primary 

goal of this topic was to discuss issues around sustainable consumption, LCA analysis, and the development 

of intelligent energy grids. Pervasive Wi-Fi connection, due to its ability to save energy, is critical in this 

subject. Additionally, a significant problem is open data sharing in energy management. AI-based assessment 

of renewable energy technologies, such as DSSs, financial problems, sustainable consumption, and automated 

and real-time systems are all issues in this topic that focus on renewable energy. One potential study path in 

this topic involves the challenges that AI algorithms and models face when attempting to evaluate renewable 

energy solutions. Other sophisticated AI systems, such as deep learning, make use of supervised learning 

using human-annotated data, and thus they are limited when it comes to complicated situations. 

The subject of smart campus and engineering education is examined in the seventh topic. Labs that facilitate 

continuous innovation are discussed in this article, as well as the idea of sustainable consumption, AI skills, 

and convergence with other technologies. There is an imperative requirement for further research to clarify 

how AI might be leveraged for practical learning and training for a range of stakeholders across businesses, 

farmers, residents, and employees in relation to energy management. AI is discussed in relation to energy 

optimization in Topic 8 of the study. This subject covers many elements of sustainable 
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optimization, including forecasting, consumption, affordable pricing, and societal and financial impacts. 

However, there is a dearth of distributed energy resource optimization models, particularly due to the 

emergence of blockchain. 

 

Figure 6 Identified cross-topic common themes 

 

As shown in Figure 8, we discovered six core problems that were prevalent throughout the majority of the 

topics. For example, tariff and price models based on artificial intelligence are prevalent in topics 1 and 2; 

while economic issues in general are a concern in topics 4, 6, and 8. The dilemma of sustainable consumption 

is prevalent in all of these topics, demonstrating the critical role of AI in attaining sustainable energy use. 

Forecasting is inextricably connected to sustainable consumption, since more than half of the topics cover 

both; demonstrating the progress of AI forecasting algorithms for sustainable consumption. Forecasting, on 

the other hand, is not restricted to anticipating consumption patterns.  

The topic's second significant recurring theme is the development of AI-based DSSs. The majority of 

research have contested traditional DSSs and devised decision-making systems based on artificial intelligence. 

Sustainable building, urban water management, climate change, and renewable energy evaluation have all been 

substantially influenced by AI-based DSSs. Automated and real-time systems enabled by artificial intelligence 

are also discussed in relation to buildings, agriculture, the Internet of Things, and renewable energy 

technologies. Scholars have combined various digital technologies to promote sustainability in the energy 

sector via the management of buildings, water, agriculture, IoT, and smart campuses. 



23 
 

 

 

 

  

Figure 7 Possible future streams of research pertaining to each topic 

5. Theoretical and Practical Contribution  

1.5. Theoretical Contribution  

Our results supplement existing work on sustainable AI and sustainable energy by delivering the following 

results. Results from this study provide and highlight a thematic map of the sustainable AI research topics 

existing in several fields, such as energy, ethics, and management. We developed a novel mixed-method 

approach, the contextual topic modeling and content analysis, to visualize the latent knowledge structures 

pertaining to AI and sustainability and energy. This yielded in a conceptual framework representing the main 

topics, subtopics and common terms in each topic pertaining to sustainable AI in energy. Using LDA and 

BERT, eight themes related to AI in the sustainability and energy sectors were discovered. We provided the 

most likely terms for each topic, as well as the distribution of articles and topics throughout time. Finally, by 

using a thematic analysis method, we identified and qualitatively analyzed the hidden themes. 
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Second, we examined and analyzed hidden sub-themes within each topic, as well as common themes between 

topics, using a content analysis method. Figure 8 illustrates the sub-domain themes within each topic, whereas 

Figure 9 depicts the common cross-topic themes. Our content analysis of each topic reveals six recurring 

themes: sustainable consumption, AI-based DSSs, forecasting models, economic and pricing problems, 

automated and real-time systems, and convergence with digital technology. To further our knowledge, we 

highlighted how these themes intersect across topics in order to articulate the commonalities 

across topics. These six separate but related topics demonstrate that sustainable AI solutions can be observed 

at a range of behavioral, decision-making, economic, operational, and technical dimensions. At the behavioral 

level, shifts in consumption patterns are illustrated; at the decision-making level, decision automation is 

outlined; at the economic level, personalized tariffing is demonstrated; at the operational level, automation 

and real-time operations are addressed; and at the technological level, convergence with other technologies is 

studied.  

2.5. Practical Implications 

This research provides energy engineers, social scientists, scientists, and policymakers with a variety of 

insights. Engineers may develop sustainable energy products and services. Energy scientists can also integrate 

sustainability considerations into their research and development of new energy sources such as renewable 

energy. In their discussions on AI and energy, social scientists may also emphasize ethical problems, including 

sustainability. Additionally, policymakers may create and construct new laws and policy initiatives aimed at 

mitigating the harmful effects of unsustainable energy on society and the environment. 

6. Conclusion 

To discover heavily discussed scholarly topics, our study utilized a new topic modeling technique. While this 

illustration depicts the trajectory of previous efforts, it also prompted us to propose a number of possible 

future research strands targeted at increasing energy sector sustainability via the application of artificial 

intelligence technology. The aim of this study is to further the conversation on sustainable AI and energy, as 

well as their intersection, in order to get a deeper understanding of how AI may be incorporated to achieve 

sustainability in the energy sector. 
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