
Evolving Behavioral Specialization in Robot Teams to

Solve a Collective Construction Task

G.S. Nitschke
Computational Intelligence Research Group, Computer Science Department

University of Pretoria, Pretoria, 0002, South Africa
gnitschke@cs.up.ac.za

M.C. Schut, A.E. Eiben
Computational Intelligence Group, Computer Science Department

Vrije Universiteit, Amsterdam
De Boelelaan 1081a, 1081HV Amsterdam, The Netherlands

schut@cs.vu.nl, gusz@cs.vu.nl

Abstract

This article comparatively tests three cooperative co-evolution methods for
automated controller design in simulated robot teams. Collective Neuro-
Evolution (CONE) co-evolves multiple robot controllers using emergent be-
havioral specialization in order to increase collective behavior task perfor-
mance. CONE is comparatively evaluated with two related controller design
methods in a collective construction task. The task requires robots to gather
building blocks and assemble the blocks in specific sequences in order to build
structures. Results indicate that for the team sizes tested, CONE yields a
higher collective behavior task performance (comparative to related meth-
ods) as a consequence of its capability to evolve specialized behaviors.

Keywords: Neuro-Evolution, Collective Construction, Specialization

1. Introduction

The automated design and adaptation of collective behavior in simulated
(agent) or situated and embodied (robot) groups (Schultz and Parker, 2002)
often uses biologically inspired design principles. Collective behavior refers to
group behaviors that result from the interaction of individual agents or robots

Preprint submitted to Swarm and Evolutionary Computation August 22, 2011

(Schultz and Parker, 2002). The objective of such systems is to replicate
desirable collective behaviors exhibited in biological systems such as social
insect colonies (Bonabeau et al., 1998), multi-cellular organisms (Hawthorne,
2001), and economies of a nation and companies (Resnick, 1997).

As an essential part of survival in nature, there is a balance of cooperation
versus competition for resources between and within different species. An
individual’s ability to survive (its fitness) changes over time since it is coupled
to the fitness of other individuals of the same and different species inhabiting
the same environment. Co-adaptation between species is referred to as co-
evolution (Futuyma and Slatkin, 1983) and has manifest itself in the form
of increasingly complex competitive and cooperative behaviors (Polechovà
and Barton, 2005). Natural co-evolution has provided a source of inspiration
for the derivation of co-evolution algorithms (Wiegand, 2004). Co-evolution
algorithms work via decomposing a given task into a set of composite sub-
tasks that are solved by a group of artificial species. These species either
compete (competitive co-evolution) or cooperate (cooperative co-evolution)
with each other in order to solve a given task. Co-evolution provides a
natural representation for many collective behavior tasks, since each species
is equatable with the behavior of individual agents or robots.

In certain biological systems, behavioral specializations have evolved over
time as a means of diversifying the system in order to adapt to the environ-
ment (Seligmann, 1999). For example, honey bees efficiently divide labor
between specialized individuals via dynamically adapting their foraging be-
havior for pollen, nectar, and water as a function of individual preference
and colony demand (Calderone and Page, 1988). That is, in many biological
systems, specialization is fundamental mechanism necessary for the group to
adapt to task and environment constraints and achieve optimal efficiency.

This research proposes combining Neuro-Evolution (NE) (Yao, 1999) and
cooperative co-evolution (Potter and De Jong, 2000) to adapt Artificial Neu-
ral Networks (ANN) (Haykin, 1998) agent controllers in order that a group
of simulated agents solve a collective behavior task.

This research falls within the purvey of evolutionary robotics research
(Nolfi and Floreano, 2000). Within the larger taxonomy of cooperative multi-
robot systems (Farinelli et al., 2004). The robot teams simulated in this
research are defined as being cooperative, heterogeneous, aware, weakly coor-
dinated, and distributed. That is, the teams are cooperative in that the robots
co-operate in order to perform some global task (Noreils, 1993). The teams
are heterogeneous since each robot is initialized with and develops a different

2

behavior (Stone, 2000) over the course of a cooperative co-evolution process.
The teams are aware in that robots take into account the actions performed
by other robots in order to accomplish their own task (Batalin and Sukhatme,
2002). The teams are weakly coordinated in that they do not employ any ex-
plicit or predefined coordination protocol (Batalin and Sukhatme, 2002). In
this research, coordination and cooperation are emergent properties resulting
from the interaction between robots and their environment (Steels, 1990).

1.1. Neuro-Evolution, Cooperative Co-Evolution, and Collective Behavior

NE is the adaptation of ANNs using artificial evolution (Yao, 1999). The
main advantage of NE is that details about how a task is to be solved does
not need to be specified a priori by the system designer. Rather, a simulator
is used to derive, evaluate and adapt controller behaviors for a given task
(Miikkulainen, 2010). For a comprehensive review of NE methods the reader
is referred to Floreano et al. (2008).

Cooperative co-evolution methods use cooperation between multiple species
(populations of genotypes) and competition between genotypes within a
species to derive solutions. Applied to a collective behavior task, geno-
types within a species constitute candidate partial solutions to a complete
solution. That is, genotypes within the same species compete for the role
of the fittest genotype (a candidate partial solution). Individuals selected
from each species are co-evolved in a task environment where they collec-
tively form complete solutions. Genotypes from each species that work well
together (as complete solutions) are selected for recombination. The fittest
complete solutions are those that yield the highest collective behavior task
performance, when tested in a given simulator.

The advantages of cooperative co-evolution include versatility and appli-
cability to many complex, continuous, and noisy tasks (Chellapilla and Fogel,
1999). The use of multiple species provides a natural representation for many
collective behavior tasks (Bryant and Miikkulainen, 2003), (Blumenthal and
Parker, 2004), (Nitschke et al., 2010), and specialization is often effectuated
in the behaviors evolved by species (partial solutions) in response to task and
environment constraints (Potter et al., 2001), (Li et al., 2004).

An overview of all methods that combine NE and cooperative co-evolution
is beyond the scope of this article. Recent reviews of NE based cooperative
and competitive co-evolution, applied to solve collective behavior tasks, can
be found in Floreano et al. (2008) and Nitschke (2009a).

3

Given the success of previous cooperative co-evolution methods that use
NE to solve collective behavior tasks, this research proposes to apply the
Collective Neuro-Evolution (CONE) method, detailed in section 2 to solve a
complex collective construction task. The goal of this article is to evaluate
the task performance of CONE in comparison with two related controller
design methods that use NE. The two other controller design methods tested
are Multi-Agent Enforced Sub-Populations (MESP) (Yong and Miikkulainen,
2007), and Cooperative Co-Evolutionary Algorithm (CCGA) (Potter, 1997).
CCGA and MESP were selected since both methods have been demonstrated
as being appropriate for facilitating specialization in the behaviors of ANN
controlled agents and for solving collective behavior tasks (Potter et al.,
2001), (Yong and Miikkulainen, 2007). All methods are evaluated in a Gath-
ering and Collective Construction task (section 3).

1.2. Collective Construction

This article investigates a collective construction task (section 3). Col-
lective construction tasks require that agents coordinate their behaviors or
cooperate in order to build structures in the environment. Most research
that applies adaptive methods to solve collective construction tasks has been
studied in the context of simulated agent groups (Theraulaz and Bonabeau,
1995), (Werfel and Nagpal, 2008), (Panangadan and Dyer, 2009).

The collective construction task studied in this article, requires that
agents first gather resources and place them in a construction zone. Collec-
tive gathering tasks require that agents search for, and transport resources
from given locations to another part of the environment (Bonabeau et al.,
1998). Collective gathering tasks typically require that agents divide their
labor amongst sub-tasks to derive a collective behavior that maximizes the
quantity of resources gathered. Thus collective gathering (and by extension
collective construction) tasks are interpretable as optimization problems and
have been studied with mathematical models (Bonabeau et al., 1996), (Ther-
aulaz et al., 1998), (Gautrais et al., 2002). There are numerous examples of
adaptive methods applied to simulated agent groups in order that collec-
tive gathering (Murciano and Millan, 1997), (Ijspeert et al., 2001), (Waibel
et al., 2006), (Gautrais et al., 2002), (Bonabeau et al., 1997) or construction
(Theraulaz and Bonabeau, 1995), (Thomas et al., 2005), (Guo et al., 2009),
(Werfel and Nagpal, 2008), (Panangadan and Dyer, 2009) tasks are solved.

For example, Theraulaz and Bonabeau (1995) proposed a controller for
an agent team given a collective construction task in a three-dimensional

4

simulation environment. Agents moved randomly on a cubic lattice and
placed building blocks whenever they encountered a stimulating configuration
in the structure being built. Agent behaviors were guided by previous work,
since each time an agent placed a building block, it modified the shape of
the configuration that triggered its building action. The new configuration
then stimulated new building actions by other agents, which resulted in the
emergence of a collective construction behavior. Results indicated that these
local stigmergic agent interactions succeeded in building multiple complete
structures that resembled nests built by social insects such as wasps.

Guo et al. (2009) used a controller based on a Gene Regulatory Networks
(GRN) to derive behaviors for a simulated multi-robot team given a collective
construction task. The collective construction task was for the robots to self
assemble into various shapes and patterns. Local interactions of the robots
were represented by biologically inspired reaction-diffusion model. Results
indicated that the GRN inspired multi-robot controller was effectively able to
balance two different (specialized) behaviors in each robot. First, to approach
and join a predefined shape, and second, to avoid collisions with other robots.

Expanding upon previous research using reactive ANN controllers for
agents that build structures in two dimensional simulation environments
(Panangadan and Dyer, 2002), Panangadan and Dyer (2009) introduced
a connectionist action selection mechanism (ConAg) agent controller. An
agent team was given the task of collecting colored discs (building blocks)
and transporting them to a particular location to build a structure with
a given configuration. A Reinforcement Learning (Sutton and Barto, 1998)
method was used so as each agent learnt a sequence of behaviors necessary for
it to perform the construction task, and a heuristic controller comparatively
tested. Results indicated that the behavior and success of heuristic-based
controller was dependent upon the shape of the structure being built, and
sensitive to disc locations in the environment. This was not the case for the
ConAg controller, which was sufficiently robust so as to continue building
the desired structure even if discs were moved during construction.

As with these related research examples, this article studies a simulated
agent group that must solve a collective construction task. In this article,
collective refers to the increase in task performance that results from the
division of labor and agents working concurrently.

5

1.3. Research Objectives and Hypotheses

Objective 1: To extend previous work (Nitschke, 2009b), and investigate the
efficacy of CONE as a controller design method for a more complex
collective construction task (robots must build up to 10 structures,
each structure containing up to 100 components). Nitschke (2009b)
demonstrated that CONE was effective at evolving specialized robot
controllers that complemented each other to form collective construc-
tion behaviors that built one object using 10 to 30 components.

Objective 2: Test CONE for evolving controllers in teams that contained
a greater number of robots (teams of 50 or 100). Nitschke (2009b)
described a collective construction task using teams of 30 robots.

Hypothesis 1: For the given collective construction task, CONE evolved teams
yield a statistically significant higher task performance, for all environ-
ments and teams tested, compared to CCGA and MESP evolved teams.

Hypothesis 2: CONE Genotype and Specialization Difference Metrics (GDM
and SDM, respectively), that adaptively regulate inter-population re-
combination, evolve behavioral specializations that result in statisti-
cally significant higher task performances, comparative to CCGA and
MESP evolved teams. Without these specializations the higher task
performance of CONE evolved teams could not be achieved.

1.4. Contributions

This research extends the collective construction task described in Nitschke
(2009b). However, there are four key differences in this article’s research.

1. Larger team sizes. Nitschke (2009b) tested only team sizes of 30 robots,
where as this research tests team sizes of 50 and 100 robots. The team
sizes used in this research are comparable to team sizes tested in swarm
robotics experiments (Beni, 2004).

2. Increased task complexity. Nitschke (2009b) evaluated robot teams for
the task of collectively building structures that consist of between 10
and 30 building blocks, where only a single structure had to be built.
This article’s experiments evaluate teams that concurrently build one
to 10 structures. Each structure comprises 10 to 100 building blocks.

3. Increased fidelity in multi-robot simulator. Nitschke (2009b) simulated
robot teams using a simple low-fidelity multi-robot simulator imple-
mented using the MASON simulation toolkit (Luke et al., 2005). In

6

the MASON simulator, robot sensors and actuators, and the physics
of robot movement only had relevance within the simulation. This re-
search uses an extension of the high-fidelity EvoRobot Khepera robot
simulator, which allows teams of up to 100 Kheperas to be simulated.
EvoRobot was used so as robot behaviors evolved in simulation could
potentially be transferred to physical Khepera robots.

4. Self Regulating Difference Metrics. Nitschke (2009b) used a version of
CONE with static values for the Genotype and Specialization Difference
Metrics (GDM and SDM, respectively). The GDM and SDM regulate
inter-population recombination based on average weight differences and
degrees of specialization exhibited by controllers (section 2.3). In this
article’s research, the GDM and SDM are self-regulating meaning that
inter-population recombination is adaptively regulated.

For the reader’s convenience, a list of abbreviated terms and symbols used
throughout this article are presented in table 7, at the end of the article.

2. Methods: Collective Neuro-Evolution (CONE)

CONE is an automated controller design method that uses cooperative
co-evolution to adapt a team of ANNs (agent controllers). Given n genotype
populations (species), n controllers are evolved (one in each population).
Controllers are collectively evaluated (as a team) according to how well they
solve a given task. Each controller is a recurrent feed-forward ANN with one
hidden layer. The hidden layer is fully connected to the input and output
layers, with recurrent connections to the input layer. Each hidden layer
neuron is encoded as a genotype. CONE evolves the input-output connection
weights of hidden layer neurons, and within each species combines the fittest
of these neurons into complete controllers.

CONE extends the work of Yong and Miikkulainen (2007) on Multi-Agent
Enforced Sub-Populations (MESP), with the inclusion of two novel contribu-
tions. First, CONE solves collective behavior tasks using emergent behavioral
specialization in agents. Second, CONE uses genotype and specialization
metrics to regulate inter-population genotype recombination and facilitate
behavioral specialization appropriate for each agent. When these specialized
agent behaviors interact, the team is able to increase task performance and
solve collective behavior tasks that could not otherwise be solved.

7

Unlike related cooperative co-evolution methods, including CCGA (Pot-
ter and De Jong, 2000), ESP (Gomez, 2003), and MESP (Yong and Miikku-
lainen, 2007), CONE uses Genotype and Specialization Difference Metrics
(GDM and SDM, respectively), to regulate genotype recombination between
and within populations. Based upon genotype similarities and the success of
evolving behavioral specializations, the GDM and SDM control recombina-
tion and direct the evolution of collective behaviors in an agent team.

For succinctness, this section describes only CONE’s representation (sec-
tion 2.1), how behavioral specialization is measured (section 2.2), the GDM
and SDM (section 2.3) and CONE’s iterative evolutionary process (section
2.4). Nitschke (2009a) presents a comprehensive description of CONE.

The design choices for CONE’s representation and iterative process were
motivated by two sets of previous research. First, the work upon which
CONE is based (Gomez, 2003), which successfully solved collective behav-
ior tasks (Bryant and Miikkulainen, 2003), (Yong and Miikkulainen, 2007).
Second, research on genetically heterogeneous agent teams (agents have dif-
ferent genotypes) indicates that such teams are amenable to evolving spe-
cialized behaviors (Luke et al., 1998), (Baldassarre et al., 2003), especially in
cooperative co-evolutionary systems (Garcia-Pedrajas et al., 2005).

The use of the GDM and SDM as mechanisms to regulate inter-population
recombination was motivated by research on partially heterogeneous agent
groups. A partially heterogeneous group is an agent group comprised of sub-
groups that are, on average, more genetically similar (but not identical) to
individuals of their given sub-group, comparative to individuals of the rest
of the population (Waibel et al., 2009). In this article’s research, such sub-
groups are defined as species. The impact of partial genetic heterogeneity on
the evolution of group behaviors, especially with respect to the evolution of
multiple, complementary specialized behaviors has received little investiga-
tion in evolutionary multi-agent (Mirolli and Parisi, 2005), or swarm robotics
(Beni, 2004) research. However, Luke et al. (1998) and Luke (1998) suggest
that partial genetic heterogeneity in an evolving agent group can lead to spe-
cialized behaviors. This is supported by studies in biology Hamilton (1964),
Lehmann and Keller (2006). Furthermore, Perez-Uribe et al. (2003), and
Waibel et al. (2009) indicated that increases in team fitness were related to
selection within genetically related agents. As an extension, the GDM and
SDM were derived with the supposition that recombining genetically and
behaviorally related agents, would increase the team’s task performance, or
allow the team to solve tasks that could not otherwise be solved.

8

GP 3

GP 1

SP 11

SP 12

SP 13

SP 31

SP 32

SP 33

SP 34

GP 2

SP 21

SP 22

SP 23

ANN 1

ANN 2

ANN 3

Task Environment

GP: Genotype Population
SP: Sub-Population

Figure 1: CONE Example. A controller is evolved in each population. All controllers are
evaluated in a collective behavior task. Double ended arrows indicate self regulating re-
combination occurring between populations. ANN : Artificial Neural Network (controller).
GP X : Genotype Population X. SP Xz: Sub-Population z in Genotype Population X.

Input connection
weights

Output connection
weights

g
0

g
1 ...

g
w

g
w+1 ...

g
w+v+

Tag: Hidden
layer position

Input Neurons

+

g
1 ...

g
w

g
w+1

 ...
g

w+v
Output Neurons

Decoding to
phenotype:

Hidden layer
neuron

Genotypeg =

Figure 2: CONE Genotype. There is a direct mapping between a genotype and a hidden
layer neuron. A genotype has w genes indicating the neuron’s input connection weights,
and v genes for the neuron’s output weights. A tag (g0) specifies the neuron’s position in
a controller’s hidden layer, and hence the sub-population to which the genotype belongs.

9

2.1. Representation: Multi-Population Structure

As with related NE methods (Potter, 1997), (Gomez, 2003), CONE seg-
regates the genotype space into n populations so as to evolve n controllers.
CONE mandates that ANNi (1 ≤ i ≤ n) is derived from population Pi,
where Pi contains ui (initially) or wi (u > 0, due to controller size adap-
tation) sub-populations. Figure 1 exemplifies the use of sub-populations in
CONE. ANN1 and ANN2 (evolved from populations 1 and 2, respectively)
has three hidden layer neurons, whilst ANN3 (evolved from population 3)
has four hidden layer neurons. Thus, populations 1 and 2 consist of three
sub-populations, for evolving the three neurons in ANN1 and ANN2. Where
as, population 3 uses four sub-populations for evolving the four neurons in
ANN3. ANNi is derived from Pi via selecting one genotype from each sub-
population and decoding these genotypes into hidden layer neurons (figure
2). ANNi consists of w input neurons, and v output neurons, fully connected
to all hidden layer neurons. In this research, CONE uses a fixed number of
input, output and hidden layer neurons.

The CONE process is driven by mechanisms of cooperation and compe-
tition within and between sub-populations and populations. Competition
exists between genotypes in a sub-population that compete for a place as
a hidden layer neuron in the fittest controller. Cooperation exists between
sub-populations, in that fittest genotypes selected from each sub-population
must cooperate as a controller. Cooperation also exists between controllers
since controllers must cooperate to accomplish a collective behavior task.

2.2. Behavioral Specialization

An integral part of CONE is defining and measuring controller behav-
ioral specialization. The degree of behavioral specialization (S) exhibited by
a controller is defined by the frequency with which the controller switches
between executing distinct motor outputs (actions) during its lifetime. The
S metric used is an extension of that defined by Gautrais et al. (2002), and
was selected since it is applicable to individual controller behaviors, accounts
for a partitioning of a controller’s work effort among different actions, and is
simple enough to work within CONE. The metric is also general enough to
define specialization as the case where controllers regularly switch between
different actions, spending an approximately equal portion of its lifetime on
each action, but where there is a slight preference for one action.

Equation 1 specifies the calculation of S, which is the frequency with
which a controller switches between each of its actions during its lifetime.

10

Equation 1 assumes at least two distinct agent actions and that an agent
executes an action during the same simulation iteration of an action switches.
In equation 1, A is the number of times the controller switches between
different actions, and N is the total number of possible action switches.

S =
A

N
(1)

An S value close to zero indicates a high degree of specialization. In this
case, a controller specializes to primarily one action, and switches between
this and its other actions with a low frequency. An S value close to one
indicates a low degree of specialization. In this case, a controller switches
between some or all of its actions with a high frequency. A perfect specialist
(S = 0), is a controller that executes the same action for the duration of
its lifetime (A = 0). An example of a non-specialist (S = 0.5) is where
a controller spends half of its lifetime switching between two actions. For
example, if A = 3, N = 6, then the controller switches between each of its
actions every second iteration.

Controllers are labeled as specialized if S is less than a given behavioral
specialization threshold (for this study a 0.5 threshold was selected). Other-
wise, controllers are labeled as non-specialized. If a controller is specialized,
then it is given a specialization label action x, where x is the action executed
for more than 50% of the iterations of the controller’s lifetime. If multiple
controllers are specialized, then controllers are grouped according to their
common specialization label. In the case that an agent performs a low num-
ber of action switches (S < 0.5), such that it executes at least two actions for
approximately equal durations, then the agent is assumed to have multiple
specializations, since continuous and equal periods of time are spent on each
action. If an agent performs a low number of action switches (S < 0.5),
and is able to execute at least two actions simultaneously, then the agent is
assumed to have one specialization defined by the interaction of these actions
and named by the experimenter. This is the case in this study, since robot
controllers can execute two actions simultaneously (section 3.3).

2.3. Regulating Recombination and Adaptation of Algorithmic Parameters

The purpose of the genotype and specialization difference metrics (GDM
and SDM, respectively) is to adaptively regulate genotype recombination
between different populations as a function of the fitness progress of all con-
trollers. As part of the regulation process, two dynamic algorithmic param-

11

eters, the Genetic Similarity Threshold (GST), and Specialization Similarity
Threshold (SST), are used by the GDM and SDM, respectively.

The initial GST and SST values are floating point values randomly ini-
tialized in the range: [0.0, 1.0]. Whenever the GST value is adapted by the
GDM, a static value (δGST) is either added or subtracted to the GST value.
Similarly, when the SST value is adapted by the SDM, a static value (δSST)
is either added or subtracted to the SST value. The remainder of this section
describes the mechanisms used to adapt the SST and GST values.

2.3.1. Genotype Difference Metric (GDM):

The GDM is a heuristic that adaptively regulates recombination of similar
genotypes in different populations. Any two genotypes ā and b̄ are consid-
ered similar if the average weight difference (Wineberg and Oppacher, 2003)
between ā and b̄ < GST . Regulating genotype recombination between pop-
ulations is integral to the CONE process. That is, controllers must not be
too similar or dissimilar so as the (specialized) behaviors of controllers prop-
erly complement each other in accomplishing a collective behavior task. The
GST value, and hence inter-population genotype recombination, is adapted
as a function of the number of previous recombinations and a team’s average
fitness progress (of the fittest n controllers). The following rules were used to
regulate the GST value and thus the number of inter-population recombina-
tions, with respect to average team fitness and the number of inter-population
recombinations that occurred over the previous V generations.

1. If recombinations between populations have increased over the previous
V generations, and fitness has stagnated or decreased, then decrement
the GST value, so as to restrict the number of recombinations.

2. If recombinations between populations have decreased or stagnated,
and fitness has stagnated or decreased over the last V generations, then
increment the GST value, to increase the number of recombinations.

Similar genotypes in different populations may encode very different func-
tionalities, recombining similar genotypes may produce neurons that do not
work well in the context of a controller. The Specialization Difference Metric
(SDM) addresses this problem.

2.3.2. Specialization Difference Metric (SDM):

The SDM adaptively regulates genotype recombination based on behav-
ioral specialization similarities exhibited by controllers. The SDM ensures

12

that only the genotypes that constitute controllers with sufficiently similar
behaviors are recombined. If the behavior of two controllers are calculated
to have sufficiently similar specializations, the GDM is applied to regulate
inter-population recombination. The SDM measures the similarity between
the specialized behaviors of controllers ANNi and ANNj. Controllers are
considered to have similar specializations if the following conditions are true:

1. |S(ANNi)−S(ANNj)| < SST , where, S (equation 1 in section 2.2) is
the degree of behavioral specialization exhibited by ANNi and ANNj.

2. If ANNi and ANNj have the same specialization label.

The SST value is adapted as a function of behavioral specialization sim-
ilarities and a team’s average fitness (of the fittest n controllers) progress.
The following rules are used to regulate the SST value, and hence the num-
ber of inter-population recombinations with respect to the average degree of
behavioral specialization (S) and fitness of a team.

1. If the S of at least one of the fittest controllers has increased over
the last W generations, and average fitness stagnates or is decreasing
over this same period, then decrement the SST value. Thus, if the
fittest controllers have an average S that is too high for improving
team fitness, then recombination between populations is restricted.

2. If the S of at least one of the fittest controllers has decreased over the
last W generations, and average fitness stagnates or is decreasing over
this same period, then increment the SST value. Thus, if the fittest
controllers have an average S that is too low to improve team fitness,
then allow for more recombination between populations.

2.4. Collective Neuro-Evolution (CONE) Process Overview

This section overviews CONE’s iterative evolutionary process. Nitschke
(2009a) presents a comprehensive description of each step of CONE’s process.

1. Initialization. n populations are initialized. Population Pi (i ∈ {1, . . . , n})
contains ui sub-populations. Sub-population Pij contains m genotypes.
Pij contains genotypes encoding neurons assigned to position j in the
hidden layer of ANNi (ANNi is derived from Pi).

2. Evaluate all Genotypes. Systematically select each genotype g in each
sub-population of each population, and evaluate g in the context of a
complete controller. This controller (containing g) is evaluated with

13

n-1 other controllers (where, n is the number of controllers in a team).
Other controllers are constructed via randomly selecting a neuron from
each sub-population of each of the other populations. Evaluation re-
sults in a fitness being assigned to g.

3. Evaluate Elite Controllers. For each population, systematically con-
struct a fittest controller via selecting from the fittest genotypes (elite
portion) in each sub-population. Controller fitness is determined by
its utility. Utility is the average fitness of the genotypes correspond-
ing to a controller’s hidden layer. Groups of the fittest n controllers
are evaluated together in task simulations until all genotypes in the
elite portion of each population have been assigned a fitness. For each
genotype, this fitness overwrites previously calculated fitness.

4. Parent Selection. If the two fittest controllers ANNi and ANNj con-
structed from the elite portions of Pi and Pj are calculated as having
sufficiently similar behavioral specializations (section 2.2) then Pi and
Pj become candidates for recombination. For Pi and Pj to be recom-
bined, both ANNi and ANNj must have the same specialization label
(section 2.2). That is, both ANNi and ANNj must be behaviorally
specialized to the same action. Between Pi and Pj each pair of sub-
populations is tested for genetic similarity (average weight difference
is less than GST). Genetically similar sub-populations are recombined.
For sub-populations that are not genetically similar to others, recom-
bination occurs within the sub-population. Similarly, for populations
that are not behaviorally similar to other populations, recombination
occurs within all sub-populations of the population.

5. Recombination. When pairs of sub-populations are recombined, the
elite portion of genotypes in each sub-population is ranked by fitness.
Genotypes with the same fitness rank are recombined. For recombi-
nation within a sub-population, each genotype in the sub-population’s
elite portion is systematically selected and recombined using one-point
crossover (Eiben and Smith, 2003), with another randomly selected
genotype from the sub-population’s elite portion.

6. Mutation. Burst mutation with a Cauchy distribution (Gomez, 2003)
is applied to each gene of each genotype with a given probability.

7. Parameter Adaptation. If the fitness of one of the fittest controllers has
not progressed in:

(a) V generations: Adapt Genetic Similarity Threshold (GST).

14

(b) W generations: Adapt Specialization Similarity Threshold (SST).

8. Stop condition. Reiterate steps [2, 7] until a desired collective behavior
task performance is achieved, or the process has run for X generations.

3. Task: Gathering and Collective Construction (GACC)

The Gathering And Collective Construction (GACC) task requires that
robots place building blocks in a construction zone in a specific sequence to
build a predefined structure. This GACC task extends previous work, that
demonstrated that behavioral specialization is beneficial for accomplishing a
collective construction task (Nitschke, 2009b). The GACC task presented in
this article extends Nitschke (2009b) via increasing task complexity, using
more robots and building blocks, and imposing a constraint that teams must
concurrently construct multiple objects. The motivation for increasing task
complexity, and testing larger team sizes was to thoroughly test the efficacy
of CONE as a controller design method. Table 1 presents the GACC task
parameters. The calibration of these parameters is discussed in section 4.2.

A GACC task was selected since it is a simulation with potential col-
lective behavior applications including multi-robot gathering and collective
construction in hazardous or uninhabitable environments, such as underwa-
ter habitats or space stations (Werfel and Nagpal, 2006). This GACC task is
collective in that robots must coordinate their behaviors so as to concurrently
gather building blocks and then deliver the building blocks to a construction
zone in a correct sequence. This GACC task consists of three sub-tasks.

1. Search for Building Blocks1: The environment contains type A and B
blocks. A light on each block makes it detectable by robot light sensors.

2. Transport blocks: Robots must grip and transport blocks to a con-
struction zone, a predefined space in the environment. All robots have
a priori knowledge of the location of the construction zone, and thus
do not need to discover the construction zone.

3. Build structure: In the construction zone, robots must place the blocks
in a specific sequence of block types required for structure assembly.

1The terms building block and block are used interchangeably.

15

Table 1: Simulation and Neuro-Evolution Parameters. For the GACC Task.

Simulation and Neuro-Evolution Parameter Settings

Robot Movement Range 0.01 (of environment width / length)

Light/Proximity Detection Sensor Range 0.05 (of environment width / length)

Initial Robot Positions Random (Excluding construction zone)

Construction Zone Location Environment’s Center

Environment Width / Height 10m / 10m

Block Distribution (Initial Locations) Random (Excluding construction zone)

Simulation runs (Evolution/testing phases) 20

Iterations per epoch (Robot lifetime) 1000 Iterations

Generations 100

Epochs 10

Mutation (per gene) probability 0.05

Mutation type Burst (Cauchy distribution)

Mutation range [-1.0, +1.0]

Fitness stagnation V / W 5 / 10 Generations (CONE)

Population elite portion 20%

Weight (gene) range [-1.0, +1.0]

Crossover Single point

ANN sensory input neurons 20

ANN hidden layer neurons (CONE evolved) 4

ANN motor output neurons 4

Genotype Vector of floating point values

Genotype length 24 (CONE / MESP) / 96 (CCGA)

Team size 50 / 100

Genotype populations 50 / 100

Genotypes per population 200 / 100

Total genotypes 10000

16

AB

A

Construction Zone

B

A

A

A A
A B B A A B
 A A

A

A A

1000 cm

10
00

 cm

B

Construction Schema = { A(East), B(North, South, East),
A(End), A(End), B(East), A(North, South, East), A(End),
A(End), A(East), B(End) }

Assembled Block Structure =

Figure 3: Gathering and Collective Construction (GACC) Example. Seven type A, and
three type B blocks are randomly distributed throughout the environment. In the construc-
tion zone, five blocks are connected as a partially assembled structure. The construction
schema and target structure are given at the bottom. The team uses 10 robots.

This sequence is specified by a construction schema. The construction
schemas tested in this GACC task are presented in section 3.2.

Team task performance is the number of blocks placed in the construction
zone (in a correct sequence) during a team’s lifetime. Figure 3 presents an
example of the GACC task being accomplished by a team of 10 robots. In
figure 3, the construction schema used is labeled: Assembled Block Structure.

Assembled Block Structure = A(East), B(North, South, East), A(End),
A(End), B(East), A(North, South, East), A(End), A(End), A(East), B(End);

Where, for a given block type(A and B), North, South, East,West denotes
the block side to which the next block type in a sequence is to be connected.
End denotes a final block to be connected to another block’s side.

17

Table 2: Construction Schemas. For given environments, the block type sequence (A, B)
to build a structure. E : East, W : West, N : North, S : South. End : No more connections.

Environment Construction Schema

1, 6 A(E) B(E) B(S) B(E) B(E) B(E) B(S) B(E) B(S) A(End)

2, 7 A(E) B(E) B(S) A(E) B(E) B(E) A(S) B(E) B(S) A(End)

3, 8 B(S) A(S) B(E) A(E) B(N) A(N) B(E) A(E) B(S) A(End)

4, 9 B(E) A(E) A(S) B(E) A(E) A(E) B(S) A(E) A(S) B(End)

5, 10 B(E) A(E) A(S) B(E) A(E) A(E) A(S) A(E) B(S) B(End)

3.1. Simulation Environment

The environment is a 1000cm x 1000cm continuous area, simulated using
an extended version of the EvoRobot simulator (Nolfi, 2000), and contains:

• Q building blocks (Q ∈ {2, . . . , 100}, type {A,B}). Type A and B
blocks have a low and high intensity light on their tops, respectively.

• N robots (N ∈ {2, . . . , 100}). Table 4 presents light detection sensor
and gripper settings for block detection and transport, respectively.

• A construction zone (100cm x 100cm) at the environment’s center.

Initially, blocks (1.0cm x 1.0cm) and robots (5.5cm in diameter) are ran-
domly distributed in the environment, except in the construction zone.

3.2. Assembling Structures

A structure is defined as a combination ofm blocks (where,m ∈ {2, . . . ,Q}).
A construction schema specifies how blocks must be assembled in order for
a structure to be built. That is, a construction schema defines which block
sides (for a given block type) must connect to the next block in a sequence.

Construction Schema = {Bi(c), ..., Bj(c)};

Where: i, j ∈ {1, . . . ,Q}, c ∈ {North, South,East,West, End}, B = Block.

To keep construction simple, it is assumed that any block can be initially
placed in the construction zone. However, the next block must be connected
to one side of the initially placed block. Consider the example in figure 3. If

18

Table 3: Simulation Environments: Block type distribution and structures to be built.

Environment Type A Blocks Type B Blocks Structures

1 2 8 1

2 14 6 2

3 20 10 3

4 22 18 4

5 30 20 5

6 45 15 6

7 52 18 7

8 68 12 8

9 80 10 9

10 94 6 10

a type B block is the first to be placed in the construction zone, then (for the
given construction schema) the next block placed must be a type A block
connected to the north, west, or south face, or a type B block connected to
the east face. Alternatively, another type B block can be connected to the
west face, or a type A block to the east face. The task is complete when
all blocks have been transported to the construction zone and connected
according to the sequence defined by the construction schema.

Table 2 presents the construction schemas used for the simulation envi-
ronments tested. For each environment, one construction schema is used.
Table 3 presents, for each environment, the number of type A and B blocks,
and the number of structures that must be assembled from these blocks.

3.3. Robots

Robots are simulated Kheperas (Mondada et al., 1993). Each robot is
equipped with eight light sensors (for block detection) and Infra-Red (IR)
proximity (for obstacle avoidance) detection sensors, providing each a 360
degree Field of View (FOV). Also, each robot has two wheel motors for
controlling speed and direction, and a gripper for transporting blocks. Figure
4 depicts the sensor and actuator configuration of each robot. Detection
sensor values are normalized in the range [0.0, 1.0], via dividing a sensor
reading by the maximum sensor value. Table 1 presents the robots’ light and
proximity detection sensor ranges, and maximum movement range.

19

MO-0

SI-0

SI-1

SI-3

SI-4

SI-8

SI-9

SI-11

SI-12

SI-13

SI-2

SI-10

SI-5

SI-15

SI-7

SI-14

SI-6MO-1

MO-2

[SI-0, SI-7]:Light Sensors [SI-8,SI-15]: Infrared Proximity Sensors

[MO-0, MO-1]: Wheel Motors [MO-2]: Gripper Motor

Khepera Sensor and Actuator Configuration

SI-8 / SI-0

SI-9
 /S

I-
1

SI
-2

 /
SI

-1
0

SI-3 / SI-11
SI-4 / SI-12

SI-5
 /

SI-1
3

SI
-6

 /
SI

-1
4

SI-7 / SI-15

Khepera Sensor Quadrants (SQ)

SQ-0

SQ
-1

SQ
-2

SQ-3
SQ-4

SQ
-5

SQ
-6

SQ-7

Figure 4: Robot Sensors and Actuators. Each simulated Khepera has eight light ([S-0,
S-7]) and eight infra-red proximity ([S-8, S-15]) sensors on its periphery. Each robot also
has three actuators: two wheel motors ([MO-0, MO-1]), and one gripper motor (MO-3).

Table 4: Block Detection and Transportation. Block detection and transportation requires
robots to use different light detection sensor and gripper settings, respectively.

Block Type Required Light De-
tection Sensor Setting

Required Gripper Setting

A (Low Intensity Light) 0.1 0.5: Gripper at Half Width

B (High Intensity Light) 1.0 1.0: Gripper at MaximumWidth

20

3.3.1. Light Detection Sensors

Eight light detection sensors enable each robot to detect blocks in eight
sensor quadrants ([S-0, S-7] in figure 4). Type A blocks have a low inten-
sity light on top. Type B blocks have a high intensity light on top. Table 4
presents the detection sensor settings required to detect type A and B blocks.
When light sensors are activated, all eight sensors are simultaneously acti-
vated with a given setting. Sensors remain active until the setting is changed
with the next activation. Detection sensor q returns a value inversely pro-
portional the distance to closest block in sensor quadrant q, multiplied by
the intensity of the light on top of the closest block.

3.3.2. Infrared (IR) Proximity Detection Sensors

Eight IR proximity detection sensors ([S-8, S-15] in figure 4) covering eight
sensor quadrants, enable robots to detect and avoid obstacles (other robots
and the environment’s walls). IR detection sensor q returns a value inversely
proportional to the distance to the closest obstacle in sensor quadrant q. The
IR proximity detection sensors are constantly active, and are initialized with
random values. The IR sensor values are updated every simulation iteration
that the robot is within sensor range of an obstacle.

3.3.3. Movement Actuators

Each robot is equipped with two movement actuators (wheel motors)
that control its speed and heading in the environment. Wheel motors need
to be explicitly activated. In a simulation iteration of activation, the robot
will move a given distance (calculated according its current speed), and then
stop. A robot’s heading is calculated by normalizing and scaling the two
motor output values (MO-0 and MO-1) in order to derive vectors dx and dy.

dx = dmax(MO-0 - 0.5)

dy = dmax(MO-1 - 0.5)

Where, dmax is the maximum distance a robot can traverse per iteration.
A minimum distance δ2 is to prevent singularities (Agogino and Tumer, 2004)
in the simulator when a robot is very close to a block or obstacle. To calculate
the distance between robot r, and blocks or obstacles o, the squared Euclidean
norm, bounded by δ2 is used. Equation 2 presents the distance metric.

δ(r, o) = min(∥x− y∥2, δ2) (2)

21

SI-0 ... SI-7 SI-8 ... SI-15 SI-16 ... SI-19

Infrared Proximity Sensors Light Detection Sensors Previous Hidden Layer State

S SS S

S S S S

 MO-0 MO-1 MO-2 MO-3

MMMaximum

Action

Figure 5: Robot Artificial Neural Network (ANN) Controller. A feed-forward ANN with
recurrent connections is used to map sensory inputs to motor outputs.

3.3.4. Block Gripper

Each robot is equipped with a gripper turret (figure 4) for gripping blocks,
transporting them, and placing them in the construction zone. The gripper
is activated with the value of motor output MO-2. In order to grip block
type A or B, specific output values must be generated (table 4). These values
correspond to the gripper setting necessary to grip type A and B blocks.

3.3.5. Artificial Neural Network (ANN) Controller

Each robot used a recurrent ANN controller (figure 5), which fully con-
necting 20 sensory input to four hidden layer (sigmoidal) and four motor
output neurons. Prior to controller evolution (section 4.4), n controllers
were placed in a shaping phase (section 4.2). The shaping phase incremen-
tally evolved block gripping, transportation and obstacle avoidance behaviors
necessary to accomplish the CGAC task. Also, prior to the evolution phase,
the number of hidden layer neurons was derived during a parameter calibra-
tion phase (section 4.3). Sensory input neurons [SI-0, SI-7] accepted input
from each of eight IR detection sensors, neurons [SI-8, SI-15] accepted input
from each of eight light detection sensors, neurons [SI-16, SI-19] accepted
input from the previous activation state of the hidden layer.

Action Selection: At each iteration, one of four Motor Outputs (MO) are
executed. The MO with the highest value is the action executed. If either

22

MO-0 or MO-1 yields the highest value, then the robot moves.

1. MO-0, MO-1: Calculate dx, dy vectors from MO-0, MO-1 output val-
ues, and move in direction derived from dx, dy (section 3.3.3).

2. MO-2: Activate gripper (section 3.3.4).

3. MO-3: Activate light detection sensors (section 3.3.1).

3.4. Behavioral Specialization

Each robot performs distinct actions for detecting or gripping blocks, or
moving. As such, each robot is able to specialize to detecting, or gripping
or moving, or to behaviors that are a composite of the detecting, gripping
and moving actions. For example, robots that execute the detect, grip and
move actions for type A blocks, such that type A blocks are placed in the
construction zone, are called Type A Constructors.

Initially, each robot adopts a search behavior, via moving and using light
detection sensors. When a block is found, it uses a gripping action to grip the
block. Finally, a robot moves with the gripped block towards the construction
zone. The block is then placed in the construction zone, and this process
repeats. However, since the GACC task requires that blocks be placed in the
construction zone in a specific sequence, robots must concurrently coordinate
their search, gripping and block placement behaviors. For example, consider
an environment where type A blocks are particularly scarce, and type B
blocks are plentiful, and the number of robots equals the number of blocks.
In this case, an appropriate collective behavior would be for most robots
to search for, grip, and move type A blocks to the construction zone, and
concurrently, for relatively few robots to search for, grip and move type B
blocks to the construction zone. Such a collective behavior would minimize
the time for the team to build the structure.

The degree of behavioral specialization (S) exhibited by each robot (con-
troller) is calculated by the specialization metric (section 2.2) and applied
at the end of each robot’s lifetime in the test phase (section 4.5). If S <
0.5, the robot’s behavior is specialized, otherwise it is non-specialized. The
0.5 threshold was selected since if S = 0.5, then a robot spends half of its
lifetime switching between its move, detect and grip actions, and spends an
equal portion of its lifetime on each action. Specialized robots are labeled ac-
cording to a robot’s most executed action, or an aggregate of actions. These
specialization labels are Constructor, Mover, Gripper, or Detector.

23

Constructor: Robots that spend more time moving with a gripped block,
than executing other actions. Type A, B Constructors are those spe-
cialized to gripping and moving with Type A, B blocks, respectively.

Mover: Robots that spend more time moving than executing other actions.

Detector: If the most executed action is detecting type A or type B blocks,
a robot is labeled as a type A or type B detector, respectively.

Gripper: If the most executed action is gripping type A or type B blocks, a
robot is labeled as a type A or type B gripper, respectively.

4. Experiments

This section describes theGathering And Collective Construction (GACC)
experimental setup. Each experiment placed a team (50 or 100 robots)
in each simulation environment (table 3), and applied a controller design
method (CCGA, MESP or CONE) to evolve the team’s GACC behavior.
Experiments measured the impact of a given team size, environment, and
controller design method upon the team’s task performance. The experimen-
tal objective was to ascertain which controller design method achieves the
highest task performance for all environments tested, and to investigate the
contribution of behavioral specialization to task performance.

4.1. Experiment Phases

Each experiment consisted of the following phases.

• Shaping phase: CONE was used to evolve a team in a set of increasingly
complex tasks (section 4.2).

• Parameter calibration phase: CONE was used to evolve a team in a set
of increasingly complex tasks (section 4.3).

• Evolution phase: Next, the fittest team in the shaping phase was taken
as the starting point for CONE, CCGA and MESP evolution (100 gen-
erations). One generation is a teams’ lifetime. Each lifetime lasts for 10
epochs. Each epoch consists of 1000 simulation iterations. An epoch is

24

a simulation scenario that tests different robot starting positions, ori-
entations and block positions in an environment. For each method, 20
simulation runs2 were performed for each environment (section 4.4).

• Test phase: The fittest team evolved by CCGA, MESP, and CONE
was selected and executed (in each environment) for 100 lifetimes. The
testing phase did not apply any controller evolution. For For the fittest
team evolved by CCGA, MESP and CONE, task performance was cal-
culated over 100 lifetimes and 20 simulation runs (section 4.5).

4.2. Shaping Phase

Shaping experiments applied CONE to incrementally evolve collective
behaviors in the following set of increasingly complex tasks (Exp x). CONE
was used in the shaping phase experiments since, compared to CCGA and
MESP, it more quickly evolved behavioral solutions to the shaping tasks.

Exp 1: In an environment with two robots, using only IR proximity sensors,
an obstacle avoidance (robots and walls) behavior was evolved. Two
robots were the minimum for evolving obstacle avoidance.

Exp 2: In an environment with one robot and type A block, using IR and
light sensors, a type A block detection behavior was evolved.

Exp 3: In an environment with one robot, using IR and light sensors, and
type B block a type B block detection behavior was evolved.

Exp 4: In an environment with one robot, using IR and light sensors, and a
type A block, a type A block gripping behavior was evolved.

Exp 5: In an environment with one robot, using IR and light sensors, and a
type B block, a type B block gripping behavior was evolved.

Exp 6: In an environment with one robot, using IR and light sensors, and a
type A block, a block detection and gripping behavior was evolved.

Exp 7: In an environment with one robot, using IR and light sensors, and a
type B block, a block detection and gripping behavior was evolved.

2Experiments were run on the lisa cluster (www.ka.sara.nl/home/willem/www.sara.nl/).
Experiments used 250 nodes (each node has two Intelr XeonTM 3.4 GHz processors).

25

Table 5: Parameter Calibration. Values tested for the GACC Task.

Parameter Value Range Range Interval

Robot Movement Range [0.01, 0.51] 0.05

Light/Proximity Detection Sensor Range [0.01, 0.10] 0.01

Simulation runs [10, 30] 2

Iterations per epoch (Robot lifetime) [500, 1500] 100

Generations [50, 150] 10

Epochs [2, 20] 2

Mutation (per gene) probability [0.0, 0.11] 0.01

Fitness stagnation Y (CONE) [1, 10] 1

Fitness stagnation V (CONE) [5, 15] 1

Fitness stagnation W (CONE) [10, 25] 1

Population elite portion [5, 55] 5%

Hidden Layer (HL) neurons [1, 10] 1

The fittest controller evolved in shaping experiment 7 was then subjected
to parameter calibration experiments (section 4.3).

4.3. Parameter Calibration Phase

Parameter calibration experiments were executed for the parameters given
in table 5 for CONE, CCGA, and MESP (team sizes of 50 and 100) in each
simulation environment. Table 5 presents the calibrated parameter values.

Each of the parameters (table 5) was systematically selected and varied
within 100% of its value range at 20% intervals. Thus, 10 different parameter
values were tested for each parameter. When a given value was selected,
other parameter values were fixed at a median value in the range tested.
The impact of given parameter values (in CCGA, MESP, and CONE), was
ascertained via running each method for 50 generations. An average task
performance was calculated (for a given team size and environment) over 10
simulation runs. A low number of generations and runs was used to minimize
the time and computational expense of parameter calibration experiments.

Each of the parameters (table 5) were calibrated independently. Thus,
parameter inter-dependencies were not taken into account, since the com-
plexities of parameter interactions could not be adequately explored using
this parameter calibration scheme. However, investigating the parameter

26

interactions during calibration remains a current research topic (Eiben and
Smit, 2011). The impact of the behavioral specialization threshold, the num-
ber of hidden layer neurons and simulation runs are briefly outlined in the
following, since varying these parameters was found to have most affect on
CCGA, MESP and CONE evolved team task performance.

Behavioral specialization threshold. Calibration experiments found that
deceasing the specialization threshold to below 0.4 resulted in less controllers
being classified as specialized and thus less specialized controller recombina-
tions. This reduced the recombination of specialized controllers and benefi-
cial behaviors between populations. Increasing the specialization threshold
above 0.6 resulted in more controllers being classified as specialized and thus
more controllers being recombined between populations. This resulted in
the propagation of specialized behaviors that were not necessarily beneficial.
The overall impact of a specialization threshold value outside the range [0.4,
0.6] was a decreasing task performance for all teams tested.

Hidden layer neurons. Calibration experiments determined that for CCGA,
MESP, and CONE teams (evolved in all environments), an appropriate num-
ber of hidden layer neurons was five, four, and four, respectively. In order
to keep method comparisons fair, and evolution time to a minimum, each
method used four hidden layer neurons during the evolution phase.

Simulation runs. Calibration experiments determined that 20 runs was
sufficient to derive an appropriate estimate of average task performance for
evolved teams. Less than 20 evolutionary runs was found to be insufficient,
and more than 20 runs consumed too much time and computational expense.

Finally, the parameter values calibrated for CCGA, MESP and CONE
were used as the parameter settings for the evolution phase (section 4.4).

4.4. Evolution Phase

The n populations used by CCGA, MESP and CONE were initialized
with copies of the fittest shaped genotype, where each gene in each genotype
was subject to burst mutation (Gomez and Miikkulainen, 1997) with a 0.05
probability. Burst mutation uses a Cauchy distribution which concentrates
most values in a local search space whilst occasionally permitting larger mag-
nitude values. Thus, the CCGA, MESP, and CONE methods began their
behavioral search in the neighborhood of the best shaped solution.

Evolving Collective Behavior with CCGA. For a team of n robots (where,
n ∈ [50, 100]), n populations are initialized. Each population is initialized
with 400 or 200 genotypes. For a team size of n = {50, 100}, run for 100

27

generations, the number of evaluations E, is:

CCGAE = 400 (genotypes per population) ∗ n (populations) ∗ 100 (gen-
erations) ∗ 10 (epochs per generation);

CCGAE = {20 400 000 (n=50), 40 800 000 (n=100)};

In order that the number of CCGA evaluations equals that of MESP and
CONE, the elite portion (fittest 20%) of genotypes in each population are
re-evaluated. That is, for each population, elite portion genotypes are sys-
tematically selected and evaluated together with genotypes randomly selected
from the elite portions of the other populations. The number of evaluations
required to evaluate the elite portion of controllers equals 400 000 (n=50) or
800 000 (n=100).

Evolving Collective Behavior with MESP / CONE.MESP and CONE cre-
ate n (n ∈ [50, 100]) populations from which n robot controllers are evolved.
Population i consists of u sub-populations, where u is the number of HL
neurons. For teams of 50 and 100 robots (populations), each population is
initialized with 400 or 200 genotypes. The process used to select and evaluate
controllers is the same for MESP and CONE, and is described in section 2.4.
Specific to CONE is the Specialization Distance Metric (SDM) and Genotype
Distance Metric (GDM). For a team size of n = {50, 100}, executed for 100
generations, the number of evaluations E, is:

MESP/CONEE = 400 (genotypes per population) ∗ n (populations) ∗
100 (generations) ∗ 10 (epochs per generation);

MESP/CONEE = {20 400 000 (n=50), 40 800 000 (n=100)};

This number of evaluations includes 400 000 evaluations (n=50), or 800
000 evaluations (n=100) required to evaluate controller utility (section 2.4)
of the fittest 20% of controllers.

4.5. Test Phase

Finally, the fittest teams evolved by CCGA, MESP, and CONE, for each
team size and environment was placed in the test phase. Each test phase

28

experiment was non-adaptive and executed for 100 team lifetimes (each life-
time was 1000 simulation iterations), for a given team size and environment.
Task performance results are averages calculated over these 100 lifetime runs.
Since the test phase did not evolve controllers, the computational expense
was marginal compared to a CCGA, MESP, or CONE evolutionary run.
Section 5 presents the testing phase results, and statistical tests conducted.

5. Results

This section presents experimental results of applying CCGA, MESP or
CONE evolved GACC behaviors, for a given team size (50 or 100 robots)
and simulation environment (table 3). Statistical tests were applied in or-
der to compare task performance differences between teams evolved by each
method. For this comparison, the following procedure was followed.

• The Kolmogorov-Smirnov test (Flannery et al., 1986) was applied, and
found that all data sets conformed to normal distributions.

• An independent t-test (Flannery et al., 1986) was applied to ascer-
tain if there was a statistically significant difference between the task
performances of any two teams. The confidence interval was 0.95.

Bonferroni multiple significance test correction (Dunnett, 1955) was used
to overcome the problem t-tests reporting a spurious significance of differ-
ence as a result of being applied for pairwise comparison between multiple
data sets. T-tests were applied to test for significant difference between the
following data set pairs, for a given team size and environment.

• Task performance results of CCGA versus MESP evolved teams.

• Task performance results of CCGA versus CONE evolved teams.

• Task performance results of MESP versus CONE evolved teams.

29

Figure 6: Average Gathering and Collective Construction Task Performance. For CCGA,
MESP, and CONE evolved teams (of 50 robots) for each environment.

Figure 7: Average Gathering and Collective Construction Task Performance. For CCGA,
MESP, and CONE evolved teams (of 100 robots) for each environment.

30

5.1. Gathering and Collective Construction Task Performance

Figures 6 and 7 present the average task performances of teams evolved
by CCGA, MESP, and CONE in each environment for team sizes 50 and 100,
respectively. Task performance is the number of blocks placed in the correct
sequence in the construction zone, over a team’s lifetime. Average task per-
formance was calculated for CCGA, MESP, and CONE evolved teams via
executing each, in each environment, for 20 test phase runs (section 4.5).

Statistical tests indicated that for both team sizes, CONE evolved teams
yielded a higher average performance (with statistical significance), compared
to CCGA and MESP evolved teams. This result held for environments [4, 10],
and supports hypothesis 1 (section 1.3). That is, CONE evolved teams on
average, yield comparatively higher (statistically significant) performances.

Observing the task performance results of CONE evolved teams, it can
be noted that as the complexity of the task increases (from the simplest in
environment 1, to the most complex in environment 10), the performance of
the CONE evolved teams also increases in a linear fashion. In the team of 100
robots there is a statistically significant difference in performance between
each of environments [1, 10]. This is also the case for teams of 50 robots
tested in environments [1, 7]. However, for environments [8, 10], teams of 50
robots yield no significant performance difference between environments.

This lower task performance for teams of 50 robots is theorized to be a
result of the complexity of environments [8, 9, 10] coupled with an insufficient
number of specialized robots to ensure a team performance comparable to
that observed for teams of 100 robots. Consider that, most of the time, a
robot would be unable to place the block it was holding, since the block would
be out of sequence. In CONE evolved teams, one emergent behavior was that
robots would drop blocks that they could not place. Such robots would then
leave the construction zone to continue searching for other blocks. Another
emergent behavior in CONE evolved teams was that of idle constructor, some
of which would be in the construction zone at any given simulation iteration.
Blocks dropped within sensor range of an idle constructor would be picked up
and their placement attempted. This behavior of idle constructors becoming
active and frequently picking up dropped blocks increased the number blocks
that were placed in the correct sequence. In the case of teams of 50 robots, a
relatively low number were in the construction zone at any given simulation
iteration. This resulted in a comparatively lower task performance for teams
of 50 robots evolved by CONE in environments [8, 9, 10].

31

Also, to demonstrate that specialized behavior is required to effectively
and efficiently place objects in a given sequence, experiments that did not
use a construction schema were conducted. Experiments that did not use a
construction schema did not require a team to place blocks in any particular
sequence. Thus, behavioral coordination was not required. These results
are not presented here since: (1) statistically comparable performances were
attained for the fittest CCGA, MESP and CONE evolved teams, (2) be-
havioral specialization did not emerge, and investigating the contribution of
behavioral specialization to collective behavior is the focus of this study.

These results thus confirm that the task constraints imposed by a con-
struction schema is necessary for specialization to emerge in a team’s evolved
collective behavior. Section 6 discusses results (of experiments using con-
struction schemas), the contribution of behavioral specialization, and relates
this contribution to hypothesis 2 (section 1.3).

5.2. Emergent Behavioral Specializations

This section outlines the behavioral specialization that emerged in teams
evolved by CCGA, MESP, and CONE in environments [4, 10]. No behav-
ioral specialization emerged in teams evolved by CCGA, MESP, or CONE in
environments [1, 3]. Lack of emergent specialization in these environments is
supposed to be a result of the relative simplicity of environments [1, 3] (table
3) compared to environments [4, 10]. Behavioral specialization was identified
via applying the specialization metric (section 2.2) to robot behaviors exhib-
ited during the test phase (section 4.5). Teams that were not calculated as
specialized, were by default classified as non-specialized.

5.2.1. Evolved CONE Specialization: Constructor

In approximately 40% of the fittest teams evolved by CONE, a special-
ization termed constructor emerged. Constructors simultaneously performed
the grip and move actions for more than 50% of their lifetime. Constructors
infrequently switched from moving and gripping to the the detector action.

5.2.2. Evolved CONE Specialization: Constructor/Block Dropping

In approximately 25% of the fittest teams evolved by CONE, a behavioral
specialization termed constructor/block dropping emerged. Robots with this
specialization performed the either the constructor (section 5.2.1) or a block
dropping behavior for more than 50% of their lifetime. These robots infre-
quently switched from either the constructor or block dropping behavior to

32

performing the detector action, but frequently switched between executing
constructor and block dropping behavior for most of their lifetime. The block
dropping behavior was executed if a robot transporting a block was unable
to place it in the construction zone, due to the block being out of sequence.

5.2.3. Evolved CCGA / MESP / CONE Specialization: Constructor/Idle

In the fittest teams evolved by CCGA, MESP and CONE, a behavioral
specialization termed constructor/idle emerged. This specialization emerged
in approximately 35%, 55% and 50% of the fittest teams evolved by CCGA,
MESP, and CONE, respectively. In the fittest CONE evolved teams, robots
with this specialization performed the either the constructor behavior or
remained idle for more than 50% of their lifetime. CONE evolved robots
would switch from its idle to constructor behavior if a block was dropped
within its sensor range. These robots infrequently switched to performing
the detector action, but frequently switched between executing constructor
and idle behavior for most of their lifetime. However, CCGA and MESP
evolved robots simply remained idle for more than 50% of their lifetime,
infrequently switching to the detector action during this time.

6. Discussion

This section discusses the contribution of specialized behavior to collective
behavior task performance (sections 6.1 and 6.2). The contribution of the
Genotype and Specialization Difference Metrics (GDM and SDM) to the task
performances of CONE evolved teams is also evaluated (section 6.3).

6.1. Emergent Specialization

In the fittest CONE evolved teams, constructors were specialized to grip-
ping, moving with and placing (in the construction zone) type A and B
blocks. Unspecialized robots searched the environment for blocks, and trans-
ported them to the construction zone. Upon arriving in the construction
zone, unspecialized robots attempted to place the block they were trans-
porting. Most of the time, a block could not be placed, since it was out
of sequence. A robot would then drop the block and leave the construction
zone to continue searching for other blocks. This block dropping behavior
allowed constructors, idle in the construction zone, to place dropped blocks
in the correct sequence. This in turn minimized the number of robots in the
construction zone and physical interference between robots.

33

The idle behavior emerged in the fittest CCGA, MESP, and CONE evolved
teams for most environments ([4, 10]). However, in the case of CONE evolved
teams the idle behavior was coupled with a constructor behavior. Thus,
CONE evolved robots switched between the constructor and idle behavior
for most of their lifetime. It is theorized that the idle behavior emerged as a
means to reduce physical interference between many constructors that con-
currently moved towards the construction zone, to attempt to place blocks.

The constructor specialization did not emerge in any of the CCGA and
MESP evolved teams, for all team sizes and environments tested. The behav-
iors of robots in the fittest CCGA and MESP evolved teams were calculated
as being unspecialized. In the fittest CCGA and MESP evolved teams, robots
that were unable to place blocks in the construction zone at a given simu-
lation iteration would try to place the block at every subsequent iteration.
If there were many robots in the construction zone, concurrently attempting
to place blocks, where none of these blocks were the next in the construc-
tion sequence, the result was physical interference that obstructed collective
construction behavior. The degree of interference increased with the team
size, resulting in CCGA and MESP (comparative to CONE) evolved teams
yielding a statistically lower task performance for environments [4, 10]. The
block dropping behavior also emerged in CCGA and MESP evolved teams.
However, when a block was dropped by a CCGA or MESP evolved robot,
there were no constructor robots to place the block. Instead, the block re-
mained in the construction zone until it was rediscovered by the same or
another robot. This resulted in slow structure build times by CCGA and
MESP evolved teams, which in turn yielded low task performances.

These results are supported by another collective behavior study (Nitschke
et al., 2010), which also indicates that CONE is appropriate for evolving col-
lective behavior solutions to tasks where specialization is beneficial, and the
type of specialization (that is beneficial) is not known a priori.

6.2. Specialization Lesion Study

To test hypothesis 2 (section 1.3), this section presents a specialization
lesion study to evaluates the impact of the constructor specialization upon
team task performance. The study was conducted on the supposition that
the high task performance of CONE evolved teams, compared to CCGA and
MESP evolved teams, results from the interaction between specialized and
unspecialized behaviors. To test this supposition, the lesion study removed
the constructor controllers and replaced them with unspecialized heuristic

34

controllers. Heuristic controllers were used so as team behavior was unspe-
cialized and teams remained the same size for comparison purposes. Robots
were initialized in random positions in the environment and executed the
following heuristic behavior. Robots had their light and proximity detection
sensors constantly active and moved in a straight line towards the closest
block. Otherwise, the robot moved in a straight line, in a random direction,
and avoided collisions with the environment boundary. A robot gripped any
block it encountered and moved it to the construction zone. If the robot
could not place the block it would try again the next simulation iteration.

For each team size and environment, the fittest CONE evolved team (now
consisting of unspecialized controllers) was re-executed in 20 test phase sim-
ulation runs (section 4.5), and an average task performance calculated. The
contribution of the constructors was ascertained by comparing the average
task performance, for each environment and team size, of lesioned versus
unlesioned CONE evolved teams. Table 6 presents this task performance
comparison. Lesion study results indicate that there is a statistically sig-
nificant task performance reduction in lesioned teams. That is, lesioned
teams were unable to produce collective behaviors with an average task per-
formance comparable to that of CONE evolved teams. This result result
supports the supposition that CONE evolves an inter-dependency between
specialized and unspecialized behaviors, and partially supports hypothesis 2
(section 1.3). That is, without the constructor specialization, the higher task
performance of CONE evolved teams could not be achieved.

6.3. The Contribution of the CONE Difference Metrics

In order to further test hypothesis 2 (section 1.3), this section presents a
study to examine the contribution of the Genotype and Specialization Differ-
ence Metrics (GDM and SDM, respectively). For this GDM and SDM study,
CONE was re-executed with the following variant experimental setups.

1. CONE-1: Teams were evolved by CONE without the GDM. The SDM
for inter-population genotype recombination remained active.

2. CONE-2: Teams were evolved by CONE without the SDM. The GDM
remained active.

3. CONE-3: Teams were evolved by CONE without the GDM and SDM.

Each of these CONE variants (CONE-1, CONE-2, and CONE-3) was
applied to evolve teams in each environment, for team sizes of 50 and 100.

35

Table 6: Average number of blocks placed (lesioned versus unlesioned teams): Columns
[2,5]: A/B is the average task performance of team sizes 50/100. ENV: Environment.

ENV Fittest CONE
Evolved Team

Lesioned CONE
Evolved Team

Fittest CCGA
Evolved Team

Fittest MESP
Evolved Team

1 8 / 7 5 / 5 9 / 9 8 / 7

2 18 / 18 9 / 10 17 / 19 16 / 18

3 28 / 26 17 / 20 26 / 27 27 / 25

4 35 / 39 22 / 23 28 / 29 26 / 28

5 46 / 48 26 / 27 40 / 41 38 / 39

6 55 / 58 31 / 34 42 / 46 45 / 44

7 63 / 68 35 / 32 47 / 50 49 / 49

8 69 / 77 36 / 40 49 / 49 47 / 52

9 70 / 86 39 / 41 51 / 52 52 / 53

10 68 / 95 40 / 45 50 / 52 51 / 51

Figure 8: Average Number of Blocks Placed in the Construction Zone (Team size: 50
robots). Teams evolved by CONE without the Genotype Difference Metric (GDM), Spe-
cialization Difference Metric (SDM), or both the GDM and SDM.

36

Figure 9: Average Number of Blocks Placed in the Construction Zone (Team size: 100
robots). Teams evolved by CONE without the Genotype Difference Metric (GDM), Spe-
cialization Difference Metric (SDM), or both the GDM and SDM.

The fittest team evolved by CONE-1, CONE-2, and CONE-3 was executed
for 20 test-phase simulation runs (section 4.5). Figures 8 and 9 present
average team task performances yielded by CONE-1, CONE-2, and CONE-3
for team sizes of 50 and 100, respectively. For comparison, the average task
performance of the original CONE setup is also presented.

A statistical comparison of these results (figures 8 and 9) indicates that
teams evolved by CONE without the GDM (CONE-1), SDM (CONE-2), and
both the GDM and SDM (CONE-3), yielded a significantly lower task per-
formance compared to CONE evolved teams for most environments. That is,
for team sizes 50 and 100, there was no significant task performance differ-
ence between CONE and CONE variant evolved teams for environments [1,
3]. However, CONE evolved teams yielded a significantly higher task perfor-
mance for environments [4, 10]. Furthermore, teams evolved by the CONE
variants yielded task performances comparable to CCGA and MESP evolved
teams. That is, there was no statistically significant difference between the
average task performances of teams evolved by the CONE variants, CCGA,
and MESP for all environments and team sizes tested.

37

These results further support hypothesis 2 (section 1.3), since they indi-
cate that both the SDM and GDM were necessary for CONE to evolve teams
with the most effective GACC behaviors. That is, when only the GDM or
SDM or neither the SDM or GDM were active within the CONE process
(CONE-1, CONE-2 or CONE-3), the fittest teams achieved average task
performances comparable to that of the fittest CCGA and MESP teams.

Table 7: Nomenclature: Abbreviated terms and symbols. Unless otherwise noted the terms
and symbols apply to CCGA, MESP and CONE.

Term / Symbol Explanation

CONE Collective Neuro-Evolution (Section 2)

CCGA Cooperative Co-evolutionary Genetic Algorithm (Section 2)

MESP Multi-Agent Enforced Sub-Populations (Section 2)

NE Neuro-Evolution (Section 1)

Species Genotype population

Generation 1 Robot (Team) lifetime

Robot Lifetime 10 Epochs

Epoch 1000 Simulation iterations

Specialization Thresh-
old (CONE)

Defines if a controller’s behavior is specialized

V (CONE) GDM activated after V generations given no fitness increase

W (CONE) SDM activated after V generations given no fitness increase

GDM (CONE) Genotype Difference Metric (Section 2.3)

SDM (CONE) Specialization Difference Metric (Section 2.3)

[a, b] All values between and including a and b

n Number of genotype populations (controllers) (Section 2.1)

ANNi Artificial Neural Network Controller i (Section 2.1)

Pi Population i (Section 2.1)

S (CONE) Degree of behavioral specialization (Section 2.2)

SST (CONE) Specialization Similarity Threshold (Section 2.3)

GST (CONE) Genetic Similarity Threshold (Section 2.3)

δGST (CONE) ± δ applied to GST (Section 2.3)

δSST (CONE) ± δ applied to SST (Section 2.3)

S(ANNi) Degree of Specialization exhibited by ANN i (Section 2.3)

38

7. Conclusions and Future Directions

This article evaluated controller design methods that coupled cooperative
co-evolution and neuro-evolution to solve a collective behavior task. The re-
search goal was to demonstrate that the Collective Neuro-Evolution (CONE)
method evolves controllers in teams of simulated robots, such that the teams’
collective behaviors out-perform that evolved by related methods. The col-
lective behavior task was Gathering and Collective Construction (GACC).

Results found genotype and specialization metrics used by CONE for
regulating recombination between genotype populations facilitated benefi-
cial specialized behaviors. The interactions between specialized and unspe-
cialized behaviors in CONE evolved teams resulted in a higher GACC task
performance, compared to teams evolved by related controller design meth-
ods. The CONE metrics regulated inter-population genotype recombination
based on the similarity of specialized behaviors exhibited by controllers and
the similarity of genotypes. These results are supported by previous work
that applied CONE to evolve controllers in a multi-rover task (Nitschke et al.,
2010). This article’s study, thus, also demonstrates that CONE is appropri-
ate for evolving collective behaviors in tasks where behavioral specialization
is beneficial, but the form of specialization is not known a priori.

Future work will focus on investigating inter-dependencies between the
genotype and specialization metrics in CONE evolved teams, and mecha-
nisms that lead to emergent specialization. Furthermore, CONE’s capability
to evolve collective behavior solutions requiring both behavioral and mor-
phological specialization will be examined. Thus, the principles of CONE to
effectuate specialization as a means of increasing collective behavior task per-
formance will be adapted and tested for agents in cooperative co-evolution
systems not using artificial neural network controllers. Different controller
types, such as rule-based controllers, will be tested in various collective be-
havior tasks to ascertain if other controller types yield the same benefits.

References

Agogino, A., Tumer, K., 2004. Efficient evaluation functions for multi-rover
systems. In: Proceedings of the Genetic and Evolutionary Computation
Conference. Springer, New York, USA, pp. 1–12.

Baldassarre, G., Parisi, D., Nolfi, S., 2003. Coordination and behavior inte-

39

gration in cooperating simulated robots. In: Proceedings of 8th Int. Conf.
Simulation Adaptive Behavior. MIT Press, Cambridge, USA, pp. 385–394.

Batalin, M., Sukhatme, G., 2002. Spreading out: A local approach to multi-
robot coverage. In: Asama, H., Arai, T., Fukuda, T., Hasegawa, T. (Eds.),
Distributed Autonomous Robotic Systems. Springer, New York, USA, pp.
373–382.

Beni, G., 2004. From swarm intelligence to swarm robotics. In: Proceedings
of the First International Workshop on Swarm Robotics. Springer, Santa
Monica, USA, pp. 1–9.

Blumenthal, J., Parker, G., 2004. Competing sample sizes for the co-evolution
of heterogeneous agents. In: Proceedings of the International Conference
on Intelligent Robots and Systems. IEEE Press, Sendai, Japan, pp. 1438–
1443.

Bonabeau, E., Dorigo, M., Theraulaz, G., 1998. Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press, Oxford, England.

Bonabeau, E., Sobkowski, A., Theraulaz, G., Deneubourg, J., 1997. Adaptive
task allocation inspired by a model of division of labour in social insects. In:
Bio-Computing and Emergent Computation. World Scientific, Singapore,
pp. 36–45.

Bonabeau, E., Theraulaz, G., Deneubourg, J., 1996. Quantitative study of
the fixed threshold model for the regulation of division of labour in insect
societies. Proceedings of the Royal Society of London B 263 (1), 1565–1569.

Bryant, B., Miikkulainen, R., 2003. Neuro-evolution for adaptive teams. In:
Proceedings of the Congress on Evolutionary Computation. IEEE Press,
Canberra, Australia, pp. 2194–2201.

Calderone, N., Page, R., 1988. Genotypic variability in age polyethism and
task specialization in the honey bee. Apis mellifera. Behav. Ecol. Sociobiol
22 (1), 17–25.

Chellapilla, K., Fogel, D., 1999. Evolving neural networks to play checkers
without expert knowledge. IEEE Trans. Neural Networks 10(16), 1382–
1391.

40

Dunnett, C. W., 1955. A multiple comparisons procedure for comparing sev-
eral treatments with a control. Journal of the American Statistical Asso-
ciation 50, 1096–1121.

Eiben, A., Smit, S., 2011. Parameter tuning for configuring and analyzing
evolutionary algorithms. Swarm and Evolutionary Computation 1(1), 19–
31.

Eiben, A., Smith, J., 2003. Introduction to Evolutionary Computing.
Springer, Berlin, Germany.

Farinelli, A., Farinelli, R., Iocchi, L., Nardi, D., 2004. Multi-robot systems:
A classification focused on coordination. IEEE Transactions on Systems
Man and Cybernetics B 34, 2015–2028.

Flannery, B., Teukolsky, S., Vetterling, W., 1986. Numerical Recipes. Cam-
bridge University Press, Cambridge, UK.

Floreano, D., Dürr, P., Mattiussi, C., 2008. Neuroevolution: from architec-
tures to learning. Evolutionary Intelligence 1 (1), 47–62.

Futuyma, D., Slatkin, M., 1983. In: Futuyma, D., Slatkin, M. (Eds.), Co-
evolution. Sinauer Associates, Sunderland, Massachusetts, USA.

Garcia-Pedrajas, N., Hervas-Martinez, C., Ortiz-Boyer, D., 2005. Coopera-
tive coevolution of artificial neural network ensembles for pattern classifi-
cation. IEEE Transactions on Evolutionary Computation 9(3), 271–302.

Gautrais, J., Theraulaz, G., Deneubourg, J., Anderson, C., 2002. Emergent
polyethism as a consequence of increased colony size in insect societies.
Journal of Theoretical Biology 215 (1), 363–373.

Gomez, F., 2003. Robust Non-Linear Control Through Neuroevolution. PhD
thesis. Computer Science Department, University of Texas, Austin, USA.

Gomez, F., Miikkulainen, R., 1997. Incremental evolution of complex general
behavior. Adaptive Behavior 5 (1), 317–342.

Guo, H., Meng, Y., Jin, Y., 2009. A cellular mechanism for multi-robot con-
struction via evolutionary multi-objective optimization of a gene regulatory
network. BioSystems 98(3), 193–203.

41

Hamilton, W., 1964. The genetical evolution of social behavior i+ii. J. The-
oretical Biology 7(1), 1–52.

Hawthorne, D., 2001. Genetic linkage of ecological specialization and repro-
ductive isolation in pea aphids. Nature 412 (1), 904–907.

Haykin, S., 1998. Neural Networks: A Comprehensive Foundation (2nd Edi-
tion). Prentice Hall, Princeton, USA.

Ijspeert, A., Martinoli, A., Billard, A., Gambardella, L., 2001. Collabora-
tion through the exploitation of local interactions in autonomous collec-
tive robotics: The stick pulling experiment. Autonomous Robots. 11 (2),
149–171.

Lehmann, L., Keller, L., 2006. The evolution of cooperation and altruism: A
general framework and a classification of models. J. Evol. Biology 19(5),
1365–1376.

Li, L., Martinoli, A., Yaser, A., 2004. Learning and measuring specialization
in collaborative swarm systems. Adaptive Behavior. 12 (3), 199–212.

Luke, S., 1998. Genetic programming produced competitive soccer softbot
teams for robocup 97. In: Proceedings of 3rd Annu. Conf. Genetic Pro-
gramming. Morgan Kaufmann, San Mateo, USA, pp. 214–222.

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G., 2005. MA-
SON: A multiagent simulation environment. Simulation 81 (7), 517–527.

Luke, S., Hohn, C., Farris, J., Jackson, G., Hendler, J., 1998. Co-evolving
soccer softbot team coordination with genetic programming. In: RoboCup-
97: Robot Soccer World Cup I. Springer-Verlag, Berlin, Germany., pp.
398–411.

Miikkulainen, R., 2010. Neuroevolution. In: Sammut, C., Webb, G. (Eds.),
Encyclopedia of Machine Learning. Springer, New York, USA, pp. 716–
720.

Mirolli, M., Parisi, D., 2005. How can we explain the emergence of a language
that benefits the hearer but not the speaker. Connection Sci. 17(3), 307–
324.

42

Mondada, F., Franzi, E., Ienne, P., 1993. Mobile robot miniaturization: A
tool for investigation in control algorithms. In: Proceedings of Third In-
ternational Symposium on Experimental Robotics. IEEE Press, Kyoto,
Japan., pp. 501–513.

Murciano, A., Millan, J., 1997. Learning signaling behaviors and specializa-
tion in cooperative agents. Adaptive Behavior 5 (1), 5–28.

Nitschke, G., 2009a. Neuro-Evolution for Emergent Specialization in Collec-
tive Behavior Systems. PhD thesis. Computer Science Department, Vrije
Universiteit, Amsterdam, Netherlands.

Nitschke, G., 2009b. Neuro-evolution methods for gathering and collective
construction. In: Proceedings of the 10th European Conference on Artifi-
cial Life. Springer, Budapest, Hungary, pp. 111–119.

Nitschke, G., Schut, M., Eiben, A., 2010. Collective neuro-evolution for evolv-
ing specialized sensor resolutions in a multi-rover task. Evolutionary Intel-
ligence 3(1), 13–29.

Nolfi, S., 2000. Evorobot 1.1 User Manual. Technical Report. Institute of
Cognitive Sciences, National Research Council, Rome, Italy.

Nolfi, S., Floreano, D., 2000. Evolutionary Robotics: The Biology, Intel-
ligence, and Technology of Self-Organizing Machines. MIT Press, Cam-
bridge, USA.

Noreils, F., 1993. Toward a robot architecture integrating cooperation be-
tween mobile robots: Application to indoor environment. International
Journal of Robotics Research 12(1), 79–98.

Panangadan, A., Dyer, M., 2002. Goal sequencing for construction agents in
a simulated environment. In: Proceedings of the International Conference
on Artificial Neural Networks. IEEE Press, Las Vagas, USA, pp. 969–974.

Panangadan, A., Dyer, M., 2009. Construction in a simulated environment
using temporal goal sequencing and reinforcement learning. Adaptive Be-
havior 17(1), 81–104.

Perez-Uribe, A., Floreano, D., Keller, L., 2003. Effects of group composition
and level of selection in the evolution of cooperation in artificial ants. In:

43

Advances of Artificial Life: Proceedings of the Seventh European Confer-
ence on Artificial Life. Springer, Dortmund, Germany, pp. 128–137.

Polechovà, J., Barton, N., 2005. Speciation through competition: a critical
review. Evolution 59 (6), 1194–1210.

Potter, M., 1997. The Design and Analysis of a Computational Model of
Cooperative Coevolution. Computer Science Department, George Mason
University, Fairfax, Virginia, USA.

Potter, M., De Jong, K., 2000. Cooperative coevolution: An architecture
for evolving coadapted subcomponents. Evolutionary Computation 8 (1),
1–29.

Potter, M., Meeden, L., Schultz, A., 2001. Heterogeneity in the coevolved be-
haviors of mobile robots: The emergence of specialists. In: Proceedings of
the International Joint Conference on Artificial Intelligence. AAAI Press,
Seattle, pp. 1337–1343.

Resnick, M., 1997. Turtles, Termites, and Traffic Jams: Explorations in Mas-
sively Parallel Microworlds. MIT Press, Cambridge, USA.

Schultz, C., Parker, L., 2002. In: Multi-robot Systems: From Swarms to
Intelligent Automata. Kluwer Academic Publishers, Washington DC, USA.

Seligmann, H., 1999. Resource partition history and evolutionary specializa-
tion of subunits in complex systems. Biosystems 51 (1), 31–39.

Steels, L., 1990. Toward a theory of emergent functionality. In: Proceedings
of the First International Conference on Simulation of Adaptive Behavior.
MIT Press, Cambridge, USA, pp. 451–461.

Stone, P., 2000. Layered Learning in Multiagent Systems. MIT Press, Cam-
bridge, USA.

Sutton, R., Barto, A., 1998. An Introduction to Reinforcement Learning.
John Wiley and Sons, Cambridge, USA.

Theraulaz, G., Bonabeau, E., 1995. Coordination in distributed building.
Science 269 (1), 686–688.

44

Theraulaz, G., Bonabeau, E., Deneubourg, J., 1998. Fixed response thresh-
olds and the regulation of division of labor in insect societies. Bulletin of
Mathematical Biology 60 (1), 753–807.

Thomas, G., Howard, A., Williams, A., Moore-Alston, A., 2005. Multirobot
task allocation in lunar mission construction scenarios. In: Systems, Man
and Cybernetics, 2005 IEEE International Conference on Volume 1. IEEE
Press, pp. 518–523.

Waibel, M., Floreano, D., Magnenat, S., Keller, L., 2006. Division of la-
bor and colony efficiency in social insects: effects of interactions between
genetic architecture, colony kin structure and rate of perturbations. Pro-
ceedings of the Royal Society B 273 (1), 1815–1823.

Waibel, M., Keller, L., Floreano, D., 2009. Genetic team composition and
level of selection in the evolution of cooperation. IEEE Transactions on
Evolutionary Computation 13 (3), 648–659.

Werfel, J., Nagpal, R., 2006. Extended stigmergy in collective construction.
IEEE Intelligent Systems 21 (2), 20–28.

Werfel, J., Nagpal, R., 2008. Three-dimensional construction with mobile
robots and modular blocks. The International Journal of Robotics Research
27(3-4), 463–479.

Wiegand, R., 2004. An Analysis of Cooperative Coevolutionary Algorithms.
PhD. Thesis. Computer Science Department, George Mason University,
Fairfax, Virginia, USA.

Wineberg, M., Oppacher, F., 2003. Underlying similarity of diversity mea-
sures in evolutionary computation. In: Proceedings of Genetic and Evolu-
tionary Computation Conference. Springer, Chicago, USA, pp. 1493–1504.

Yao, X., 1999. Evolving artificial neural networks. Proceedings of the IEEE
87 (9), 1423–1447.

Yong, C., Miikkulainen, R., 2007. Coevolution of Role-Based Cooperation
in Multi-Agent Systems. Technical Report AI07-338. Department of Com-
puter Sciences, The University of Texas, Austin, USA.

45

