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Abstract8

To detect churners in a vast customer base, as is the case with telephone service providers, companies

heavily rely on predictive churn models to remain competitive in a saturated market. In previous

work, the expected maximum profit measure for customer churn (EMPC) has been proposed in order

to determine the most profitable churn model. However, profit concerns are not directly integrated into

the model construction. Therefore, we present a classifier, named ProfLogit, that maximizes the EMPC

in the training step using a genetic algorithm, where ProfLogit’s interior model structure resembles a

lasso-regularized logistic model. Additionally, we introduce threshold-independent recall and precision

measures based on the expected profit maximizing fraction, which is derived from the EMPC framework.

Our proposed technique aims to construct profitable churn models for retention campaigns to satisfy the

business requirement of profit maximization. In a benchmark study with nine real-life data sets, ProfLogit

exhibits the overall highest, out-of-sample EMPC performance as well as the overall best, profit-based

precision and recall values. As a result of the lasso resemblance, ProfLogit also performs a profit-based

feature selection in which features are selected that would otherwise be excluded with an accuracy-based

measure, which is another noteworthy finding.

Keywords: Data mining, customer churn prediction, lasso-regularized logistic regression model,9

profit-based model evaluation, real-coded genetic algorithm10

1. Introduction11

In saturated markets such as the telephone service industry, companies constantly endeavor to identify12

customers who intend to voluntarily switch to a competitor. Attracting new customers in such markets is13

eminently challenging, and costs five to six times more than to prevent existing customers from churning14

[1]. However, detecting would-be churners out of typically millions of customers is a difficult task. For15

that reason, companies unavoidably have to rely on predictive churn models if they wish to remain16

competitive. As a consequence, predictive classification techniques for customer churn are increasingly17

researched [2]. Yet, these models often do not directly focus on the most important business requirement:18

profit maximization. Therefore, correctly identifying potential churners is one challenge; another is to19

also detect those who are the most profitable to the business. The ideal churn model is thus capable of20

effectively identifying churners and simultaneously taking profit concerns of the business into account.21
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Frequently, the winning churn model is selected based on accuracy related performance measures,22

which do not account for profit maximization in any manner. Considering binary classification problems,23

for instance, a popular choice for model selection is the area under the ROC curve (AUC), because of its24

simplicity and objectivity. It provides an intuitive interpretation and a holistic summary of the classifi-25

cation performance. However, Hand [3] showed that the AUC implicitly imposes unrealistic assumptions26

about the misclassification costs which also alter across classifiers. Reasonably, misclassification costs27

are a property of the classification problem, and should not depend on the applied classifier. For ap-28

propriate model selection, Hand therefore proposed the H measure that minimizes a cost function with29

fixed misclassification costs across classifiers.30

Next to costs, it is also generally recommended to incorporate the benefits of making a correct31

classification into the performance metric [4]. For predictive churn models, Verbraken et al. [5] proposed a32

profit-based performance metric, the expected maximum profit measure for customer churn (EMPC), that33

allows identifying the most profitable model. Performance is measured based on the average classification34

profit with costs and benefits specified that are associated with a retention campaign. Additionally, they35

proposed the expected profit maximizing fraction for customer churn (η̄empc) that determines the optimal36

fraction of the customer base to target in the retention campaign for maximum profit. In an extensive37

case study, Verbraken et al. [5] showed that there are great discrepancies between the EMPC and AUC,38

and that model selection based on the AUC leads to suboptimal profit. For retention campaigns, the39

authors therefore recommend to use the EMPC for the selection of the churn model to attain maximum40

profit. Although the EMPC permits a profit-based model evaluation, profit concerns are however not41

directly incorporated into the model construction.42

Hence, we propose a profit maximizing classifier for customer churn, called ProfLogit, that optimizes43

the EMPC in its training step. In our approach, a logistic model structure is utilized to compute44

churn scores, which are required for the profit measure, but the regression coefficients of the model45

are optimized according to the EMPC using a real-coded genetic algorithm (RGA). The choice for the46

usage of a RGA is justified because classical gradient-based optimization methods such as BFGS are not47

applicable for the EMPC optimization. Additional motivation for the application of RGA in contrast to48

other nature-inspired optimization algorithms is provided in Appendix A. In this paper, we refine our49

previous body of work [6] by incorporating significant enhancements such as a lasso-regularized fitness50

function as well as a soft-thresholding operator into ProfLogit. Additionally, we introduce precision and51

recall measures, along with the F1 measure, that are defined based on the expected profit maximizing52

fraction η̄empc, which frees users from manually specifying a classification threshold. Our contributions53

can be summarized as follows:54

� Providing empirical evidence for the feasibility of profit maximizing modeling through RGA, show-55

ing that the proposed approach attains overall highest profitability.56

� Significant improvements to the fitness functions that make the evolutionary search more efficient,57

yielding a higher average EMPC performance.58

� Introducing profit-based precision and recall measures, as well as a F1 measure thereof, that do59
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not depend on the classification threshold and account for maximum profit.60

The remainder of this paper is structured as follows. In the next section, we discuss the essential61

building blocks that are relevant to ProfLogit, followed by detailed explanations of our proposed approach62

in Section 3. The subsequent section describes the experimental setup, and the results of an extensive63

benchmarking study as well as a discussion thereof. Finally, we conclude the paper by summarizing the64

research findings in Section 5.65

2. Preliminaries66

2.1. Notation67

For computational reasons, the EMPC measure requires that the class of interest (i.e., churn) is68

encoded as zero [7, p. 37]. Hence, throughout the text, the binary response variable Y ∈ {0, 1} signifies69

‘churn’ if Y takes the value zero and ‘no churn’ if it takes the value one. A positive side effect of using this70

nonstandard notation is that it simplifies the mathematical description of the profit-based performance71

measures [8].72

Furthermore, D = {(xi, yi)}Ni=1 denotes the set of N observed predictor-response pairs, where yi ∈73

{0, 1} symbolizes the response and xi = (xi1, . . . , xip)
T represents the p associated predictor variables74

(or features) of observation i.75

2.2. Logistic Regression Model for Churn Prediction76

The logistic regression model, also called logit model, is a popular classification technique that models

the nonlinear relationship between a binary response variable and a set of features [9]. Given a data set

D, logistic regression models the likelihood of churn for instance i as a conditional probability:

Pr(Y = 0 | xi) =
eβ0+βTxi

1 + eβ0+βTxi
, (1)

where β0 ∈ R represents the intercept, β ∈ Rp is the p-dimensional vector of regression coefficients,77

and xi, Y and D as defined in the notation section. For notational convenience, we define the churn78

probability (or score) of instance i as s(xi) := Pr(Y = 0 | xi) and the set of all churn scores as s. It is79

obvious from (1) that the churn scores lie between zero and one. Given the adapted notation, note that80

a lower churn score indicates a higher likelihood of churning.81

To fit the logistic model, the binomial log-likelihood function of the data, l(·), is maximized, which

in turn yields the maximum likelihood estimates for the unknown parameters β0 and β. Yet, for our

purposes, we will consider an objective function, Qlλ(·), that is the lasso-regularized version of the log-

likelihood function [10]:

Qlλ(β0,β) = l(β0,β)− λ||β||`1 (2)

with

l(β0,β) =
1

N

N∑
i=1

[
(1− yi)(β0 + βTxi)− log

(
1 + eβ0+βTxi

)]
(3)

where λ ≥ 0 is the regularization parameter and ||β||`1 =
∑p
j=1 |βj | is the `1-norm of β. Note that82

the lasso regularization only penalizes the regression coefficients in β—not the intercept β0. Clearly, the83

3



Table 1: Confusion Matrix with Cost Benefit Structure

Predicted class Actual class

Class 0 Class 1

Class 0
π0F0(t)N

[b0 = c(0 | 0)]

π1F1(t)N

[c1 = c(0 | 1)]

Class 1
π0(1− F0(t))N

[c0 = c(1 | 0)]

π1(1− F1(t))N

[b1 = c(1 | 1)]

Confusion matrix with associated benefits (bk) and costs (ck), k ∈ {0, 1}, for a correct and incorrect classification, respec-

tively [5]. For the EMPC measure, churn is encoded as zero.

larger λ, the stronger the lasso penalty. Typically, the predictors are standardized in the lasso model84

so that they have zero mean (i.e., 1
N

∑N
i=1 xij = 0) and unit variance (i.e., 1

N

∑N
i=1 x

2
ij = 1) [10].85

The regularization parameter λ cannot be directly estimated from the data and has to be determined by86

means of hyperparameter optimization strategies such as grid search in combination with cross-validation.87

Assuming the optimal λ value has been found, the lasso-regularized logistic regression aims to achieve88

a good balance between model fit and model complexity in which only predictors with sufficiently large89

predictive power have a nonzero regression coefficient.90

2.3. Profit-based Classification Performance Evaluation91

A classification performance measure is necessary to assess the quality of the churn model, which in92

turn allows selecting the best classifier from a set of candidate models. In this subsection, we discuss93

common performance measures used to evaluate models for binary classification problems, and elaborate94

on the expected maximum profit measure for customer churn (EMPC).95

Given a classification threshold t, the confusion matrix can be constructed which tabulates the96

numbers of correct and incorrect classifications based on the churn scores produced by the predictive97

model (Table 1). Note that πk denotes the prior class probability of class k, k ∈ {0, 1}, where π098

represents the base churn rate. And, fk(s) and Fk(s) respectively stand for the probability density99

function and the cumulative distribution function of class k computed based on the churn scores s. To100

make crisp class predictions, all instances with s smaller than t are classified as churners (i.e., class 0),101

whereas instances with s larger than t are classified as nonchurners (i.e., class 1). Generally, labeling an102

instance from class k as a class l instance is associated with a cost or benefit c(l | k), l, k ∈ {0, 1}, which103

can take different values for each cell in the confusion matrix. Correct classifications (i.e., upper left and104

lower right cell) are rewarded with a benefit bk = c(l | k), l = k. Incorrect classifications (i.e., lower left105

and upper right cell) are regarded as costs ck = c(l | k), l 6= k. Profit is then computed by offsetting the106

costs and benefits against each other.107

From the confusion matrix, classification performance measures are derived in order to evaluate

the discrimination power of the predictive model. Widely accepted measures for binary classification
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problems in the data mining community are [7, 11, 12, 13, 14, 15]:

Accuracy(t) = π0F0(t) + π1(1− F1(t)), (4)

Error rate(t) = π0(1− F0(t)) + π1F1(t), (5)

Recall(t) = F0(t), (6)

Precision(t) = π0F0(t)/(π0F0(t) + π1F1(t)), (7)

F1 measure(t) = 2π0F0(t)/(π0 + π0F0(t) + π1F1(t)), (8)

MER = min
∀t
{Error rate(t)}, (9)

AUC =

∫ +∞

−∞
F0(s)f1(s) ds. (10)

Undoubtedly, the area under the ROC curve (AUC) is one of the most popular measures to objectively108

evaluate the classification performance, since it frees the user from manually specifying the classification109

threshold. Note that the minimum error rate (MER) is also independent of the threshold. Simply said,110

the AUC can be interpreted as being the probability that a classifier will allocate a lower score to a111

randomly chosen churner than to a randomly chosen nonchurner [7, 13]. Thus, the higher the AUC, the112

better the classification performance. However, the listed performance measures do not explicitly take113

classification costs or benefits into account, making their application for classification problems with high114

class imbalance such as churn inappropriate.115

Moreover, Hand [3] showed that the AUC implicitly treats the relative severities of misclassification

differently among classifiers; ergo, a fair model comparison cannot be established. These severities

ultimately are properties of the classification problem at hand, and should be independent of the applied

classifier. For this reason, Hand proposed the H measure that fixes the distribution of relative severities

in order to establish a fair comparison and explicitly account for misclassification costs [3]:

H = 1−
∫
Q(topt(c); a, c)uα,β(c) dc

π0
∫ π1

0
c uα,β(c) dc+π1

∫ 1

π1
(1− c)uα,β(c) dc

, (11)

where Q(·) is the average classification loss, topt is the optimal classification threshold that minimizes116

the loss, c = c0/a with a = c0 + c1 is the cost ratio, and uα,β(·) is a unimodal beta distribution, i.e., its117

parameters are restricted to be larger than one (α > 1, β > 1). To specify appropriate misclassification118

costs if class imbalance is present, Hand and Anagnostopoulos [16] suggested to set the parameters of119

the beta distribution to α = π0 + 1 and β = π1 + 1. A H measure value closer to one indicates superior120

classification performance.121

It is, however, generally recommended to incorporate both costs and benefits into a performance

measure [4]. Accordingly, Verbraken et al. [5] proposed the cost benefit analysis framework for customer

churn, which incorporates the costs associated with a retention campaign and the benefits of retained

customers. This logic is succinctly expressed by the average classification profit function [5]:

ΠC(t; γ,CLV, δ, φ) = CLV (γ(1− δ)− φ)π0F0(t)

− CLV (δ + φ)π1F1(t),
(12)

5



where t is the classification threshold and γ is the probability that a targeted would-be churner accepts a122

special offer and remains a customer. CLV represents the constant customer lifetime value per retained123

customer (200 e). The two dimensionless parameters δ = d/CLV and φ = f/CLV are derived from d,124

the constant cost of the retention offer (10 e), and f , the constant cost of contact (1 e). Furthermore, it125

is assumed that these parameters are strictly positive and CLV > d. Note also that the values between126

brackets are the recommended default values for churn management campaigns in the telecommunication127

sector [5].128

The cost benefit framework encompasses a deterministic and a probabilistic profit-based performance

measure. The former is the maximum profit measure for customer churn (MPC) [5]:

MPC = max
∀t

{
ΠC(t; γ,CLV, δ, φ)

}
. (13)

The latter assigns a beta distribution to γ, denoted as h(γ) with the restriction that its parameters are

α′ > 1 and β′ > 1, which yields the expected maximum profit measure for customer churn (EMPC) [5]:

EMPC =

∫
γ

ΠC(topt(γ); γ,CLV, δ, φ)h(γ) dγ, (14)

where topt is the optimal classification threshold that maximizes the profit for given γ. As recommended129

by [5], α′ and β′ are by default set to 6 and 14, respectively. Clearly, the probabilistic measure is much130

richer than the MPC, in the sense that it considers a range of γ values—not just a single value (i.e., the131

mean of the beta distribution: α′/(α′+ β′)). Therefore, we mainly focus on the EMPC. Yet, both profit132

measures allow identifying the most profitable classifier unambiguously.133

Additionally, the proposed cost benefit framework provides the (expected) profit maximizing fraction

for customer churn, η̄, which permits practitioners to estimate the optimal fraction of customers to target

in the retention campaign for maximum profit. Following the deterministic approach, it becomes [5]:

η̄mpc = π0F0(topt) + π1F1(topt) (15)

with

topt = arg max
∀t

{
ΠC(t; γ,CLV, δ, φ)

}
, (16)

whereas the profit maximizing fraction derived from the probabilistic approach is defined as [5]:

η̄empc =

∫
γ

[π0F0(topt(γ)) + π1F1(topt(γ))]h(γ) dγ. (17)

Instead of making an arbitrary choice of taking, for example, the top 10% of predicted would-be churners,134

which likely results in suboptimal profit ([5, 17]), the η̄ estimates help to determine how many customers135

should be targeted in the retention campaign. These estimates are especially appealing in a practical136

setting.137

2.4. Genetic algorithms138

Genetic algorithms (GAs) are metaheuristic optimization algorithms inspired by the biological process139

of evolution to solve complex problems [18, 19, 20, 21, 22, 23]. They are a subclass of evolutionary140

algorithms (EAs). Our focus is on real-coded genetic algorithms (RGAs), which encode a candidate141
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solution, also called chromosome, as a vector of real numbers; unlike the regular GA that encodes a142

chromosome as a binary string. Note that elements of the chromosome are also called genes. Independent143

from the chosen coding scheme, the fundamental concepts behind GAs remain the same. The most144

significant advantages of GAs are their global search capabilities as well as their adaptability to a broad145

spectrum of problems [24]. That is, GAs are capable of obtaining useful results even in circumstances in146

which traditional techniques fail such as strong nonlinearities, nondifferentiability, noisy and time-varying147

objective function values, or a large search space with high dimensionality [21].148

The key characteristic of GAs is that they are based on a population of chromosomes, performing149

a parallel adaptive search to explore the solution space, that progressively evolves toward the optimum150

with the aid of genetic operators [25]. The evolutionary search is biased by the fitness function, which151

is a mathematical expression that assesses the quality of the chromosomes. By convention, the higher152

the fitness value of a chromosome, the better its quality. A GA usually consists of at least the following153

genetic operators: selection, crossover, and mutation. All operators can be specified in numerous ways154

for different types of chromosome representations from very generic to very problem-specific expressions.155

However, in their essence, each genetic operator has to fulfill its specific role.156

Now, suppose a finite population of chromosomes for a given optimization problem is available,157

selection then takes a random subset of the population members based on their fitness values, which158

forms the basis for the creation of the next generation. Selection operators are designed such that high159

fit chromosomes have a high chance of being selected for reproduction. Once the selection has been made,160

the remaining generic operators are applied in turn. That is, crossover and mutation are responsible161

for exchanging and modifying the gene material to create new chromosomes. The population is then162

updated to the next generation. In general, good operators should promote diversity and simultaneously163

establish a high fitness correlation, meaning that parents with high fitness values should also, on average,164

produce highly fit offspring [25]. By repeatedly applying these operators, the GA converges toward the165

optimum, and, given an infinite amount of time, GAs are capable of finding the global optimum in the166

search space.167

Given the capabilities outlined above, it should therefore come as no surprise that GAs can also168

be applied to find the optimal parameter values for the logistic regression model (1). Although faster169

algorithms exist to maximize the binomial log-likelihood function (2), applying a GA, in which the170

collection of regression coefficients acts as a chromosome, to solve the optimization problem is fairly171

straightforward [26].172

2.5. Related Work173

A profit-based performance measure also exists for credit risk modeling with the same rationale as174

for the EMPC [8]. That is, this measure also stems from the general cost benefit framework [5], but its175

classification costs and benefits are motivated based on expected profits and losses in a credit granting176

setting. As for the EMPC, the objective is to make a model selection based on profit-driven criteria.177

Moreover, the expected maximum profit measure for credit scoring additionally allows computing the178

optimal classification threshold, which is crucial for the implementation of the model. Verbraken et al. [8]179
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benchmarked their approach, and found that their profit-based metric outperforms alternative approaches180

in both accuracy and monetary value.181

An alternative to class-based cost allocation is to measure classification costs at the instance level.182

This way, individual costs associated with customers can be set, which in turn allows a more sensitive183

specification of how costly the misclassification of a particular customer is. The classification performance184

is then measured by the total cost, which is the sum of all individual costs. Such an example-dependent185

cost-sensitive framework for churn is proposed by [27]. However, unlike in the cost benefit framework of186

the EMPC, the customer lifetime value is treated as a cost for effectively churned customers—not as a187

benefit of retained customers. Thus, their framework does not account for any benefits, and is purely188

cost-based. Their suggested approach substitutes the objective function of the logistic model with an189

example-dependent cost function, and applies a binary GA to minimize it. Using a real-life data set,190

the authors concluded that the cost-sensitive approach yields up to 26% higher cost savings than a cost-191

insensitive one. Additionally, they emphasize the importance of incorporating cost-sensitive measures192

into the model construction step, because, in this manner, it helps best to improve the classification193

performance.194

The idea of directly including the performance measures into the model construction is also considered195

by [28]. Here, a classifier, called RIMARC, is proposed that maximizes the AUC directly. In a benchmark196

study, they show that in about 60% of the cases their proposed classifier significantly outperforms other197

techniques in terms of the AUC. This suggests that the direct incorporation of the performance measure198

into the model construction can indeed lead to a superior classification performance.199

3. Profit Maximizing Modeling200

In this section, we introduce our ProfLogit classification technique, which is based on the logistic201

model structure (1) but optimizes the regression parameters according to the EMPC, aiming to produce202

the most profitable classifier. A real-coded genetic algorithm (RGA) is utilized to find the optimal pa-203

rameter vector that corresponds to a maximum on the EMPC landscape. Note that, given the EMPC204

definition in (14), it is clear that gradient-based optimization methods are not applicable for the max-205

imization problem. Additionally, a small comparison study revealed that RGA yields a better average206

EMPC performance than other nature-inspired optimization algorithms such as differential evolution207

(DE) and particle swarm optimization (PSO) (see Section A). In what follows, we provide detailed208

explanations of the building blocks of ProfLogit.1209

3.1. ProfLogit: Profit Maximizing Logistic Regression210

3.1.1. Fitness Function and Soft-thresholding211

ProfLogit’s objective function is defined by substituting the binomial log-likelihood in (2) with the

EMPC measure (14), ultimately yielding a profit-sensitive classification model:

Qempcλ (θ) = EMPC(θ)− λ||β||`1 , (18)

1A Python 3 implementation of ProfLogit is available from the corresponding author upon request.
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Figure 1: ProfLogit’s fitness landscapes computed based on a real-life churn data set. If the fitness function (18) only

consists of the EMPC measure (i.e., λ = 0) as in (a), multiple maxima with identical fitness (�) exist. On the other hand,

if fitness function (18) is augmented with the lasso penalty (λ > 0) as in (b), only one maximum (�) exists for these data.

Additionally, the soft-thresholding operator induces an incline on the fitness surface that makes the evolutionary search of

ProfLogit more focused and efficient.

where θ = (β0,β) ∈ Rp+1 is the parameter vector, consisting of the intercept β0 and the regression212

coefficients β as defined in (1), and the second term is the lasso penalty identical as in (2). Note that213

the penalty only applies to the regression coefficients in β. In the RGA, θ represents a chromosome in214

which the regression coefficients act as the genes, and (18) is the fitness function that is maximized by215

the RGA. θ can also be interpreted as a classification model that outputs churn scores that serve as an216

input for the EMPC measure to compute the classification profit for the given θ. Given the underlying217

RGA, ProfLogit thus works with a population of churn models.218

In a previous version of ProfLogit [6], the fitness function only contained the EMPC measure (which219

corresponds to Qempcλ=0 (θ)), yielding in 50% of the cases a better EMPC performance than the standard,220

unregularized logistic model. In an attempt to identify potential performance boost mechanisms, we221

conducted an elaborated fitness landscape analysis. We found that a pure EMPC fitness function (i.e.,222

λ = 0) exhibits multiple maxima with identical fitness (Figure 1a), and hence potentially many solutions223

that have the same fitness value but different parameter values are returned by the RGA. That is224

because candidate solutions that correspond to these maxima cannot be differentiated by their fitness225

values anymore, and therefore the RGA becomes indecisive in selecting one solution. Consequently, every226

time ProfLogit is executed it likely returns a different solution, which entirely depends on the random227

seed used for the initialization of the population.228

Therefore, we augment ProfLogit’s fitness function with the lasso penalty to avoid the undesirable229

behavior of returning “unstable” solutions. Generally, the lasso regularization penalizes model complexity230

and biases the evolutionary search toward simpler models. When considering an example based on real-231

9



life data, the penalty helps to reduce the number of maxima from many to one (Figure 1b). Note that232

we do not claim that the inclusion of the lasso penalty generally results in a unique maximum. In this233

example, the effect of the augmented fitness function is clearly visible, i.e., (β1, β2)-pairs far away from234

(0, 0) have a lower fitness. The inclusion of the penalty term creates an incline on the fitness surface235

that noticeably helps the RGA to find the maximum more efficiently. De Jong [25] refers to the build-in236

of such an incline as making the fitness function “evolution friendly,” meaning that the fitness function237

has to be designed such that it provides clues for the evolutionary search of where to find solutions with238

high fitness.239

Additionally, the soft-thresholding operator, Sλ(·), is utilized in order to penalize individual regression

coefficients in β, which in turn introduces a biasing of the coefficient values toward zero. This useful

mechanism is also employed in the regular lasso-penalized logistic model [10], and has been popularized

by [29]. The soft-thresholding operator is defined as follows [10, 30]:

Sλ(β) = sign(β)(|β| − λ)+. (19)

It sets the individual coefficient β to zero if its absolute value is smaller or equal to the regularization240

parameter, and otherwise pulls β toward zero by the magnitude of λ. Unlike for the lasso model, ProfLogit241

has no theoretical justification for the usage of the soft-thresholding operator. However, Sλ(·)’s property242

of zero-biasing promotes the return of less complex models, and ultimately simpler churn models are243

preferred since they are more likely to perform better on new, unseen data. Additionally, the shrinkage244

toward zero has also the advantage that the search space boundaries for the RGA can be set closer to245

zero, which keeps the search space itself small. An empirically based justification for the application of246

the soft-thresholding operator is provided in Section 3.2.247

3.1.2. Initialization of the Parameter Vector Population248

To apply the RGA, a population of parameter vectors has to be first created. Let Pg be the collection

of parameter vectors θ, as defined above, representing the gth generation of the population for g =

0, . . . , G, where P0 is the initial population. Note that the population size is held constant in ProfLogit

throughout the entire evolutionary search (i.e., ∀g : |Pg| = |P|). Similarly, the length of each parameter

vector, |θ|, is fixed. To initialize a parameter vector, a random number from a uniform distribution is

assigned to each βj ∈ θ, where βj corresponds to the jth predictor (except β0, which is the intercept):

βj ← Unif(Lj , Uj), (20)

with Lj and Uj being the lower and upper boundary of the search space for βj , respectively. By default,249

Lj is set to −3 and Uj is set to 3,∀j. This way, candidate solutions are created that are randomly250

scattered over the search space. The coverage density of the space can somewhat be influenced by the251

population size. Note that the population-based approach provides a natural mechanism of a parallel252

adaptive search [25]. That is, the larger the size of the population, the more the RGA explores the253

search space in parallel. However, this comes with a trade-off. The larger the population is, the more254

computationally expensive it becomes to carrying out the calculations. Depending on the optimization255
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problem, EA designers typically start with small populations, and increase the size if necessary. Even256

with a small population size, EAs still can attain acceptable results.257

Once P0 is created, each θ first undergoes soft-thresholding (19), and then its fitness is evaluated258

using (18). Soft-thresholding is only applied on the regression coefficients in the β vector—not on the259

intercept β0. Note also that the soft-thresholding operator is only applied once on all β ∈ β just before260

the fitness evaluation. When the fitness values are available, copies of the fittest θs are put into a so-called261

elite pool, which is part of a mechanism called elitism that is explained in more detail in Section 3.1.6.262

3.1.3. Probabilistic Selection of the Fittest263

A selection Sg ⊆ Pg (with replacement) is conducted such that θs with high fitness are more likely to

be selected for reproduction than θs with low fitness. Note that the size of the selection equals the size

of the population, i.e., |Sg| = |Pg| = |P|, and it remains constant in each processing step that follows.

Note also that, in some literature (e.g., [19]), Sg is referred to as the mating pool. Various strategies exist

to carry out a selection [18, 19]. ProfLogit applies a strategy called linear scaling, which is based on the

idea of roulette wheel selection (RWS)—a probabilistic approach. That is, the selection of a parameter

vector is proportional to its fitness value: the higher the fitness value, the higher the chance of being

selected. Unfortunately, applying RWS on the raw fitness values will bias the evolutionary search too

much toward the fittest population member, which likely causes that the RGA gets trapped in a local

optimum. To avoid this bias, the fitness values are scaled in a way that promotes exploration in the early

stage and exploitation in the later stage of the evolutionary search. Let f (q) be the fitness value of the

population member θ(q) for q = 1, . . . , |P|. The fitness values are then scaled as follows:

f (q)s = af (q) + b, (21)

where f
(q)
s is the scaled fitness value with a and b being the scaling parameters. The way how a and

b are specified has a great influence on the performance of the RGA; we follow the method described

in [31]. This scaling scheme makes sure that the average fitness value does not change its value after

scaling, i.e., f̄s = f̄ . Furthermore, let fmin and fmax be the original minimum and maximum fitness

value, respectively. If fmin > (Cf̄ − fmax)/(C − 1), a and b are specified such that the scaled maximum

fitness value becomes C times as large as f̄s:

f (q)s =
f̄(C − 1)

fmax − f̄
f (q) +

f̄(fmax − Cf̄)

fmax − f̄
, (22)

where C controls the dominance of the fittest θ. C is commonly set to two, ensuring that the fittest

population member is not selected too often. In case the above condition is not true, a and b become:

f (q)s =
f̄

f̄ − fmin
f (q) − f̄ × fmin

f̄ − fmin
. (23)

Proportional selection schemes require that all fitness values are positive, and (23) makes sure that the

scaled fitness values do not become negative. This, however, comes at a price that the parameter vector

with the corresponding scaled minimum fitness value has no chance of being selected (i.e., its scaled

fitness value is zero). After the scaling, the selection probability is computed as follows:

p(q) =
f
(q)
s∑|P|

q=1 f
(q)
s

. (24)
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Clearly, the higher the quantity p(q) of the corresponding parameter vector, the more likely it gets264

selected. Now that a selection of relatively high fitness parameter vectors Sg is available, the next step265

is to generate new candidate solutions.266

3.1.4. Crossover for Information Exchange267

The crossover operator manipulates the elements of the selected parameter vectors, aiming to produce

new candidate solutions with higher fitness quality. There are again various strategies available to perform

a crossover, which vary heavily between representation types. ProfLogit employs a local arithmetic

crossover that is applicable on real-encoded chromosomes. It first randomly picks (without replacement)

two parameter vectors from the selection Sg (obtained from the previous step), which are referred to as

parents, e.g., θ
(1)
parent and θ

(2)
parent. Next, a sample of random numbers, denoted as w, is taken from the

standard uniform distribution, Unif(0, 1), where the sample size equals the vector length |θ|. Parental

gene material is then exchanged as follows [19]:

θ
(1)
child = w ∗ θ(1)

parent + (1−w) ∗ θ(2)
parent

θ
(2)
child = w ∗ θ(2)

parent + (1−w) ∗ θ(1)
parent

(25)

where θ
(·)
child are the newly created parameter vectors, 1 is the all-ones vector, and ∗ symbolizes element-268

wise multiplication. The elements in w can also be regarded as weights, indicating how much gene269

material is inherited from which parent. For example, if the first element is w1 = 0.7, this means θ
(1)
child’s270

first gene inherits 70% from θ
(1)
parent and 30% from θ

(2)
parent; whereas the first gene of θ

(2)
child inherits 30%271

from θ
(1)
parent and 70% from θ

(2)
parent. Not all parameter vectors in Sg experience a crossover, i.e., the272

operator is, by default, applied with a probability of pc = 0.8, which is invariant over generations. More273

specifically, a crossover between two randomly chosen parents is performed if u < pc, where u is drawn274

from Unif(0, 1). When a crossover is performed, the children take the positions of their parents in Sg.275

The processed mating pool after the crossover is denoted as S ′g.276

3.1.5. Mutation to Discover New Solutions277

The mutation operator aims to create candidate solutions that are unlikely to be produced by in-278

formation exchange alone, stimulating the exploration of the search space. As for most of the genetic279

operators, there are also many strategies for mutation available. After the crossover has been performed,280

ProfLogit applies a uniform random mutation with a fixed default probability of pm = 0.1. Typically, the281

mutation rate is set to a low value in order to avoid too much disturbance in the late exploitation phase.282

Similar as with the crossover, a mutation is performed if u < pm, where u is drawn from Unif(0, 1). In283

this case, a parameter vector θ is randomly picked (without replacement) from S ′g, and a new value is284

assigned to a randomly selected β ∈ θ. The new value is obtained from the same uniform distribution as285

used for the initialization (Eq. (20)). Also here, the mutated parameter vector replaces its predecessor286

in S ′g. The processed mating pool, now denoted as S ′′g , forms, in principle, the next generation. The287

fitness of all new parameter vectors in S ′′g is evaluated, which have been created by either crossover,288

mutation, or underwent both operators. Like in the initialization, first the soft-thresholding operator289

(19) is applied on the β part of θ, then the fitness is evaluated using (18).290
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3.1.6. Update to the Next Generation291

After the genetic operators have been applied, the current population Pg is updated through S ′′g to292

create the next generation of candidate solutions Pg+1. In this way, the RGA converges toward the293

maximum from generation to generation. There are several update strategies, but they can mainly be294

categorized into overlapping- and nonoverlapping-generation models [25]. ProfLogit utilizes a mechanism295

called elitism, which belongs to the former category. As foreshadowed in the initialization step, in every296

generation, a proportion of the fittest θs is put aside in an elite pool, denoted as E , that will survive297

to the next generation. When the population is updated from Pg to Pg+1, parameter vectors in S ′′g298

have to compete for their survival against the members in E . That is, parameter vectors in E replace299

the θs with the lowest fitness in S ′′g , which then finally becomes the next population Pg+1. Having300

now the next generation of parameter vectors, the elite pool is updated with the new, fittest θs as301

well. Elitism induces increased selection pressure, and θs have to compete for their survival across302

generations. By default, ProfLogit keeps at least one or at most 5% of the population size in the303

elite pool, i.e., |E| = max {1, 0.05× |P|}. Note that also the size of the elite pool remains fixed over304

generations. An advantage of using elitism is that the RGA keeps track of the best solution(s) obtained305

so far. Consequently, the best fitness value does not decreases with generations. A best-so-far fitness306

curve then refers to a line plot in which the best fitness values are plotted against the generation index307

g, representing a monotonically nondecreasing function.308

3.1.7. Termination: Returning a Solution309

By repeatedly applying the genetic operators, the RGA progressively explores the search space—310

converging to the maximum—until a satisfied termination criterion stops the evolutionary search. Reach-311

ing a prespecified maximum number of generations, G, is a common termination criterion. Another fairly312

standard criterion is to terminate the search if the best fitness value has not improved for a predetermined313

number of generations. If one termination criterion is met, the parameter vector with the highest fitness314

value, θ̂, in Pg is returned, which represents the final solution. An overview of the ProfLogit algorithm315

to construct a profit maximizing churn model is given in Algorithm 1.316

3.2. Motivation for Subjective Choices317

We integrate the soft-thresholding operator (19) into ProfLogit based on subjective grounds, and wish318

to motivate our choice in this subsection. More specifically, we empirically show that soft-thresholding is319

more efficient for finding the optimum in less generations, helps to reduce variability, and effectively sets320

regression coefficients with no predictive power to zero. Note that the last argument ultimately implies321

that ProfLogit performs a feature selection in a profit maximizing manner. Yet, before elaborating on322

the soft-thresholding operator, we discuss the hyperparameter tuning of λ in (18).323

3.2.1. Tuning the Regularization Parameter324

To infer the optimal regularization parameter value, λopt, we generate a grid of λ values as follows:

Λ = {λ | λmin < λ < λmax}, (26)
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Algorithm 1 ProfLogit: Profit Maximizing Evolutionary Logistic Model with Lasso Regularization

Inputs: Churn data set D = {(xi, yi)}Ni=1 with p predictors that have zero mean 1
N

∑N
i=1 xij = 0 and

unit variance 1
N

∑N
i=1 x

2
ij = 1;

λ, regularization parameter;

|P|, size of the population of parameter vectors θ = (β0,β) ∈ Rp+1;

|E|, size of the elite pool (default: max {1, 0.05× |P|});

Lj, lower search boundary for βj (default: −3, ∀j);

Uj, upper search boundary for βj (default: 3,∀j);

pc, crossover probability (default: 0.8);

pm, mutation probability (default: 0.1);

G, maximum number of generations

{Initialization of the Real-coded Genetic Algorithm (RGA)}
Initialize: g ← 0 # generation index

Create initial θ population, Pg, of size |P| according to (20)

Evaluate: ∀θ ∈ Pg apply soft-thresholding on all β ∈ β (not on the intercept β0) as in (19) and

compute the lasso-regularized EMPC fitness as in (18) with given λ; copy the fittest θs

into the elite pool E

{Main Loop of the RGA}
while g ≤ G and the fitness (18) improves do

Select: θs in Pg into Sg based on fitness values processed according to (22)-(24)

Crossover: θs ∈ Sg as in (25) with probability pc; processed Sg is denoted as S ′g

Mutate: θs ∈ S ′g as described in Section 3.1.5 with probability pm; processed S ′g is denoted as S ′′g

Evaluate: the fitness of newly created θs ∈ S ′′g as in the initialization, i.e., applying soft-thresholding

on all β ∈ β before fitness evaluation

Update: Pg to Pg+1 by processing S ′′g and E as in Section 3.1.6; update the elite pool E with the

fittest θs;

g ← g + 1
end while

return θ̂, the parameter vector with the highest fitness in Pg

with λmax = maxj
∣∣ 1
N 〈xj ,y〉

∣∣ and λmin = ελmax, ε > 0. [10, 30]. Given a standardized data set D as325

described in Section 2.2, a value for the regularization parameter can be determined (i.e., λmax) that326

is just large enough so that the lasso penalty sets all regression parameters to zero [10, 30]. Any value327

below λmax relaxes the penalization and the coefficient values start to become nonzero. In other words,328

predictors with high predictive power obtain first a nonzero value. Values above λmax do not have any329

effect, since all coefficients are already zero. Going all the way down to λ = 0 is also illogical, because330

then the penalization vanishes and the problem of multiple maxima as discussed in Section 3.1 reappears.331

For this reason, λmin should also not be set too close to zero, and we therefore specify ε = 0.1. For the332

experiments in Section 4, the grid consists of |Λ| = 15 equidistant values between λmin and λmax, and333

λopt then corresponds to the λ ∈ Λ with the highest EMPC performance (14) on the validation set. Note334

that |Λ| = 15 is an arbitrary choice, but it should be large enough to create a dense grid.335

For each λ ∈ Λ, a reliable performance estimate has to be obtained in order to confidently determine336
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λopt. Yet, the underlying RGA of ProfLogit is stochastic in nature, which requires that the analysis has337

to be repeated several times to obtain average performance estimates. Thus, we split the original data set338

into a training, validation, and test set, which are stratified according to the churn indicator. Note that339

the test set is sometimes also referred to as hold-out sample (we will use both terms interchangeably) and340

it is independent from the training and validation set. The hold-out sample will only be used to evaluate341

the final model performance, which in turn provides so-called out-of-sample estimates. Next, ProfLogit342

is trained R times with a given λ on the training set, and its EMPC performance is measured on the343

validation set. Next, the average of the R estimates becomes the associated performance estimate for the344

given λ. This procedure is performed for all λ ∈ Λ, and λopt corresponds to the λ value with the highest345

average EMPC performance on the validation set. To determine the final classification performance,346

ProfLogit is trained M times with λopt on the union of the training and validation set, and its final347

performance is evaluated based on the hold-out sample, which has previously not been used for either348

training or finding λopt. According to this procedure, the tuning of the regularization parameter and the349

final estimation of ProfLogit’s classification performance requires in total the construction of |Λ|×R+M350

models. For the experiments in Section 4, we decided that R = 10 and M = 30 are sufficiently large351

values, and we tune and train ProfLogit in the exact same way as described in this paragraph. For the352

sake of performing the entire analysis in a reasonable amount of time, we dismiss resampling techniques353

such as cross-validation for ProfLogit and perform the analysis only on stratified data splits. Note354

that the approach explained in this section only applies to ProfLogit, we still will use cross-validation355

on the union of the training and validation set for the competitive classification techniques. Thus, we356

deliberately make the comparison for ProfLogit more challenging.357

3.2.2. Soft-thresholding to Improve Performance358

Unlike in the regular lasso model where the soft-thresholding operator comes naturally into play, we359

imposed the Sλ(·) operator (19) onto ProfLogit in order to benefit from its properties such as denoisation360

[29]. Given that Sλ(·) is introduced based on subjective grounds, we studied its application in ProfLogit361

and present here the empirical results for one real-life churn data set.362

Generally, the incorporation of the soft-thresholding operator into ProfLogit is highly beneficial in363

terms of the EMPC, run time, and convergence of the RGA. It increases the average EMPC performance364

on the training and validation set (Figure 2 and Figure 4). It shrinks the regression coefficients toward365

zero, effectively performing a feature selection optimized according to the EMPC criterion (Figure 3366

and Table 2). It helps to find the maximum quicker, as well as having a clearer average convergence367

pattern (Figure 4). The most important, however, is that the Sλ(·) operator also tremendously helps to368

improve the EMPC performance on the independent test set (Figure 5). On average, a 12.31− 10.99 =369

1.31 e EMPC improvement is achieved with Sλ(·) compared to the ProfLogit approach without soft-370

thresholding. Such an improvement is immense for a telephone service provider with thousands or371

millions of customers. The most straightforward explanation for the significant improvement is that372

ProfLogit with the soft-thresholding operator yields less complex models, which, in turn, have a better373

generalization performance. Hence, a higher EMPC is achieved than without soft-thresholding. Even374
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Figure 2: Average EMPC performance (�) for each λ ∈ Λ as defined in (26) computed based on the validation set (a) with

and (b) without the soft-thresholding operator (19), where λopt is marked as N. Each box plot is constructed based on

R = 10 values. Except when λ = 0.022, applying soft-thresholding results, on average, in a higher EMPC performance.
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Figure 3: The shrinkage effect is clearly evident (a) with Sλ(·) compared to (b) without Sλ(·), setting predictors with

low predictive power effectively to zero. Coefficient paths are computed based on a real-life churn data set with p = 8

predictors. Overall, it suggests that only two out of eight predictors have a particularly strong predictive power relevant

for maximum profit. Note that the plotted coefficient values for each λ are averages from the R = 10 ProfLogit models.

Note also that λopt equals 0.086 in (a) and 0.078 in (b) as indicated by the dashed line (- -).

when doing the comparison with the same λopt, the results remain almost identical as presented here.375

To summarize, empirical evidence clearly encourages the inclusion of the soft-thresholding operator.376

3.3. Performance Measures based on the Expected Profit Maximizing Fraction for Customer Churn377

In addition, we introduce three performance measures that are byproducts of the expected profit378

maximizing fraction (17). These measures are based on the notion of precision, recall, and the F1379

measure, but, unlike the measures presented in Section 2.3, they are independent of the classification380

threshold t.381

Due to scarce resources, marketers can only focus on a fraction of the customer base in a churn382

management campaign. Therefore, they often wish to receive a lead list with the top would-be churners383

so that they know who to target in the campaign. To generate such a list, a subset of the customer base384

is taken based on the churn scores produced by the predictive model. According to our definitions in385

Section 2, customers with lower churn scores (i.e., higher likelihood of churning) are more likely to be386
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Figure 4: With soft-thresholding (a), ProfLogit (λ = λopt) reaches a higher average EMPC performance trained on the

union of the training and validation set than without (b). Furthermore, compared to (b), there is less variability in the best-

so-far fitness curves between the M = 30 ProfLogit models in (a), indicating that the RGA converges more consistently to

the maximum. Additionally, soft-thresholding enables the RGA to find the maximum quicker (i.e., it has a sharper elbow),

and therefore requires less generations. Note that ProfLogit is trained with λopt = 0.086 in (a) and λopt = 0.078 in (b).

Table 2: Soft-thresholding: ProfLogit’s Average Coefficient Estimates

With Sλopt
(·) Without Sλopt

(·)

Coefficients Estimate (SE) Estimate (SE)

β0 0.108 (0.631) 0.138 (0.834)

β1 — 0.003 (0.093)

β2 −0.107 (0.089) −1.379 (0.236)

β3 0.016 (0.020) 0.495 (0.243)

β4 0.404 (0.240) 1.126 (0.494)

β5 0.000 (0.001) 0.264 (0.217)

β6 0.014 (0.026) 0.046 (0.096)

β7 — 0.029 (0.071)

β8 — −0.035 (0.089)

Applying the soft-thresholding operator (19), with the respective λopt value, biases the regression coefficients toward zero.

This sets predictors with low predictive power effectively to zero, and implicitly performs an EMPC-based feature selection.

A ‘—’ cell means that the corresponding βj have a zero coefficient value in all M = 30 ProfLogit models. The standard

deviations (SE) are also overall smaller with soft-thresholding, indicating more precise estimates.

included in the list. However, manually setting the optimal length of the list is by no means obvious.387

Fortunately, the η̄empc as defined in (17) helps us to exactly determine how many customers to target in388

the retention campaign for maximum profit. Hence, subjective subsetting is avoided.389

Let B be the set of all customers, the customer base, which consists of two disjoint sets: would-be390

churners C and nonchurners C̄, i.e., B = C ∪ C̄ and C ∩ C̄ = ∅. For clarity, C is the set of current391

customers that intend to leave the company soon, and therefore as many as possible of these customers392
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Figure 5: Applying soft-thresholding in ProfLogit significantly impacts the out-of-sample EMPC performance on the

hold-out sample, which was completely independent from the entire model construction process. More specifically, with

soft-thresholding, ProfLogit has a substantially higher average EMPC performance (N) than without soft-thresholding.

Note that in both scenarios ProfLogit has been trained with the respective λopt.

should be identified by the churn model for the campaign. Once the η̄empc estimate of the churn model is393

available, the lead list L ⊆ B can be generated by sorting B based on the churn scores from low to high394

and taking the top η̄empc fraction of the predicted would-be churners. It is important to note that this395

way the length of the lead list is completely generated on objective grounds. The list, however, likely396

contains subsets of both would-be churners and nonchurners, i.e., L = CL ∪ C̄L, where CL ⊆ C and397

C̄L ⊆ C̄. Once having L, we can compute popular performance measures.398

Definition 1. The η̄-precision or hit rate for customer churn, η̄p, is the proportion of correct identifi-

cations of churners in the η̄empc-based lead list L:

η̄p = |CL|/|CL ∪ C̄L|. (27)

Definition 2. The η̄-recall for customer churn, η̄r, is the proportion of churners that is included in the

η̄empc-based lead list L:

η̄r = |CL|/|C|. (28)

Frequently, precision and recall are summarized into the F1 measure, which represents a compromise

between the two performance measures. The η̄-based F1 measure for customer churn, η̄F1
, is defined as:

η̄F1
= 2

η̄pη̄r
η̄p + η̄r

. (29)

For all three measures, it applies that higher values indicate higher effectiveness of the lead list, and399

ultimately better performance of the classifier. However, these are accuracy-based auxiliary measures400

only, which intend to free the user from manually setting the classification threshold. Since we aim for401

maximum profit, the model selection should ultimately be done based on the EMPC. Nevertheless, it402

might be beneficial to compare hit rates (η̄p) among classifiers in order to assess their effectiveness of403

correctly identifying churners.404
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4. Empirical Evaluation405

In this section, we assess ProfLogit’s churn classification performance by benchmarking it against406

other linear classifiers. To do so, we apply the classification techniques to nine real-life churn data407

sets from various telecommunication service providers, and evaluate them using the EMPC, MPC, the408

H measure, AUC, MER, η̄p, η̄r, and η̄F1
, as defined in Section 2.3 and Section 3.3. These data sets409

are either publicly available or have been provided to our research group from various telco operators,410

located around the world (i.e., North and South America, East Asia, and Europe). Since ProfLogit itself411

is a linear classifier, we only compare it to linear classification techniques in order to have an equitable412

comparison. For this reason, we do not consider models such as decision tree, random forest, neural413

network, support vector machine with nonlinear kernels, and so forth. In total, we compare ProfLogit to414

eight competitive classifiers: regular logistic regression model (Logistic) as well as the lasso-regularized415

(Lasso) and the ridge-regularized (Ridge) version of it, and a logistic model with elastic net penalty416

(ElasticNet) [10]. The remaining ones are linear discriminant analysis (LDA), support vector machine417

with linear kernel (Linear SVM), stepwise logistic regression (stepLogistic), and backward elimination418

LDA (backLDA).419

We begin by describing the applied data preparation steps and the experimental setup, followed by420

presenting the results of the benchmark study, a sensitivity analysis of ProfLogit’s crossover and mutation421

rates, and a discussion of the results in the next four subsections, respectively.422

4.1. Experimental Setup of the Benchmark Study423

For each data set, we fit each classifier on a training set (if applicable, hyperparameters are tuned)424

and evaluate it on an independent test set (or hold-out sample) to obtain out-of-sample classification425

performance estimates. To find the optimal hyperparameter values, we apply 10-fold cross-validation for426

the competitive techniques and the procedure discussed in Section 3.2.1 for ProfLogit on the training427

set. Unless training and test sets are already available from the source, we create them by randomly428

partitioning the data set into a 70% training and 30% test set, stratified according to the churn indicator429

to obtain similar churn distributions in the training and test set as observed in the original data set.430

We standardize the predictors as described in Section 2.2. Standardization causes that estimated431

regression coefficient values are expected to be relatively close to zero. This allows us to set small search432

boundaries for the RGA. Hence, we use the respective default values of −3 and 3 for Lj and Uj in Eq.433

(20) for j = 0, . . . , p. These default values should be wide enough to cover the essential area of the fitness434

landscape, and be narrow enough to run the RGA efficiently.435

To avoid complex transformations of categorical predictors, we remove those that have more than436

five categories. The motivation behind is to have a clean approach across data sets and classifiers. The437

validity of the benchmark study is thereby not jeopardized, since we still provide the same data to all438

classification techniques. For the included categorical features, we apply dummy coding.439

We also remove predictors that are highly correlated with each other to avoid (multi)collinearity440

problems. That is, the presence of extreme correlations can cause degeneration and wild behavior of the441

lasso [30]. Predictors that exhibit a near-zero variance are removed as well. Furthermore, observations442
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Table 3: Real-Life Churn Data Sets

ID Source # Predictors # Observations Churn rate [%]

Training Sample Hold-out Sample Training Sample Hold-out Sample

D1 Duke 11 8,750 3,749 39.31 39.32

KDD KDD Cup 2009 a 8 32,853 14,080 6.98 6.98

O1 Operator 37 4,940 2,116 29.15 29.11

O2 Operator 8 623 266 31.14 31.20

O3 Operator 11 9,522 4,079 22.59 22.58

O4 Operator 9 2,589 1,109 13.29 13.26

O5 Operator 21 40,678 17,433 13.96 13.96

O6 Operator 21 39,404 16,887 11.18 11.17

UCI UCI b 11 3,333 1,667 14.49 13.44

a http://www.kdd.org/kdd-cup/view/kdd-cup-2009

b http://www.sgi.com/tech/mlc/db

Characteristics of real-life churn data sets from various telecommunication service providers after preprocessing. The

training sample is used to tune and fit the classification models, whereas the hold-out sample serves to estimate the out-

of-sample classification performance. It is important to note that the hold-out sample is never involved in the training of

a model.

with missing values are excluded from the analysis. Fortunately, the relative frequencies of missing values443

are low for most of the data sets included in our setup.444

Telephone service providers often log the number of calls and the duration of a call that ultimately445

allows them to study customers’ call behavior. The frequency of calls and the call duration are however446

interrelated, yet call duration provides nevertheless richer information. To illustrate this, assume a447

client has the same numbers of calls to a churner, a former customer, and a nonchurner, a current448

customer. Then, specific call duration patterns (i.e., short versus long calls) provide more insights into449

the customer’s churn behavior than the number of calls. In particular, when considering the average call450

duration, the number of calls is intrinsically taken into account to some extent. For this reason, we remove451

features related to the number of calls. This has the additional benefit of reducing the dimensionality,452

which decreases complexity and execution time of all classifiers.453

To keep the analysis of the nine data sets manageable, we only consider main effects. Note that454

attempts of including all two-way interactions often resulted in nonconvergence of some algorithms, and455

selective inclusion of two-way interactions was not straightforward. The exclusion of interactions of any456

degree however does not adversely affect the validity of the study, since all classifiers are trained based on457

the same input data. Table 3 provides an overview of the data set characteristics after the preprocessing458

steps described above have been applied.459

Moreover, we apply EMPC’s default values as specified in Section 2.3. Regarding the parameters460

for the underlying RGA of ProfLogit, we set the population size equal to the parameter vector length461

multiplied by a factor of ten, i.e., |P| = 10|θ| = 10(p+1). In this way, the population size becomes a linear462

function of the input dimensions. This allows ProfLogit to better adapt to the classification problem463

than fixing the population size across all data sets a priori. Making the population size dependent on the464

20

http://www.kdd.org/kdd-cup/view/kdd-cup-2009
http://www.sgi.com/tech/mlc/db


input dimensions is reasonable, because the size of the search space grows exponentially with increased465

dimensions. Logically, it therefore makes sense to increase the size of the population as well, and thereby466

improve the parallel adaptive search capabilities of the RGA.467

Finally, we specify the termination criteria of the evolutionary search as follows: terminate (i) if the468

number of generations has reached G = 1,000, or (ii) if the best-so-far fitness value has not improved469

for 250 generations. To optimize the regularization parameter of ProfLogit, we apply the strategy470

discussed in Section 3.2.1 to find λopt. Because of the random nature of the underlying RGA, we run471

M = 30 repetitions of ProfLogit with λ = λopt on the training set and evaluate the average out-of-sample472

classification performance on the hold-out sample. For the competitive classifiers, we apply 10-fold cross-473

validation in which the EMPC measure is used as criterion to set the optimal hyperparameter values.474

Using the same criterion for the selection of optimal hyperparameter values as for ProfLogit allows a475

more appropriate model comparison.476

4.2. Results of the Experiment477

According to the EMPC, ProfLogit is overall the most profitable churn model (Figure 6 and Figure 7).478

Occupying the first place in six out of nine data sets results in an average rank of 1.67 on a scale from 1 to479

9. In the remaining three data sets, it closely falls behind the respective best competitive technique. In480

five out of the six best cases, it significantly outperforms the respective best competitive classifier, yielding481

profit gains ranging from 0.09 to 1.43 e per customer. Except for one estimate in O4, for these five data482

sets, all out-of-sample EMPC estimates of ProfLogit are well above the competitors’ estimates. In the483

best case (O2), ProfLogit’s EMPC estimates range from 11.11 e to 12.55 e, and its average performance484

equals EMPC = 12.31± 0.26 e. This yields, on average, a profit gain of 1.43 e per customer over the485

respective best competitive model (Linear SVM). In the worst case (O6), ProfLogit’s EMPC estimates486

range from 0.97 e to 1.04 e, and its average performance equals EMPC = 1.00± 0.01 e. This yields,487

on average, a loss of 0.01 e per customer over the respective best competitive model (LDA). When488

measuring the performance with the MPC, the deterministic profit measure, ProfLogit has an average489

rank of 1, being the most profitable churn model in all nine data sets (Figure 7).490

Furthermore, ProfLogit exhibits overall the highest η̄-precision (average rank: 2.33), meaning it most491

effectively identifies churners correctly. It also has the highest average η̄-recall (average rank: 3.00),492

thus it is capable of detecting the most would-be churners. Logically, when considering the η̄-based F1493

measure, ProfLogit is also the best performing classifier with an average rank of 1.44—best churn model494

in eight out of nine data sets.495

In two instances, ProfLogit also has the highest H measure estimate, but is otherwise ranked low496

(average rank: 6.11). Its H superiority is especially pronounced in the UCI data set, which is 0.49,497

whereas the respective best competitive classifier (ElasticNet) has a value of 0.41. Note that the H498

measure can approximate the EMPC in which benefits, b0 and b1, are set to zero [5]. This might explain499

ProfLogit’s occasional preeminence in terms of the H measure. ProfLogit also takes two times the first500

place in terms of the MER (KDD and O5), but the last position in 67% of the data sets, resulting in an501

average rank of 6.39.502
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Figure 6: Based on the out-of-sample EMPC estimates, ProfLogit (N) is in six out of nine data sets the most profitable

churn model, and in five out of the six best cases it significantly outperforms the respective best competitive classifier (�:

label at the bottom). For the other three data sets, ProfLogit closely falls behind the best competitive technique. Note that

the box plots have been constructed based on M = 30 EMPC estimates of ProfLogit measured on the hold-out sample. In

order to have a clear view on the estimates, we only picture the respective best competitive classifier to avoid overlapping

labels.
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Figure 7: When averaging the ranks of the out-of-sample classification performance estimates over the data sets, ProfLogit

has overall the best performance in terms of the EMPC and MPC, thus being the most profitable churn model. Additionally,

it has the overall best profit-based hit rate (η̄p) and recall (η̄r) as well as the highest η̄-based F1 measure, which indicates

that it is the most effective model to correctly identify churners and detecting the largest proportion of would-be churners.

The large discrepancies between the profit- and accuracy-based measures empirically prove that model selection based on

the latter category likely results in suboptimal profit.

Evidently, ProfLogit has the overall lowest AUC performance, having in eight out of nine cases a503

rank of six or larger (average rank: 7.33). However, as pointed out by [5], performance discrepancies504

between the EMPC and AUC were anticipated. Because ProfLogit maximizes the EMPC, significant505

discrepancies between these two measures were expected.506
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Table 4: Comparison of Regression Coefficients of Selected Models

Coef. ProfLogit Lasso Ridge Elastic Net Logistic stepLogistic

β0 0.108 (0.631) −0.895 −0.943 −0.943 −0.970 (0.125)∗∗∗ −0.915 (0.119)∗∗∗

β1 — — −0.127 −0.127 −0.096 (0.108) —

β2 −0.107 (0.089) −0.934 −1.188 −1.188 −1.566 (0.187)∗∗∗ −1.550 (0.183)∗∗∗

β3 0.016 (0.020) 0.477 0.697 0.697 1.042 (0.187)∗∗∗ 0.963 (0.138)∗∗∗

β4 0.404 (0.240) — 0.021 0.021 −0.083 (0.165) —

β5 0.000 (0.001) 0.116 0.224 0.224 0.173 (0.117) —

β6 0.014 (0.026) — 0.312 0.312 1.530 (0.896) . 2.283 (0.766)∗∗

β7 — — 0.059 0.059 0.073 (0.103) —

β8 — — 0.008 0.008 −0.011 (0.096) —

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

With the lasso-penalty, ProfLogit performs a profit-based feature selection, and, compared to its competitors, it considers

other predictors to be relevant for constructing a profitable churn model (see, e.g., shaded row). Note that ProfLogit’s

coefficients have been averaged over the M = 30 models, each trained with λ = λopt. Results are based on the O2 data

set. A ‘—’ cell means that the corresponding βj have a zero coefficient value.

Finally, due to the integrated lasso-penalty and the soft-thresholding operator, ProfLogit performs a507

profit-based feature selection in which the coefficients of predictors that are irrelevant to build a profitable508

churn model are effectively set to zero. More specifically, it allocates a relatively high (low) regression509

weight to predictors that are considered as irrelevant (relevant) by the other techniques, which optimize510

for a nonprofit objective function in the model construction (see, e.g., shaded row in Table 4).511

4.3. Sensitivity Analysis of Crossover and Mutation Probabilities512

To study the sensitivity of the parameter settings for the crossover probability (pc) and mutation

probability (pm), we conduct a balanced two-factor experiment and analyze the data using Analysis of

Variance (ANOVA). For the two factors, we hypothesize the following values:

Factor A: pc ∈ {0.5, 0.6, 0.7, 0.8, 0.9},

Factor B: pm ∈ {0.05, 0.1, 0.2, 0.3, 0.4}.

We perform the ANOVA analysis for two data sets: KDD and O2. In each configuration, we run513

ProfLogit 20 times and measure its EMPC performance. Other ProfLogit parameters take their default514

values (see Section 3), except the regularization parameter is set to its respective optimal value obtained515

from the previous analysis.516

A close inspection of the experimental data revealed that the application of a regular two-way ANOVA517

is not appropriate because of the violations of the underlying model assumptions of normality and518

homoscedasticity. We therefore opt for a nonparametric alternative, which has been recently proposed519

by [32].520
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The nonparametric ANOVA analysis reveals that there is a significant interaction effect (F16,475 =521

2.20; p = 0.0047) between the two factors for the O2 data; whereas no significant effects (i.e., neither522

an interaction nor a main effect) are found for the KDD data. Performing statistical comparison tests523

with appropriate p -value correction, the ANOVA analysis uncovers that the mutation rate has overall a524

stronger influence on EMPC performance than the crossover rate, yet it still significantly varies between525

pc values. In particular, settings associated with the lowest pm value of 0.05 are significantly inferior to526

other configurations, however the significance only holds for some levels of pc.527

To conclude the sensitivity analysis, we can summarize that ProfLogit’s crossover rate and mutation528

rate are (i) data-dependent, and (ii) EMPC estimates do not differ significantly for settings in which the529

mutation rate has a value of at least 0.1.530

4.4. Discussion531

As the benchmark study demonstrates, the incorporation of the profit-based performance measure,532

EMPC, into an evolutionary-driven classifier can lead to significant profit gains. For example, in the533

O2 data set, ProfLogit achieves, on average, a profit gain that is at least 1.43 e per customer higher534

compared to the competitive techniques. Thus, the potential total profit gain could be enormous for535

a telecom operator with millions of customers. Compared to the previous version of ProfLogit [6], the536

incorporation of the lasso-regularization into the fitness function (18) and the individual penalization of537

regression coefficients via soft-thresholding (19) help to considerably improve the EMPC performance538

on the training set as well as on the test set. Thus, ProfLogit is the overall most profitable classifier in539

terms of the EMPC and MPC, where, for the latter, it is the best churn model in all nine data sets. This540

is most likely because of the fact that the MPC and the EMPC are closely related.541

As empirically proven by the benchmark study, model selection purely based on accuracy related542

performance measures such as the AUC and MER likely results in suboptimal profit. ProfLogit, which543

maximizes profit in its training step, demonstrates this by being the overall most profitable classifier544

but simultaneously having the worst AUC values (see Figure 7). These results further reinforce the545

proposition of incorporating the EMPC into the model construction, rather than merely using it for546

model evaluation.547

Although the η̄-based performance measures introduced in Section 3.3 also rely on the notion of548

accuracy, ProfLogit interestingly also exhibits the overall highest η̄-precision (see Figure 7), which is a549

desirable property as well. A company’s first priority is profit maximization. Yet, a major subordinate550

business requirement is that the outcome of a data mining task is also actionable. This means marketers551

wish to have as many true churners on their lead list as possible. Fortunately, ProfLogit is not only the552

most profitable model, it also produces lead lists with the highest hit rates (η̄p). In other words, it is553

the most effective classifier to correctly identify churners, which allows companies to not only focus their554

marketing resources on the customers that intend to churn but also to focus on those who are the most555

profitable to the company. Recall that the produced lead lists are based on the η̄empc, and are generated556

in a completely objective manner. Thus, being able to deliver lead lists for the churn management557

campaign that are created with maximum profit in mind and simultaneously having the highest hit rate558
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serves both objectives: profit maximization and efficient deployment of marketing resources.559

In addition to high profit-based precision, ProfLogit also exhibits the overall highest η̄-recall (another560

desirable property), meaning it can detect the largest proportion of would-be churners. Having high561

η̄p and η̄r estimates, consequently results in a high η̄-based F1 measure as well. Hence, as a result,562

ProfLogit’s churn predictions are the overall most effective in detecting would-be churners as well as563

in identifying the largest proportion of all potential churners. On top, these predictions are optimized564

for maximum profit, which means that churn prevention efforts primarily focus on customers that are565

profitable to the organization.566

Due to the integrated lasso-regularization and soft-thresholding, ProfLogit performs a profit-based567

feature selection, revealing which are the relevant predictors to construct a profit maximizing churn568

model (see Table 4). The selection deviates from the sets of features selected by competitive techniques.569

This highlights the importance of a profit-sensitive model construction to achieve maximum profit.570

5. Conclusions and Future Work571

In this paper, we proposed our churn classification technique ProfLogit that utilizes a real-coded572

genetic algorithm (RGA) to directly optimize the EMPC (14) in the model construction step. Costs573

and benefits associated with a retention campaign are comprehensively captured by the EMPC measure,574

which in turn permits the selection of the most profitable model. In this respect, ProfLogit aims to575

actively construct the most profitable model for a customer churn management campaign (Algorithm 1).576

Beneath ProfLogit, we exploit the logistic model structure (Eq. (1)) to compute churn scores, and577

use the RGA to optimize the regression coefficients according to the lasso-regularized EMPC fitness578

function (18).579

In our benchmark study, ProfLogit is the overall most profitable model compared to eight other580

linear classification techniques. For the study, we applied the classifiers to nine real-life churn data sets,581

and evaluated their out-of-sample classification performances using accuracy, cost, and profit related582

performance measures. We firmly confirm [5]’s statement that model selection based on the AUC results583

in suboptimal profit. In the best cases, ProfLogit outperforms its competitors, leading to substantially584

higher profit gains; whereas, in the worst case, its profit losses are relatively small compared to the585

respective best competitive model.586

Additionally, we introduced threshold-independent precision and recall measures, as well as a F1587

measure thereof, that are based on the expected profit maximizing fraction η̄empc. Next to being the588

most profitable, the benchmark study revealed that ProfLogit also has the overall highest profit-based589

hit rate (η̄p), making it the most effective model to correctly identify churners while aiming for maximum590

profit. Its superiority over the other classifiers is also clearly expressed with the η̄-recall and the η̄-based591

F1 measure, indicating that ProfLogit is the overall best performing churn model.592

Moreover, with the newly introduced enhancements, ProfLogit performs a profit-based feature selec-593

tion optimized according to the EMPC. Findings revealed that different features become relevant when594

constructing a churn model for maximum profit compared to outcomes from accuracy-centric techniques.595
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In this paper, we have shown that profit maximizing modeling for predictive churn modeling is feasible,596

and its application can lead to substantially higher profit gains than using other linear classifiers. Thus,597

our proposed classification algorithm aligns best with the most important business requirement: profit598

maximization. Additionally, ProfLogit produces lead lists, which are required for the execution of the599

retention campaign, that have the highest profit-based precision (η̄p). This enables companies to tailor600

their marketing resources toward potential churners more efficiently—with special focus on those who601

are also the most profitable to the business.602

Concerning future research, we intend to develop a similar profit maximizing classification algorithm603

that substitutes the logistic model structure with a decision tree induction algorithm. The primary aim604

here is to construct a profit-driven classifier that can more easily cope with complex data structures such605

as nonlinearities.606

Another important aspect is to study whether the application of alternative nature-inspired algo-607

rithms other than RGA would be more favorable for the optimization of ProfLogit’s objective function.608

Promising candidate algorithms to consider would be, for example, the artificial bee colony algorithm609

(ABC) [33], differential evolution (DE) methods such as SHADE and MPEDE [34], and particle swarm610

optimization (PSO) methods such as HCLPSO described in [35] or [36].611
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Appendix A Comparison of Nature-inspired Algorithms615

For the optimization of ProfLogit’s objective function, we opt for the real-coded genetic algorithm616

(RGA) because it is a mature and well-established algorithm that passed the test of time. Nature-617

inspired algorithms such as differential evolution (DE) and particle swarm optimization (PSO) can be618

regarded as an interesting alternative to RGA. Therefore, we conduct a comparative study to investigate619

the performances of the three candidate optimizers.620

To do so, we compute the average EMPC performance for the DE and PSO in the exact same manner621

as described in Section 3.2.1. That is, the regularization parameter is tuned under the given optimizer,622

and the out-of-sample EMPC performance is computed. We carry out the experiment on all available623

data sets. To ensure a fair comparison, the algorithms terminate when the maximum number of function624

evaluations (NFEmax) is reached. In the study, we set NFEmax to 10,000 as it is similarly done in625

[37, 38]. As in Section 4, we apply the same rule for determining the population size of RGA and DE:626

|P| = 10 |θ| = 10(p+ 1). Typically, the population or swarm size for PSO should be lower than for RGA627

and DE, here we apply the following rule: |P| = 0.25× (10 |θ|) = 2.5(p+ 1).628

Contrasting the EMPC estimates reveals that using the RGA optimizer attains the highest average629

and median EMPC performance in 9 out of 9 data sets (Figure 8). Hence, we can conclude that the630

application of RGA is preferable over PSO and DE.631
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Figure 8: EMPC performance comparison between three nature-inspired algorithms on all data sets: real-coded genetic

algorithm (RGA), particle swarm optimization (PSO), and differential evolution (DE). The average (median) performance

of each optimizer is shown as a dotted blue (solid orange) line. In conclusion, RGA is the overall best optimizer: it attains

the highest average and median out-of-sample EMPC performance in 9 out of 9 data sets.
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