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Cancer treatment planning

High-Dose-Rate (HDR) brachytherapy (BT) treatment planning involves determining an appropriate schedule of
aradiation source moving through a patient’s body such that target volumes are irradiated with the planning-aim
dose as much as possible while healthy tissues (i.e., organs at risk) should not be irradiated more than certain
thresholds. Such movement of a radiation source can be defined by so-called dwell times at hundreds of potential
dwell positions, which must be configured to satisfy a clinical protocol of multiple different treatment criteria
within a strictly-limited time frame of not more than one hour. In this article, we propose a bi-objective opti-
mization model that intuitively encapsulates in two objectives the complicated high-dimensional multi-criteria
nature of the BT treatment planning problem. The resulting Pareto-optimal fronts exhibit possible trade-offs
between the coverage of target volumes and the sparing of organs at risk, thereby intuitively facilitating the
decision-making process of treatment planners when creating a clinically-acceptable plan.

We employ real medical data for conducting experiments and benchmark four different Multi-Objective Evolu-
tionary Algorithms (MOEAs) on solving our problem: the Non-dominated Sorting Genetic Algorithm II (NSGA-II),
the Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), the Multi-objective Adapted
Maximum-Likelihood Gaussian Model Iterated Density-Estimation Evolutionary Algorithm (MAMalLGaM), and
the recently-introduced Multi-Objective Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (MO-
RV-GOMEA). The variation operator that is specific to MO-RV-GOMEA enables performing partial evaluations
to efficiently calculate objective values of offspring solutions without incurring the cost of fully recomputing
the radiation dose distributions for new treatment plans. Experimental results show that MO-RV-GOMEA is the
best performing MOEA that effectively exploits dependencies between decision variables to efficiently solve the
multi-objective BT treatment planning problem.

more, high-strength radiation sources, so-called High-Dose-Rate (HDR)
sources, can be employed, resulting in fewer treatment sessions com-

1. Introduction

1.1. Clinical practice

Brachytherapy (BT) [1,2] involves the use of radiation sources to
treat cancer by irradiating cancerous tissues from inside the patient’s
body, whereas External Beam Radiation Therapy (EBRT) delivers radi-
ation by use of beams passing through the patient’s body. Because irra-
diation occurs at the vicinity of target volumes in BT, radiation dose
distributions can be fine-tuned better to conform to target volumes
while sparing surrounding healthy organs from radiation risks. Further-
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pared to EBRT. In this article, we address HDR-BT for prostate cancer
but the methodology can be easily adapted to other types of BT, such as
Low-Dose-Rate (LDR) or Pulse-Dose-Rate (PDR), where the employed
radiation sources have lower strengths.

The target volumes in prostate cancer treatment are the prostate and
(part of) the seminal vesicles while the Organs At Risk (OARs) are the
bladder, the rectum, and the urethra. Depending on the sizes and spe-
cific locations of the target volumes, about 14-20 catheters are inserted
into the patient’s body through the transperineal skin, reaching (and
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Fig. 1. An example implant of catheters in HDR-BT treatment for prostate cancer.

going through) the target volumes. An example implant of catheters
in HDR-BT treatment for prostate cancer is given in Fig. 1. Computed
Tomography (CT) or Magnetic Resonance Imaging (MRI) scans (i.e.,
medical images) of the patient’s pelvic area are then acquired and
loaded into BT treatment planning software to be used in the treatment
planning session. BT treatment planners (i.e., radiation oncologists, radi-
ation therapy technologists, and clinical physicists) then delineate (i.e.,
contour) the inserted catheters, the target volumes, and the OARs on
the obtained medical images. Each catheter contains a number of so-
called dwell positions, typically with a step size of 2.5 mm. Only dwell
positions within the margins of 5.0 mm extended from surfaces of target
volumes are activated while the ones located further away from the sur-
face of the target volumes are kept inactive. When passing through the
catheters, a radiation source can reside at each activated dwell position
for a certain time, termed dwell time, before being moved to the next
activated dwell position. The longer the source dwells at a position,
the more radiation is released toward the surrounding tissues. After the
delineation of target volumes and OARs, BT treatment planners pro-
ceed to construct a proper treatment plan. Radiation oncologists plan
a certain radiation dose level, termed planning-aim dose, that is suffi-
cient to sterilize tumor cells. An HDR-BT treatment plan consists of
the dwell times at all activated dwell positions. Dwell times should
be long enough to ensure that the amount of dose delivered to tar-
get volumes at least equals the planning-aim dose while not resulting in
excessive dose being delivered to healthy cells. A clinically-acceptable
treatment plan should satisfy the clinical protocol which consists of
treatment criteria (or requirements) that indicates the effective thresh-
olds for dose to target volumes and the safety thresholds for dose to
OARs. After a clinically-acceptable treatment plan is constructed and
approved, the inserted catheters are connected to the afterloader, which
controls the movements of the radiation source. The radiation source is
passed through the catheters such that the source dwells at each dwell
position for the amount of time as indicated in the approved plan. After
the treatment plan is carried out, the source is retrieved back into the
afterloader.

1.2. Challenges in solving the BT treatment planning problem

Stated in its most basic form, the BT treatment planning problem
involves determining how long each dwell time should be such that the
target volumes are properly covered by a certain planning-aim dose
while not exposing OARs to radiation levels higher than clinically-
acceptable thresholds. In practice, making such BT plans is non-trivial.

Swarm and Evolutionary Computation xxx (2017) 1-16

The time budget available for planning is highly constrained, which
should not be more than one hour, while HDR-BT plans typically consist
of hundreds of dwell times that need to be configured to satisfy mul-
tiple clinical criteria. Further, the clinical protocol consists of so-called
Dose-Volume (DV) criteria, which involves discrete terms (see Section
2), making direct formulations of the optimization problem associated
with BT treatment planning difficult to be efficiently solved due to the
absence of fine-grained gradient information. Therefore, the problem is
often reformulated using relaxed models that can be quickly solved by,
e.g., simulated annealing [3], BFGS [4], or linear programming [5]. The
optimal solutions of these simplified models are not necessarily (near)
the optimal solutions of the original problem and are therefore not guar-
anteed to satisfy all criteria in the clinical protocol. Several studies have
been done into directly handling DV criteria [6,7]; however, the time
required to obtain optimal solutions makes the use of exact solvers clin-
ically prohibitive. Detailed surveys on problem formulations and BT
treatment planning methods can be found in Refs. [8,9].

Another challenge associated with the BT treatment planning prob-
lem lies in its multi-objective nature. On the one hand, target vol-
umes should be covered by the planning-aim dose as much as possible;
otherwise, the treatment is not effective because the tumor is under-
irradiated. On the other hand, OARs should be exposed to radiation
as little as possible; otherwise, over-irradiation may lead to adverse
effects. Maximizing target coverage and maximizing OARs sparing are
therefore two conflicting objectives, where the utopian treatment plan,
that covers entire target volumes with sufficient dose while deliv-
ering no radiation to OARs, does not exist. Instead, there exists a
Pareto-optimal set of non-dominated solutions (i.e., treatment plans). The
objective value vectors of these non-dominated solutions form the so-
called Pareto-optimal front that exhibits the possible optimal trade-offs
between the objectives such that improving the coverage of targets
leads to deterioration in the sparing of OARs, and vice versa. Partic-
ulars of specific patient cases that are not in the optimization models
(e.g., physical condition or age of the patient) and the preference of
the treating physician cause different treatment plans to be deemed
the most preferable trade-off to be carried out. Existing optimization
tools in clinical BT treatment planning software, however, do not han-
dle the problem in the true multi-objective manner [10]. Instead, they
employ the weighted-sum method to aggregate all the (reformulated)
clinical criteria into a single-objective optimization function. Solving
one single-objectivized formulation for a single combination of weights
results in a single solution. Moreover, each such formulation is equally
difficult, and therefore, is either time-consuming to solve or requires
some form of reformulation as mentioned earlier. The latter is the case
in available clinical software. It is moreover difficult to determine a pri-
ori the desired setting of coefficients because this depends on the geom-
etry of the implant (i.e., the locations of organs and inserted catheters),
and again, the specific details of the patient being treated as well as
the treating physician’s preferences. Hence, for different patients, the
same setting of coefficients leads to different trade-offs (i.e., objective
value vectors). As a consequence, treatment planners typically need to
run clinically available optimization tools several times with different
coefficient settings (equivalent to different formulations) to obtain dif-
ferent suggestions and must often further manually adjust the suggested
solutions until reaching a desired treatment plan.

1.3. Related works

In this article, we tackle the BT treatment planning problem in the
true multi-objective optimization manner, i.e., directly approaching the
Pareto-optimal front. Moreover, we employ objective formulations that
consider directly the DV indices that are clinically used to evaluate
the quality of treatment plans. Because the number of possible trade-
offs on the Pareto-optimal front can be numerous, or even infinite,
and because achieving mathematical optimality in practice is often not
the most important aspect, it often suffices to obtain an approxima-
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tion set of non-dominated solutions that is as close as possible to the
Pareto-optimal front and as diverse as possible (measured in the objective
space). Such an approximation set exhibits and visualizes the possible
trade-offs between the coverage of target volumes and OARs sparing,
which has high potential to serve as a decision support tool for treat-
ment planners because the treatment plan associated with the desired
trade-off can be efficiently determined a posteriori.

Evolutionary Algorithms (EAs) have been shown to be among the
state of the art to tackle difficult multi-objective optimization prob-
lems [11]. EAs typically do not require (much) problem-specific knowl-
edge, such as gradient information, in their operations, making EAs
highly suitable for black-box optimization where domain knowledge
is unavailable or too complicated to be effectively exploited in a fully
problem-specific tailor-made white-box optimization algorithm. Such
information, if available, can typically still be used to customize an EA’s
operations to further enhance their performance without extreme effort.
Furthermore, EAs are population-based algorithms, which makes them
inherently well-suited for multi-objective optimization in the sense that
multiple solutions, that approximate the Pareto-optimal front, can be
obtained at the same time in one single run instead of running a single
point-based algorithm (e.g., hill-climbing) multiple times with different
settings.

Various Multi-Objective EAs (MOEAs) have been used to solve
different multi-objective formulations of the BT treatment planning
problem [8,12,13]: the Niched Pareto Genetic Algorithm (NPGA),
the Non-dominated Ranking Genetic Algorithm (NRGA), the Strength
Pareto Evolutionary Algorithm (SPEA), and the Non-dominated Sort-
ing Genetic Algorithm (NSGA). However, the problem objectives con-
sidered in these works were not formulated directly from the crite-
ria in common clinical protocols. Therefore, it was inconvenient for
treatment planners to interpret their resulting approximation sets. A
more recent problem formulation based on the clinical criteria was
proposed in Ref. [10], where the well-known MOEA Non-dominated
Sorting Genetic Algorithm II (NSGA-II) [14] was employed as the opti-
mization algorithm. However, the problem formulation in this study
only contained a small subset of commonly-used clinical criteria. The
fact that not all clinical criteria were used whereas at the same time
the dimensionality of the optimization problem was non-trivial (i.e., 4
objectives), makes it not straightforward for planners to intuitively tra-
verse the obtained results in terms of identifying treatment plans that
satisfy all the involved clinical criteria. Also, the experiment in Ref. [10]
was demonstrated for only one prostate case, so the obtained results are
difficult to generalize. Interested readers are referred to [8,9] for more
detailed surveys on BT treatment planning methods.

The recently-introduced Multi-Objective Real-Valued Gene-pool
Optimal Mixing Evolutionary Algorithm (MO-RV-GOMEA) [15] has
been shown to be a promising optimizer especially in the case of gray-
box optimization where certain assumptions are made about types of
problem-specific knowledge that can be exploited, which may well
be the case in many real-world problems. MO-RV-GOMEA is consid-
ered a member of the GOMEA family of EAs [16]. In the black-box
context, GOMEAs employ linkage learning to recognize potential link-
ages between problem variables (i.e., groups of problem variables that
exhibit a dependency relation to some degree), which are then effec-
tively exploited for solution variation (i.e., generating offspring solu-
tions) by the Gene-pool Optimal Mixing (GOM) operator [15]. Such
capabilities are highly important to the effectiveness of the variation
operators and the overall scalability of EAs in general [16]. In the
gray-box context, such linkage information may be available directly
from the problem formulation, allowing a linkage model to be defined
offline (i.e., a priori), increasing the efficiency of GOMEAs. For the BT
treatment planning problem, the geometry information of the dwell
positions in the inserted catheters can be used to build customized
linkage models because it is likely that stronger dependencies exist
between dwell positions that are close to each other. The performance
of GOMEAs can be substantially enhanced when partial evaluations are
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possible [15,17]. Partial evaluations relate to the idea that the objective
values of an offspring solution can be efficiently calculated if the off-
spring solution only differs from a parent solution in a few problem vari-
able values. Different from existing MOEAs, the MO-RV-GOMEA, like
any GOMEA, does not create an entire offspring solution each time, but
iteratively improves each existing solution in a step-wise manner. That
is, local changes to the existing solution are made and evaluated for
improvement checks. The evaluations pertaining to BT treatment plan-
ning are computationally expensive due to many required calculations
of the radiation dose distribution at target volumes and OARs. There-
fore, it is highly beneficial if the evaluation time can be reduced by
employing partial evaluations to compute the impact of local changes
on existing treatment plans when MO-RV-GOMEA performs solution
variation. Indeed, first results of applying MO-RV-GOMEA to the BT
treatment planning problem showed much promise on 3 patient cases
[18].

1.4. Our contributions

While the problem formulation employed in Ref. [18] took into
account commonly-used clinical criteria based on DV indices, many of
them were altered to a mathematically equivalent constraint formu-
lation for the sake of computational efficiency and uniformity in for-
mulation. Treatment plans satisfying all clinical criteria could thereby
be identified but the objective values were not easy to be inter-
preted by BT planners (who are medical experts). In this article, we
therefore propose a different formulation for the BT treatment plan-
ning problem that encapsulates critical treatment requirements in their
original form, thus not compromising on the validity nor the inter-
pretability of the obtained optimization results. Similar to [18], we
benchmark the performance of multiple MOEAs in solving the BT
treatment planning problem: the well-known MOEA NSGA-II [14],
the Multi-objective Adapted Maximum-Likelihood Gaussian Model Iter-
ated Density-Estimation Evolutionary Algorithm MAMaLGaM [19], and
the recently-introduced MO-RV-GOMEA [15]. This article furthermore
extends our pilot publication by additionally considering another well-
known MOEA: the Multi-Objective Evolutionary Algorithm based on
Decomposition MOEA/D [20]. We further substantially extend the work
in Ref. [18] by conducting experiments on a much larger set of patient
cases (15 cases vs. 3 as in Ref. [18]), consolidating the generality of the
results. As a final addition, we present the results of multiple runs in a
probabilistic way using heatmaps, giving a fair indication of expected
results when an algorithm is run just once in practice.

The remainder of the article is organized as follows. Section 2
presents the set of clinical criteria that are frequently used for BT
treatment planning of prostate cancer. Section 3 proposes our multi-
objective formulation of the problem. Section 4 outlines the 4 MOEAs
that we consider in this article. Section 5 shows how geometry infor-
mation of the catheter implant can be exploited for linkage learning
and how partial evaluations can be implemented. Section 6 presents
and discusses the results of our experiments. Section 7 concludes the
article.

2. Dose-Volume criteria for HDR-BT treatment of prostate cancer

Each treatment plan produces a certain radiation dose distribution
in the tissues surrounding the catheter implant. At the Academic Med-
ical Center (AMC, Amsterdam, The Netherlands), the hospital involved
in this study, a radiation dose of 13 Gy is currently employed for HDR-
BT treatment for prostate cancer. A treatment plan is deemed clinically
acceptable if it satisfies the protocol that is employed to indicate the
effective lower bounds of target volume coverage and the allowable
upper bounds of healthy organ radiation exposure. It should however
be noted that a plan that does not satisfy this protocol, can still be con-
sidered clinically acceptable. The extent to which a deviation is allowed
depends on many factors in practice, including, for instance, whether
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better plans are not expected to be possible because of, e.g., a strongly
sub-optimal placement of catheters. A clinical protocol of BT treatment
often consists of the so-called Dose-Volume (DV) indices and their cor-
responding criteria (or requirements):

e V7 criteria specify how large the cumulative volume of an organ o
receiving at least the radiation dose level d (relative to the planning-
aim dose) should be.

e D¢ criteria specify how high the radiation dose level that covers the
most-irradiated cumulative volume v of an organ o should be.

For example, the requirement Vllmmme > 95% indicates that the
cumulative prostate volume covered by at least 100% of the planning-
aim dose should be more than 95% of the prostate [21]. Similarly, the
requirement Vé’gﬂdes > 95% indicates that more than 95% of the seminal
vesicles volume should be irradiated with at least 80% of the planning-
aim dose. To avoid necrosis in the prostate due to over-irradiation,
VAL < 20% indicates that the cumulative prostate volume covered
by at least 200% of the planning-aim dose should be less than 20%
of the prostate. To protect the rectum from excessive radiation expo-
sure, the requirement D;e:cf”’" < 78% demands that the most-irradiated
1 cc (cubic centimeter) of the rectum volume receives less than 78% of
the planning-aim dose. Similarly, Dgl;dd" < 74% indicates that the most-
irradiated 2 cc of the bladder volume should receive less than 74% of
the planning-aim dose. Table 1 presents the DV indices and their corre-
sponding requirements currently employed at the AMC.

A key part of evaluating a treatment plan is calculating the DV index
values and comparing them with the thresholds as in Table 1. DV index
values are often approximated by computing the radiation dose using a
large number of randomly distributed dose calculation points. The radi-
ation dose at each dose calculation point is the total sum of the dose
contributions received from each activated dwell position. Each dose
contribution is the product of the dwell time at the corresponding dwell
position with the dose rate, which is defined as the amount of radiation
delivered from the source when it pauses at the dwell position to the
dose calculation point per second (i.e., Gy/s). Dose rates are computed
following the TG-43 protocol (the American Association of Physicists in
Medicine AAPM Task Group No. 43 Report) [22-24], which involves
the strength and shape of the radiation source employed for treatment
and the distances between dose calculation points and dwell positions.

Let T denote the set of dwell positions, |T| = ny, and D denote the
set of dose calculation points, |D| = np. For a radiation source with a
certain strength, an np xny dose rate matrix R is computed, where
each matrix element R;; indicates the dose rate between dose calculation
point i and dwell position j. A treatment plan can be seen as a vector t
of dwell times at activated dwell positions, i.e., t = (t;,t,, ..., tnT). The
dose distribution d associated with the treatment plan t can be repre-
sented as a vector of radiation doses at all dose calculation points, i.e.,
d=(dy.d,, ..., an), which is computed as:

d=Rt (€Y

Let D, denote the set of dose calculation points inside organ o, D, C
D, |D,| = nj. The value of a DV index V7 is approximated as:

V=4 Y x(dd) @
DieD,

where d, is the total radiation at the dose calculation point i, and y(d;, d)
is an indicator function:

Table 1

BT treatment planning DV criteria at AMC.
Prostate Bladder Rectum Urethra Vesicles
Vioo > 95% Dy, < 86% Dy <78% Do1c < 110% Vgo > 95%

Viso < 50%
Voo < 20%

Dy, < 74% Dy, < 74%
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Let d° be the dose distribution in organ o, i.e., the radiation dose lev-
els at all dose calculation points in organ o. Using a descending sorted
version of d°, denoted as d*°, the value of a DV index D? can be defined
as:

Dy =d* @

where 1° is the volume (in cc) associated with each dose calculation
point inside an organ o. Note that, for the convenience of notation,
dose values d;’s (in d, d°, and d*°), dose levels d’s in V¢ indices, and
the values of D indices are presented in terms of percentages of the
planning-aim dose. Computing the value of a DV index (V] or D)) is
based on numbers of dose calculation points satisfying certain criteria.
This counting introduces discontinuities in the form of step functions
in the landscape of any DV criteria-based optimization problem formu-
lation, making BT treatment planning a difficult problem to be tack-
led, even when disregarding the additional complexity introduced by
its multi-objective nature.

Disregarding uncertainties in organ contouring and catheter delin-
eation, the larger the set of dose calculation points D is, the better
the accuracy of a DV index calculation is. In this article, we employ
|D| = 20,000 (i.e., 4,000 points in each target volume/OAR), giving
results of much higher fidelity than those of many existing works tack-
ling DV criteria in the literature [7,25]. Preliminary tests with (far) less
points as used in aforementioned literature (|D| ~ 4,000) showed that
high-quality Pareto fronts with high occupancy especially in regions
with large target coverage (e.g., V2o»“) cannot be obtained. Note
that, however, sets with many more dose calculation points would
make treatment plan evaluations during the optimization process pro-
hibitively computationally expensive.

3. Multi-objective optimization problem formulation

BT treatment planners need to consider multiple DV criteria during
the planning process and each DV index can be seen as an objective
to be improved (i.e., to be optimized). For example, improving tar-
get coverage relates to maximizing the DV indices Vfggmte and Vé’g“d“.
Improving organ sparing relates to minimizing the DV indices associ-
ated with OARs, e.g., D?lc‘zdd”, Dgecccm'", Dgfﬁ’é’“. Optimizing all DV indices
in the clinical protocol (see Table 1) at the same time, however, is
equivalent to solving a 9-objective optimization problem. Such problem
formulation of high dimensionality is difficult to be efficiently solved,
and its 9-dimensional Pareto front results would be difficult to visual-
ize, let alone being interpreted and utilized by human experts. Most
DV criteria-based approaches in the literature opt to optimize only one
objective, often associated with Vll’g‘gmm, while other DV criteria are for-
mulated as hard constraints [6,7,25]. However, such single-objective
optimization results in one single plan, and maximizing the prostate
coverage is not the sole objective of BT treatment planners. Planners
would normally like to consider multiple alternatives and investigate
possible trade-offs between DV indices during the planning process.
A multi-objective approach with NSGA-II was proposed in Ref. [10],
which considered a smaller number of DV criteria and solved 3-4 objec-
tive optimization problems following 3-4 DV indices. We argue that the
results of such problem formulation are still not guaranteed to satisfy
the full clinical protocol of 9 DV indices in Table 1. Also, the visualiza-
tion of the results in Ref. [10] did not allow the treatment planners to
conveniently traverse the Pareto fronts and interpret the non-dominated
solutions.

In our recent work [18], we divided DV indices in the clinical pro-
tocol into 2 groups:

1. Target Coverage: VE{ ™" and Vyesicles
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i 5. Y/Prostate prostate rectum rectum bladder bladder

2. Organ Sparing: V5™, Vigy™ ", Dy ™, Do %, Dy o, Dyt
Durethra
0.1cc

We employed the maximin approach to combine the Target Coverage
group into the Least Coverage Index (LCI) objective and the Organ Spar-
ing group into the Least Sparing Index (LSI) objective. More specifically,
for a candidate treatment plan, its LCI objective value corresponds to
the worst-scored DV index in the Target Coverage group and its LSI
objective value corresponds to the worst-scored DV index in the Organ
Sparing group. The Organ Sparing group contains both V§ (volume) and
Dy (dose) indices, which are measured in different units (cc for volume
and Gy for dose) and have different ranges of values. Moreover, because
computing D indices involves a sorting operation, which is more com-
putationally expensive, in our previous work we opted to convert all D
criteria into VY criteria so that the whole group can be formulated into
one objective (more details in Ref. [18]). While this conversion still
maintains the validity of the model in terms of satisfying the clinical
protocol, the obtained results were afterward found not to be straight-
forward for the treatment planners when evaluating against the original
clinical protocol. Moreover, converting D indices into V§ indices has
the undesirable effect that the size of an organ dictates its importance
in the grouping, which is unnatural (to physicians). In this article, we
therefore propose a novel problem formulation that directly employs
the DV indices in the clinical protocol as follows.

Let VS’mi“ be the lower bound threshold for a V§ index in the Target
Coverage group. The further the value of V7 is above this threshold, the
better the target o is covered by its required dose level d. The distance
5, of the V] index value above the threshold V;’mi“ can be measured as:

8,(V9) = Vo — vomin (5)
For a treatment plan t, its LCI value is defined as:
LCI(t) = min{5, (V™). 5, (Vyesieles) ) @)

Based on the thresholds of DV indices in the Target Coverage group
Vomin in Table 1, the value of LCI, that we would like to maximize,
is in [—0.95,0.05]. Positive values indicate that both clinical protocol
requirements V¥o* > 95% and V&l > 959 are satisfied. The ideal
value 0.05 indicates that the whole volume of each target volume is
covered by the recommended dose level. Non-positive values indicate
that at least one target volume (i.e., prostate or seminal vesicles) is
underdosed according to the clinical criteria.

Let DJ™ be the upper bound threshold for a DY index in the Organ
Sparing group. The further the value of DY is below this threshold, the
better the organ o is spared from radiation. The distance §; of the DY
index value below the threshold D)™ can be measured as:

84(D%) = D%™ax _ po ™
The LSI value of a treatment plan t is defined as:

LSI(t) = min{ﬁd(Dbladder)’ 5d(Dbladder)’ 5d(Drectum ,

lcc 2cc lcc

(D™, DY) ®

Based on the thresholds D)™ of D9 indices in Table 1, the value
of LSI, that we would like to maximize, is in (—o0,0.74], which is
unbounded on the minimum side because the radiation dose can be
made arbitrarily large. Positive values indicate that all DY indices do
not exceed their corresponding thresholds, ensuring that all clinical
requirements for D indices in Table 1 are met. A non-positive value
indicates that at least one DY index exceeds its threshold D;™*. The
ideal value 0.74 indicates that there is no radiation to OARs since the
most-irradiated 2 cc of the bladder volume and the most-irradiated
2 cc of the rectum volume have the lowest bound value of 0.74. In
practice, such a situation only happens when all dwell times are 0.0s,
which equals no radiation treatment.

The two indices V270 and VA are excluded from the Organ
Sparing group and are not considered for evaluating the LSI objec-
tive, but instead are employed as hard optimization constraints. This
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is because these two indices have a different unit, making a combina-
tion with the D indices non-trivial. Moreover, treatment plans must
really satisfy these two criteria Vf;‘:;mte < 50% and Vg(r;:)smte < 20%, i.e.,
the prostate volume should not be over-irradiated. Also, we do not want
to consider treatment plans that under-irradiate target volumes too
much either. The clinical requirement V(2" > 95% and V3&es > 959
means that at most 5% of the prostate volume and at most 5% of the
vesicles volume can be irradiated below their recommended dose levels,
i.e., 100% and 80% of the planning-aim dose, respectively. How good
treatment plans can be depends on the geometry of the organs and the
quality of the catheter implant. It might not be possible to satisfy all
criteria in Table 1 because, for example, the rectum is too close to the
prostate or the number of inserted catheters is too small. We thus intro-
duce some relaxation on the clinical protocol by employing the clinical
protocol constraints as optimization objectives. It still makes sense to
also exclude treatment plans that result in excessive over-irradiation
of OARs or under-irradiation of target volumes. We thus additionally
employ the hard optimization constraint LCI(t) > —0.2 to allow that
at most 25% of a target volume can be under-irradiated. Similarly,
we employ the optimization constraint LSI(t) > —0.2 to allow that the
most-violated D9 can only exceed its corresponding threshold D)™ by
20% of the planning-aim dose. To handle constraint violations, when
any two solutions need to be compared, we employ the constrained-
domination principle [14,26] as follows. A feasible solution is always
preferred to an infeasible solution. Between two infeasible solutions, the
one with a smaller total constraint violation is preferred. Between two
feasible solutions, the one with better objective values is preferred (i.e.,
the one that Pareto dominates the other in the multi-objective context).

Any treatment plan can be evaluated to these two objectives (LCI,
LSI). The maximin approach ensures that the values of all DV indices in
a group are at least as good as the representative index of that group. A
treatment plan with Vll’gfz)state < 50% and Vg(r;:)smte < 20% satisfies all other
criteria in the clinical protocol in Table 1 if its LCI > 0 and LSI > 0. All
the DV indices are considered and treated individually without the need
of employing a more cumbersome model of 9 separate objectives. Fur-
thermore, our problem formulation bears resemblance with the plan-
ning process in practice because planners normally attempt to adjust
the treatment plan in an iterative manner such that the current most-
violated DV index is improved first.

4. Multi-Objective Evolutionary Algorithms (MOEAs)
4.1. NSGA-II

NSGA-II [14] is probably the best-known and still the most widely-
used MOEA in practical applications. Thus, NSGA-II is often employed
for comparison purposes when introducing new multi-objective algo-
rithms. For real-valued optimization, in each generation, NSGA-II cre-
ates offspring solutions by applying the simulated binary crossover
(SBX) and mutation operators to parent solutions in the current pop-
ulation. The fitness value of a candidate solution in NSGA-II is based
on its non-domination rank (regarding the Pareto-dominance relation
with other solutions in the population) and its crowding distance value
(regarding the density of solutions in the same non-domination rank in
the objective space). The population for the next generation is selected
from the combined pool of parent solutions and offspring solutions on
the basis of their fitness values such that solutions that have a better
non-domination rank and reside in less-crowded regions are favored.
Details about NSGA-II can be found in Ref. [14].

Note that we additionally implement an adaptive elitist archive
[27] for NSGA-II in this work. An elitist archive is an external pop-
ulation that keeps track of the non-dominated solutions obtained so
far along the search. The use of an adaptive elitist archive has been
found to be important to the performance of MOEAs because the Pareto-
optimal fronts can contain numerous (or even an infinite) number of
non-dominated solutions while the working populations of MOEAs are
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typically limited in size [27]. Moreover, true convergence of an MOEA
is not guaranteed otherwise [28].

4.2. MOEA/D

MOEA/D [20] is a more recent MOEA that has obtained many pos-
itive results. MOEA/D differs from many available MOEAs in that the
multi-objective problem at hand is decomposed into a number of scalar
optimization subproblems. Each subproblem is associated with a spe-
cific weight vector that is employed to aggregate all the original objec-
tive functions into the single-objective optimization function of that
subproblem. Each subproblem maintains a candidate solution whose fit-
ness value is defined by the aggregated objective function instead of the
original objective functions. Offspring solutions are created from exist-
ing (parent) solutions by recombination (using the SBX operator in the
real-valued context) and mutation. An offspring solution will replace
the candidate solution of a subproblem if its fitness value (evaluated
against the aggregated objective function) is better than that of the
current solution. To introduce niching, solution variations and replace-
ments are restricted among a neighborhood of a certain size of each
parent solution. The working population of MOEA/D, therefore, can be
seen as consisting of the best solution obtained so far for each subprob-
lem. The weighted Tchebycheff aggregation approach is often used to
ensure that potential non-convex parts of Pareto-optimal fronts can be
obtained. The fitness value of each candidate solution is then defined
as its weighted Tchebycheff distance toward the utopian solution in
the objective space. For the bi-objective formulation of the BT treat-
ment planning problem in this work, the utopian value for (LCI, LSI) is
(0.05, 0.74). Details about MOEA/D can be found in Ref. [20]. Note that
an adaptive elitist archive [27] is also implemented for the MOEA/D in
this work.

4.3. MAMaLGaM

Respecting linkage (i.e., dependency) relations among problem vari-
ables during solution variations is crucial for the scalability of EAs
[29]. Linkage relates to the notion that certain problem variables are
dependent on each other to some degree and should thus be jointly
treated (as a group) when performing variation. It has been shown that
the traditional variation operators typically employed in NSGA-II (e.g.,
crossover and mutation), which do not take into account problem link-
ages, are not efficient in solving certain classes of decomposable multi-
objective problems that could otherwise be efficiently solved if the link-
age information is exploited [30]. Problem-specific knowledge, if avail-
able, can be used to specify such linkage information. In the black-
box optimization context, linkage information can be inferred from the
working population of EAs by linkage learning procedures.

MAMaLGaM [19] is a state-of-the-art MOEA for the real-
valued domain. MAMaLGaM belongs to the family of Estimation-of-
Distribution Algorithms (EDAs) that differ from traditional EAs in that,
for every generation, offspring solutions are generated by sampling the
multivariate Gaussian distributions that are estimated over promising
candidate solutions selected from the population. An estimated Gaus-
sian distribution in MAMaLGaM consists of the mean vector and the
covariance matrix that characterize the dependencies among all prob-
lem variables. Note that Pareto-optimal fronts have multiple regions
and non-dominated solutions in different regions typically expose dif-
ferent characteristics. For example, in the BT treatment planning con-
text, plans that maximize target coverage typically differ from plans
that maximize organ sparing. MAMaLGaM addresses this issue by
employing a cluster-based operation. In every generation, the selection
set of promising candidate solutions is partitioned into k equal-sized
clusters in the objective space, and for each cluster, a Gaussian dis-
tribution is estimated over the solutions belonging to that cluster. An
equal number of offspring solutions are sampled from each Gaussian
distribution of each cluster to create the next population, ensuring that
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all regions of the Pareto-optimal front can be evenly approached. There-
fore, MAMaLGaM is an MOEDA that employs a mixture model of Gaus-
sian distributions. An elitist archive is also implemented in MAMalL-
GaM, and elitism is maintained by replacing parts of the population by
elitist archive solutions in every generation. Details about MAMaLGaM
can be found in Ref. [19].

4.4. MO-RV-GOMEA

While MAMaLGaM effectively exploits the linkage information using
multivariate Gaussian distributions that concern all problem variables
jointly, it is arguable that the linkage information could be more effi-
ciently exploited in a more fine-grained manner. Using the Family Of
Subsets (FOS) concept, the linkage information is described by a linkage
model, which can be represented as a set of linkage sets. Each linkage
set corresponds with a subset of problem variables that depend on each
other to some degree. A linkage set can involve only one problem vari-
able, indicating the independent state of that variable, or multiple prob-
lem variables, indicating the joint dependency relation of the involved
variables, or even all problem variables, indicating the total dependency
relation as in MAMaLGaM. Such fine-grained linkage exploitation is the
key feature of the recently-introduced family of Gene-pool Optimal Mix-
ing Evolutionary Algorithms (GOMEAs) [16].

MO-RV-GOMEA [15] shares several algorithmic design concepts
with MAMaLGaM [19] as well as with the original concept of the
GOMEA family [16]. The key features of MO-RV-GOMEA are linkage
learning with a linkage model as done in any GOMEA to recognize
dependencies between problem variables and exploiting these during
solution variation with the Gene-pool Optimal Mixing (GOM) operator
to effectively improve existing solutions. The most commonly-adopted
linkage model in the GOMEA family is the Linkage Tree (LT) model.
Both the LT model and the GOM operator were first employed in the
single-objective GOMEA for the discrete domain [16], in MO-GOMEA
for multi-objective combinatorial optimization [31], recently in the
real-valued domain with RV-GOMEA [17], and, by combining the lat-
ter two, in MO-RV-GOMEA [15]. We further give more details on MO-
RV-GOMEA to explain its unique capability to exploit problem-specific
linkage features as in Section 5.

MO-RV-GOMEA maintains a population P of n solutions. An adap-
tive elitist archive is also employed to keep track of non-dominated
solutions [27]. In every generation, MO-RV-GOMEA performs trunca-
tion selection based on non-domination rankings similar to MAMaLGaM
to obtain a selection set S of size |rn| from P, where = = 0.35 was found
to give good results [15]. The selection set S is clustered into k clusters
(with k > m, and m is the number of objectives) that have equal sizes
¢ = 2|8], resulting in overlapping between neighboring clusters, simi-
larly to MO-GOMEA and MAMaLGaM. For each of the m objectives, a
dedicated cluster is assigned to perform single-objective optimization
by accepting improvements in the GOM phase based solely on that one
objective, aiming to approach extreme regions on the Pareto-optimal
front.

Instead of estimating multivariate Gaussian distributions with full
covariance matrices of all variables as in MAMaLGaM, the LT model
can be applied in MO-RV-GOMEA to explicitly model the dependen-
cies between variables at different levels. Although different linkage
models may be applied, the LT is the most commonly adopted and
most generally applicable model. For MO-RV-GOMEA, in the black-box
optimization context, the LT can be learned from each cluster sepa-
rately. The LT is a hierarchical linkage model and can be built in a
bottom-up approach. Let L be the set of all problem variable indices,
ie, L={1,2,...,1}. An LT is first initialized with leaf nodes of [ sin-
gleton sets, each contains exactly one variable index F! = {i}, i € L.
Next, intermediate nodes are created by iteratively merging two exist-
ing nodes that are closest/most similar to each other on the basis of
a similarity metric. Each time, the new node is added to the LT, and
while the two constituent nodes are still kept in the LT, they will
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not be considered for further merging. For example, a new node F'
is created by merging two existing nodes F/ and FX, i.e., Fl = F U F*
where F/ 0 F¥ = ¢, |F/| < |F!|, |F¥| < |F|. This procedure continues until
the root node containing all variable indices is formed. Each node of the
LT is then a linkage set, and problem variables in the same linkage set
can be understood as being dependent on each other to some degree,
and should thus be jointly considered by variation operators when cre-
ating offspring solutions. The LT constructed as above has exactly 21 — 1
nodes, exhibiting multiple levels of linkages, ranging from the univari-
ate all-independent state in the leaf nodes, to multivariate dependencies
in the intermediate nodes, up to the totally-dependent state in the root
node. An example LT is shown in Fig. 2.

In the black-box context, we can employ the Mutual Information
(MI) of real-valued variables, derived from the sample Pearson cor-
relation coefficient [32], as the similarity metric in constructing the
LT. Moreover, only pairwise combinations of variables are consid-
ered, in combination with a hierarchical clustering algorithm known
as UPGMA, allowing the LT to be learned in O(nl?) time (for details, see
Refs. [17,33]). If domain knowledge is available and can be exploited,
the similarity metric can be defined based on problem-specific informa-
tion, and the LT can be learned once beforehand rather than be learned
anew from the population in every generation. For each linkage set in
the LT of each cluster, a multivariate joint Gaussian distribution is esti-
mated based on the solutions in that cluster. The Gaussian distribution
associated with a linkage set only concerns the variables that are indi-
cated in the linkage set. Thus, in total, 2I — 1 Gaussian distributions are
maintained for each cluster. This is different from MAMaLGaM, where
a single multivariate Gaussian distribution, concerning all variables, is
maintained for each cluster. Each Gaussian distribution, like in MAMalL-
Gal, is then adapted regarding certain search information collected
during the optimization process, such as the distance of improvements
found from the Gaussian means, in order to counteract the variance-
diminishing effect of selection if needed [15,19]. After all linkage sets
in the LT of a cluster are considered, all population solutions associated
with that cluster are transformed into new offspring solutions using the
variation operator GOM that iteratively improves existing solutions in a
step-wise manner, where each step corresponds to a local change asso-
ciated with a linkage set instead of creating an entire offspring solution
each time as in other MOEAs. The GOM variation operator samples
the learned Gaussian distributions associated with the linkage sets of
the LT of each cluster to improve the population solutions associated
with that cluster. Per linkage set, new values for variables pertaining to
the linkage set are sampled from the associated Gaussian distribution
for all solutions associated with the current cluster. These partially-
altered solutions are evaluated and only the modifications that result in
an improvement are kept. Further details of MO-RV-GOMEA, including
pseudo-code, can be found in Ref. [15].

@1.,2,3,4,5,6,7,8)

Fig. 2. An example linkage tree with [ = 8 problem variables.
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5. Problem-specific performance enhancement for
MO-RV-GOMEA

5.1. Exploiting geometry information for linkage tree building

In the black-box context, the LT can be learned from the working
population as described in Section 4.4. Although the LT can be learned
efficiently with a time complexity of @(ni?) [33], the linkage learning
still incurs some computing overhead and certain linkages might not be
captured if the population size is not large enough. If domain knowl-
edge is available to be exploited, the LT can be built before running
the optimization, and this offline-constructed LT can be fixed during
the run. In the context of the BT treatment planning problem, geome-
try information of the implant is available, and it can be argued that
dwell times at neighboring dwell positions have stronger interactions
than those at far apart dwell positions. Such neighboring dwell times,
therefore, should be jointly considered when creating offspring solu-
tions. The Euclidean distances between pairs of dwell positions can be
computed based on their coordinate information, which are acquired
from the CT/MRI scans of the patient with the catheter implant. In this
work, we will employ such Euclidean distance metric as the basis of the
similarity metric used in learning the LT (see Section 4.4).

5.2. Partial evaluations

MO-RV-GOMEA creates an offspring solution by iteratively apply-
ing local changes to an existing solution. Each local change alters
the current solution in a few variables, and requires a fitness evalua-
tion to compute objective values and constraint violations. For many
real-world problems, solution evaluations are typically computation-
ally expensive. If the new solution differs from an existing one in only
a (small) number of variable values, as is exactly typically the case in
GOMEAs as a consequence of their design, performing a full evalua-
tion is unnecessarily inefficient if the impact of the new variable values
can be efficiently computed. For the BT treatment planning problem, a
treatment plan evaluation involves the computation of the radiation
dose distribution (Equation (1)) and the computation of DV indices
(Equations (2) and (4)), in which the former dominates the comput-
ing time. Equation (1) involves a matrix-vector multiplication between
the dose rate matrix and the vector of dwell times. If only a few ele-
ments of the dwell time vector are altered, the impact can be computed
by considering only the columns of the dose rate matrix associated with
the dwell positions of the altered dwell times. For example, let t denote
an existing treatment plan and let d be its dose distribution that has
been computed. Let t' denote a new treatment plan that is created by
altering a few dwell time values of t, i.e., ' = t + At, in which At has
many zero elements. The new dose distribution d’ can be calculated as:

d =Rt =R(t + At) = Rt + RAt =d + RAt 9)

where the i-th component of RAt is:

nr
(RAD; = ) RyAt;. (10)
doto

Thus, RAt involves the multiplication of the columns R,; of R that
correspond to non-zero elements At; of At. In other words, the entire
RAt is not computed, but rather only the compact vector of non-zero
elements in At associated with the variables of the linkage set at hand.

Partial evaluations can be straightforwardly used for MO-RV-
GOMEA thanks to its genetic-local-search-like variation operator GOM.
For other MOEAs employed in this work, i.e., NSGA-II, MOEA/D, and
MAMaLGaM, a whole new offspring solution is created each time dur-
ing variation. Such offspring solutions differ completely from the parent
solutions (especially for variation in the real-valued domain), requiring
a full evaluation for each new offspring solution.
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6. Experiments
6.1. Experiment settings

Data of fifteen anonymized HDR-BT cases for prostate cancer from
the Academic Medical Center (AMC) were available for conducting
our experiments. For each case, the contours of the involved organs
(i.e., prostate, seminal vesicles, bladder, rectum, and urethra) and the
inserted catheter information were exported by using the BT treat-
ment planning software Oncentra Brachy (research version 4.6, Elekta
Brachytherapy). This extracted information is then used as the input
data for multi-objective optimization.

We perform experiments with three MO-RV-GOMEA variants
employing three linkage models: the Univariate Factorization (UF)
model where all dwell times are deemed independent from each other,
the Linkage Tree (LT) model which is learned from the population in
each generation, and the fixed LT which is constructed a priori based on
the geometry information of active dwell positions. For each MO-RV-
GOMEA variant, we run two settings: 1) black-box full treatment plan
evaluations are always carried out to assess candidate treatment plans,
and 2) gray-box partial evaluations are enabled to assess partially-
altered treatment plans when performing solution variation with GOM.
We firstly benchmark different MO-RV-GOMEA variants with different
linkage models and the option of performing partial evaluations. We
employ the first 3 patient cases to select which MO-RV-GOMEA variant
is the most favorable variant to be later used for conducting experi-
ments with the full data set of 15 cases and to show the impact of the
ability of exploiting partial evaluations. For the purpose of performance
comparison between MO-RV-GOMEA and state-of-the-art MOEAs, we
consider NSGA-II [14], MOEA/D [20], and MAMaLGaM [19]. For every
patient case, we run each algorithm 30 times independently. Each opti-
mization run is allowed to operate one hour (1 h) to obtain an approx-
imation set of non-dominated plans. The approximation sets from 30
runs of each algorithm will be used to analyze its consistency in terms
of variance in the obtained results.

All MOEAs concerned in this work are population-based optimiza-
tion algorithms, for which the population size parameter setting is cru-
cial to their performance. However, it is impossible to determine a pri-
ori the optimal population size for each MOEA solving each problem
instance in real-world applications because the optimal solutions are
unknown. In order to get rid of the need of setting the population size
parameter while still putting all MOEAs on an equal footing for a fair
performance comparison, we employ an Interleaved Multi-start Scheme
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(IMS). This IMS was firstly introduced for a single-objective genetic
algorithm [34], and was later adapted for the multi-objective domain
in Ref. [15]. In essence, IMS operates multiple populations of differ-
ent sizes in an interleaved fashion. The first population is started with
some (arbitrarily) small size. Populations of larger sizes (often double
the size of the preceding one) start later. Each population is run for 1
generation after the preceding population has been run for b genera-
tions. Here, we suggest b = 8, which was previously found to give good
results [15]. The elitist archive is shared between all populations. A
population is deemed to be inefficient and should be terminated if it
contributes less than 10% of the non-dominated front combined from
all populations while a population of larger size manages to contribute
more than 10% of the front. More details about IMS can be found in
Refs. [15,34]. The elitist archive is maintained to contain about 1,000
non-dominated solutions, which is deemed sufficient for the BT treat-
ment planning problem. When this capacity is exceeded, the archive
will be adapted as in Ref. [27].

We use the well-known hypervolume metric [35] to compare the
convergence performance of MOEAs. The hypervolume can be intu-
itively defined as the volume (or area in the case of bi-objective
optimization) in the objective space that is covered by a set of non-
dominated solutions and a reference point, which is a point that can
be selected such that it will be dominated by any possible solutions.
Here, due to the fact that LCI > —0.2 and LSI > —0.2 (see Section 3),
we choose (—0.3,-0.3) as the reference point. We employ the Mann-
Whitney-Wilcoxon statistical hypothesis test for equality of medians
with p < @ = 0.05 to see whether the final result obtained by one MOEA
is statistically significantly different from that of another MOEA.

In this work, to carry out a large number of experiments within a
reasonable time budget, we use a server computer with 128 somewhat
dated AMD cores (AMD Opteron Processor 6386 SE, 2.8 GHz) to run
multiple experiments at the same time. We note that the optimization
performance of any individual run in practice could be made at least
twice faster by using computers with more recent, powerful CPUs (e.g.,
recent Intel cores).

6.2. Results

6.2.1. Hypervolume results of MO-RV-GOMEA variants

Fig. 3 shows the graphs of hypervolume development over time (in
seconds) averaged over 30 runs of each MO-RV-GOMEA variant for the
first 3 patient cases in our data set. It can be seen clearly that par-
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Fig. 3. The average hypervolume values of the Pareto fronts of different MO-RV-GOMEA variants over time. The error bars represent the standard deviation.
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Fig. 4. The average hypervolume values of the Pareto fronts of optimization algorithms over time. Error bars represent the standard deviation.

tial evaluations indeed substantially accelerate MO-RV-GOMEA. While variables. In that case, MO-RV-GOMEA is quite close to MAMaLGaM
the hypervolume development graphs of MO-RV-GOMEA variants with in its behavior [15]. Regardless of the employed linkage model tested

partial evaluations become relatively flat after about 20 min, indicat- here, MO-RV-GOMEA with partial evaluations always outperforms the
ing convergence, the graphs of the variants without partial evaluations corresponding variant without partial evaluations, and the differences
are nowhere near as flat after 1 h, suggesting that the optimizers are between the final hypervolume values obtained by each variant after
still in the middle of the search. Note that besides this extra required 1 h are found to be statistically significant (p < 0.001). As the problem
computing time, there is no difference between the black-box and gray- structure of the BT treatment planning problem allows partial evalua-
box versions of MO-RV-GOMEA. In the black-box case, the additional tions to be carried out, for all experiments of MO-RV-GOMEA in the
evaluations, especially for small linkage sets, are actually harmful in remainder of this article, only the variants with partial evaluations are
terms of computational efficiency. It would be more efficient in that considered.

case to use only large linkage sets or even a single linkage set with all Fig. 3 also shows that MO-RV-GOMEA with the LT performs slightly
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Fig. 5. Pareto fronts combined from 30 independent optimization runs of each algorithm after running for 1 h.

better than the variant with the UF model. These differences are found
to be statistically significant (p = 0.009 for patient 2, and p < 0.001 for
the other two patients). This confirms the suggestion that there exist
certain useful dependencies between dwell times that can be exploited
by the variation operator. Furthermore, MO-RV-GOMEA with the fixed
LT is found to perform slightly better than the variant with the LT
learned in each generation, where the differences are again found to
be statistically significant (p < 0.001 for all 3 cases). This is reason-
able because the LT which is constructed a priori based on geometry
information of dwell positions (i.e., the case of gray-box optimization
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with problem-specific knowledge) likely captures the linkages among
dwell times better than the LT which needs to be learned from the
working population (i.e., the case of black-box optimization). More-
over, since such LTs can be constructed offline, the linkage learning
procedure in every generation is not needed anymore, thus enhancing
the performance of MO-RV-GOMEA in terms of number of evaluations
per second. In all the following experiments in this article, we therefore
employ only the MO-RV-GOMEA variant with the fixed LT and partial
evaluations.
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6.2.2. Hypervolume results of MOEAs

Fig. 4 shows the hypervolume development graphs of 4 MOEAs over
the running time (in seconds) averaged over 30 independent runs of
each MOEA for all 15 patient cases. In all cases, MOEA/D is found to
be the worst optimizer among the tested algorithms. We note that this
might be because the default setting of the neighborhood size for solu-
tion variation (i.e., 20) is not the best for tackling our problem formu-
lation. However, parameter tuning for MOEA/D is not within the scope
of this work. MAMaLGaM almost always slightly outperforms NSGA-II
(statistically significant with p < 0.001), except for patient case 13, for
which the final hypervolume results of both algorithms are not statis-
tically significantly different (p = 0.93). This suggests that the gener-
ating of offspring solutions by sampling the multivariate Gaussian dis-
tribution estimated over the solution space as done in MAMaLGaM is
more effective than the solution recombination with the univariate SBX
operator as done in NSGA-IL In all cases, MO-RV-GOMEA is the opti-
mization algorithm with the best performance among the MOEAs that
are considered in this article. The performance gaps between MO-RV-
GOMEA and MAMaLGaM are found to be statistically significantly dif-
ferent (p < 0.001). Regarding the BT treatment planning problem, the
explicit hierarchical linkage information encoded in the LT employed
by MO-RV-GOMEA and its exploitation by the GOM operator, including
the different improvement acceptation regimes in extreme clusters, is
more beneficial to optimization than the single-level joint dependency
information contained in the multivariate probability distributions of
promising solutions in different clusters employed by MAMaLGaM. Fur-
thermore, the hypervolume slopes of NSGA-II and MAMaLGaM nearly
flatten out after 1 h, indicating convergence, but their obtained hyper-
volume values are still statistically significantly smaller than those of
MO-RV-GOMEA.

Finally, there is a marked faster increase of the hypervolume as
obtained by MAMaLGaM than by MO-RV-GOMEA in the initial phase
(of approximately the first 10 min). In principle, if the LT model of
MO-RV-GOMEA contains only the root node, the performance of MO-
RV-GOMEA is similar to that of MAMaLGaM because only the Gaussian
distributions concerning all problem variables jointly are considered
just as in MAMaLGaM. However, due to the processing of many linkage
sets of smaller sizes in solution variation, MO-RV-GOMEA has a certain
overhead, causing MO-RV-GOMEA to appear slower than MAMaLGaM
in the hypervolume development. Such exploitation of hierarchical link-
age information rewards in the later phase for MO-RV-GOMEA in terms
of obtaining Pareto fronts of better quality.

6.2.3. Pareto front results
Fig. 5 shows the Pareto fronts of non-dominated plans obtained by
NSGA-II, MAMalLGaM, MOEA/D, and MO-RV-GOMEA for all 15 patient

Table 2
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cases. Each presented Pareto front is combined from the 30 approxima-
tion sets obtained by 30 independent optimization runs of each MOEA
after 1 h by discarding dominated solutions and only keeping over-
all non-dominated solutions. Note that we plot LCI objective values
in terms of percentage (i.e., %) and LSI objective values in absolute
terms (i.e., Gy) because it is easier for planners to interpret coverage
values (LCI) in terms of how many percentages (%) of target volumes
and organ sparing values (LSI) in terms of how much dose (Gy) are
above/below the thresholds. Our formulations of the two objectives LCI
and LSI (see Section 3) imply that treatment plans that satisfy all clin-
ical requirements (in Table 1) should Pareto dominate the point (0, 0).
Graphically, clinically-acceptable treatment plans are mapped to the
top-right corner of the graphs above (0, 0), which is colored in gold.
Pareto fronts shown in Fig. 5 indicate that treatment plans that satisfy
all clinical requirements are achievable in all cases. The Pareto fronts
obtained by MO-RV-GOMEA are always better than the ones obtained
by NSGA-II, MOEA/D, and MAMaLGaM. Especially for cases 4 and 11,
only the Pareto fronts obtained by MO-RV-GOMEA reach the clinically-
acceptable corner. It can be clearly seen that in this golden corner,
the solutions of MO-RV-GOMEA (Pareto-)dominate the solutions of all
the other MOEAs, suggesting that exploiting the linkage information
between problem variables (i.e., dwell times) benefits the optimization
algorithm in reaching treatment plans of higher quality.

Table 2 shows the statistics of the hypervolume value of the approxi-
mation sets obtained after 1 h of 30 runs of NSGA-II, MOEA/D, MAMalL-
GaM, and MO-RV-GOMEA. MO-RV-GOMEA outperforms other MOEAs
in all patient cases considered in this work and the results are found to
be statistically significant.

The planning process is time-limited in practice, and should not
exceed 1 h. Otherwise, patients would suffer too much from the incon-
venience due to the inserted catheters when waiting too long for a
plan to be made. Therefore, instead of spending the whole time bud-
get on running optimization algorithms, it would be more beneficial
to investigate the Pareto front results obtained after a shorter running
time. Fig. 6 shows the Pareto fronts combined from 30 independent
optimization runs of each MOEA after running for 10 min (note that
given the efficiency of the CPU we used in this study (i.e., AMD pro-
cessors), the efficiency of modern CPUs (e.g., Intel processors) would
allow these results to be obtained in less than 5 min). In most cases
(except for patient case 4), MO-RV-GOMEA obtains Pareto fronts of
higher-quality treatment plans faster than both NSGA-II and MOEA/D.
The plans found by MO-RV-GOMEA dominate the plans of NSGA-II and
MOEA/D in the golden corner. At the timepoint of 10 min, the com-
bined fronts obtained by MO-RV-GOMEA are slightly better than those
of MAMaLGaM in some cases, and vice versa in other cases. For many
cases (except for the cases 4, 7, 8, and 11), it can be seen that MO-RV-

Means and standard deviations (in brackets) of the hypervolume value of the approximation sets obtained after 1 h of 30 runs of
NSGA-II, MOEA/D, MAMaLGaM, and MO-RV-GOMEA. The best mean value for each case is presented in bold. Statistical significance is

indicated with the * symbol.

MAMaLGaM

MO-RV-GOMEA

Patient ID NSGA-II MOEA/D

1 0.132830 (0.001459) 0.125463 (0.004070)
2 0.154127 (0.000889) 0.145853 (0.007444)
3 0.149913 (0.000933) 0.143773 (0.005809)
4 0.132010 (0.001274) 0.118783 (0.009071)
5 0.144123 (0.001196) 0.135247 (0.004102)
6 0.143277 (0.001054) 0.134271 (0.012791)
7 0.124253 (0.001318) 0.118257 (0.001966)
8 0.132407 (0.001486) 0.124153 (0.004292)
9 0.129827 (0.001179) 0.124240 (0.002442)
10 0.144620 (0.000929) 0.137540 (0.002564)
11 0.124663 (0.001936) 0.110032 (0.007660)
12 0.139123 (0.002493) 0.128910 (0.005193)
13 0.136023 (0.000871) 0.130753 (0.002573)
14 0.152620 (0.000829) 0.147890 (0.001978)
15 0.138803 (0.001601) 0.134413 (0.003331)

0.135470 (0.000837)
0.156447 (0.001528)
0.152653 (0.000711)
0.136023 (0.002176)
0.146940 (0.001750)
0.144657 (0.000955)
0.126880 (0.001285)
0.136477 (0.001544)
0.132663 (0.000683)
0.145813 (0.001024)
0.127560 (0.001414)
0.144083 (0.001157)
0.135807 (0.001712)
0.153780 (0.000737)
0.141740 (0.000812)

0.139617 (0.000737)*
0.161010 (0.000522)*
0.156027 (0.000629)*
0.139640 (0.001128)*
0.152233 (0.000778)*
0.147487 (0.000540)*
0.131733 (0.000783)*
0.139137 (0.001250)*
0.138337 (0.000742)*
0.148950 (0.001188)*
0.128910 (0.002337)*
0.148597 (0.000857)*
0.138853 (0.000950)*
0.156240 (0.000387)*
0.146903 (0.000451)*
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Fig. 6. Pareto fronts combined from 30 independent optimization runs of each algorithm after running for 10 min.

GOMEA and MAMaLGaM (also except for the cases 9 and 13) manage
to reach the golden corner within 10 min. Also, it can be seen in Fig. 6
that the Pareto fronts obtained by MO-RV-GOMEA contain many more
non-dominated solutions than all the other MOEAs, making them much
smoother than those of other MOEAs. This is due to the GOM operator
as used in MO-RV-GOMEA that performs solution variations by making
series of local changes on existing solutions, thus substantially increas-
ing the probability of obtaining many more non-dominated solutions,
resulting in Pareto fronts of much finer-grained trade-offs. This is also
the key reason why MO-RV-GOMEA is slower than MAMaLGaM in the

12

initial phase, which is compensated for by the Pareto fronts being of
higher quality in the later phase (see Fig. 4). Note that, if planners are
satisfied with the approximation set obtained along the run, instead
of running for 1 h, MO-RV-GOMEA can be terminated earlier and the
obtained treatment plans can be used for further fine-tuning if neces-
sary.

Table 3 shows the statistics of the hypervolume value of the approx-
imation sets obtained after 10 min of 30 runs of NSGA-II, MOEA/D,
MAMaLGaM, and MO-RV-GOMEA. At the timepoint of 10 min, for 9
cases (i.e., cases 1, 2, 4, 5, 6, 7, 8, 9, and 11) approximation sets



N.H. Luong et al.

Table 3
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Means and standard deviations (in brackets) of the hypervolume value of the approximation sets obtained after 10 min of 30 runs of
NSGA-II, MOEA/D, MAMaLGaM, and MO-RV-GOMEA. The best mean value for each case is presented in bold. Statistical significance is
indicated with the * symbol.

MAMaLGaM

MO-RV-GOMEA

Patient ID NSGA-II MOEA/D

1 0.117026 (0.003911) 0.105189 (0.015535)
2 0.139672 (0.002529) 0.116762 (0.018681)
3 0.141886 (0.002380) 0.121563 (0.020112)
4 0.115622 (0.004238) 0.094063 (0.015273)
5 0.125469 (0.003793) 0.102237 (0.021891)
6 0.130736 (0.004367) 0.107361 (0.027323)
7 0.110006 (0.002995) 0.093991 (0.017202)
8 0.118473 (0.002811) 0.104159 (0.011790)
9 0.115002 (0.002735) 0.095677 (0.014362)
10 0.135623 (0.003064) 0.127846 (0.007444)
11 0.099698 (0.008109) 0.073793 (0.015856)
12 0.114146 (0.010589) 0.104691 (0.022149)
13 0.128640 (0.002153) 0.112556 (0.013397)
14 0.143879 (0.003240) 0.135038 (0.019455)
15 0.121262 (0.006081) 0.102923 (0.022943)

0.130043 (0.001323)*
0.150410 (0.001765)*
0.148293 (0.001226)
0.129770 (0.002671)*
0.139440 (0.002771)*
0.140517 (0.001297)*
0.120817 (0.002232)*
0.130467 (0.002593)*
0.125670 (0.001476)*
0.141347 (0.001720)
0.121020 (0.002723)*
0.137163 (0.001638)
0.131167 (0.002277)
0.149813 (0.001107)
0.136447 (0.001511)

0.125323 (0.004591)
0.147510 (0.004258)
0.149350 (0.001870)*
0.121663 (0.004976)
0.132886 (0.003793)
0.137896 (0.003035)
0.114923 (0.003385)
0.125929 (0.003773)
0.123630 (0.003827)
0.142683 (0.002115)
0.114173 (0.005679)
0.135273 (0.004709)
0.132290 (0.001915)
0.149963 (0.002525)
0.134479 (0.004638)

obtained by MAMaLGaM have better hypervolume values than those
obtained by MO-RV-GOMEA and the results are found to be statisti-
cally significant. However, the final hypervolume results after 1 h in
Table 2 and the hypervolume development graphs over running time in
Fig. 4 indicate that given longer running time (e.g., more than 10 min),
MO-RV-GOMEA catches up and outperforms MAMaLGaM in all cases.
As explained earlier in Section 6.2.2, the initial slower performance
of MO-RV-GOMEA compared to MAMaLGaM is due to the overhead
incurred by the processing of many more linkage sets of smaller sizes
during solution variation of MO-RV-GOMEA (see Section 4.4).

We note that it is still beneficial to also obtain parts of the Pareto-
optimal front outside the golden corner. First, there might exist no
treatment plan that satisfies the whole clinical protocol due to the qual-
ity of the catheter implants or the geometry of the involved organs,
which is difficult to recognize before performing the optimization pro-
cess (see Section 3). Second, depending on the specific situation of the
patient and the preferences of the treating physician, the desired trade-
off could be outside the golden corner. In practice, treatment planners
can approve a plan located outside the golden corner. It is therefore
important to provide the planners with well-spread Pareto fronts of non-
dominated treatment plans so that the planners have more insight into
the available trade-offs for each patient.

6.2.4. Variance of Pareto front results

Figs. 5 and 6 show the fronts of non-dominated solutions combined
from 30 independent runs of each algorithm. In practice, however, typ-
ically only one optimization run would be performed. Hence, these
results are overly optimistic and it is therefore important to investi-
gate the consistency of each algorithm in terms of the variance in its
obtained Pareto fronts. To this end, Fig. 7 shows, for the first three
patient cases, all 30 fronts of non-dominated solutions obtained by each
optimization algorithm after running for 10 min (blue-green color) and
1 h (red color). A complete overview of the results of all patient cases
can be found in the supplementary material. The objective space is
divided into a grid and the results are represented as 2D histograms
of density, such that the darker the color of a cell is, the higher the fre-
quency that a solution can be found at that position, i.e., it conveys how
frequent treatment plans with a certain quality can be obtained. Intu-
itively, thinner and darker curves of Pareto fronts indicate less variance,
and thus higher algorithmic consistency and reliability.

MOEA/D is shown to exhibit the most variance in its results and the
performance is thus the least robust. For all algorithms, a higher num-
ber of non-dominated solutions are found in the region associated with
optimizing solely the LSI objective. This extreme region contains treat-
ment plans that would result in under-irradiation, which are normally
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easy to obtain by simply making dwell times as small as possible. The
two MOEAs NSGA-II and MO-RV-GOMEA obtain Pareto fronts which
are more evenly-distributed among different regions. Fig. 7 clearly con-
firms that MO-RV-GOMEA has superior consistency in its performance
compared to other algorithms. In all cases, it can be seen that MO-
RV-GOMEA obtains more non-dominated solutions with higher density
than other MOEAs at both timepoints of 10 min and 1 h. Planners then
only need to run MO-RV-GOMEA once instead of having to repeat opti-
mization multiple times to choose the best results as in the cases of other
MOEAs. Moreover, further speed enhancements of MO-RV-GOMEA are
possible. The most straightforward of which are using a more modern
CPU and a multi-resolution scheme for the number of dose calculation
points such that this is increased over time, introducing more precision
in dose calculations as the algorithm nears the Pareto-optimal front.

6.3. Discussions on decision making strategies

Solving our multi-objective BT treatment planning problem formu-
lation results in an approximation set of diverse treatment plans that
exhibit possible trade-offs between the coverage of target volumes and
the sparing of OARs. Decision making strategies can then be applied to
select a single treatment plan that is deemed the most preferable to be
carried out. One such strategy is to employ a utility function to calculate
the utility values of all solutions in the resulting approximation set and
the solution with the best utility value can then be selected. A simple
utility function is to calculate the Euclidean distance in the objective
space from each trade-off solution to the utopian point (i.e., the point
that represents both optimal target coverage and optimal OARs spar-
ing) [13]. A more sophisticated utility function specific to BT that can
be used is the Conformal Index (COIN), which relates to how much tar-
get volumes and how much healthy tissues outside target volumes are
covered by a certain dose level. It further relates to how much OAR
volumes are irradiated at a dose level higher than their clinical crite-
ria [10]. However, such utility functions have not been widely used
in practice and it has been pointed out that utility functions alone are
not sufficient for insightful decision making in BT treatment planning
because valuable trade-off information cannot be fully captured by util-
ity functions [10].

A more well-informed decision making strategy is the direct navi-
gation of the Pareto front formed by the solutions in the final approxi-
mation set. Since our problem formulation has just 2 objectives, Pareto
fronts can be easily visualized and treatment planners can straightfor-
wardly locate the desired trade-off as well as inspect how one objective
needs to be compromised in order to improve the other objective. Direct
navigation on Pareto fronts is more informative because each patient
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case requires a different trade-off between target coverage and organ
sparing (e.g., depending on the age, health status, or organ geometry)
and treating physicians, based on their experience, can have different
subjective preferences regarding what a suitable treatment plan should
be (e.g., a plan with good target coverage and sufficient organ sparing
versus a plan with sufficient target coverage and good organ sparing).
Such information cannot be straightforwardly converted into a utility
function. As the final approximation set can contain many treatment
plans, inspecting the whole Pareto front may take a lot of assessment
time. A more efficient alternative is to present treatment planners with a
smaller set of potential treatment plans (e.g., 5 or 10 plans) that are rep-
resentative of the final Pareto front (e.g., a subset of evenly-distributed
plans). Planners can then select a suitable plan from this subset of treat-
ment plans to be carried out. Final decision making in BT treatment
planning, however, requires further input from radiation oncologists
and is left for future work.

7. Conclusions

BT treatment planning is an inherently multi-objective problem with
multiple conflicting criteria of DV indices. Most optimization tools in
real-world clinically available software for BT, however, treat the prob-
lem in a single-objective manner and do not optimize directly the DV
indices used in the clinic for treatment plan evaluation. We argue that
the BT treatment planning problem with its original DV criteria should
be handled in the true multi-objective manner so that treatment plans
satisfying the clinical protocol as much as possible can be obtained and
that treatment planners can investigate possible trade-offs between DV
indices before selecting a treatment plan that exhibits the desired trade-
off for the patient case at hand. We have therefore studied and com-
pared the use of MOEAs for real-world BT treatment planning. More-
over, we have proposed a novel bi-objective formulation for the BT
treatment planning problem that closely matches intuition and typi-
cal clinical protocol. All treatment criteria in the clinical protocol were
classified into two groups, namely Target Coverage and Organ Sparing,
which were then used to define two corresponding optimization objec-
tives, namely Least Coverage Index and Least Sparing Index, and other
related constraints. The obtained Pareto fronts can be straightforwardly
visualized and are easy to interpret and evaluate against the clinical
protocol. In addition to a selection of well-known MOEAs (for black-box
optimization), we considered the recently-introduced MO-RV-GOMEA,
an MOEA that exploits hierarchical linkages between problem variables
and is especially suited for gray-box optimization (a typical real-world
scenario) by employing partial evaluations when existing solutions are
altered in only a few variables. Combining the exploitation of linkage
knowledge based on geometry information of the catheter implant and
the performing of partial evaluations, MO-RV-GOMEA was found to be
capable of outperforming other MOEAs, such as NSGA-II, MOEA/D, and
MAMalLGaM, in obtaining BT treatment plans of higher quality with
much higher consistency in less runtime. Experimental results on a data
set of 15 prostate cancer patient cases confirmed that MO-RV-GOMEA
is a promising MOEA for real-world applications, such as BT treatment
planning, that is worth further research and wider applications.
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