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Abstract

Different aligner heuristics can be found in the literature to solve the Multiple Sequence
Alignment problem. These aligners rely on the parameter configuration proposed by
their authors (also known as default parameter configuration), that tried to obtain good
results (alignments with high accuracy and conservation) for any input set of unaligned
sequences. However, the default parameter configuration is not always the best parame-
ter configuration for every input set; namely, depending on the biological characteristics
of the input set, one may be able to find a better parameter configuration that outputs
a more accurate and conservative alignment. This work’s main contributions include: to
study the input set’s biological characteristics and to then apply the best parameter con-
figuration found depending on those characteristics. The framework uses a pre-computed
file to take the best parameter configuration found for a dataset with similar biological
characteristics. In order to create this file, we use a Particle Swarm Optimization (PSO)
algorithm, that is, an algorithm based on swarm intelligence. To test the effectiveness
of the characteristic-based framework, we employ five well-known aligners: Clustal W,
DIALIGN-TX, Kalign2, MAFFT, and MUSCLE. The results of these aligners see clear
improvements when using the proposed characteristic-based framework.

Keywords: Swarm intelligence, Multiple sequence alignment, characteristics-based
framework, evolutionary algorithms

1. Introduction

The simultaneous alignment of three or more Nucleotides/ Amino-Acids (AA) se-
quences is known in the literature as the Multiple Sequence Alignment (MSA) problem
[1], and is considered an NP-complete optimization problem [10]. The MSA problem can
be defined as follows:
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Given a set of sequences S: {s1, s2, . . ., sk} of lengths |s1|, |s2|, . . ., |sk| defined over
an alphabet Σ, (for example the AA or the nucleotides alphabets), a MSA of S is defined
as the set S′: {s′1, s′2, . . ., s′k}, where the length of all the k sequences is exactly the
same. Note that, S′ is defined over the same alphabet as S (Σ) with an additional gap
symbol (−); S′ is thus defined over the alphabet Σ ∪ {−}.

In this way, a multiple alignment is obtained by adding gaps to the sequences of S
so that their lengths become the same. It can be seen as a matrix representation where
the rows are sequences and the columns represent aligned symbols. Each column of an
alignment must contain at least one symbol of Σ, (namely, a column with all gaps is not
allowed). According to [10], the complexity of finding an optimal alignment is O(k2kLk),
where k is the number of sequences and L is the max (|s1|, |s2|, . . ., |sk|). In the following,
we present an example of MSA:

Unaligned set (S): Aligned set (S′):
s1: GDNI (4) s′1: GDNI-- (6)
s2: KQLTQD (6) → s′2: KQLTQD (6)
s3: ACRKN (5) s′3: ACRK-N (6)

A well-conserved alignment leads to extra biological significance [31]; therefore, MSA
is frequently employed to produce strong biological facts about proteins. Further, MSA
mainly focuses on reflecting biological relationships among different sequences, which
is an essential step for inferring phylogenetic relationships [11], [16]. Another impor-
tant feature of an accurate MSA is that it allows the determination of genes that are
susceptible to mutation.

In the literature, we find a range of approaches to deal with the MSA problem. While
almost all of them allow us to modify some specific parameters by using different flags,
if no flags are used then a default configuration is used. The default configuration is
proposed by the developers of the aligner and refers to the best parameter configuration
found for aligning any input set of unaligned sequences with a reasonable level of accuracy
and conservation. However, the default configuration may not always be the best choice
for every input set. Depending on the biological characteristics of the input set, a better
configuration may be used to obtain a more accurate and conservative alignment. This is
the idea of the proposed characteristic-based framework: to study the biological charac-
teristics of the input set and, consequently, to apply a certain configuration depending on
those characteristics. Therefore, the characteristic-based framework uses three input files:
aligner (executable), a set of unaligned sequences, and a characteristics-configuration file.
Note that the characteristics-configuration file depends on the input aligner, and con-
tains the best parameter configuration of the aligner for a number of biological datasets
with different characteristics. A swarm intelligence approach is applied to optimize the
parameters of an input aligner, thereby obtaining its characteristics-configuration file. In
this way, the framework will run the aligner with the best parameter configuration found
for another dataset with similar biological characteristics, improving the input aligner’s
accuracy and conservation. In [37], we present a preliminary version of the framework.

As demonstrated by a series of recent publications [19, 20], in compliance with the
5-step rule [7] when developing a really useful sequence-based method for a biological
system we should follow these five guidelines: (a) construct or select a valid benchmark
dataset to train and test the model; (b) formulate the biological sequence samples with
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an effective mathematical expression that can truly reflect their intrinsic correlation with
the target to be identified; (c) introduce or develop a powerful algorithm (or engine) to
operate the analysis; (d) properly perform cross-validation tests to objectively evaluate
the anticipated accuracy of the model; and (e) establish a user-friendly web-server for
the analysis method that is accessible to the public. Below, we describe how to deal with
these steps individually.

The biggest contributions of this work include the following: a characteristic-based
framework for improving the quality alignment of any aligner, diverse biological char-
acteristics for describing a set of unaligned sequences, and a comparative study on the
framework’s effectiveness when it is applied to five aligners: Clustal W, DIALIGN-TX,
Kalign2, MAFFT, and MUSCLE.

The rest of the paper is organized as follows. A description of related works is
provided in Section 2. In Section 3, we detail the characteristic-based framework. Section
4 compares the framework’s accuracy with other aligners published in the literature.
Finally, in Section 5 we summarize the conclusions extracted from the study and describe
some avenues for future work.

2. Related Work

Traditionally, exact approaches for MSA, such as dynamic programming, have been
used. Yet these methods become computationally prohibitive when the number of se-
quences increases. In the literature, we find different heuristics for MSA that are cat-
egorized in three groups: progressive-based methods, consistency-based methods, and
iterative refinement methods.

In the first group, we find the progressive-based methods, which are widely used
[18]. Basically, given a set of unaligned sequences a progressive-based method computes
a distance matrix from every pair of sequences. After that, it employs a hierarchical
clustering algorithm, such as the Unweighted Pair Group Method with Arithmetic Mean
(UPGMA) or Neighbor-Joining (NJ), in order to build a guide-tree. The last step is to
perform the alignment among the given sequences by following the guide-tree. Several
progressive-based methods exist, such as Clustal W [42], PRANK [28], Fast Statistical
Alignment (FSA) [4], Kalign [24], and DIALIGN-TX [41].

In the second group, we have the consistency-based methods. These approaches build
a database with the local and global alignments between every pair of sequences. Ac-
cording to [12], the consistency-based approaches first harness the information contained
within regions that are consistently aligned among a set of pairwise superpositions in or-
der to realign pairs of proteins through both global and local refinement methods. Among
the most important consistency-based methods are: Tree-based Consistency Objective
Function For alignment Evaluation (T-Coffee) [32], PROBabilistic CONSistency-based
multiple sequence alignment (ProbCons) [9], ProbAlign [36], and MSAProbs [26].

In the third group, we find the iterative refinement methods. These focus on cor-
recting an erroneous gap inserted at an early stage of a progressive alignment. The
first step in these methods is to build an initial MSA by using any progressive-based
method. The second step consists of dividing the guide-tree of the initial alignment into
two subtrees which are re-aligned with the aim of obtaining an improved new alignment.
The second step is iteratively repeated until a certain number of iterations is reached.
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There exist several iterative refinement methods, such as MUltiple Sequence Comparison
by Log-Expectation (MUSCLE) [13], Multiple Alignment using Fast Fourier Transform
(MAFFT) [21], ProbCons [9] (it allows the option of a final iterative refinement), and
MUMMALS [34]. In this group, we can find some evolutionary and/or genetic algo-
rithms techniques for the MSA problem: VDGA [29], GAPAM [30], MO-SAStrE [33],
HMOABC [39], H4MSA [40].

To avoid completely losing the sequence-order information, the concept of PseAA
(pseudo amino acid) composition was proposed [6]. In contrast with the conventional
amino acid composition that contains 20 components with each reflecting the occurrence
frequency for one of the 20 native amino acids in a protein, the PseAA composition
contains a set of greater than 20 discrete factors, where the first 20 represent the compo-
nents of its conventional AA composition while the additional factors incorporate some
sequence-order information via various modes. Some very powerful bioinformatics tools
for analyzing biological sequences were recently developed, e.g. a sequence-based pre-
dictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide
composition [17] or an effective formulation for analyzing genomic sequences [5]. When
harnessing Pse-in-One 2.0 [5], users only need to input DNA, RNA, or protein sequences
as well as their selected or defined features, and can immediately obtain the correspond-
ing feature vectors suitable for any of the existing machine-learning programs to conduct
various analyses. All the aforementioned works may be considered a starting point for the
characteristic-based framework proposed in this paper, which analyzes the composition
of the protein sequences in order to select a proper parameter configuration.

3. Characteristic-based Framework

This section is divided into two. The first subsection describes how the characteristic-
configuration file is obtained, while the second discusses the main properties of the pro-
posed framework.

3.1. Characteristic-configuration File

The characteristic-based framework receives the following inputs: aligner, set of un-
aligned sequences, and a characteristic-configuration file. The characteristic-configuration
file contains the best parameter configuration of the given aligner for diverse sets of un-
aligned sequences with different biological characteristics (one per line). The line struc-
ture of the characteristic-configuration file will be:

A1;A2;A3;B1;B2;C1;C2;C3;C4;C5;<best-conf>

On one hand, we find three different groups of characteristics (A, B, and C), a total
of 10 characteristics. In the following, we present a description of each characteristic
within each group:

A1. Number of unaligned sequences.

A2. Average length of the unaligned sequences.

A3. Standard Deviation of the Length.
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B1. Average Kimura Distance (evolutionary distance, [23]) between each pair of un-
aligned sequences.

B2. Standard deviation of the Kimura Distance.

C1. Percentage of AA with electrically charged side chains (Positive): R, H, and K.

C2. Percentage of AA with electrically charged side chains (Negative): D, and E.

C3. Percentage of AA with polar uncharged side chains: S, T, N, and Q.

C4. Percentage of special AA cases: C, U, G, and P.

C5. Percentage of AA with hydrophobic side chains: A, V, I, L, M, F, Y, and W.

The features within group A refers to the number and length of the unaligned se-
quences. Within group B, we find the features related to the evolutionary distance
between each pair of unaligned sequences (average and standard deviation).

According to [27], amino-acids (AA) are the monomeric (single polypeptide chain)
building block of proteins. Each amino acid has the same fundamental structure, a
central α carbon atom (Cα) of AA, which is adjacent to the carboxyl group and bonded
to four different chemical groups: (i) an amino (NH2) group, (ii) a carboxyl (COOH)
group, (iii) a hydrogen (H) atom, and (iv) a variable group, called a side-chain or R
group. Amino acids can be classified into a few distinct categories based primarily on
their solubility in water, as influenced by the polarity of their side chains. Amino acids
with polar side groups tend to be on the surface of proteins; by interacting with water,
they make proteins soluble in aqueous solutions. In contrast, amino acids with non-
polar side groups avoid water and aggregate to form the water insoluble core of proteins.
Therefore, in group C we find the side-chain features of sequences (in %): weak acid
(positive), weak base (negative), polar, special, and hydrophobic.

As seen, a total of 10 characteristics divided into three groups are chosen. In the first
group (A), we consider the number of sequences and their average and standard devi-
ation length because these characteristics significantly influence the performance of the
aligners, mainly in running time issues. The Evolutionary Distance used within the sec-
ond group of characteristics (B) has been widely used to validate new multiple sequence
aligners in the literature, e.g. [24]. Finally, in group C we consider the composition of the
input sequences based on their side-chain characteristics because the polarity of amino
acid side chains is one of the forces responsible for shaping the final three-dimensional
structure of proteins, [27].

Note that, for sets of DNA sequences, groups of characteristics A and B are valid;
however, the group of characteristics C (side-chain features) will be replaced by the
percentage of each DNA base (A, C, T, and G).

For example, given the set of unaligned sequences of Section 1, we can extract the
following characteristics:

• Characteristics A: 3 unaligned sequences (A1), 17.334 of average length (A2) and
5.312 of standard deviation (A3).

• Characteristics B: Average Kimura distance of 0.2344 (B1), standard deviation of
0.0719 (B2).
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Algorithm 1: Particle Swarm Optimization

1 xgb.f ← -1 ;
2 foreach x0

i in {x0
1 . . . x

0
N} do

3 x0
i ← RandomPositionInSearchSpace(LB,UB);

4 x0
i .f ← EvaluateParameterConfiguration(x0

i );
5 if (x0

i .f > xgb.f) then
6 xgb ← x0

i ;

7 t← 1 ;
8 repeat
9 foreach xi in {x1 . . . xN} do

10 rand1← random(0,1);
11 rand2← random(0,1);
12 W ← 0.7 ;
13 C1← random(0,2);
14 C2← 2 - C1 ;
15 xn ← NeighbourParticleTo(xt

i) ;
16 for j ← 1 to D do
17 vt+1

i,j ← (W × vti,j) +

18 (C1× rand1× (xgb.pj − xt
i.pj)) +

19 (C2× rand2× (xn.pj − xt
i.pj));

20 xt+1
i .pj ← xt

i.pj + vt+1
i,j ;

21 xt+1
i .f ← EvaluateParameterConfiguration(xt+1

i );

22 if (xt+1
i .f > xgb.f) then

23 xgb ← xt+1
i ;

24 t← t+ 1 ;

25 until Stopping Criterion is satisfied ;
26 return xgb

• Characteristics C: 7.52% of positive AA (C1), 41.63% of negative AA (C2), 16.68%
of uncharged AA (C3), 5.81% of special AA, and 28.36% of hydrophobic AA.

On the other hand, on each line of the characteristic-configuration file, we also find
the best-parameter-configuration for the given aligner. In order to find the best parameter
configuration for a given set of unaligned sequences, we implemented a Particle Swarm
Optimization algorithm (PSO) [22].

PSO is a population based approach, inspired by social behaviour of bird flocking or
fish schooling. In PSO, the potential solutions (particles) fly through the search-space
following the current optimum particles. The movements of the particles are guided by
the best known position of each particle in the search space as well as the entire swarm’s
best known position. The process is repeated until a satisfactory solution is discovered.
A pseudocode of the PSO algorithm is presented in Algorithm 1.

As seen in Algorithm 1, PSO is initialized with a group of random particles (lines 2-6)
and then iterates for optima by updating generations. In every iteration (lines 9-25), the
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movement of each particle is influenced by its local best known position (line 15), but
is also guided toward the best known particle found in the search-space (xgb), which are
updated as better positions are found by other particles (lines 22-23). This is expected
to move the swarm toward the best solutions. For a complete explanation of PSO, please
refer to [22].

In this paper, the input parameters of PSO are: (i) stopping criterion, (ii) set of
unaligned sequences, (iii) reference aligned set of sequences or true alignment, (iv) aligner
binary program, (v) list of parameters to optimize, and (vi) upper/lower bounds of the
parameters.

Each particle consists of three elements: (i) chromosome, (ii) velocity, and (iii) fitness
value. The chromosome-encoding in PSO is a list of D parameters {p1, p2, . . ., pD} to op-
timize. All the parameters have lower and upper bounds that are denoted with LB={lb1,
lb2, . . ., lbD} and UB={ub1, ub2, . . ., ubD}, respectively. After running the aligner with
the list of selected parameters, an alignment is obtained (A). In order to quantify the
agreement between the true alignment and the alignment A, two measures are used:
Q-score and TC-score [13]. Q-score (Quality score) indicates the number of correctly
aligned residue pairs divided by the number of residue pairs in the reference alignment.
This measure is also known as the Sum-of-Pairs (SP) score. The TC-score (Total Column
score) is the number of correctly aligned columns divided by the number of columns in
the reference alignment and is also known as the Column Score (CS). Therefore, the goal
of the PSO algorithm is to find a parameter-configuration that produces alignment (A)
that maximizes the following objective function (f):

f(A) = (0.5 ∗Q) + (0.5 ∗ TC) (1)

As mentioned, each particle i stores its current position xt
i (chromosome) and velocity

vti at time t. In addition, PSO keeps track of the global best known particle (xgb), which
will be the output of the algorithm (the best parameter configuration found).

As we can see on lines 12-14 of Algorithm 1, the PSO algorithm uses three constants
(W , C1, and C2) to control the three directions which determine the next velocity and
position of the particles. In the velocity update of the particle (lines 17-19 in Algorithm
1), three components exist which are usually referred as inertia (W ×vti), social influence
(C1×rand1×(xgb.pj−xt

i.pj)), and neighborhood influence (C2×rand2×(xn.pj−xt
i.pj)).

These components use an element of randomness, so PSO allows particles to explore novel
areas of the search space, avoiding stagnation in local minima.

3.2. Explanation of the characteristic-based framework

As mentioned in Section 1, the characteristic-based framework requires three input
elements: aligner, a characteristic-configuration file for the given aligner and a set of
unaligned sets of sequences. In the following, we describe the steps of the framework:

Step 1. Extract the biological characteristics explained in the previous subsection from
the input set of unaligned sequences: characteristics A (A1, A2, A3), charac-
teristics B (B1, B2), and characteristics C (C1, C2, C3, C4, and C5).

Step 2. Obtain the parameter-configuration.

7



Step 2.1. Normalize (in the 0-1 range) the characteristics A, B, and C of the
input set and also the characteristics A, B, and C included in the
characteristic-configuration file.

Step 2.2. Obtain the closest parameter configuration in terms of characteris-
tics A, B, and C by using the Euclidean Distance; we refer to it as
configuration A, configuration B, and configuration C.

Step 3. In Parallel, run the aligner with the parameter-configuration A, B, C, and also
with the default parameter configuration. In this way, we use four threads, each
one running the same aligner with a different parameter-configuration. Once
the alignment is obtained, the thread will compute the sum-of-pairs profile score
(VTML240) to determine the quality of the alignment:

muscle3.8 -spscore <output-alignment> -sv

Step 4. Return the alignment with the highest sum-of-pairs profile score (VTML240).

For example, consider the following characteristic-configuration file:

A1 A2 A3 B1 B2 C1 C2 C3 C4 C5
1) 46 251.87 125.69 0.2031 0.0529 11.76% 14.26% 18.67% 15.97% 39.35% <conf1>

2) 53 321.47 14.09 0.3991 0.1224 12.36% 12.25% 18.64% 12.69% 44.05% <conf2>

3) 4 118 56.29 0.212 0.024 17.47% 11.86% 21.76% 9.99% 38.93% <conf3>

4) 35 689.8 293.06 0.2834 0.1482 14.37% 12.76% 18.39% 15.46% 39.01% <conf4>

5) 69 490.75 293.72 0.2495 0.1195 13.87% 12.60% 17.58% 15.63% 40.32% <conf5>

6) 4 232 7.97 0.352 0.0524 8.54% 9.05% 23.34% 16.81% 42.27% <conf6>

Given a set of unaligned sequences, the first step is to extract its biological charac-
teristics:

A1 A2 A3 B1 B2 C1 C2 C3 C4 C5
7) 5 128.2 74.86 0.1960 0.0536 13.34% 12.07% 18.03% 16.36% 40.20%

Then, we perform a normalization of the characteristics in the 0-1 range:

A1 A2 A3 B1 B2 C1 C2 C3 C4 C5
1) 0.6462 0.2341 0.412 0.0348 0.2323 0.3613 1 0.1881 0.8763 0.083 <conf1>

2) 0.7538 0.3558 0.0214 1 0.7922 0.4277 0.6152 0.1841 0.3972 1 <conf2>

3) 0 0 0.1691 0.0788 0 1 0.5396 0.7259 0 0 <conf3>

4) 0.4769 1 0.9977 0.4303 1 0.6535 0.7122 0.1408 0.8027 0.0172 <conf4>

5) 1 0.6519 1 0.2635 0.7688 0.597 0.6815 0 0.8271 0.2725 <conf5>

6) 0 0.1994 0 0.7683 0.2284 0 0 1 1 0.6521 <conf6>

7) 0.0154 0.0178 0.2341 0 0.2384 0.5373 0.5802 0.0773 0.9348 0.2491

To obtain the best parameter-configuration A, B, and C, we calculate the Euclidean
distance between the characteristics A, B, and C of the input set of unaligned sequences
and the characteristics A, B, and C of each line in the characteristic-configuration file:

1) 2) 3) 4) 5) 6)
Characteristics A (A1, A2, A3) 0.690 0.840 0.069 1.327 1.399 0.297

Characteristics B (B1, B2) 0.035 1.143 0.251 0.875 0.592 0.768
Characteristics C (C1, C2, C3, C4, C5) 0.501 0.937 1.254 0.326 0.179 1.282

As we can see, we have selected <conf3> as configuration A, <conf1> as configuration
B, and <conf5> as configuration C. Finally, the last step is to simultaneously run the
aligner with the aforementioned parameter-configurations (and also the default) and
return the alignment with the highest sum-of-pairs profile score (VTML240).
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(a) BAliBASE v3.0 (b) OX-Bench (c) PREFAB v4.0 (d) SABMark v1.65

Figure 1: The chart contains the star plot of the four benchmark suites tested in this work: BAliBASE
v3.0 (218 datasets), OX-Bench (395 datasets), PREFAB v4.0 (1680 datasets), and SABMark v1.65 (423
datasets). The variable list for each sample star plot is: group of characteristics A (A1, A2, A3), group
of characteristics B (B1, B2), and group of characteristics C (C1, C2, C3, C4, C5).

4. Experimental Results

In this section, we study the influence of the characteristic-based framework on differ-
ent multiple sequence aligners published in the literature. We explain the methodology
followed in the comparative study. Then, we present the optimization of the parameters
of each aligner. Finally, we analyze and discuss the results obtained by the characteristic-
based framework versions and other aligners published in the literature.

4.1. Methodology

In order to prove the effectiveness and accuracy of the characteristic-based framework,
we selected the following well-known aligners: Clustal W [42] (v2.1), DIALIGN-TX [41]
(v1.0.2), Kalign2 [24] (v2.03), MAFFT [21] (v7.215), and MUSCLE [13] (v3.8). These
aligners were selected because they employ several parameters to optimize and present
a reasonable running time. In the Supplementary File, we present the list of parameters
optimized by the PSO algorithm for each aligner. Note that the lower and upper bounds
of each parameter were taken from the documentation of each aligner.

In the following experiments, we have employed four alignment benchmarks contain-
ing reference alignments: BAliBASE [43], OX-Bench [35], PREFAB [13], and SABmark
[44].

BAliBASE 3.0 is one of the most widely-used alignment benchmarks. It defines a
total of 218 sets of sequences that are prepared to be aligned by MSA approaches. All
the sequences were extracted from the Protein Data Bank [2]. We organized the sets
of sequences in six subsets according to their families and similarities: RV11 (38 sets of
sequences), RV12 (44), RV20 (41), RV30 (30), RV40 (49), and RV50 (16).

OX-Bench includes a reference database of protein multiple sequence alignments that
were generated by a consideration of protein’s three-dimensional structure. Out of the 395
reference alignments in OX-Bench, there are 191 alignments that have protein sequences
which belong to one or the other of the 43 selected protein folds. In our comparative
study, we divide the 395 sets into four groups according to the identity (Id): [0-15%) (6
sets, where 0% ≤ Id < 15%), [15-30%) (42 sets, where 15% ≤ Id < 30%), [30-50%) (117
sets, where 30% ≤ Id < 50%), and [50-100%] (230 sets, where 50% ≤ Id ≤ 100%).

The Protein REFerence Alignment Benchmark (PREFAB) version 4.0 includes a col-
lection of 1,680 alignments. We divided the 1,680 sets into four groups according to
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Table 1: Results in terms of Q-score and TC-score (in %) obtained by the PSO algorithm when op-
timizing the parameters of five different aligners: Clustal W, DIALIGN-TX, Kalign2, MAFFT, and
MUSCLE. Each cell of the table includes the value of Q-score/TC-score obtained by each aligner using
the default parameters configuration, followed by the improvement obtained by using the best parameter
configuration found by PSO algorithm.

Q-score (in %)
RV11 RV12 RV20 RV30 RV40 RV50

Clustal W 50.06 +10.32 86.43 +6.35 85.20 +6.71 72.50 +9.55 78.94 +11.72 74.25 +10.33
DIALIGN-TX 50.47 +6.17 88.21 +2.58 87.81 +2.14 76.14 +5.76 83.40 +5.85 82.15 +3.06
Kalign2 60.53 +10.62 91.21 +2.88 90.08 +2.69 81.26 +5.23 88.33 +4.60 82.01 +5.40
MAFFT 59.47 +13.95 92.41 +3.53 90.04 +3.95 84.47 +2.04 89.88 +3.05 87.64 +0.22
MUSCLE 57.15 +12.67 91.54 +3.30 88.89 +4.17 81.44 +5.36 86.31 +7.28 83.52 +6.14

TC-score (in %)
RV11 RV12 RV20 RV30 RV40 RV50

Clustal W 22.99 +14.14 71.68 +13.15 22.16 +23.43 27.59 +23.94 39.82 +23.40 31.16 +24.60
DIALIGN-TX 26.00 +7.99 73.95 +5.13 30.36 +7.59 38.78 +10.33 44.84 +10.34 46.71 +7.16
Kalign2 36.87 +13.55 79.34 +6.98 36.25 +14.88 47.99 +12.53 50.78 +17.36 43.96 +14.89
MAFFT 37.78 +16.65 83.18 +7.29 38.85 +18.35 51.98 +8.65 54.86 +13.28 56.33 +2.52
MUSCLE 32.06 +13.66 80.90 +6.86 35.30 +16.04 41.19 +18.99 45.32 +26.89 46.39 +14.89

the identity (Id): [0-10%) (102 sets, where 0% ≤ Id < 10%), [10-20%) (702 sets, where
10% ≤ Id < 20%), [20-40%) (658 sets, where 20% ≤ Id < 40%), and [40-100%] (218
sets, where 40% ≤ Id ≤ 100%).

Finally, SABmark v1.65 consists of 423 sets of sequences. These sets are divided into
two families: Superfamily (315 sets) and Twilight (108 sets). The total of 423 sets of
sequences was organized in four groups: sup [0-20%) (99 sets from Superfamily, where
0% ≤ Id < 20%), sup [20-100%] (216 sets from Superfamily, where 20% ≤ Id ≤ 100%),
twi [0-20%) (78 sets from Twilight, where 0% ≤ Id < 20%), and twi [20-100%] (30 sets
from Twilight, where 20% ≤ Id ≤ 100%).

These four benchmarks (BAliBASE, OX-Bench, PREFAB, and SABmark) containing
reference alignments were obtained from [14]. In Figure 1, we compare the selected biolog-
ical characteristics proposed in the previous section for the four alignment benchmarks.
As seen, the four benchmarks present different biological characteristics, providing vari-
ety to test the accuracy of the aligners as a result.

In the literature, the Q and TC assessment metrics [13] are commonly employed to
quantify the agreement between the true alignment and the alignments obtained by the
approaches. The former indicates the number of correctly aligned residue pairs divided
by the number of residue pairs in the reference alignment. The second metric (TC), is the
number of correctly aligned columns divided by the number of columns in the reference
alignment. In this work, these metrics were calculated using the qscore program [15].
Note that, the TC score is inapplicable to PREFAB as the reference alignments are
pairwise [13]; therefore, in our study, for this benchmark, we compare the methods by
only using the Q score.

The machine used in the comparative study was a PC with four Intel cores (2.3GHz)
with 4GB RAM (Linux Operating System).
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Figure 2: Study of PSO convergence in 300 fitness evaluations. For each subset of BAliBASE v3.0, we
present the evolutionary trajectory of fitness obtained by PSO for the five aligners considered in this
work: Clustal W, DIALIGN-TX, Kalign2, MAFFT, and MUSCLE.

4.2. Obtaining characteristic-configuration files

As discussed in the previous section, we have five different aligners (Clustal W,
DIALIGN-TX, Kalign2, MAFFT, and MUSCLE). Therefore, we need a characteristic-
configuration file for each method. To create them, we employed the 218 sets of se-
quences included in the BAliBASE benchmark. The choice of using BAliBASE builds
on the fact that in this benchmark the alignments are based upon protein 3D structure
super-positioning and are manually refined in order to ensure higher alignment quality
than a pure automated method. This property can be seen as one of the main features
of BAliBASE, but can also be considered as source of subjectivity due to the expert
refinement [3]. In addition (as shown in Figure 1), the BAliBASE benchmark presents
an homogeneous distribution of its 218 datasets in terms of the identity and number of
sequences.

In the PSO algorithm we used a small number of particles; namely a swarm size
equals 10. In addition, the maximum number of fitness evaluations was established at
300.

As we may observe in Table 1, the five aligners greatly improve the two metrics (Q
and TC). However, we see that the TC-score represents a much greater improvement
than the Q-score in all cases. In terms of the average Q-score and TC-score obtained
by the aligners in the 218 alignments of BAliBASE, the ranking of the aligners with the
default configuration was (Q-score, TC-score): MAFFT, Kalign2, MUSCLE, DIALIGN-
TX, and Clustal W. After obtaining the best configuration with the PSO algorithm,
the updated ranking is: MAFFT, MUSCLE, Kalign2, Clustal W, and DIALIGN-TX.
MAFFT is accordingly still the best performer; yet Clustal W and MUSCLE have scaled
in the ranking. It is worth highlighting the great average improvement obtained by
Clustal W in both the Q-score (>9%) and TC-score (>20%). Finally, in Figure 2, we
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Table 2: Results obtained by 16 aligners when solving a total of 395 datasets included in the OX-Bench
benchmark suite. Note that, the 395 datasets are divided into four groups according to identity: [0,
15)%, [15, 30)%, [30, 50)%, and [50, 100]%. In addition, for each group of datasets and each aligner
we report the following performance metrics: Q-score (%), TC-score (%), and Runtime (t, in seconds).
Note that the three best values of Q-score and TC-score are highlighted in three tones of gray (light,
medium, and dark).

Identity
[0, 15)% [15, 30)% [30, 50)% [50, 100]%

Q TC t Q TC t Q TC t Q TC t

fwk-Clustal W 29.00 11.12 2.67e−2 63.53 37.76 6.08e−2 87.63 74.62 1.89e−1 97.98 94.9 6.97e−2

fwk-DIALIGN-TX 13.59 2.39 1.58e−1 52.15 23.78 5.14e−1 83.64 68.24 2.89e+0 97.18 93.29 7.25e−1

fwk-Kalign2 27.47 10.98 1.19e−2 61.69 36.7 2.02e−2 88.45 76.57 6.33e−2 97.93 94.88 1.88e−2

fwk-MAFFT 26.64 11.84 2.82e−1 64.67 40.81 3.48e−1 88.48 76.73 5.72e−1 98.05 95.17 3.43e−1

fwk-MUSCLE 31.39 16.05 6.43e−2 64.43 40.72 1.04e−1 88.11 76.15 3.23e−1 97.96 95.01 6.11e−2

Clustal W 27.87 11.12 1.91e−2 62.3 35.64 5.27e−2 86.02 71.77 1.73e−1 97.75 94.41 5.75e−2

DIALIGN-TX 12.96 1.25 1.34e−1 50.09 22.56 4.18e−1 82.05 64.88 2.73e+0 96.9 92.69 6.67e−1

Kalign2 17.82 3.22 4.55e−3 57.05 31.91 7.28e−3 85.26 69.95 8.54e−3 97.55 93.98 5.30e−3

MAFFT 21.58 6.97 2.64e−1 59.5 33.75 3.13e−1 85.38 70.69 4.13e−1 97.41 93.75 3.13e−1

MUSCLE 25.1 8.33 5.47e−2 61.65 36.38 9.07e−2 86.82 73.56 1.21e−1 97.62 94.27 3.83e−2

FSA 11.19 0 3.47e−1 48.05 20.69 1.70e+0 82.46 65.37 3.38e+0 97.41 93.42 1.39e+0

MSAProbs 25.44 14.27 1.08e−1 62.27 36.98 5.21e−1 87.76 74.95 2.68e+0 97.99 95.06 4.92e−1

MUMMALS 25.63 7.12 3.58e−1 64.58 39.87 9.71e−1 87.87 75.17 9.25e−1 97.83 94.71 1.39e−1

ProbAlign 26.85 12.78 7.67e−2 60.7 35.45 3.11e−1 87.79 75.12 1.75e+0 98.06 95.25 3.09e−1

ProbCons 26.29 10.25 1.27e−1 61.44 36.27 5.12e−1 87.04 73.58 2.58e+0 97.83 94.58 5.00e−1

T-Coffee 21.07 4.61 3.57e−1 61.55 36.94 1.45e+0 87.44 74.11 7.30e+0 97.92 94.77 1.37e+0

show a convergence analysis of PSO for each aligner. As shown, 300 fitness evaluations
were sufficient to find the best configuration in all the aligners tested.

4.3. Comparative Study

In the previous section, we obtained a characteristic-configuration file for each of the
five selected aligners (Clustal W, DIALIGN-TX, Kalign2, MAFFT, and MUSCLE) by
using a PSO algorithm and the BAliBASE benchmark (218 datasets). In the comparative
study, to validate the framework, we use the other three alignment benchmarks: OX-
Bench (395 datasets), PREFAB (1680 datasets), and SABmark (423 datasets).

The fwk-ClustalW, fwk-DIALIGN-TX, fwk-Kalign2, fwk-MAFFT, and fwk-MUSCLE
(characteristic-based version of the aligners) will be compared with the most relevant
MSA methods published in the literature: Clustal W [42] (v2.1), DIALIGN-TX [41]
(v1.0.2), FSA (with the -maxn option) [4] (v1.15.9), Kalign2 [24] (v2.03), MAFFT [21]
(v7.215), MSAProbs [26] (v0.9.7), MUMMALS [34] (version dated on 08/02/2008), MUS-
CLE [13] (v3.8), ProbAlign [36] (v1.4), ProbCons [9] (v1.12), and T-Coffee [32] (v11.0).

4.3.1. OX-Bench benchmark

We start our comparative study with the OX-Bench benchmark which consists of 395
datasets divided into four groups by identity.

In Table 2, we compare the Q-score, TC-score, and runtime obtained by the default
Clustal W, DIALIGN-TX, Kalign2, MAFFT, and MUSCLE with the results obtained
by well-known aligners: FSA, MSAProbs, MUMMALS, ProbAlign, ProbCons, and T-
Coffee. As seen, the default parameters versions are not competitive enough, obtaining
lower values of the Q-score and TC-score than the well-known aligners. If we compute the
average value of the Q-score and TC-score in the 395 datasets of OX-Bench, we obtain
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(a) Q-score and TC-score (in %) (b) runtime(in seconds)

Figure 3: Illustrative comparison among the 16 aligners when dealing with the OX-Bench benchmark.
In (a), we show the improvements in terms of the Q-score and TC-score (in %) obtained by using the
characteristic-based framework with five aligners: Clustal W, DIALIGN-TX, Kalign2, MAFFT, and
MUSCLE. In (b), we report the runtime overhead introduced by the framework to the aforementioned
aligners.

the following ranking: MSAProbs, MUMMALS, ProbAlign, ProbCons, Clustal W, MUS-
CLE, T-Coffee, MAFFT, Kalign2, DIALIGN-TX, and FSA-maxsn. As shown, Clustal
W, DIALIGN-TX, Kalign2, MAFFT, and MUSCLE obtained a worse performance than
MSAProbs, MUMMALS, ProbAlign, and ProbCons on average.

In Figure 3(a), we present a visual representation of the improvement achieved by the
characteristic-based versions of the five aligners. The five aligners improve their results in
terms of the Q-score and TC-score with a low increment in runtime (see Figure 3(b)). In
addition, it is possible to note the great improvements obtained by Clustal W, Kalign2,
MAFFT, and MUSCLE.

Finally, the ranking in terms of the average Q-score and TC-score is now: fwk-
MUSCLE, fwk-MAFFT, fwk-Clustal W, MSAProbs, fwk-Kalign2, MUMMALS, ProbAlign,
ProbCons, T-Coffee, fwk-DIALIGN-TX, and FSA-maxsn. As we may observe, the
characteristic-based framework helps MUSCLE, MAFFT, and CLUSTAL W to scale in
the OX-Bench ranking, thereby becoming the three best aligners. In addition, Kalign2
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Table 3: Results obtained by 16 aligners when solving a total of 1680 datasets included in the PREFAB
benchmark suite. Note that, the 1680 datasets are divided into four groups according to identity: [0,
10)%, [10, 20)%, [20, 40)%, and [40, 100]%. In addition, for each group of datasets and each aligner
we report the following performance metrics: Q-score (%), and Runtime (t, in seconds). Note that the
three best values of Q-score are highlighted in three tones of gray (light, medium, and dark).

Identity
[0, 10)% [10, 20)% [20, 40)% [40, 100]%

Q t Q t Q t Q t

fwk-Clustal W 20.82 2.99e+0 47.06 2.79e+0 79.38 4.40e+0 94.22 4.20e+0

fwk-DIALIGN-TX 16.36 1.71e+1 46.38 1.54e+1 79.89 1.89e+1 94.68 1.76e+1

fwk-Kalign2 23.99 1.22e+0 53.36 1.04e+0 83.36 1.39e+0 95.09 1.34e+0

fwk-MAFFT 26.45 7.83e+0 58.78 5.79e+0 85.68 6.00e+0 95.51 4.94e+0

fwk-MUSCLE 25.15 3.30e+0 55.67 2.66e+0 84.01 3.94e+0 94.94 5.27e+0

Clustal W 16.40 2.73e+0 40.51 2.52e+0 75.23 4.01e+0 92.33 3.89e+0

DIALIGN-TX 13.78 1.47e+1 40.94 1.40e+1 75.93 1.73e+1 93.99 1.62e+1

Kalign2 17.56 1.04e−1 44.89 8.85e−2 77.40 1.11e−1 93.78 1.04e−1

MAFFT 20.20 3.02e+0 51.32 2.46e+0 81.73 2.18e+0 94.21 1.56e+0

MUSCLE 19.31 2.40e+0 48.51 1.86e+0 80.29 1.75e+0 93.21 1.52e+0

FSA 2.90 9.95e+1 23.17 8.44e+1 70.68 1.19e+2 94.21 1.19e+2

MSAProbs 23.04 5.14e+1 56.46 4.35e+1 84.91 5.97e+1 94.10 5.76e+1

MUMMALS 29.32 7.55e+1 59.76 5.06e+1 85.75 3.90e+1 95.81 1.93e+1

ProbAlign 19.79 3.61e+1 53.71 3.03e+1 83.91 4.20e+1 94.28 4.11e+1

ProbCons 21.01 6.14e+1 53.61 5.21e+1 83.33 7.14e+1 93.57 6.83e+1

T-Coffee 20.36 1.48e+2 53.50 1.27e+2 82.83 1.76e+2 93.89 1.68e+2

* Q score is in percentage (%) and t refers to the average runtime in seconds

scales from position 9 to position 5 in the ranking. Comparing fwk-MUSCLE (the best
characteristic-based version) and MSAProbs (the best well-known aligner), we observe
that fwk-MUSCLE not only obtains better Q and TC score, but is also able to solve the
395 datasets of OX-Bench around six times faster than MSAProbs.

4.3.2. PREFAB benchmark

The second alignment benchmark is PREFAB, which contains a total of 1680 datasets
divided into four groups by identity.

Like we did in OX-Bench, we start comparing the Q-score and runtime obtained by
the default versions of the five selected aligners (Clustal W, DIALIGN-TX, Kalign2,
MAFFT, and MUSCLE) with the other well-known aligners (see Table 3).

The alignment accuracy of Clustal W, DIALIGN-TX, Kalign2, MAFFT, and MUS-
CLE is far from the accuracy obtained by other aligners such as MUMMALS, MSAProbs,
or ProbAlign. In this case, the ranking taking into account the average Q-score value in
all datasets of PREFAB is as follows: MUMMALS, MSAProbs, ProbAlign, ProbCons,
T-Coffee, MAFFT, MUSCLE, Kalign2, DIALIGN-TX, Clustal W, and FSA-maxsn. As
occurred in the previous benchmark, the five aligners under study are only better than
FSA-maxsn.

If we focus on the characteristic-based versions (fwk-Clustal W, fwk-DIALIGN-TX,
fwk-Kalign2, fwk-MAFFT, and fwk-MUSCLE), we see the five aligners tested are able
to achieve a great improvement (over 4% in average), as shown in Figure 4(a). The
updated ranking in terms of the Q-score is: MUMMALS, fwk-MAFFT, fwk-MUSCLE,
MSAProbs, fwk-Kalign2, ProbAlign, ProbCons, T-Coffee, fwk-CLUSTALW, fwk-DIALIGNTX,
and FSA-maxsn.
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(a) Q-score (in %) (b) runtime(in seconds)

Figure 4: Illustrative comparison among the 16 aligners when dealing with the PREFAB benchmark. In
(a), we show the improvements in terms of the Q-score (in %) obtained by using the characteristic-based
framework with five aligners: Clustal W, DIALIGN-TX, Kalign2, MAFFT, and MUSCLE. In (b), we
report the runtime overhead introduced by the framework to the aforementioned aligners.

In this case, we can observe that MAFFT, MUSCLE, and Kalign2 obtain a good posi-
tion in the final ranking of PREFAB. The best aligner in PREFAB remains MUMMALS;
however, in terms of runtime (see Figure 4(b)), if we compare the average running time re-
quired by the three best aligners in PREFAB: MUMMALS (46.10 seconds), fwk-MAFFT
(6.14 seconds), and fwk-MUSCLE (3.79 seconds); then we can see that fwk-MAFFT and
fwk-MUSCLE are approximately 7.5 and 12 times faster than MUMMALS, respectively.

4.3.3. SABmark benchmark

The last alignment benchmark is SABmark (423 datasets), which is divided into two
families: Superfamily (315 sets) and Twilight (108 sets); and each family by identity (a
total of four groups).

As shown in Table 4, if we compare the Q-score, TC-score, and runtime obtained by
the well-known aligners and the default version of Clustal W, DIALIGN-TX, Kalign2,
MAFFT, and MUSCLE, we notice that the default versions obtain a poor level of align-
ment accuracy compared to the other aligners. The ranking of the aligners taking the
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Table 4: Results obtained by 16 aligners when solving a total of 423 datasets included in the SABmark
benchmark suite. Note that, the 423 datasets are divided into four groups according to their family
and identity: superfamily [0, 25)% and [25, 100)%, twilight [0, 20)% and [20, 100]%. In addition, for
each group of datasets and each aligner we report the following performance metrics: Q-score (%), TC-
score (%), and Runtime (t, in seconds). Note that the three best values of Q-score and TC-score are
highlighted in three tones of gray (light, medium, and dark).

Identity
Superfamily Twilight

[0, 20)% [20, 100]% [0, 20)% [20, 100]%
Q TC t Q TC t Q TC t Q TC t

fwk-Clustal W 62.05 40.06 7.17e−2 62.28 41.83 7.66e−2 34.65 16.46 4.89e−2 40.41 24.68 4.09e−2

fwk-DIALIGN-TX 31.15 7.70 4.69e−1 72.29 51.57 4.37e−1 21.96 5.65 3.06e−1 60.22 37.28 4.74e−1

fwk-Kalign2 37.78 14.11 2.81e−2 76.70 59.34 3.05e−2 28.98 12.06 1.92e−2 66.51 49.71 2.81e−2

fwk-MAFFT 40.58 14.66 4.72e−1 78.92 62.31 4.90e−1 33.34 14.18 3.94e−1 69.30 51.00 5.69e−1

fwk-MUSCLE 40.18 14.24 2.03e−1 77.13 59.16 1.50e−1 31.55 11.80 1.52e−1 66.54 45.88 1.93e−1

Clustal W 58.70 35.49 5.90e−2 59.12 37.86 6.19e−2 29.98 12.81 4.06e−2 35.28 21.03 3.33e−2

DIALIGN-TX 28.50 6.17 3.40e−1 70.23 48.13 3.75e−1 19.66 4.42 2.27e−1 56.35 32.78 3.46e−1

Kalign2 30.26 10.44 9.12e−3 71.34 51.20 8.66e−3 23.55 9.23 6.75e−3 60.25 41.33 8.00e−3

MAFFT 33.53 10.68 4.00e−1 75.08 55.81 4.10e−1 24.98 8.44 3.57e−1 66.05 44.54 5.59e−1

MUSCLE 34.52 9.48 1.96e−1 73.57 52.72 1.40e−1 24.86 8.07 1.47e−1 60.27 40.07 1.86e−1

FSA 29.88 6.04 2.26e+0 74.86 54.46 2.82e+0 23.04 6.69 1.14e+0 62.99 38.50 2.39e+0

MSAProbs 37.68 11.32 5.49e−1 79.28 61.82 6.66e−1 31.71 11.53 2.83e−1 71.80 52.16 5.71e−1

MUMMALS 41.01 14.77 2.50e+0 80.49 64.04 3.26e+0 34.33 13.50 1.10e+0 72.09 52.99 2.95e+0

ProbAlign 36.55 10.00 3.95e−1 78.62 59.74 4.74e−1 31.72 11.18 2.13e−1 70.26 52.46 4.20e−1

ProbCons 36.69 10.53 7.11e−1 78.74 60.69 8.56e−1 31.19 11.07 3.77e−1 72.10 51.67 7.49e−1

T-Coffee 36.68 11.44 1.95e+0 79.05 61.49 2.27e+0 30.43 11.99 1.11e+0 73.89 56.42 2.00e+0

average value of the Q-score and TC-score into account is as follows: MUMMALS, T-
Coffee, MSAProbs, ProbCons, ProbAlign, MAFFT, MUSCLE, Kalign2, FSA-maxsn,
Clustal W, and DIALIGN-TX. As in our previous experiments, the five aligners under
study obtained the worst alignment performance in SABmark, highlighting the cases of
Clustal W, and DIALIGN-TX that are ranked in the last positions.

Applying our characteristic-based framework to Clustal W, DIALIGN-TX, Kalign2,
MAFFT, and MUSCLE reveals a great accuracy improvement for fwk-Kalign2, fwk-
MAFFT, and fwk-MUSCLE (over 5% in terms of the Q-score and TC-score). fwk-
Clustal W and fwk-DIALIGN-TX also undergo a moderate improvement. In Figure
5(a), we present a visual comparison of the improvements obtained by each of the five
characteristic-based aligners. We can highlight the particularly good performance of
fwk-Clustal W in those datasets with a low percentage of identity (<20%).

Finally, the updated ranking is: MUMMALS, fwk-MAFFT, T-Coffee, MSAProbs,
ProbCons, ProbAlign, fwk-MUSCLE, fwk-Kalign2, fwk-Clustal W, and FSA-maxsn. An-
alyzing the ranking, we observe that the three best aligners (in Q-score and TC-score
terms) are now: MUMMALS, fwk-MAFFT, and T-Coffee. However, if we focus on Fig-
ure 5(b), we notice that fwk-MAFFT is around 4 and 5 times faster than T-Coffee and
MUMMALS, respectively.

4.4. Discussion

In the previous section, we studied the benefits of using our characteristic-based
framework with five different aligners (Clustal W, DIALIGN-TX, Kalign2, MAFFT, and
MUSCLE) in three alignment benchmarks: OX-Bench (395 datasets), PREFAB (1,680
datasets), and SABMark (423 datasets).
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(a) Q-score and TC-score (in %) (b) runtime(in seconds)

Figure 5: Illustrative comparison among the 16 aligners when dealing with the SABmark benchmark.
In (a), we show the improvements in terms of the Q-score and TC-score (in %) obtained by using the
characteristic-based framework with five aligners: Clustal W, DIALIGN-TX, Kalign2, MAFFT, and
MUSCLE. In (b), we report the runtime overhead introduced by the framework to the aforementioned
aligners.

We have seen that, the characteristic-based framework provides reasonable accu-
racy and conservation improvements to the aligners. For each of the three alignment
benchmarks and for each of the five tested aligners, in Figure 6 we present the per-
centage of datasets in which the characteristic-based framework obtains significant ac-
curacy/conservation improvements over the default configuration. In OX-Bench bench-
mark, we can see that on average, fwk-MAFFT is the aligner that obtains the highest
percentage of datasets improved (65.5%); on the contrary, fwk-DIALIGN-TX is only able
to improve 37.05% of the datasets contained in OX-Bench. If we focus on the second
benchmark (PREFAB), in this case fwk-Clustal W improves the default configuration in
806 datasets of PREFAB (around 48% of datasets). Finally, in the SABMark benchmark,
we observe that fwk-Kalign2, fwk-MAFFT, and fwk-MUSCLE are the aligners with the
best percentage of improvement, above 60%.

In Table 5, we summarize the behaviour of the five aligners in the three alignment
benchmarks. As shown, the five aligners improve their results in the three benchmarks
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Table 5: Summary of the results obtained by the five aligners under study (Clustal W, Kalign2,
DIALIGN-TX, MAFFT, and MUSCLE) and their related characteristic-based versions when solving
the three selected benchmark suites (OX-Bench, PREFAB, and SABMark). For each benchmark and
approach, we report the following performance metrics: Q-score (%), TC-score (%), and Runtime (t, in
seconds).

OX-Bench PREFAB SABMark
Q TC t Q t Q TC t

Clustal W 68.48 53.23 7.56E-02 56.12 3.29E+00 45.77 26.80 4.87E-02
fwk-Clustal W 69.53 54.70 8.64E-02 60.37 3.60E+00 49.85 30.76 5.95E-02

DIALIGN-TX 60.50 45.34 9.87E-01 56.16 1.56E+01 43.69 22.87 3.22E-01
fwk-DIALIGN-TX 61.64 46.92 1.07E+00 59.33 1.72E+01 46.41 25.55 4.21E-01

Kalign2 64.42 49.76 6.42E-03 58.41 1.02E-01 46.35 28.05 8.13E-03
fwk-Kalign2 68.88 54.78 2.86E-02 63.95 1.25E+00 52.49 33.80 2.65E-02

MAFFT 65.97 51.29 3.26E-01 61.87 2.30E+00 49.91 29.87 4.31E-01
fwk-MAFFT 69.46 56.13 3.86E-01 66.61 6.14E+00 55.54 35.54 4.81E-01

MUSCLE 67.80 53.13 7.62E-02 60.33 1.88E+00 48.30 27.58 1.67E-01
fwk-MUSCLE 70.47 56.98 1.38E-01 64.94 3.79E+00 53.85 32.77 1.75E-01

with a small increment in running time. On the one hand, we observe that in terms
of alignment accuracy and conservation, the ranking, in descending order, is: fwk-
MAFFT, fwk-MUSCLE, fwk-Kalign2, fwk-Clustal W, and fwk-DIALIGN-TX. However,
if we focus on running time, the fastest algorithms are: fwk-Kalign2, fwk-Clustal W,
fwk-MUSCLE, fwk-MAFFT, and fwk-DIALIGN-TX. From these rankings, we can say
that the aligner with the best trade-off between acuracy/conservation and runtime is
fwk-MUSCLE, while, the worst aligner is clearly DIALIGN-TX.

All in all, we can conclude that the proposed characteristic-based framework is a good
option for boosting the alignment accuracy of well-known aligners without excessively
penalizing their runtime.

5. Conclusions and Future work

A characteristic-based framework for improving the alignment of multiple sequence
aligners was proposed and tested in this paper. This framework studies the input set’
s biological characteristics and then applies the best parameter configuration found de-
pending on those characteristics. In this way, better alignments (with better accuracy
and conservation) are obtained. The framework uses a pre-computed file to take the best
configuration for a dataset with similar biological characteristics. In order to create this
file, we use a Particle Swarm Optimization (PSO) algorithm, that is, an algorithm based
on swarm intelligence, for finding the best parameters configuration of a given aligner.

After explaining the characteristic-based framework, we presented a comparative
study in which we applied the framework to five well-known aligners: Clustal W, DIALIGN-
TX, Kalign2, MAFFT, and MUSCLE. In order to obtain a configuration-file for each
aligner, we employed a Particle Swarm Optimization algorithm and the BAliBASE v3.0
alignment benchmark. Then, we studied the improvements provided by the framework
by using other three benchmarks: OX-Bench, PREFAB v4.0, and SABmark v1.65. In
the comparative study, we analyzed the results obtained by the default version and by
the characteristic-based version of the five aligners, while comparing their results with
other aligners published in the literature, such as FSA (with the -maxn option, v1.15.9),
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Figure 6: Percentage of datasets in OX-Bench, PREFAB, and SABMark in which the aligners under
study (Clustal W, Kalign2, DIALIGN-TX, MAFFT, and MUSCLE) obtain better values of Q-score
or TC-score when using the parameters configuration proposed by the characteristic-based framework
instead of using the default parameters configuration.

MSAProbs (v0.9.7), MUMMALS (version dated on 08/02/2008), ProbAlign (v1.4), Prob-
Cons (v1.12), and T-Coffee (v11.0). We can conclude that the characteristic-based frame-
work provides significant accuracy improvements to the tested aligners with a reasonable
rise in running time.

As demonstrated in a series of recent publications (see, e.g., [19, 20]) on developing
new analysis methods, user-friendly, and publicly accessible web-servers will significantly
enhance their impacts [8], we shall make efforts in our future work to provide a web-server
for our characteristic-based framework. In addition, we intend to tackle the optimization
of the parameters by using multiobjective optimization (e.g. [38]), optimizing the Q-
score, TC-score, and running time simultaneously. Another important line of future work
is to incorporate 3D structure characteristics into the framework so as to add specific
knowledge of the problem. Since amino acids have many other physical and chemical
properties, a challenging line of future work will be to study the influence of using new
amino acids properties to classify the input sequences within the proposed characteristic-
based framework; for example, by using a partition map [45] to increase the evolutionary
significance at the amino acid sequence level.
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