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A B  S  T  R  A  C  T

In the last years, particle swarm optimizers have emerged as prominent search methods to solve the molecular 
docking problem. A new approach to address this problem consists in a multi-objective formulation, minimizing 
the intermolecular energy and the Root Mean Square Deviation (RMSD) between the atom coordinates of the co-
crystallized and the predicted ligand conformations. In this paper, we analyze the performance of a set of multi-
objective particle swarm optimization variants based on different archiving and leader selection strategies, in the 
scope of molecular docking. The conducted experiments involve a large set of 75 molecular instances from the 
Protein Data Bank database (PDB) characterized by different sizes of HIV-protease inhibitors. The main moti-vation 
is to provide molecular biologists with unbiased conclusions concerning which algorithmic variant should be 
used in drug discovery. Our study confirms that the multi-objective particle swarm algorithms SMPSOhv and 
MPSO/D show the best overall performance. An analysis of the resulting molecular ligand conformations, in terms 
of binding site and molecular interactions, is also performed to validate the solutions found, from a biological point 
of view.

1. Introduction

In the last decade, a series of studies have appeared in which meta-
heuristics [10,12,13,23,32,34], and in particular swarm intelligence
algorithms [11,16,24], have been applied to the molecular docking
problem. This is a complex optimization problem based on the predic-
tion of the position and the orientation of a small molecule (ligand) to
a receptor (macromolecule) with the minimum binding energy. Molec-
ular docking is modeled by adjusting the position variables correspond-
ing to coordinates of translation and torsion movements of the ligand
in a macromolecule’s binding site.

In a previous work [24], a new multi-objective approach has been
proposed in which two different objectives are to be minimized: (1)
the intermolecular energy that corresponds to the ligand-receptor affin-
ity, and (2) the Root-Mean-Square-Deviation (RMSD) score, which
measures the average distance between the atom coordinates of co-
crystallized and predicted ligands. The latter objective leads the algo-
rithms to guide the search when the co-crystallized ligand is known,
which complements the binding energy function. In the study, a set
of prominent multi-objective evolutionary algorithms (MOEAs), i.e.,

NSGA-II, SMPSO, GDE3, MOEA/D, as well as the AutoDock base opti-
mizer Lamarckian Genetic Algorithm (LGA), were compared, result-
ing the Speed Modulation Particle Swarm Optimization (SMPSO) [28]
the most salient optimizer for the molecular docking instances tested.
SMPSO is a multi-objective particle swarm optimization (MOPSO)
approach characterized by a limitation mechanism of particles’ veloci-
ties to avoid the movement of particles beyond the problem ranges. It
uses an external archive to store non-dominated solutions according to
the crowding distance [7], which is also referenced in the leader selec-
tion mechanism.

In the present study, our motivation is to go one step beyond the
application of SMPSO for molecular docking, so we propose and eval-
uate new variants of this algorithm that use different archiving strate-
gies (hypervolume, cosine distance, and aggregation) and consequently
different strategies for the selection of leaders, in the scope of an exten-
sive set of molecular instances. We here extend our previous research
[11], by assessing the performance of the proposed versions of SMPSO
when tackling a large benchmark of 75 PDB complexes, involving HIV-
protease macromolecules and ligands from the benchmark provided by
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Ref. [26] to validate the AutoDock 4.2 energy scoring function.2 In 
addition, MPSO/D [3] and OMOPSO [6] algorithms are also used in the 
comparisons. The former is used as it is a recent MOPSO approach with 
prominent behavior on complex multi-objective benchmarking testbeds 
[3]; the later is an early reference multi-objective particle swarm opti-
mizer in the state of the art [6]. The algorithms evaluated constitute 
a varied set of multi-objective particle swarm optimizers, performing 
different learning procedures and inducing different behaviors.

Our main goal therefore is to provide new algorithmic variants of 
SMPSO well-adapted to molecular docking, as well as to obtain unbi-
ased conclusions concerning which of them (and other related MOPSOs) 
should be used by experts in studies in silico to find new candidate drugs 
for therapeutic targets. As an additional contribution, an analysis on the 
molecular inhibitors-receptors interactions from the resulting predicted 
conformations is provided to show, in terms of real use cases, how the 
solutions obtained are validated from a biological point of view.

The remainder of this article is as follows. Section 2 reviews the 
current state-of-the-art. Section 3 describes the molecular docking prob-
lem from a multi-objective formulation. The algorithms under study are 
described in Section 4. Section 5 reports the experimentation method-
ology and Section 6 analyzes the results. Finally, Section 7 discusses 
concluding remarks and future lines of research.

2. Literature review

The application of metaheuristics as search methods to optimize the 
binding energy in molecular docking has been studied in the past. A ref-
erence approach is the Lamarckian Genetic Algorithm (LGA) included 
in AutoDock, which has been widely used by the scientific community 
[25]. This approach focuses on optimizing the final binding energy as 
a single-objective function. Atilgan et al. [2] proposed AutoDockX that 
incorporates a sustainable GA, namely Age-Layered Population Struc-
ture (ALPS), including the age attribute for individuals. Several adap-
tations of the original Particle Swarm Optimization (PSO) [18] have  
been proposed to tackle with molecular docking. SODOCK [4] is a  
hybrid PSO with Solis and Wets local search procedure to optimize the 
energy function of AutoDock 3.05. Two other PSO approaches are: the 
varCPSO-ls, an extension of the CPSO algorithm with a local optimizer 
which is embedded inside the AutoDock 3 source code and uses its 
energy function [27]; and the FIPSDock algorithm, which adopts the 
AutoDock 4.2 energy function [19].

In the last years, several studies have appeared based on multi-
objective approaches. In 2006, Oduguwa et al. [32] carried out a study 
based on the evaluation of three evolutionary multi-objective optimiza-
tion algorithms (NSGA-II, PAES and SPEA) to minimize three objec-
tives: 1) the internal energy of the ligand (the intramolecular energy), 
2) the energy of the ligand-macromolecule interaction (the intermolec-
ular energy) and 3) the shape of the macromolecule. These algorithms 
were evaluated on three PDB (Protein Data Bank) complexes. Grosdi-
dier et al. [12] proposed two energy scoring functions and an optimiza-
tion technique based on the minimization of solvation free energy of 
the complex, giving rise to an efficient method able to converge with 
a very limited number of docking evaluations. Jason et al. [16] imple-
mented the ClustMPSO to tackle the molecular docking as a multidi-
mensional problem by minimizing the intermolecular (the difference of 
the bound and unbound states of the ligand-macromolecule complex) 
and intramolecular (the difference of the bound and unbound states of 
the ligand) energies. Sandoval-Pérez et al. [34] used a multi-objective 
algorithm implemented in the jMetal framework to optimize the energy 
contributions of the unbound and bound energies of four PDB com-
plexes. These studies have a common thread in that they do not use

2 The generated benchmark of 75 PDB structures is online available and 
adapted to be reproduced using compatible software http://khaos.uma.es/
AutodockjMetal/instances.jsp.

flexible receptors (receptors without applied flexibility in the residues
of their active sites) and their experiments conducted on limited sets of
instances.

More recently, in Ref. [10] a set of representative multi-objective
algorithms were evaluated: two variants of NSGA-II, the third evolution
step of generalized differential evolution (GDE3), the multi-objective
evolutionary algorithm based on decomposition (MOEA/D) and the S-
metric evolutionary multi-objective optimization (SMS-EMOA). Follow-
ing the optimization model proposed in Ref. [16], the objectives con-
sisted in minimizing the intermolecular and intramolecular energies.
This study involved 11 instances of ligands of different sizes and flexi-
ble side-chains of the ARG8 in the active sites of the HIV-proteases. In
addition, two use cases with the epidermal growth factor receptor and
the anti-angiogenic compound aeroplysinin-1 were analyzed to show
the applicability of this approach in drug discovery. In 2016, López-
Camacho et al. [24] proposed a new multi-objective approach to min-
imize: the intermolecular energy and the RMSD (Root Mean Square
Deviation) as the two objectives to evaluate the quality of the ligand-
protein interactions. The molecular instances used were the same as
those in Ref. [26]. The results demonstrated that SMPSO showed the
best overall behavior in terms of binding energy and RMSD scores.
These results are useful in those cases in which the crystallographic
structure has been obtained and therefore, the ligand conformation to
the receptor is known.

Finally, a recent approach is proposed in 2018 by Leonhart et al.
[20], which consists in a Biased Random Key Genetic Algorithm as a
sampling strategy to explore the protein-ligand conformational space.
The approach is called DockThor and bases on our jMetal approach, but
using in this case a single-objective formulation by minimizing the final
binding energy of the ligand-macromolecule complex (ΔG) and adopt-
ing the energy scoring function of AutoDock Vina [21] as evaluation
function.

As stated, our aim here is to follow our current line of research on
the evaluation of new SMPSO proposals, although in the scope of a
large and well-grounded set of molecular compounds that can help us
discard biased observations.

3. Molecular docking

Molecular docking processes aim to finding an optimized conforma-
tion between the ligand (L) and the receptor (R) that results in a mini-
mum binding energy. The interaction between L and R can be described
by an energy function calculated from three components representing
degrees of freedom: (1) the translation of the ligand molecule, involving
the three axis values (x, y, z) in Cartesian coordinate space; (2) the lig-
and orientation, modeled as a four variables quaternion including the
angle slope (𝜃); and (3) the flexibilities, represented by the free rota-
tion of torsion (dihedral angles) of the ligand and side-chains of the
receptor’s aminoacids.

- Solution Vector Representation: Each problem solution is then
encoded by a real-value vector of 7 + n variables, in which the
first three values correspond to the ligand translation, the next four
values correspond to the ligand and/or receptor orientation, and
the remaining n values are the ligand and macromolecule torsion
dihedral angles (in this study n = 23). Fig. 1 illustrates the solution
encoding followed in this approach. To reduce the computational
cost, a grid-based methodology has been applied where the protein-
ligand interaction site is embedded in a 3D rectangular grid, and
taking into account all the protein atoms [14]. In this way, the pro-
tein contribution at any given point is obtained by tri-linear interpo-
lation in the grid cell. As a consequence of this process, the range of
translation variables (x, y, z) is [0 · · ·120], so it has been delimited
between the limits of the coordinates of the grid space previously
set for each problem. Orientation (quaternion) and torsion variables
are measured in radians and encoded in the range of [−𝜋, 𝜋].
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Fig. 1. Solution encoding. The first three values (translation) are the coordinates of the center of rotation of the ligand. The next four values correspond to quaternion
and (𝜃). The rest of the values represent the freedom degrees of the ligand and macromolecule when flexibility is applied to these two molecules.

- Multi-objective evaluation: the bi-objective formulation used here
consists of: the Einter and the RMSD score. The Einter is the energy
function as follows:

Einter = QR−L
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QR−L
bound and QR−L

unbound are the states of bound and unbound of the
ligand-receptor complex, respectively. Each pair of energetic evaluation
terms includes evaluations (Q) of dispersion and repulsion (vdw), hydro-
gen bonds (hbond), electrostatics (elec) and desolvation (sol). Weights
Wvdw, Whbond, Wconf, Welec, and Wsol of Equation (2) are constants for
Van der Waals, hydrogen bonds, torsional forces, electrostatic interac-
tions and desolvation, respectively. The interatomic distance is repre-
sented by rij, Aij and Bij in the first term are Lennard-Jones param-
eters taken from the Amber force field. Similarly, Cij and Dij in the
second term are Lennard-Jones parameters for maximum well depth of
potential energies between two atoms, and E(t) represents the angle-
dependent directionality. The third term uses a Coulomb approach for
electrostatics. Finally, the fourth term is calculated from the volume (V)
of the atoms that surround a given atom weighted by S, and an expo-
nential term which involves atom distances. An extended explanation
of all these variables can be found in Ref. [26].

The second objective, RMSD, measures the average distance
between the known ligand position (obtained from in vivo experiments)
in the receptor and the computed position of the docking ligand, that
takes into account symmetry, partial symmetry (e.g. symmetry within
a rotatable branch) and near-symmetry in a simple heuristic way. Ide-
ally, the lower the RMSD score the better the solution. As mentioned, a
ligand-receptor docking solution with an RMSD score below 2 Å is con-
sidered as a solution with high docking accuracy [21]. The RMSD for
two structures a and b is:

RMSDab = max(RMSD′
ab,RMSD′

ba),

with RMSD′
ab =

√
1
N
∑

i
min
𝐣

rij
2

(3)

The sum is over all N heavy atoms in structure a, the minimum is
over all atoms in structure a with the same element type as atom i in
structure b.

4. Algorithms

The algorithmic variants studied can be classified as Pareto-based
Multi-Objective Particle Swarm Optimizers (MOPSOs). The basic idea,

commonly found in all these algorithms, is to select, as leaders, those
particles that are non-dominated with respect to the swarm. However,
this leader selection scheme can differ slightly depending on which
archiving strategy each algorithm implements (e.g., information pro-
vided by a density estimator). We now summarize the main features of
the MOPSOs under consideration:

4.1. SMPSO

It is an algorithm following the classic particle swarm algorithm
metaheuristic [18], so it manages a set of solutions or particles which
are referred to as the swarm. The position of particle xi at the generation
t is updated with Equation (4):

𝐱i(t) = 𝐱i(t − 1) + 𝐯i(t) (4)

where the factor vi(t) is known as velocity, and it is defined as:

𝐯i(t) = 𝜔 · 𝐯i(t − 1) + C1 · r1 · (𝐱pi
− 𝐱i) + C2 · r2 · (𝐱gi

− 𝐱i) (5)

In Equation (4), 𝐱pi
is the best solution that xi has viewed, 𝐱gi

is the
best particle (known as the leader) that the entire swarm has viewed, 𝜔
is the inertia weight of the particle and controls the trade-off between
global and local influence, r1 and r2 are two uniformly distributed ran-
dom numbers in the range [0,1], and C1 and C2 are specific parameters
which control the effect of the personal and global best particles. The
key feature of SMPSO is the constriction coefficient (Equation (6)) it uses
that is obtained from the constriction factor 𝜒 originally developed by
Clerc and Kennedy (Equation (5)) in Ref. [5]. This mechanism makes
the SMPSO perform successfully on multi-modal large scale problems
[8]. The constriction coefficient is defined as:

𝜒 = 2
2 − 𝜑 −

√
𝜑2 − 4𝜑

(6)

where

𝜑 =
{

C1 + C2 if C1 + C2 > 4
0 if C1 + C2 ≤ 4

(7)

Additionally, this algorithm further bounds the accumulated veloc-
ity of each variable j (in each particle) by means of the following velocity
constriction equation:

vi,j(t) =
⎧⎪⎨⎪⎩
𝛿j if vi,j(t) > 𝛿j

−𝛿j if vi,j(t) ≤ −𝛿j

vi,j(t) otherwise
(8)

where

𝛿j =
(upper_limitj − lower_limitj)

2
(9)

As commented before, SMPSO adopts the use an external bounded
archive to store the non-dominated solutions found during the search



[28]. The archive contains the current Pareto front approximation 
found by the algorithm, and it applies the crowding distance den-
sity estimator [7] to decide which particle to remove when it is full. 
The archive is also used in the leader strategy selection, comprising a 
binary tournament based on randomly selecting two solutions from it 
and taking the one with the highest crowding distance value (i.e., the 
one located in the least crowded region of the front composed by all 
archived solutions). The maximum size of the archive of leaders is fixed 
equal to the size of the swarm. After each generation, the set of leaders 
is updated, and so are the corresponding crowding values. If the size 
of the set of leaders is greater than the maximum allowable size, only 
the best leaders are kept based on their crowding values. The rest of 
the leaders are discarded. SMPSO uses the crowding factor to select the 
leaders, as well as to fix the size of the external archive of leaders.

A perturbation, implemented as a mutation operator, is also incor-
porated. Its pseudo-code is included in Algorithm 1. The local best posi-
tion of a particle i is obtained by applying a dominance test with the 
rest of the particles in the swarm in such a way that the current best 
particle (which initially is particle i) is updated when it is dominated 
by another one.

Algorithm 1 Pseudocode of SMPSO.
1: initializeSwarm()
2: initializeLeadersArchive()
3: generation=0
4: while generation<maxGenerations do
5: computeSpeed() // Equation 5
6: updatePosition() // Equation 4
7: mutation() // perturbation
8: evaluation() // As explained in Section 3
9: updateLeadersArchive()
10: updateParticlesMemory()
11: generation ++
12: end while
13: return LeadersArchive() // Pareto front approximation

4.2. SMPSOhv

This variant was presented in Ref. [29], where a study of differ-
ent leader selection mechanisms on SMPSO was conducted. SMPSOhv is
characterized by the replacing method based on the crowding distance.
Instead, this method uses the degree of contribution of the solutions in
the external archive according to the hypervolume indicator [39] (IHV).

This indicator calculates the n-dimensional space covered by mem-
bers of a non-dominated set of solutions Q, e.g., the region enclosed by
the discontinuous line in Fig. 2, Q = {A,B,C}, for problems where all
objectives are to be minimized. Mathematically, for each solution i ∈ Q,
a hypercube vi is constructed with a reference point W and the solution
i as the diagonal corners of the hypercube. The reference point can
simply be found by constructing a vector of worst objective function
values. Thereafter, a union of all hypercubes is found, and its hyper-
volume (IHV) is calculated:

IHV = volume

(|Q|⋃
i=1

vi

)
(10)

Solution fronts with large values of IHV are desirable, so the under-
lying idea in this variant lies on selecting as a leader one of the particles
contributing the most to the hypervolume of the Pareto front approx-
imation, computed so far by the algorithm. To apply this scheme, the
archive of leaders is changed for an archive managed by the contribu-
tion of each solution to the value of this indicator. This archive works
as the one described for SMPSO but, when the archive becomes full,
instead of discarding the solution with the smallest crowding distance,
we choose the solution contributing the least to the hypervolume. In
this variant, when the velocity of a particle has to be updated, two solu-

Fig. 2. The hypervolume (delimited by the dotted line) enclosed by the non-
dominated solutions.

tions are randomly selected from the archive, and the one contributing
the most to the archive’s hypervolume is selected as the leader.

4.3. SMPSOC

This is a recent variant presented in 2016 [11] with the key fea-
ture of using the cosine similarity as density estimator to organize non-
dominated solutions in the external archive. Cosine similarity is a mea-
sure of distance between two non-zero vectors that computes the cosine
of the angle between them by using the Euclidean dot product formula
as follows:

𝐚 · 𝐛 = ‖𝐚‖‖𝐛‖ cos 𝜃 (11)

Given two vectors of attributes, D and F, the cosine similarity, cos𝜃, is
represented using a dot product and magnitude as:

cos 𝜃 = 𝐃 · 𝐅‖𝐃‖‖𝐅‖ =
∑n

i=1 DiFi√∑n
i=1 D2

i

√∑n
i=1 F2

i

(12)

This way, two vectors in the same direction have a cosine similarity
value equals to zero, two perpendicular vectors have a cosine similarity
value of 1, and in-between values indicate intermediate similarity or
dissimilarity.

As all the solutions in an external archive are non-dominated, we
can define a density estimator by fixing a reference point and comput-
ing the cosine similarity among the vectors conformed by the archive
solutions with regards to that reference point. The problem studied in
this paper has two objectives, so it is possible to sort the solutions in
the archive by the first objective and compute, for each solution, a den-
sity value by summing up the cosine similarity of each point to their
previous and next points; extreme points have a similarity distance
equals to 0. Those points with the largest cosine density value are in
the most densely populated region. An important issue in this tech-
nique is to select the proper reference point. Our previous study [24]
indicated that the fronts have a convex shape, so we choose an approx-
imation to the Nadir point, defined as zNad = (zNad

1 ,… , zNad
k )T , where

zNad
i = maxx∈Efi(x) for i = 1,…, k (being k is the number of objectives)

by taking the highest objective values of the solutions in the archive.

4.4. SMPSOD

The fourth SMPSO version in our study is an archive-less approach.
To leave out the archive, we take the strategy of designing an aggrega-
tive version of SMPSO inspired by the MOEA/D [38], where a multi-
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objective problem can be decomposed into a set of single-objective 
problems that can be optimized at the same time. This way, a set of
evenly spread weight vectors 𝜆1, 𝜆2, …, 𝜆N are defined, being N the 
size of the swarm. Then, each particle xi is associated with the vec-
tor λi and a neighborhood defined as a set of its several closest weight 
vectors in 𝜆1, 𝜆2, …, 𝜆N. A scalarizing strategy is then applied that fol-
lows the Tchebycheff scheme, by considering the ideal reference point
z∗ = (z∗, … , z∗)T , where  z∗ = minx∈Sfi(x) for i = 1, …, k as

Minimize f Tch(𝐱 ∣ 𝜆, z∗) = max
i=1,…,N

{𝜆i· ∣ z∗i − fi(𝐱) ∣} (13)

Each element z∗ of the reference point z∗ is specified by the min-
imum (i.e., best assuming minimization) value of each objective fi(x)
among the examined solutions during the execution of SMPSOD.

The strategy for obtaining the local best of a particle 𝐱pi
is the same

procedure as used by MOEA/D to update a neighborhood. The leader’s
update strategy consists in finding the best solution in the neighborhood
by considering the scalar values of the particles taking into account
their weight vectors. SMPSOD is originally proposed in this study and
its performance is shown to be competitive with regards to the other
compared variants, when solving molecular docking instances.

4.5. OMOPSO

Optimized MOPSO [33] includes the use of the crowding distance
of NSGA-II to filter out leader solutions and the combination of two
mutation operators to accelerate the convergence of the swarm. The
original OMOPSO algorithm makes use of the concept of 𝜖-dominance
to limit the number of solutions produced by the algorithm. We consider
here a variant discarding the use of 𝜖-dominance, so the leaders archive
is the result of the execution of the technique.

Therefore, for each particle, the leader is selected by means of a
binary tournament based on the crowding value of the leaders. The
maximum size of the set of leaders is fixed equal to the size of the
swarm. After each generation, the set of leaders is updated, and so
are the corresponding crowding values. If the size of the set of lead-
ers is greater than the maximum allowable size, only the best leaders
are retained based on their crowding value. The rest of the leaders are
eliminated. OMOPSO calculates the crowding factor to select the lead-
ers and uses this information to fix the size of the set of leaders (external
archive). This feature considerably simplifies the mechanism to control
the set of leaders without requiring any additional parameter or selec-
tion criterion. SMPSO was inspired by the OMOPSO algorithm, so we
decided to include it in our comparisons as a reference multi-objective
PSO in the state of the art.

4.6. MPSO/D

It is a recent MOPSO [3] algorithm based on objective space decom-
position. Similarly to SMPSOD, MPSO/D is an archive-less approach
that decomposes the objective space of the multi-objective optimiza-
tion problem in to a set of sub-regions based on a set of direction
vectors. The population is classified by means of a set of weight vec-
tors 𝜆1, 𝜆2,…, 𝜆N, being N the size of the swarm. Then, each parti-
cle xi is associated with the vector λi and a neighborhood defined as
a set of its several closest weight vectors in 𝜆1, 𝜆2,…, 𝜆N. A scalariz-
ing strategy is applied by taking into account the ideal reference point
z∗ = (z∗1 ,… , z∗k )

T , where z∗i = minx∈Sfi(x) for i = 1,…, k as follows:

Minimize f Tch(𝐱i ∣ 𝜆i, z∗) = max
i=1,…,N

{
𝜆i · (fi(𝐱) − z∗i )

T

𝜆i · (fi(𝐱) − z∗i )

}
(14)

Each element z∗ of the reference point z∗ is specified by the mini-
mum value of each objective fi(x) among the examined solutions during
the execution of MPSO/D. Then, it maintains the diversity of solutions
by making each sub-region have a solution to the maximum extent.

In addition, MPSO/D adopts a series of extra schemes to improve the
convergence. The crowding distance is used to calculate the fitness val-
ues of the reserved solutions for selection operator to improve the con-
vergence of the obtained non-dominated solution set. A neighborhood
strategy of particles is used to determine the leaders and local bests,
which help the crossover operators to improve the search ability of the
algorithm.

In summary, in our study we include OMOPSO, MPSO/D, and four
SMPSO variants with different archiving strategies: crowding distance
based (original SMPSO), hypervolume contribution based (SMPSOhv),
cosine distance based (SMPSOC), and archive-less (SMPSOD). They con-
stitute a set of classical and modern algorithms in the specific area
of particle swarm optimization for multi-objective optimization, but
involving different learning procedures.

5. Experimentation

All the SMPSO variants, as well as OMOPSO and MPSO/D, have
been implemented in C++ by following the architecture of jMetalCpp
[17,22,30],3 an open-source framework of single/multi-objective opti-
mization metaheuristics. The molecular binding procedure is performed
by AutoDock 4.2 [31,26], a widely-used tool for virtual drug discovery
involving rigid and flexible docking simulations. In this study, jMet-
alCpp and AutoDock are integrated in such a way that the algorithms
available in jMetalCpp can communicate with AutoDock to cooperate in
molecular docking optimization.4 This means that, whenever the bind-
ing quality of a new solution has to be numerically quantified, it is sent
to AutoDock to be evaluated in terms of binding energy and RMSD.
After this evaluation, AutoDock returns the corresponding objective
values to the algorithm, which are assigned to the evaluated solution.
This approach is efficient and flexible, allowing any of the algorithms
included in jMetalCpp to be easily used to solve docking problems.

For the experimental phase, we have used an extensive set of
75 molecular complexes that were previously generated in Ref. [26],
although they were adapted to be tackled by AutoDock+jMetal soft-
ware. In these compounds, the flexibility of ligand is limited to 10
torsional degrees of freedom. As shown in Table 1, this set of com-
plexes can be classified in terms of the type of ligand: small, medium,
and large size inhibitors, as well as cyclic urea inhibitors. The PDB codes
of these structures and the range of crystalographic resolution in Å are
also shown in this table.

The docking studies carried out with these instances in Ref. [26] to
test the energy function of AutoDock 4.2 demonstrated that the most
difficult problems are those involving smaller ligands. This is due to the
flexibility added to the receptor side-chains (ARG-8), which increases
the space of ligand interactions. These instances have been taken from
the PDB database,5 for which the reference conformations obtained by
means of in vivo experiments are also provided. These reference confor-
mations are then used to calculate the RMSD.

5.1. Methodology

For each combination of algorithm and molecular compound, 31
independent runs have been carried out to obtain the distributions of
results. From these distributions, the median and interquartile range
(IQR) have been computed as measures of central tendency and statisti-
cal dispersion, respectively. We have considered the Hypervolume (IHV)
[39] and the Inverted Generational Distance Plus (IIGD+) [15] as qual-
ity indicators to assess the algorithm’s performance. These two metrics
take into account the convergence, as well as the diversity degrees of

3 In URL http://jmetalcpp.sourceforge.net/.
4 In URL http://khaos.uma.es/autodockjmetal/.
5 In URL: http://www.rcsb.org/pdb/home/home.do.

http://jmetalcpp.sourceforge.net/
http://khaos.uma.es/autodockjmetal/
http://www.rcsb.org/pdb/home/home.do


Table 1
X-ray crystal structure coordinates taken from the PDB database and used in docking experiments. They consist of 75 molecules with accession codes from
the PDB database. The range of resolution (Å) of each subgroup is also shown in the last column.

Ligand type PDB code Resolution (Å)

Small size 1a9m, 1aaq, 1b6l, 1b6m, 1bdl, 1bdq, 1bdr, 1gnm, 1gnn, 1gno, 1hbv, 1heg, 1hih, 1hpv, 1hsg, 1hte, 1kzk, 1sbg, 1tcx, 1zih, 1zir, 3aid 1.09–2.8

Medium size 1b6j, 1b6k, 1b6p, 1d4k, 1d4l, 1hef, 1hps, 1hxw, 1izh, 1izi, 1jld, 1k6c, 1k6p, 1k6t, 1k6v, 1mtr, 1mui, 2bpv, 2bpx, 4hvp, 4phv, 5hvp 1.75–2.8

Large size 1a94, 1hiv, 1hos, 1htg, 1hvi, 1hvj, 1hvk, 1hvl, 1hvs, 1hwr, 1ody, 1vij, 1vik, 3tlh, 7hvp, 8hvp, 9hvp 1.8–2.8

Cyclic urea 1bv7, 1bv9, 1bwa, 1bwb, 1dmp, 1g35, 1hpo, 1mes, 1meu, 1pro, 1qbr, 1qbt, 1qbu, 7upj 1.8–2.5

Table 2
Parameter settings.

Common parameters

Swarm size 150 Particles
Maximum number of evaluations 1,000,000

SMPSO [9] & SMPSOhv [29] & SMPSOD & SMPSOC

Archive Size 100
C1, C2 1.5
𝜔 0.9
Mutation polynomial mutation
Mutation probability 1.66
Mutation distribution index 𝜂m 20
Selection method Rounds

OMOPSO [6]

Archive size 100
C1, C2 rand(1.5,2.0)
𝜔 rand(0.1,0.5)
Mutation uniform + non-uniform + no mutation
Mutation probability Each mutation is applied to 1/3 of the swarm

MPSO/D [3]

C1, C2 rand(1.5,2.0)
𝜔 rand(0.1,0.5)

the obtained Pareto front approximations, although they use comple-
mentary calculation models from different reference points. It is worth
noting that we are dealing with a real-world optimization problem, and
therefore the true Pareto fronts to calculate the metrics are not known.
To cope with this issue, we have generated a reference Pareto front for
each instance by combining all the non-dominated solutions computed
in all the executions of all the algorithms.

The computational framework used to deploy all the experiments
consists in a Condor6 system, a middleware platform acting as the dis-
tributed task scheduler of up to 400 cores. This infrastructure is located
at the Ada Byron Research Center at the University of Málaga (Spain),
which comprises a set of IBM hosting racks for storage, units of virtual-
ization, server compounds and backup services.

The parameter settings are summarized in Table 2. We set a com-
mon subset of parameters that are the same for all the algorithms
evaluated. The size of the swarm is 150 and the stopping condition
is reached when 1,000,000 function evaluations are performed. These
parameters have been chosen after preliminary tests where the stop
condition and the swarm size were tuned to reach convergence enough
(in accordance with reference Pareto front approximation) for most
of algorithms. Similarly, the archive size is set to 100, when applica-
ble. All SMPSO versions use the polynomial mutation with distribution
index 𝜂m = 20, which is applied to one sixth of the particles in the
swarm. The acceleration coefficients C1 and C2 are set to 1.5 and the
inertia weight is 𝜔 = 0.9. Those specific parameters to particle swarm
algorithmic model where set as recommenced in Refs. [23] and [24],

6 In URL: http://research.cs.wisc.edu/htcondor/.

where SMPSO obtained outstanding docking conformations in compar-
ison with other prominent optimizers in the state of the art (NSGA-II,
GDE3, and MOEA/D). Our approach is then to use common parameter
setting to make the comparisons as fair as possible, but keeping the rest
of the parameters as described in their original papers.

6. Results and analysis

In this section, we start by assessing the performance of the algo-
rithms with statistical comparisons. Then, we carry out a further anal-
ysis with some selected solutions in terms of molecular conformations
from a biological point of view.

6.1. Performance comparisons

Table 3 shows the median and interquartile range of the computed
distributions (out of 31 independent runs) in terms of the Hypervol-
ume indicator IHV, for the set of 75 docking instances and for the 6
algorithms under comparison. This indicator measures convergence and
diversity by computing the sum of the contributed volume of each point
in the Pareto front (non-dominated solutions) with regards to a refer-
ence point. Therefore, the higher the convergence and diversity degree
of a front, the higher (better) the resulting IHV value.

As we can observe in Table 3, MPSO/D obtains the best median
values of IHV for a higher number of molecular instances (48 out of
75), followed by SMPSOhv with 26 best median values and 40 s best
medians (best and second best results are shaded in dark and light grey,
respectively). SMPSOD is the third best performing technique with best
median value for one compound (1kzk) and second best median for

http://research.cs.wisc.edu/htcondor/


Table 3
Median and interquartile range of the computed distributions (out of 31 independent runs) in terms of the hypervolume indicator IHV, for the set of 75 docking
instances and for the five compared algorithms: OMOPSO, MPSO/D SMPSO, SMPSOC, SMPSOD, and SMPSOhv.



Table 4
Median and interquartile range of the computed distributions (out of 31 independent runs) in terms of the Inverted Generational Instance Plus indicator IIGD+, for
the set of 75 docking instances and for the five compared algorithms: OMOPSO, MPSO/D, SMPSO, SMPSOC, SMPSOD, and SMPSOhv.



Table 5
Average Friedman’s rankings with Holm’s Adjusted p-values (0.05) of compared
algorithms for the test set of 75 docking instances in terms of IHV and IIGD+. Symbol ∗
indicates the control algorithm, which in this case is SMPSOhv.

Hypervolume (IHV) Hypervolume (IIGD+)

Algorithm Fried. Holm’sapv Algorithm Fried. Holm’sapv

∗SMPSOhv 1.77 – ∗SMPSOhv 1.70 –
MPSO/D 1.97 5.26e-01 MPSO/D 2.23 8.08e-02

SMPSOD 3.01 1.08e-04 SMPSOD 2.86 2.92e-04
SMPSO 3.79 1.31e-10 SMPSOC 1.31 2.42e-10
SMPSOC 3.91 4.43e-24 SMPSO 4.78 2.66e-23
OMOPSO 5.52 7.08e-34 OMOPSO 5.67 1.33e-38

16 ones. It is worth noting that some results have a IHV equal to zero.
This happens when all the points of the fronts produced are dominated
by the reference point. In this regard, for a high number of instances,
OMOPSO shows IHV equal to zero, whereas for practically all the SMPSO
versions and MPSO/D, the hypervolume values are higher than zero,
which indicates that they are all able to produce solutions within the
limits of the reference point.

Nevertheless, we can still identify some instances for which
OMOPSO shows the second best hypervolume: 1bdl, 1hef, 2bpv, 1hos,
7hvp, and 8hvp, so probably these compounds are characterized with
different fitness landscapes more adapted to the learning procedure of
this algorithm.

Apart from this, it is intuitively obvious that SMPSOhv could show
a good performance in terms of IHV, as this algorithm uses the hyper-
volume indicator to guide the convergence of the population. For this
reason, the IIGD+ is also used here as an alternative metric to avoid the
possible bias that hypervolume could induce in the results. IIGD+ is a
refined version of the inverted generational distance (IGD) [15], which
measures the average distance from each reference point to the nearest

solution in the solution set. It can be viewed as an approximate distance
from the Pareto front to the solution set in the objective space, so the
lower the IGD+value, the better the front approximation.

To test this, Table 4 contains the median and interquartile range
of the computed distributions (out of 31 independent runs) in terms
of IIGD+, for the set of 75 docking instances and for the six algorithms
compared. In general, it is clearly observable that IIGD+ results are quite
similar to those obtained in terms of IHV, which leads us to confirm
the prominent behavior of MPSO/D and SMPSOhv in comparison with
the other multi-objective PSO variants. In addition, as happens for the
hypervolume indicator (Table 3), SMPSOD shows in general the third
best results. OMOPSO obtains successful performance for the specific
instances: 1bdl, 1hef, 2bpv, and 7hvp.

In order to assess these results with statistical confidence (in this
study p-value=0.05), we focus on the entire distribution of each of the
studied metrics by using statistical tests. Specifically, we have applied
Friedman’s ranking and Holm’s post-hoc multi-compare tests [36] to
see which algorithms are statistically worse than the control one (i.e,

Fig. 3. A selection of obtained reference fronts from all executions (in continuous line) with regards to the contributions of the MOPSO variants with best hypervol-
ume (in dotted lines) for small-size molecular instances: 1b6m, 1hpv, 1heg, 1hih, 1bdr, and 1zih.



Fig. 4. A selection of obtained reference fronts all executions (in continuous line) with regards to the Pareto fronts of the MOPSO variants with best hypervolume
(in dotted lines) for medium-size molecular instances: 1hps, 1b6p, 1b6k, 4hvp, 2bpx, and 1d4l.

the one with best Friedman rank).
Table 5 shows that SMPSOhv is the best ranked variant according

to the test of Friedman for the distributions of IHV and IIGD+. Therefore,
SMPSOhv is established as the control algorithm in the post-hoc Holm’s
tests, which is compared with the rest of algorithms. It is worth noting
that, even though MPSO/D obtained the highest number of best median
values (see Tables 3 and 4), the Friedman’s test shows better rank-
ings for SMPSOhv. This leads us to suggest that this variant obtains in
general better distributions than MPSO/D (which behaves more biased
to the median value), although without statistical confidence, as the
adjusted p-values in accordance with Holm’s test are higher than the
confidence level (0.05), for the two quality indicators.

In this sense, for the remaining variants: SMPSO, SMPSOD, SMPSO,
and OMOPSO; the adjusted p-values resulting from these comparisons
are lower than the confidence level, meaning that SMPSOhv is statisti-
cally better than these algorithms. SMPSOD is ranked in third position.
SMPSO and SMPSOC obtained similar rankings, although the former
performed better in terms of IHV, whereas the later obtains better rank-
ing for IIGD+.

To graphically illustrate this, Figs. 3–6 plot the computed reference
fronts from all executions (in continuous line) with regards to the con-
tributions to these fronts of each compared algorithm, for a selection of
molecular instances with small-size, medium-size, large-size and cyclic-
urea, respectively. These plots have been selected as they are highly rep-
resentative of the complete set molecular instances, but we also include
some interesting cases to illustrate different results, such as: 1heg, 1hih,
1zih (Fig. 3), 1hwr, and 1htg (Fig. 5) and 1qbv (Fig. 6).

A general observation from these plots is that SMPSOhv and
MPSO/D contribute with non-dominated solutions to the reference front
in practically all the molecular complexes, although its contribution is
poor for several large-size instances, like: 3tlh and 1hwr. These refer-
ence fronts are better covered by solutions of SMPSOD and OMOPSO,
which perform optimization procedures more adapted to these special

cases. In all likelihood, the replacement mechanism in SMPSOhv of
non-dominated solutions with low contribution in terms of hypervol-
ume is what makes this variant discard reference solutions prematurely,
whereas SMPSOD and OMOPSO are able keep solutions in these refer-
ence fronts.

Another interesting observation in the plotted fronts lies in the num-
ber of non-dominated solutions with different values of RMSDs, which
also show low energies in terms of kcal/mol. This leads us to suggest
that using our multi-objective approach it is now possible to provide
the decision-maker with alternative conformations of the ligands in the
receptor’s active sites, and with low energy values. In fact, the bind-
ing energies obtained are, in some cases, even lower than the reference
molecular conformations obtained from in vivo experiments (i. e. the
standard gold solutions in PDB DataBank), then giving rise to more sta-
ble complexes.

An example of this can be taken from small-size instances 1heg and
1hih in Fig. 3, for which there are solutions with relatively high val-
ues of RMSDs (>≈1.5 Å), although computing low energies: −14.16
and −17.50 kcal/mol, respectively. In contrast, these fronts also con-
tains solutions with RMSD values close to 0 Å (with a precision error
of 10e-4), i.e., they are quite similar to the gold standard conforma-
tions, although the former obtains more stable conformations in terms
of binding energy and higher RMSD scores. This means that we are
now able to discover other different ligand-receptor conformations with
lower energies than those obtained from the ligand-protein crystallo-
graphic structure of the in vivo experiments.

In summary, SMPSOhv and MPSO/D show the overall best behav-
ior followed by SMPSOD, SMPSOC, SMPSO, and OMOPSO. Intuitively,
SMPSOhv obtains the best IHV as it performs a leader selection method
of non-dominated solutions (from the external archive) with largest
hypervolume contributions. That is, the particles in the swarm are
guided by leaders with large hypervolume contributions, which enables
SMPSOhv to obtain high values of IHV. Moreover, such an efficient



Fig. 5. A selection of obtained reference fronts from all executions (in continuous line) with regards to the Pareto fronts of the MOPSO variants with best hypervolume
(in dotted lines) for large-size molecular instances: 1vik, 1a94, 1hos, 1hvj, 1hwr, and 1htg.

Fig. 6. A selection of obtained reference fronts from all executions with regards to the Pareto fronts of the MOPSO variants with best hypervolume (in dotted lines)
for cyclic-urea molecular instances: 1hpo, 1qbt, 1g35, 1bwb, 1qbu and 1bwa.



Fig. 7. Image A represents the chimeric HIV-protease dis-
played as sticks. The two residues of ARG-8 for HIV-protease
monomer A and B are selected in yellow. ARG-8 are two
aminoacids located close to the HIV-protease active site.
Image B shows the molecular interactions between ligand-
receptor. The computed ligand is represented in green. The
H-bonds are represented with green spheres. The residues
involved in the ligand-receptor interactions are also labeled,
including the residues that are closer to this interaction. (For
interpretation of the references to colour in this figure leg-
end, the reader is referred to the Web version of this article.)

behavior is also observed for IIDG+, so that it could be claimed that this
variant is also able to obtain prominent Pareto front approximations
independently to the computation of the hypervolume values. Other
variants like SMPSOD and OMOPSO are also able to obtain interesting
solutions from the point of view of the molecular docking modeling,
allowing us to see alternative conformations with lower energies than
those of the gold standard solutions.

In terms of computational cost, an average running time of 4 min per
independent run is observed for each algorithm and molecular instance.
This is an acceptable time in molecular docking procedures as they usu-
ally take place in off-line simulations to detect the best ligand’s confor-
mation to a receptor.

6.2. Analysis of the ligand binding sites and molecular interactions

The second analysis in this study consists in exploring the resulting
molecular conformations from a biological point of view. With this aim,
we have selected two instances: 1bdr (small-size) and 1g35 (cyclic urea),
which have been widely studied in the specialized literature [1,35,37].

In this regard, according to the results obtained by Morris et al. [26],
the LGA algorithm (described in Section 2) fails to find the ligand’s pose
in the molecular docking simulations when freedom degrees are applied
to the small-size HIV-protease ligands’ bonds. The application of flexi-
bility involves a larger number of ligand conformations possibilities due
to the small size of the ligands. The instance 1bdr belongs to this group
of instances, where the size of the HIV-protease inhibitor is smaller than
the other ligand sets. The application of flexibility and its influence on
the search space does not only depend on the ligand size, but also on
the ligand chemical structure. The instance 1g35 has as ligand a cyclic
urea inhibitor, which has a conformation that allows to bind correctly
to the HIV-protease active site. These larger ligands are forced to be,
at least, partially inside the HIV-protease active site tunnel due to their
size. However, with the application of flexibility to these ligands, it can
be difficult to find the perfect ligand pose to the HIV-protease receptor.

In this analysis, two different solutions have been chosen from the
extremes of the fronts obtained for 1bdr and 1g35. These solutions are
analyzed in terms of ligand binding site and molecular interactions, as
follows:

- 1bdr. This molecule corresponds to the complex HIV-1 pro-
tease with inhibitor SB203386, a tripeptide analog inhibitor. This
chimeric HIV-protease crystal is formed by replacing aminoacids in
residues in the HIV type 1 with the corresponding residues from the
HIV type 2 (31–37) and in the active site. It contains the muta-
tions t31s, l33v, e34a, e35g, m36i, and s37e. A previous study
[37] reported that these mutations can affect the dimensions of the
HIV-protease active site, and hence the interaction HIV-protease-
inhibitors. Given the accumulation of mutations in this therapeutic
target and the difference of response of HIV patients to the treatment
with new HIV-protease inhibitors, it is necessary to conduct studies
in silico with accurate molecular docking techniques to observe how
these new mutations could affect to the inhibitor interactions.

In accordance with the resulting fronts plotted in Fig. 3, we have
chosen the non-dominated solution that has an intermolecular energy
of −15.28 kcal/mol and an RMSD of 0.11 Å. Image A in Fig. 7 shows the
co-crystallized and the predicted ligands’ conformations. As illustrated,
the two ligands overlap, which is explained by the low RMSD value.
The reference and computed ligands are represented in pink and green
sticks, respectively. Both structures are located in the active site of the
HIV-protease, which is a shaped-tunnel. The ARG8 residues are marked
in yellow. Image B in Fig. 7 shows the molecular ligand-receptor inter-
actions in which H-bonds are represented in green. The N8 of SB203386
interacts with the oxygen atom of the GLY27 amide of the HIV-protease
monomer A through an H-bond. The H atom of group OH of ligand’s
atom O18 interacts to the O atom of the group OH of ASP25 side
chain of the HIV-protease monomer B through a H-bond. The N30 AND
N39 atoms of ligand interact with the oxygen of GLY27 amide of HIV-
protease monomer B. The solutions obtained show that the catalytic

Fig. 8. Image A represents the reference and computed
ligand in green and pink, respectively. The ligands and
the HIV-protease are represented as sticks. The two lig-
ands’ conformations overlap. The two ARG8 side chains are
located in the HIV-protease tunnel are selected in yellow.
Image B shows the molecular interactions. The H-bonds are
represented with green spheres. The residues involved in
the ligand-receptor interactions are also labeled, including
the residues that are closer to the receptor-ligand interac-
tion. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of
this article.)



aminoacids (ASP25 and GLY27) of the monomers A and B are involved 
in the molecular ligand-receptor interaction. These results are in agree-
ment with the studies performed in Refs. [1] and [37].

- 1g35. This instance corresponds to the complex HIV-protease with
inhibitor AHA024, a sulfamide compound. In Ref. [35], the authors
performed a test to demonstrate that the non-symmetric sulfamide
inhibitors should be more potent than their corresponding symmet-
ric sulfamide inhibitors. This way, as our multi-objective approach
enables the decision-maker to choose from a wide range of solu-
tions, it can be useful in those cases in which the binding sites of
new candidate compounds are being tested. In line with the plotted
fronts in Fig. 5 for 1g35, we have chosen the non-dominated solu-
tion that has an intermolecular energy of −17.89 kcal/mol and an
RMSD value of 0.15 Å.

Image A of Fig. 8 shows that the co-crystallized and predicted lig-
ands (in green and pink, respectively) are bound to the shaped-tunnel
where the HIV-protease binding site is found. The two flexible ARG8
are marked in yellow. It can be observed the fact that although the
solution has a higher RMSD value than the other solutions from the
front, the two ligands’ conformations are overlapping, what indicates
the accuracy of the predicted ligand’s conformation. Image B shows
the molecular interactions of AHA024/HIV-protease. The predicted H-
bonds are represented with green spheres. The O80 and O15 interact to
the GLY49 and ILE50, respectively through two H-bonds. The O47 of
the ligand interacts to ASP30 amide through an H-bond as reported in
Ref. [35]. The O44 interacts to the ARG8 side-chain through H-bonds.
This computed ligand’s conformation is interesting from a pharmaco-
logical point of view, since the ligand interacts with ARG8, which is
located at the end of the active site tunnel. Although there are solu-
tions with even lower RMSDs (lower than 0.15 Å), this predicted ligand
interaction with the ARG-8 residue allows the compound to adopt a
pose inside the active site tunnel, blocking the binding of the substrate
to HIV-protease. The lower intermolecular energy leads us to verify that
the complex is very stable in terms of energy.

7. Conclusions

This study has analyzed a number of variants of multi-objective par-
ticle swarm optimizers, based on different archiving strategies, when
solving the molecular docking problem. We have extended our previ-
ous research by assessing the performance of the different versions of
SMPSO and two other optimizers, OMOPSO and MPSO/D, when tack-
ling an extensive benchmark of 75 PDB structures (instances). The prob-
lem has been formulated as a bi-objective optimization problem, by
minimizing the binding energy and the RMSD difference in the coordi-
nates of ligands.

After a thorough experimentation phase, the following main conclu-
sions can be drawn from the analysis:

• Our study confirms that SMPSOhv and MPSO/D show the overall
best performance in terms of IHV and IIDG+, followed by SMPSOD,
SMPSOC, SMPSO and OMOPSO. SMPSOhv performs a leader selec-
tion method of those non-dominated solutions (from the external
archive) with the largest hypervolume contributions, which seems
to be responsible for the best diversity and convergence values in
this comparison.

• The archive-less approaches based on objective space decomposi-
tion, MPSO/D and SMPSOD, appear as prominent optimizers when
dealing with molecular docking, concretely MPSO/D. Both algo-
rithms are able to cover the reference front with non-dominated
solutions that compute very low binding energy, but with relatively
high values of RMSD. This encourages us to suggest new alternative
conformations with lower energies than those of the gold standard
solutions.

• SMPSO, SMPSOC, and OMOPSO show moderate results, although
they obtain interesting solutions from the point of view of the
ligand-protein interactions. For several compounds: 1bdl, 1a9m,
1bdl, 1hef, 2bpv, 1hps, 1hos, 7hvp, and 8hvp, these algorithms per-
formed efficiently. SMPSO and SMPSOC obtained similar rankings,
although the former performed better in terms of IHV, whereas the
later obtains better ranking for IIGD+.

• As a matter of biological validation, a specific analysis of the result-
ing conformations for molecules 1bdr and 1g35 show overlapping
ligands with regards to the specialized literature, where these com-
plexes are studied [1,35,37]. In fact, these solutions are shown to
obtain energetically stable ligand-receptor complexes, as reported
in Ref. [35]. This indicates that our predicted ligand interactions
with the flexible residue allow the compound to adopt a pose inside
the active site tunnel, hence blocking the binding of the substrate
to HIV-protease. The lower intermolecular energy leads us to verity
that the complexes are stable in terms of energy.

As for future work, we are currently designing new algorithmic pro-
posals by combining new leader selection and archiving strategies, to
find solutions covering the full Pareto front. In this regard, the use
of unbounded archives and restarting methods could be beneficial for
experiments in which other alternative active sites in compounds are
required to be explored and discovered. We are also interested in evalu-
ating the robustness of new MOPSO proposals in special cases, in which
the active site of a given therapeutic target mutates and causes multi-
drug resistance.
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