
Aberystwyth University

A scalable and distributed dendritic cell algorithm for big data classification
Chelly Dagdia, Zaineb

Published in:
Swarm and Evolutionary Computation

DOI:
10.1016/j.swevo.2018.08.009

Publication date:
2019

Citation for published version (APA):
Chelly Dagdia, Z. (2019). A scalable and distributed dendritic cell algorithm for big data classification. Swarm
and Evolutionary Computation, 50, Article 100432. https://doi.org/10.1016/j.swevo.2018.08.009

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 27. Apr. 2024

https://doi.org/10.1016/j.swevo.2018.08.009
https://doi.org/10.1016/j.swevo.2018.08.009

Accepted Manuscript

A scalable and distributed dendritic cell algorithm for big data classification

Zaineb Chelly Dagdia

PII: S2210-6502(18)30200-1

DOI: 10.1016/j.swevo.2018.08.009

Reference: SWEVO 432

To appear in: Swarm and Evolutionary Computation BASE DATA

Received Date: 15 March 2018

Revised Date: 28 August 2018

Accepted Date: 31 August 2018

Please cite this article as: Z.C. Dagdia, A scalable and distributed dendritic cell algorithm for
big data classification, Swarm and Evolutionary Computation BASE DATA (2018), doi: 10.1016/
j.swevo.2018.08.009.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.swevo.2018.08.009

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

A Scalable and Distributed Dendritic Cell Algorithm
for Big Data Classification

Zaineb Chelly Dagdia

Department of Computer Science, Aberystwyth University, Aberystwyth, United Kingdom
LARODEC, Institut Supérieur de Gestion de Tunis, Tunis, Tunisia,

Abstract

In the era of big data, scaling evolution up to large-scale data sets is a very inter-

esting and challenging task. The application of standard biological systems in

such data sets is not straightforward. Therefore, a new class of scalable biological

systems that embraces the huge storage and processing capacity of distributed

platforms is required. In this work, we focus on the Dendritic Cell Algorithm

(DCA), a bio-inspired classifier, and its limitation when coping with very large

data sets. To overcome this limitation, we propose a novel distributed DCA

version for data classification based on the MapReduce framework to distribute

the functioning of this algorithm through a cluster of computing elements. Our

experimental results show that our proposed distributed solution is suitable to

enhance the performance of the DCA enabling the algorithm to be applied over

big data classification problems.

Keywords: Dendritic Cell Algorithm, Big Data, Distributed Processing.

1. Introduction

Under the explosive increase of global data, the term of big data is increas-

ingly being used to refer to the challenges and benefits derived from gathering

and processing enormous data [1]. Formally, big data is defined as the amount of

data that exceeds the capabilities of a given system to process the data in terms5

Email address: chelly.zaineb@gmail.com (Zaineb Chelly Dagdia)

Preprint submitted to Journal of Swarm and Evolutionary Computation August 31, 2018

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

of time and/or memory consumption [2]. Nowadays, big data is attracting much

attention in a wide variety of fields such as social media [3], healthcare and gov-

ernment [4], financial businesses, or network applications. This is because of the

progressive acquisition of a huge amount of data which becomes easily accessible

and due to the availability of distributed platforms [5]. With these facilities, new10

opportunities for discovering new values from massive data sets can be sought,

helping to gain an in-depth understanding of the hidden values, and also to

incur new challenges. These challenges arise from data collection and data cu-

ration, i.e. content creation, selection, classification, transformation, validation,

and preservation, to data analysis and data visualization [6]. These tasks be-15

come very difficult to achieve for most of the classical and state-of-the-art data

mining and machine learning techniques and among these are methods which

are based on bio-inspired approaches [7]. Focusing on machine learning and

specifically bio-inspired techniques dedicated for such task, in literature, most

of the used off-the-shelf bio-inspired algorithms and processing technologies can-20

not work efficiently and satisfactorily in the context of big data. Therefore, it

becomes necessary to develop and create new techniques and technologies to

enable enhanced decision making, insight discovery and process optimization.

In this sense, a new generation of robust fault-tolerant systems, based on par-

allel computing, has been established where the MapReduce framework [8, 9] is25

the most representative one. In literature, several research papers have focused

on the parallelization of data mining and machine learning techniques based on

the MapReduce model. These techniques such as clustering techniques [10], clas-

sification techniques [11], mining techniques [12] and dimensionality reduction

techniques [13] have proved that the distribution of the data and the process-30

ing under a parallel computing infrastructure is very useful for speeding up the

knowledge extraction process. Among the machine learning techniques which

are based on bio-inspired MapReduce approaches, we mention those mechanisms

inspired by biological evolution and dedicated for either data preprocessing or to

deal with imbalanced data sets in classification problems. For data preprocess-35

ing, classical evolutionary approaches have been successfully used to preprocess

2

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

data [14] but only data with moderated size. The reason behind this is the

excessive increment of the individual or the chromosome size which disables

the algorithms to provide a preprocessed data set in a reasonable time when

dealing with very large problems. Therefore, distributed evolutionary big data40

models have been proposed to deal with the feature space, i.e. feature selec-

tion [15] and feature weighting [16], and with instance reduction, i.e. instance

selection [17] and instance generation [18]. On the other hand, regarding the

problem of imbalanced data sets, this scenario appears frequently in the clas-

sification problem field. This issue appears mainly when examples of one class45

significantly outnumber the examples of the other one [19]. To deal with this

problem, evolutionary algorithms for imbalanced big data sets have been pro-

posed [20, 21, 22]. Technically, these MapReduce evolutionary algorithms are

based on resampling techniques [23] to study the effect of changing the class

distribution. Specifically, these techniques are based on undersampling meth-50

ods to create a subset of the original data set by eliminating instances which

are usually presenting the majority class. Other bio-inspired distributed ap-

proaches, particularly evolutionary approches, were proposed in literature such

as [24] where the genetic algorithm was modeled into the MapReduce paradigm

while demonstrating the convergence and scalability of the proposed parallel55

algorithm. Some other distributed methods inspired by swarm intelligence were

proposed such as [25] where a parallel ant colony optimization algorithm was

proposed to deal with the large number of ants and iterations required by the

algorithm as these consume more time and resources, and the work proposed in

[26] that presents a MapReduce particle swarm optimization algorithm (PSO)60

capable of handling the greedy resources expressed by the individual function

evaluations operations used by the classical PSO algorithm. Another category of

bio-inspired methods is artificial immune systems. Within this category, lately,

some distributed works have been proposed in literature; among these we men-

tion [27] a work proposing a decentralized and fault tolerant immune framework65

for the distribution of security information for industrial networks. It is worth

mentioning that in literature, there are more variants of parallel evolutionary

3

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

algorithms than the bio-inspired swarm intelligence techniques or the ones based

on artificial immune systems.

Parallel evolutionary algorithms have been more developed, studied, and70

applied in literature, and a review of these and their corresponding history can

be found in [28]. The survey in [29, 30] contains detailed overviews of parallel

evolutionary algorithms and their characteristics. A broader scope on parallel

evolutionary algorithms can be found in [31, 32] where several parallel variants

of evolutionary algorithms are covered such as genetic programming, evolution75

strategies, ant colony optimization, swarm intelligence algorithms, estimation-

of-distribution algorithms, scatter search, and simulated annealing.

In this paper, we aim to further enable algorithms inspired by nature to be

applied on big data; specifically algorithms inspired by the immune systems.

In this concern, we focus on the Dendritic Cell Algorithm (DCA) [33] which80

is a bio-inspired algorithm that has caught the attention of many researchers

due to its worthy characteristics as it exhibits numerous interesting and advan-

tageous features for classification problems [34]. Despite the emergence of the

DCA, in the current literature, the practical application of the algorithm was

limited to problems with moderated size only. The reason behind this arise from85

the necessity to use an antigen multiplier to generate at once several copies of

antigens, referring to data instances, to process them in turn to finally perform

the classification task. More precisely, the DCA requires multiple instances of

identical antigens, so processing across a population can be performed in order

to generate the classification results for each antigen. The antigen multiplier90

is implemented to overcome the problem of “antigen deficiency”, that is, in-

sufficient antigens are supplied to the DC population. As one antigen can be

generated from each data instance within a data set, the antigen multiplier can

make several copies of each individual antigen which can be fed to multiple

DCs. However, as the number of data instances is increasing this task becomes95

challenging and this is where the DCA inadequacy arises. It is quite unmanage-

able to generate the set of all antigen copies based on the huge number of data

instances due to hardware and memory constraints. This leads us to progress in

4

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

the field being disjointed and, ultimately, improve the performance of the DCA

to be successfully applied to big data applications.100

In this work, we propose a novel efficient distributed dendritic cell algorithm

for large-scale data sets which solves the standard DCA mentioned computa-

tional inefficiencies and its restriction to be only applied to moderated size data

sets. Our novel DCA version is characterized by its distributed implementa-

tion design based on both Scala and the MapReduce Apache Spark framework105

[35]. Developing a distributed schema based on MapReduce for the dendritic

cell algorithm motivates the global purposes of this work which are (i) to en-

able the DCA to deal with big data classification problems (ii) to illustrate the

scalability of the proposed schema (iii) to analyze the behavior of our proposed

solution within a distributed environment particularly in terms of classification110

performance and (iv) to investigate the insights tied to the parallelization of the

algorithm.

The rest of this paper is organized as follows: Section II provides some

background material about the dendritic cell algorithm and the distributed pro-

cessing framework including the MapReduce paradigm. Section III introduces115

our novel distributed DCA for large-scale data classification. The experimental

setup is introduced in Section IV. The results of the performance analysis are

given in Section V and the conclusion is given in Section VI.

2. Background

In this Section, we provide background information about the dendritic cell120

algorithm. We, also, discuss a set of well-known distributed processing frame-

works including the MapReduce paradigm.

2.1. The Dendritic cell algorithm

The Dendritic Cell Agorithm (DCA) [36] is based on an abstract model of

biological Dendritic Cells (DCs). It is a population-based algorithm where each125

agent is represented as a cell (DC). Each cell has the capacity to collect data

5

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

instances termed antigens representing the data to be classified. Formally, the

DCA has two main inputs which are the input data in the form of a set of

signals and antigens. DCA has to classify each antigen either as normal or as

anomalous. To do so, the algorithm goes through four main phases.130

Through the initialization phase, the first step, DCA performs data prepro-

cessing where feature selection and signal categorization are achieved. More

precisely, DCA selects the most important features (attributes) from the input

data set and assigns each selected attribute to its specific signal category; either

as a Safe Signal (SS), as a Danger Signal (DS), or as a Pathogenic Associated135

Molecular Patterns (PAMP) signal. To achieve this task, some DCA works deal

with involving the user to select or extract the most interesting features and

map them into their appropriate signal categories where some other works call

for some statistical approaches and dimensionality reduction techniques such as

the principal component analysis [37].140

Through the second DCA step, which is the detection phase, the algorithm

prepares a signal database where its rows represent the antigens to be classified

and the attributes represent the signals, i.e. SS, PAMP and DS. The attribute

values, for each antigen, are calculated based on specific mathematical formulas

[37]. Meanwhile, the DCA prepares a population of artificial DCs and the set145

of antigens copies using an antigen multiplier. The antigen multiplier which

is a discrete number m is used to copy each data instance (antigen) m times.

Using the prepared signal database, the algorithm processes its input signals to

get three cumulative output signal values known as the costimulatory molecule

signal value “CSM”, the semi-mature signal value “smDC” and the mature150

signal value “mDC”. These three output signals perform two roles which are,

first, to determine if an antigen type is anomalous and, second, to limit the

time spent sampling data. Each DC in the population is assigned a migration

threshold value “mt”. If the value of CSM exceeds mt then the DC stops

sampling antigens and signals; else the algorithm continues sampling and, also,155

keeps calculating and updating the values of CSM , smDC and mDC [37].

The context assessment phase, the third step, is where the DCA forms a cell

6

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

context that is used to perform antigen classification. In fact, the cumulative

output signals of both smDC and mDC are assessed and the one that has a

higher output signal is the one that becomes the cell context; either 1 or 0. The160

derived value for the cell context is used to derive the nature of the response by

measuring the number of DCs that are fully mature. This generated number is

represented by the Mature Context Antigen Value “MCAV ”. The MCAV is

calculated by dividing the number of times an antigen appears in the mature

context by the total number of presentation of that antigen, i.e. the antigen165

multiplier.

Finally, to perform its binary classification task, the DCA compares the

MCAV of each antigen to an anomalous threshold. Those antigens whose

MCAV s are greater than the anomalous threshold are classified into the anoma-

lous category while the others are classified into the normal one. For the DCA170

pseudo-code, we kindly invite the reader to refer to [37].

In literature, several studies have been conducted to study the DCA algo-

rithmic details and to address and resolve its shortcomings by proposing new

modified DCAs. The main DCA versions tend to either modify the algorithm

principals by simplifying it either by removing or replacing some of its com-175

ponents, or they tend to hybridize the DCA with other mathematical theo-

ries; mainly to deal with the encountered imprecision in the DCA concepts.

Therefore, the DCA has undergone many revisions since its original inception,

resulting in multiple versions of the algorithm. Some DCA versions improve

the DCA algorithmic steps by using a deterministic process for instance, where180

some other versions investigate and improve the algorithm preprocessing phase

by using mathematical models such as rough set theory and fuzzy rough set

theory, while some other versions improve the algorithm behavior as a classifier

by using database maintenance techniques, fuzzy set theory and fuzzy clustering

techniques. A full review of all these methods can be found in [37]. Recently,185

in [38] a revision of the DCA was made via a new approach inspired by purely

functional programming; aiming to introduce the DCA to a new audience within

computer science. Despite the development of several DCA versions, the appli-

7

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

cation of the algorithms remained limited as being not adapted to deal with the

big data context.190

2.2. Distributed processing frameworks

In the context of big data, it becomes mandatory to develop and create

new techniques and technologies to enable enhanced decision making, insight

discovery and process optimization. In this sense, a set of technologies [39]

has emerged to deal with big data where common solutions are those based195

on parallel computing such as the Message Passing Interface (MPI) model [40].

Challenges at this point are mainly tied to the data access and to the simplicity

in developing software with respect to the requirements and restrictions of the

available programming schemes [41]. For instance, classical algorithms need all

the data to be loaded into the main memory. This presents a technical barrier200

in big data as the input data are often stored in various locations inferring an

intensive network communication and other input/output costs; and even if we

can afford this then it is essential to offer an extremely large main memory to

hold all the preloaded input data for the computation.

To deal with these issues, a new generation of robust fault-tolerant dis-205

tributed systems has been established. These processing frameworks can be

grouped by the state of the data they can handle. More precisely, some of these

frameworks can process data in a batch-only schema where the processing dis-

tributed system operates over a large and static database, and then at a later

stage returns the result(s) when all computations are finished. Hadoop1 was210

the first big data processing framework that is dedicated for batch processing.

Hadoop offers a scalable and a highly reliable distributed processing of large data

sets via the use of simple programming models. With the ability to be built on

clusters of commodity computers, Hadoop provides a cost-effective solution for

storing and processing structured, semi- and unstructured data with no format215

requirements. The core of Hadoop is the MapReduce model. It is a program-

1
http://hadoop.apache.org/

8

http://hadoop.apache.org/

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

ming paradigm that allows for massive scalability across a very large number of

servers in a Hadoop cluster. Further discussions about MapReduce will be give

later in this section. Other systems handle data in a stream-only way where

computations are processed over data as they enter the system, i.e. calculations220

are applied to each individual data item as it enters the framework. Among the

most popular stream workload systems are Apache Storm2 and Apache Samza3.

Some other frameworks are hybrid systems as they can process data in both of

the batch and the stream ways. These hybrid frameworks simplify diverse pro-

cessing requirements by allowing the same or related components and APIs to be225

used for both types of data. Apache Spark4 and Apache Flink5 are considered

to be the most popular streaming processing frameworks being used today. In

this paper, we will mainly focus on Apache Spark which is a cluster computing

framework originally developed in the UC Berkeley AMP Lab for large-scale

data processing that improves the efficiency by the use of intensive memory. It230

is characterized by its performance, its highly transparency for programmers

which allows to parallelize applications in an easy and comfortable way and its

open source nature. The choice of this specific framework is mainly based on

the following reasons (i) to make our proposed solution more general as it is

based on a hybrid distributed system (ii) Spark offers incredible speed advan-235

tages, trading off high memory usage (iii) Spark is among the very well-known,

mature, and well-tested frameworks in comparison to others which are more

niche in their usage and which are still in their early days of adoption6.

Apache Spark relies on a data structure known as the Resilient Distributed

Data set (RDD). This is a read-only multiset of data items that is distributed240

over the entire cluster of machines. RDDs operate as the working set for dis-

tributed programs, offering a restricted form of distributed shared memory.

Spark also uses the MapReduce concept [42, 8, 9] which was introduced by

2
http://storm.apache.org/

3
http://samza.apache.org/

4
https://spark.apache.org/

5
https://flink.apache.org/

6
https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-spark-and-flink-big-data-frameworks-compared

9

http://storm.apache.org/
http://samza.apache.org/
https://spark.apache.org/
https://flink.apache.org/
https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-spark-and-flink-big-data-frameworks-compared

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Google in 2004. MapReduce is a programming model that offers a simple but

robust environment to process large data sets over a cluster of machines inde-245

pendently from the underlying hardware and/or software. In this model, the

user has to specify the computation in terms of a map function and a reduce

function, and the underlying runtime system automatically parallelizes the com-

putation across large-scale clusters of machines, handles machine failures, and

schedules inter-machine communication to make efficient use of the network and250

disks [8, 9]. The map phase allows different points of the distributed cluster to

distribute their work. In this phase, the input data set is processed producing

some intermediate results. On the other hand, the reduce phase is designed to

reduce the final form of the clusters results into one output. A flowchart of the

MapReduce framework is presented in Figure 1.255

Figure 1: The process of the MapReduce framework.

Formally, the MapReduce model is based on a basic data structure known as

the key-value 〈k, v〉 pair. Each of the MapReduce steps has its own 〈k, v〉 pairs

as input and output. In the map phase, each application of the map function

receives a single 〈k, v〉 pair as input and generates a set of intermediate 〈k’, v’〉

pairs as output. This is represented as follows:260

map〈k, v〉 → {〈k′, v′〉, . . .}. (1)

10

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Then, MapReduce merges all the values associated with the same interme-

diate key as a list. The reduce phase takes that list as input for producing the

final values. This is represented in the following form:

reduce〈k′; {v′, . . .}〉 → 〈k′; v′′〉. (2)

All of the map and the reduce operations run in parallel within a MapReduce

program. First, all of the map functions are run in an independent way. Mean-265

while, the reduce operations wait until their respective maps are completed.

Then, they process different keys concurrently and independently. The inputs

and outputs of a MapReduce job are stored in an associated Distributed File

System (DFS) that is accessible from any computer of the used cluster.

As previously mentioned, there are several open source Big Data processing270

frameworks in the market and among these, we have mentioned the most pop-

ular ones. Yet, it is worth mentioning that the best fit for choosing a specific

framework always depends upon the state of the data to process, how time-

bound the user requirements are, and what kind of results the user is interested

in. As previously highlighted, in this paper, our choice is focused on the use of275

Apache Spark.

3. The Distributed dendritic cell algorithm

In this Section, we present our newly proposed distributed dendritic cell

algorithm. Our proposed solution, dubbed “Sp-DCA”, is characterized by its

distributed implementation design with respect to the Spark framework for a280

parallel and in-memory processing task. Firstly, we argue the motivation that

justifies the development of our proposed Sp-DCA solution by pointing out the

standard DCA computational inefficiencies restricting it to be only applied to

databases with moderated size. Then, we detail the proposed Sp-DCA solution

in depth as an efficient bio-inspired technique dedicated for big data classifica-285

tion.

11

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

3.1. Motivation and problem statement

As previously mentioned, the DCA application was limited to problems with

moderated size only. This is explained by the fact that the algorithm applies

an antigen multiplier (m) for the purpose of classification. Each data instance290

(xi) is copied (m) times generating [xi] ∗m antigens. With the size of the data

set (N), a total of [xi] ∗m ∗N antigens will be generated from the whole input

data set. Yet, as the number of data instances is increasing this task becomes

challenging; and this highlights the DCA main inadequacy to be applied to large

data sets. It is quite infeasible to generate all antigen copies with respect to the295

huge number of data instances due to hardware and memory constraints.

To deal with this, the parallelization as well as the distribution of workload in

various sub-jobs may ease the enumerated problems which are tied to hardware,

runtime and memory consumption. To tackle this challenge, we have to create

an efficient DCA design that takes advantage of parallelization schemes, i.e. the300

MapReduce model, as justified in Section 2.2. The designed framework should

enable DCA to be applied with data sets with a very large number of anti-

gens. Furthermore, the proposed solution should guarantee that the objectives

of the DCA are maintained, so that, it should provide satisfactory classification

accuracy.305

3.2. Sp-DCA: the proposed approach

To deal with high dimensional data sets it appears mandatory to store all

the data in a distributed environment and ensure computations in a parallel

way. With respect to this, we first partition the entire DCA algorithmic pro-

cesses into elementary tasks, each executed independently, and then conquer310

the intermediate results to finally acquire the ultimate output; the classes of the

antigens.

3.2.1. General model formalization

For antigen classification, Sp-DCA has to go through its distributed phases

run on the original high dimensional input database which corresponds to the315

12

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

data stored in the given Distributed File System (DFS) as a single file. To

operate on the given DFS in a parallel way, a Resilient Distributed Data set

(RDD) is created. We may formalize the latter as a training set, of a determined

size N , which corresponds to the antigen data set defined as TRDD, where

universe U = {x1, . . . , xN} is the set of antigen identifiers, the attribute set320

C = {c1, . . . , cV } contains every single feature of the TRDD and the decision

attribute D of our learning problem corresponds to the class label of each TRDD

sample. As Sp-DCA is based on the standard DCA concepts, and since DCA is

applied to binary classification problems; then our developed Sp-DCA is, also,

applied to two-class data sets. Therefore, the decision attribute, D, of the input325

database of our Sp-DCA has binary values dk: either the antigen is collected

under safe circumstances reflecting a normal behavior (classified as normal) or

the antigen is collected under dangerous circumstances reflecting an anomalous

behavior (classified as anomalous). The decision attribute featureD is defined as

follows: D = {dnormal, danomalous}. The universe set U presents the pool from330

where the antigens will be multiplied by an antigen multiplier m generating a

pool of antigens AntigensPool = {an1i , . . . , an1m , . . . , anNi , . . . , anNm}.

In order to make our algorithm scalable with the high number of both

training data and antigens and within the Apache Spark perspective, Sp-DCA

partitions the given TRDD into p data blocks based on splits from the uni-335

verse set U . Indeed, Sp-DCA creates an RDD from the generated antigens

pool, AntigensPoolRDD, and splits it into a a number of disjoint subsets.

Both of these RDDs are accessible from any computer of the cluster inde-

pendently of their size. In such a way, TRDD =
⋃p

i=1

⋃N
j=1(xj)TRDD(i)

and

AntigensPoolRDD =
⋃a

i=1

⋃m,N
x,y=1(anx,y)AntigensPoolRDD(i)

. To ensure scal-340

ability, rather than applying Sp-DCA to TRDD including the whole antigens

from the universe set U and to the AntigensPoolRDD including all the copies

of antigens, the distributed algorithm will be applied to every single TRDD(i)

and to every single AntigensPoolRDD(i)
that at the end all the intermediate

results will be gathered from the different p and a partitions. In such a way, we345

can guarantee that Sp-DCA can be applied to a computable number of antigens

13

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

while dealing with the large number of the antigens copies and hence solving

the standard DCA computational inefficiencies.

3.2.2. Algorithmic details

Sp-DCA follows the same DCA standard algorithmic steps previously dis-350

cussed in Section 2.1. Therefore, the algorithm goes first through an initial-

ization step followed by a detection phase then a context assessment phase to

finally perform its classification phase. A flowchart of the proposed solution

is given in Figure 2. In what follows, we will detail each of these Sp-DCA

distributed algorithmic steps.355

Figure 2: The Sp-DCA flowchart.

Initialization Phase. Just like the DCA, the application of Sp-DCA often re-

quires a data pre-processing phase to appropriately map a given problem do-

main to the input space of the algorithm. The algorithm initialization phase

enrolls two key tasks namely dimensionality reduction and signal categoriza-

tion. Through this phase, the most important features are either selected or360

extracted from the input TRDD and each is assigned to its specific signal cat-

egory; either as SS, as DS or as a PAMP signal. Each attribute is mapped as

a signal category based on its immunological definitions [37]. To perform the

initialization phase, Sp-DCA involves the user or the expert to select the most

interesting features and to map them into their appropriate signal categories.365

14

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

A detailed analysis of this phase and the development of a distributed data

pre-processing method (either a new parallel feature selection or a new parallel

feature reduction technique) is out of scope for this paper.

Detection Phase. Throughout the detection phase, DCA has to generate a signal

data set by combining the attribute signals defined in the first phase, initial-370

ization step, with the antigens. The induced signal database rows represent

the antigens to classify and the attributes represent the three signals; PAMP,

SS and DS. The signal attribute values for each antigen in the signal base are

calculated as follows:

• Process for calculating PAMPs and SSs: As both PAMPs and SSs375

are positive indicators of an anomalous and normal signal, respectively,

one attribute is used to form both of them. In this way, we contrive the

scenario where the algorithm is given a context of either PAMP or SS.

Using one attribute for these two signals requires a threshold level to be

set which is considered to be the median value of the selected PAMP/SS380

attribute. For each attribute value in the TRDD(i)
partition, Sp-DCA has

to determine if it is a PAMP or a safe signal. If the attribute value is

greater than the median, then this value is used to form a safe signal. The

absolute distance from the mean is calculated and attached to the safe

signal value and the PAMP signal value takes 0 (and vice versa).385

• Process for calculating DSs: As the danger signal is less than certain

to be anomalous then a combination of several attributes is used resulting

in a value that may be used as anomalous. To do so, the mean value

for each DS attribute set within the used TRDD(i)
partition is required.

To proceed with this, the absolute distance between the attribute values390

and the calculated means is generated. The calculated distance values are

used in a further calculation to form the single value for the DS. This

value is the mean value of the absolute distances calculated across the

used number of features representing the DS. This process is applied for

all entries of the selected attributes and for all the p TRDD(i)
partitions.395

15

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

To achieve all these calculations in a distributed way and by working on

the p generated partitions, first, Sp-DCA has to prepare the TRDD input data

in a specific format. More precisely, Sp-DCA will gather all the [xi] values

belonging to a same TRDD(i)
column and create their corresponding column

index. To do so, Sp-DCA processes the zipWithIndex() operation that re-400

turns a new list containing pairs consisting of all elements of this list paired

with their index, and the swap() operation that swaps the first and second ele-

ments of a pair with each other, to generate the key reflecting the columnindex.

After that the groupByKey() function which groups all the values related to

a given key is applied to set the list of the [xi] objects having the same key,405

columnindex, and hence the value is defined. These 〈key, value〉 pairs define the

ColumnsIndxV als output variable. The pseudo-code related to this distributed

job is highlighted in Algorithm 1.

Algorithm 1 List the columns indexes and values

Input: TRDD

Output: ColumnsIndxV als : 〈columnindex, [list of [xi]values]〉

1: Map the TRDD to work on the p TRDD(i)
generated partitions

2: Index each column using the zipWithIndex() and the swap() functions

3: Reduce using the groupByKey() function

Algorithm 2 Calculate the mean and the median

Input: ColumnsIndxV als : 〈columnindex, [list of [xi]values]〉

Output: MeanMedian: 〈columnindex, value〉

1: Map the ColumnsIndxV als

2: if columnindex == 0 then

3: Calculate the median

4: return 〈columnindex, median〉

5: else

6: Calculate the mean

7: return 〈columnindex, mean〉

16

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Once the ColumnsIndxV als is ready, Sp-DCA calculates the mean and the

median in a sequential way within the distributed ColumnsIndxV als partition410

as presented in Algorithm 2.

The output of the algorithm is a list of keys representing each column index

where the first column, columnindex = 0, is used to calculate both of the PAMP

and SS values for each antigen. The rest of the keys, columnindex 6= 0, are used

to calculate the DS values. At this stage, the signal base for all antigens can be415

generated based on Algorithm 3.

Algorithm 3 Generate the signal base

Inputs: TRDD, MeanMedian: 〈columnindex, value〉

Output: SignalBase: 〈keyantigen, [PAMP, SS, DS]〉

1: Map the TRDD to work on the p TRDD(i)
generated partitions

2: if columnindex == 0

3: Calculate PAMP and SS values as explained in the itemized list and by

using the MeanMedian value

4: else

5: Calculate the DS value as explained in the itemized list and by using the

MeanMedian value

The output of this phase is a signal base where the first column represents

the index of each antigen extracted from each TRDD(i)
and defined as a key, i.e.

keyantigen. The list of signals [PAMP, SS, DS] of every keyantigen is defined as

a value. These 〈key, values〉 pairs define the SignalBase output.420

Context Assessment Phase. Based on the SignalBase output and based on a

DC population, the Sp-DCA processes its input signals to get three cumulative

output signal values; namely the CSM , the smDC and the mDC values as

mentioned in Section 2.1. The calculations of these cumulative output signal

values are achieved using Equation 3 as a signal processing equation, where425

C = C[CSM,smDC,mDC], and a set of weights:

C =
((WPAMP ∗ PAMP) + (WSS ∗ SS) + (WDS ∗DS))

(WPAMP +WSS +WDS)
(3)

17

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

PAMP , DS and SS are the input signal values obtained from the SignalBase

of category PAMP, danger and safe for all the antigens identified by their

keyantigen. WPAMP ,WSS and WDS represent the weights used for PAMP, SS

and DS, respectively. This equation is repeated three times, once per output430

signal. This is to calculate the interim output signal values for the CSM , the

smDC and the mDC outputs. These values are cumulatively summed over

time [37].

These three DC output signals determine if an antigen type is anomalous

or not. In fact, each DC in the population is assigned a migration threshold435

value (mt) upon its creation. So, if the value of CSM exceeds (mt) then the

DC stops sampling signals; else the algorithm continues sampling and, also,

keeps calculating and updating the values of CSM , smDC and mDC. Once

the cell has migrated, each DC forms a cell context that is used to perform

anomaly detection in the classification of antigens. In fact, upon migration,440

the cumulative output signals are assessed and the greater of semi-mature or

mature output signal becomes the cell context. This cell context is used to label

antigens with the derived context value of 1 or 0. This process is presented in

Algorithm 4.

Algorithm 4 Generate the contexts values

Inputs: SignalBase, migrationThreshold, weights

Output: AntigenInitialContext: 〈keyantigen, context〉

1: Map the SignalBase

2: Calculate the context of each antigen using the migrationThreshold and

the weights as previously explained and by using Equation 3

The output of Algorithm 4, AntigenInitialContext, is the initial context of445

each antigen and it is in the form of 〈key, value〉 pairs. The key represents the

index of each antigen, defined as keyantigen, and the value context is related to

the initial context of each key and it takes a binary value; either 0 or 1. The

initial context refers to the context of a single antigen as the latter is not copied

m times yet. To further process this task, Sp-DCA has to generate the antigen450

18

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

pool using the antigen multiplier m. Unlike the standard DCA which copies the

antigens identifiers and construct a sequential pool from where random antigens

are sampled, Sp-DCA proceeds as follows:

• First, Sp-DCA prepares an antigen pool in a distributed way based on the

keys of the SignalBase; namely keyantigen as presented in Algorithm 5.455

The output is a list of keyAntigen; each is multiplied m times.

Algorithm 5 Generate the antigen pool

Inputs: SignalBase : 〈keyantigen, [PAMP,SS,DS]〉, m: antigen multi-

plier

Output: AntigenPoolRDD: [List of keyAntigen]

1: Map the SignalBase

2: Generate m copies of each SignalBase key from each SignalBase mapped

partition

3: Generate the AntigenPoolRDD(i)
accordingly; where from every

SignalBase partition an AntigenPoolRDD(i)
is constructed

• Second, Sp-DCA generates a context pool which is seen as m copies of

every initial context generated in AntigenInitialContext in Algorithm 4.

This distributed job is presented in Algorithm 6.

Algorithm 6 Generate the context pool

Inputs: AntigenInitialContext: 〈keyantigen, context〉, m: antigen multi-

plier

Output: ContextPool: 〈index, [context, 0]〉

1: Map the AntigenInitialContext

2: Generate m copies of the value of each AntigenInitialContext key

3: Create an index of each copy generated using the zipWithIndex() and the

swap() functions

4: Map each index of each copy

5: Assign a value of 0 to every context

19

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Technically and by mapping the AntigenInitialContext, Sp-DCA copies460

m times the value of each AntigenContext key, i.e. context. Then, the

algorithm creates an index to these using both of the zipWithIndex()

and the swap() functions in a way that the index defines the key of every

multiplied context. After that and by mapping the generated indexes,

Sp-DCA assigns to every initial context copy a value of 0. In this way, the465

value will be composed of a couple [context, 0]. The main idea behind this

is to set a specific format for the contexts that once mapped with their

corresponding random antigens, the context will be recognized via the 0

value and a cell context can be assigned to the sampled random antigens.

Classification Phase. Through the classification phase, Sp-DCA has to calculate470

the value for the cell context for all copies of the antigens to derive at the end

the nature of the response by measuring the number of antigens that are fully

mature. This process is presented in Algorithm 7.

Algorithm 7 Perform the classification task

Inputs: NumberIteration, AntigenContext, ConttextPool

Output: Classification: 〈keyAntigen, class〉

1: For each iteration i ∈ [1, . . . , NumberIteration] do

2: Generate RandomAntigen pool

3: Generate the random AntigenContext pool

4: Calculate MCAV List

5: End for

6: For j to MCAV List size do

7: MCAV(antigen) = mean MCAV List(j)

8: End for

9: Map MCAV

10: Calculate the classification

11: Return 〈keyAntigen, class〉

To achieve this task, Sp-DCA has to go first through the derivation of the

20

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

set of the random antigens (line 2) and the calculation of their corresponding475

contexts (line 3). The generated context value is used to derive the Mature

Context Antigen Value (MCAV). The MCAV is used to assess the degree of

anomaly of a given antigen. The closer the MCAV is to 1, the greater the

probability that the antigen is anomalous. The MCAV is calculated by dividing

the number of times an antigen appears in the mature context by the total480

number of presentation of that antigen, i.e. m. Once the MCAV is calculated

for each antigen, the algorithm can perform its classification task. However, as

the Sp-DCA is based on a random selection of antigens then a loop is required

to guarantee that in every iteration we will generate different antigens. As

the random antigen sampling is not achieved in the context assessment phase,485

unlike the standard DCA which guarantees this random sampling with the use

of multiple DCs, the loop becomes essential. Therefore, in every iteration the

algorithm will generate an MCAV value for every antigen and generate the

MCAV List (line 4). As this process is repeated NumberIteration times then

a mean of the MCAV List is calculated for each antigen in order to generate490

a single MCAV value (lines 6-8). Once this is achieved, Sp-DCA maps the

obtained MCAV collection and calculates the classification. This is done by

comparing the MCAV of each antigen to an anomalous threshold (at). Those

antigens whose MCAV s are greater than (at) are classified into the anomalous

category while the others are classified into the normal one.495

The details on how to generate theRandomAntigen pool, theAntigenContext

pool as well as the MCAV List are as follows:

• Generate the RandomAntigen pool: Sp-DCA has to generate first the

list of the random antigens from where the random sampling will be per-

formed. More precisely, through this task, Sp-DCA uses theAntigenPoolRDD500

already generated in Algorithm 5 and applies the Random.shuffle() op-

eration in order to get a set of random antigens, i.e. a random list of

keyAntigen, followed by the use of the Parallelize() function to allow ele-

ments of the collection to be copied to form a distributed data set that can

21

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

be operated on in parallel. After that, an index of each random antigen505

is created using the zipWithIndex() and the swap() functions; resulting

in 〈index, keyAntigen〉. On this new collection, a map is performed and

a value equals to 1 is assigned to every keyAntigen. Hence, a 〈key, value〉

pair is constructed where the key is the index and the value is the couple

[keyAntigen, 1]. The idea behind this is to set a default value of 1 to the510

antigen as if it appears by default in the mature context. Once the antigen

is randomly mapped with its context, the value will be changed based on

the value of the coupled context, i.e. if the context is 0 then the 1 value

will change to 0 otherwise it is kept as 1. This distributed job is presented

in Algorithm 8.

Algorithm 8 Generate the random antigens

Input: AntigenPoolRDD

Output: RandomAntigen: 〈index, [keyAntigen, 1]〉

1: Random.shuffle the AntigenPoolRDD

2: Parallelize the generated random collection

3: Create an index of each antigen using the zipWithIndex() and the swap()

functions

4: Map each index of each antigen

5: Assign a value of 1 to every antigen

515

• Generate the random AntigenContext pool: To generate the con-

text of every random antigen, Sp-DCA runs a distributed job which is

presented in Algorithm 9. Sp-DCA applies first a union of both the

RandomAntigen: 〈index, [keyAntigen, 1]〉 and the ContextPool: 〈index,

[context, 0]〉 generated in Algorithm 8 and Algorithm 6, respectively. Af-520

ter that a reducByKey() function is applied in a way to have an output

in the form of 〈index, [keyAntigen, context]〉. More precisely, Sp-DCA will

gather all elements having the same key, index, while replacing all the

default 1 values previously assigned to the antigens with their correspond-

22

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

ing coupled context values. The recognition of the context is made via525

the 0 value which is assigned to it. After that, a map is applied to the

latter collection and the AntigenContext is returned in the form of a 〈key,

value〉 pair where the keyAntigen is the key and the context is the value.

At this stage, the m copies of the random antigens have different contexts

assigned to them.

Algorithm 9 Generate the random antigens contexts

Input: RandomAntigen, ContextPool

Output: AntigenContext: 〈keyAntigen, context〉

1: Perform a union of both RandomAntigen and ContextPool

2: Reduce using the reducByKey() function in a way to generate 〈index,

[keyAntigen, context]〉 as explained in the itemized list (item 2)

3: Map the collection

4: Return 〈keyAntigen, context〉

530

• Calculate the MCAV List: This process is presented in Algorithm 10.

Algorithm 10 Generate the MCAV list

Input: AntigenContext

Output: MCAV List: 〈keyAntigen, List[MCAV]〉

1: Reduce the AntigenContext using the groupByKey() function

2: Map the collection

3: Calculate MCAV for each antigen

4: Fill the MCAV List

Technically, as the AntigenContext is generated where the m antigens

have different contexts, a reduce groupByKey() function is required to

gather all the different contexts together for every key, i.e. keyAntigen.

By applying this function, all the AntigenContext values, context, of the535

similar keys, keyAntigen, will be gather together and hence generating

〈keyAntigen, List[contexts]〉. After that a map is applied to the collection

23

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

and the MCAV is calculated by summing all the values in List[contexts]

which is filled with 0 and 1. The sum is then divided by the antigen mul-

tiplier m to finally generate the final MCAV for every antigen after being540

randomly multiplied, sampled and associated with the corresponding con-

texts. However, let us recall that this part is running NumberIteration

times within Algorithm 7 and hence generating NumberIteration MCAVs

for every antigen. At this stage, an MCAV List is created where all the

calculated MCAVs are stored.545

3.3. Sp-DCA: A working example

We apply Sp-DCA to an example of a training data set presented in Table

1. The class “New Loan Decision” indicates if the client is allowed to have a

new loan or not. In this context, the client is seen as an antigen.

Table 1: Training data set.

Client Age Balance Income Previous loan

amount

New Loan

Decision

Client-0 30 900 500 300 No

Client-1 36 2000 550 300 No

Client-2 22 300 350 150 No

Client-3 40 1200 700 800 Yes

Client-4 43 1800 800 900 Yes

Client-5 51 900 700 860 Yes

3.3.1. Initialization phase550

Sp-DCA selects first of all some attributes and pre-categorizes them as

PAMP, SS and DS. We suppose that we refer to the expert knowledge to map

the features to their most appropriate signal types. From Table 1, the expert se-

lects first the “Balance”, the “Income” and the “Previous loan amount” features

and categorizes them as PAMP, SS and DS. Specifically, the feature “Balance”555

is used to represent both of the PAMP and SS signals while the rest of the

features are used to represent the DS.

24

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

3.3.2. Detection phase

In this phase, a signal database is generated. To achieve this task, Sp-DCA

partitions the training data set into smaller splits where each will be handled in560

parallel. For this example, Sp-DCA works on two partitions, p = 2, where the

first partition is composed of the first three antigens (client-0, client-1 and client-

2) and the second one is composed of the rest of the instances. By applying

Algorithm 1 at a first stage, the distributed steps work as follows:

• The two partitions are created using the map function:565

– For p = 1: by applying the zipWithIndex() and the swap() func-

tions, the output is: [(0,900), (1,500), (2,300), (0,2000), (1,550),

(2,300), (0,300), (1,350), (2,150)]

– For p = 2: by applying the zipWithIndex() and the swap() func-

tions, the output is: [(0,1200), (1,700), (2,800), (0,1800), (1,800),570

(2,900), (0,900), (1,700), (2,860)]

• By applying the groupByKey() function, the output is the following:

[(0,[900, 2000, 300, 1200, 1800, 900]), (2,[300, 300, 150, 800, 900, 860]),

(1,[500, 550, 350, 700, 800, 700])]

We only present the detailed results related to each partition in Algorithm575

1. For the rest of the algorithms the same reasoning is followed and we present

results over the two p partitions. Once the base format is ready (the output of

Algorithm 1), Algorithm 2 is applied to calculate the mean and the median:

• If columnindex == 0 then the median is calculated generating: [0, 1050.0]

• If not then the mean is calculated generating: [1, 600.0]580

• Same for columnindex == 2 where the algorithm generates: [2, 551.66]

At this stage, the signal base is generated based on Algorithm 3 and as

presented in Table 2.

25

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 2: Signal data set.

Client (antigen) PAMP SS DS

0 0 150 175.83

1 950 0 150.83

2 0 750 325.83

3 150 0 174.16

4 750 0 274.16

5 0 150 204.16

3.3.3. Context assessment phase

Through this phase, Sp-DCA has to generate first the contexts values using585

some specific parameters. It uses a threshold value mt = 10 for each used DC

and a set of weights which is presented in Table 3.

Table 3: Example of weights used for signal processing.

PAMP SS DS

CSM 2 2 1

smDC 0 0.7 0.7

mDC 2 -2 1

By applying Algorithm 4, we get the following contexts values where the key

represents the antigen ID and the value represents the initial context of each

antigen:590

• [0, 0]

• [1, 1]

• [2, 0]

• [3, 1]

• [4, 1]595

• [5, 0]

26

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

As each antigen is not copied multiple times yet, Sp-DCA has to generate the

following antigen pool using the antigen multiplier m = 3 by applying Algorithm

5:

• [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5]600

It is important to recall that the generated output is distributed across the used

machines and not in a single storage space. After that, Sp-DCA generates a

context pool using Algorithm 6 via the following steps:

• The initial context is multiplied giving the following list: [0, 0, 0, 1, 1, 1,

0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0]605

• The zipWithIndex() and the swap() functions are applied generating the

following set: [(0,0), (1,0), (2,0), (3,1), (4,1), (5,1), (6,0), (7,0), (8,0), (9,1),

(10,1), (11,1), (12,1), (13,1), (14,1), (15,0), (16,0), (17,0)]

• By defining a specific format for the value, the output is as follows:

[(0,(0,0)), (1,(0,0)), (2,(0,0)), (3,(1,0)), (4,(1,0)), (5,(1,0)), (6,(0,0)), (7,(0,0)),610

(8,(0,0)), (9,(1,0)), (10,(1,0)), (11,(1,0)), (12,(1,0)), (13,(1,0)), (14,(1,0)),

(15,(0,0)), (16,(0,0)), (17,(0,0))]

3.3.4. Classification phase

Through the classification phase, Sp-DCA has to derive first the random

antigens pool by applying Algorithm 8 via the following steps:615

• By applying the Random.shuffle() and the parallelize() functions, the

following distributed set is generated : [5, 1, 1, 2, 2, 3, 4, 3, 5, 4, 2, 0, 0,

0, 1, 3, 5, 4]

• The zipWithIndex() and the swap() functions are applied generating the

following output: [(0,5), (1,1), (2,1), (3,2), (4,2), (5,3), (6,4), (7,3), (8,5),620

(9,4), (10,2), (11,0), (12,0), (13,0), (14,1), (15,3), (16,5), (17,4)]

• The output by defining a specific format for the value is as follows: [(0,(5,1)),

(1,(1,1)), (2,(1,1)), (3,(2,1)), (4,(2,1)), (5,(3,1)), (6,(4,1)), (7,(3,1)), (8,(5,1)),

27

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

(9,(4,1)), (10,(2,1)), (11,(0,1)), (12,(0,1)), (13,(0,1)), (14,(1,1)), (15,(3,1)),

(16,(5,1)), (17,(4,1))]625

Then, the algorithm generates the random antigen context pool using Algo-

rithm 9 via the following steps:

• By performing the union, the output is as follows: [(0,(5,1)), (1,(1,1)),

(2,(1,1)), (3,(2,1)), (4,(2,1)), (5,(3,1)), (6,(4,1)), (7,(3,1)), (8,(5,1)), (9,(4,1)),

(10,(2,1)), (11,(0,1)), (12,(0,1)), (13,(0,1)), (14,(1,1)), (15,(3,1)), (16,(5,1)),630

(17,(4,1)), [(0,(0,0)), (1,(0,0)), (2,(0,0)), (3,(1,0)), (4,(1,0)), (5,(1,0)), (6,(0,0)),

(7,(0,0)), (8,(0,0)), (9,(1,0)), (10,(1,0)), (11,(1,0)), (12,(1,0)), (13,(1,0)),

(14,(1,0)), (15,(0,0)), (16,(0,0)), (17,(0,0))]]

• By applying the reduceByKey() function, the output is the following:

[(0,(5,0)), (6,(4,0)), (12,(0,1)), (13,(0,1)), (1,(1,0)), (7,(3,0)), (14,(1,1)),635

(8,(5,0)), (2,(1,0)), (15,(3,0)), (3,(2,1)), (9,(4,1)), (4,(2,1)), (16,(5,0)), (10,(2,1)),

(11,(0,1)), (17,(4,0)), (5,(3,1))]

At this stage, the 3 copies of the random antigens have different contexts

assigned to them. Once this is achieved, the MCAV List is generated based on

Algorithn 10 as follows:640

• By performing a groupByKey() function, the output is as follows: [(0,[1,

1, 1]), (1,[0, 1, 0]), (2,[1, 1, 1]), (3,[0, 0, 1]), (4,[0, 1, 0]), (5,[0, 0, 0])]

• By calculating the MCAV, we get the following results:

• [0, 1]

• [1, 0.33]645

• [2, 1]

• [3, 0.33]

• [4, 0.33]

• [5, 0]

28

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Let us recall that all of these processes are repeated 10 times filling the650

MCAV List as highlighted in Algorithm 7. In this example, we have presented

results related to a single iteration. To perform classification, Sp-DCA calcu-

lates, for each antigen, the mean of the 10 MCAVs and compares the resulting

value to an anomaly threshold which is set to 0.5. Results are presented in

Table 4.655

Table 4: Classification results: MCAVs.

Antigen Type Mean MCAV

Client-0 0.53

Client-1 0.4

Client-2 0.46

Client-3 0.5

Client-4 0.53

Client-5 0.56

In this example, client-0, client-3, client-4 and client-5 are classified as

anomalous which means that they are not allowed to have a loan. This is be-

cause their corresponding mean MCAVs are greater than the defined anomaly

threshold. On the other hand, client-1 and client-2 are classified as normal.

When comparing the results to the actual decisions in Table 1, the generated660

accuracy is 83.33% as the mis-classification occurs when classifying client-0.

4. Experimental setup

4.1. Used benchmark

To demonstrate the effectiveness of our proposed approach we require a big

classification data set with a large number of instances as the advantage of the665

data as well as the antigen vector parallelization schemas will become more

pronounced for data sets with a large set of antigens. We, therefore, chose

the Supersymmetry Particles (SUSY) data set from the UCI machine learning

repository [43]. The data has been produced using Monte Carlo simulations

29

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

for classification purposes to distinguish between a signal process which pro-670

duces supersymmetric particles and a background process which does not. The

data includes 5 million data items referring to the simulated collision events

described through 19 features. The first feature refers to the class label fea-

ture (1 for signal, 0 for background) followed by 8 features which are kinematic

properties (low-level features) then 10 features which are functions of the first 8675

features; these are high-level features derived by physicists to help discriminate

between the two classes. The data set is nearly balanced with 46% positive

examples. Input features were standardized over the entire data set with mean

zero and standard deviation one, except for those features with values strictly

greater than zero; these we scaled so that the mean value was one. A more de-680

tailed report on the SUSY data set can be found in [44]. Aiming to investigate

the scalability of our Sp-DCA, we have created 4 synthetic different versions

of the SUSY data set by generating 10, 20, 30 and 40 million of instances of

the original data set. We will denote these versions as SUSY10M, SUSY20M,

SUSY30M and SUSY40M. The databases are named according to the number685

of antigens contained, i.e. SUSY10M is a database containing 10 million data

items and SUSY5M is a database containing 5 million data items. These syn-

thetic databases are created by performing a traditional statistical analysis on

the SUSY data set. Based on this, a multidimensional random process is de-

fined that will generate the 4 bases with the same statistical characteristics as690

the SUSY data set. In such a way, we can guarantee that the multivariate re-

lationship between the variables of the SUSY data set are preserved and hence

the bases are fit to the original data enabling the creation of a realistic behavior

to test the scalability of our Sp-DCA.

4.2. Testbed695

Our experiments are performed on the High Performance Computing Wales7

(HPC Wales) which provides a distributed parallel computing facility in support

7
https://www.supercomputing.wales/

30

https://www.supercomputing.wales/

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

of research activity within the Welsh academic and industrial user community.

Under this testbed, we used dual 12 core Intel Westmere Xeon X5650 2.67 GHz

CPUs and 36GB of memory to test the performance of our Sp-DCA which700

is implemented in Scala 2.11 within the Apache Spark 2.1.1 framework. A a

preliminary version of the algorithm is given in [45]. The source code implemen-

tation of our proposed algorithm will be made available online after acceptance

for repeatability and future use. The main aim of running our experimentation

under such testbed is to demonstrate the scalability of our proposed Sp-DCA705

distributed solution as it should be applied to data sets of a large number of

antigens unlike its standard sequential version, i.e. the DCA. Indeed, the pro-

posed solution should guarantee that it should provide satisfactory classification

accuracy within a distributed environment.

4.3. Parameters description710

Through the Sp-DCA steps, a specific parameter setting is adopted which is

as follows: in the initialization phase, the class and the 10 high-level features are

selected among the total number of features as these are functions of the first 8

low-level features as explained in Section 4.1. The first and the second high-level

features are used to be mapped as a PAMP and SS, respectively, while the rest715

of the features are used all together to represent the DS. During the context

assessment phase, a set of weights is used to derive the cumulative values as

presented in Equation 3 in Section 3.2.2. The weights are 2, 0, 2, 2, 2, 2, 1, 0.9

and -0.9 for WPAMP,CSM , WPAMP,smDC , WPAMP,mDC , WSS,CSM , WSS,smDC ,

WSS,mDC , WDS,CSM , WDS,smDC and WDS,mDC , respectively. The migration720

threshold of an individual DC is set to 10 to ensure this DC to survive over

multiple iterations. Indeed, each data item is mapped as an antigen, with the

value of the antigen equals to the data ID of the item. An antigen multiplier

m = 9 is used to derived the AntigenPoolRDD resulting in 45, 90, 180, 270

and 360 million antigens for the SUSY5M, SUSY10M, SUSY20M, SUSY30M725

and SUSY40M data sets, respectively. To perform anomaly detection in the

classification phase, a threshold is applied to the MCAVs. The threshold is

31

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

set to 0.35. So, if the MCAV is greater than the anomaly threshold then the

antigen is classified as anomalous, else it is classified as normal. The resulting

classified antigens are compared to the labels given in the original data sets.730

Because of the randomness of the antigen sampling process, the mean MCAVs

are generated across 10 runs where the latter refers to the number of iterations.

Based on these settings, we run the algorithm on 1, 2, 3, 4, 8, 12, and 16 nodes on

HPC Wales. All of the Sp-DCA parameters, e.g. weights, migration threshold,

antigen multiplier, etc., are set based on a tuning process that generated the735

best parameters values that best fit the algorithm.

4.4. Experimental plan, check points and hypotheses

4.4.1. Experimental plan

Our analysis first focuses on the scalability of the algorithm that allows it

to solve the standard DCA inadequacy to be applied to big data. To do so,740

we will evaluate the performance of Sp-DCA on the 4 synthetic generated data

sets, using the speed-up, the size-up and the scale-up criteria introduced in [46].

Second, to guarantee that Sp-DCA maintains its classification objectives an

analysis of the classification accuracy is performed. This is done only on the

real SUSY5M data set. At this stage, let us recall that in [37], it was highlighted745

that the DCA is sensitive to the input class data order, i.e. the performance

of the algorithm is only observed when the algorithm is applied to ordered-

classes training data sets, i.e. all data items labeled as “normal” are followed by

all data items labeled as “abnormal”, else the DCA classification performance

will decrease notably. Taking this into consideration, in our experiments, we750

have used the SUSY5M first as a non-ordered database, dubbed SUSY 5MNO,

and then as an ordered database, dubbed SUSY 5MO, where all class 0 data

items are followed by all class 1 items. In SUSY 5MO, two RDDs are created

where the first RDD, SUSY 5MO,0, refers to the normal class data items and

the second RDD, SUSY 5MO,1, refers to the anomaly data items. Both of these755

RDDs are passed in turn to Sp-DCA where SUSY 5MO,0 is processed at first

followed by the process of SUSY 5MO,1. This is to guarantee the respect of the

32

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

order and to cope with the mentioned data order restriction. We then compare

the classification performance of Sp-DCA on these two data sets, SUSY 5MNO

and SUSY 5MO, to further analyze the behavior of the algorithm in such cases,760

i.e. if it keeps its sensitivity aspect while being a distributed version or not.

More experiments are conducted on Sp-DCA to investigate its classification

performance where the algorithm is compared to a set of well-known state-of-

the-art classifiers. These are discussed in the following Section.

4.4.2. Algorithm under comparison and adopted statistical methodology765

In this study, we compare the classification results of Sp-DCA to (i) DT:

CART algorithm for decision tree with Gini coefficient [47], (ii) NB: Naive Bayes

algorithm with kernel density estimator [48], (iii) K-NN: K-nearest neighbor al-

gorithm [49], (iv) LR: multinomial logistic regression [50], and (v) RDF: the

distributed Random Forest classifier implementation provided in the Apache770

Spark framework (org.apache.spark.mllib.tree.RandomForest) with the follow-

ing parameters: maxDepth=6, numTrees=300, featureSubsetStrategy=‘all’ and

impurity=‘gini’. We utilize standard grid search for hyperparameter optimiza-

tion. This is to automatically get the best parameters values that best fit the

used algorithms.775

As our experimental study involves some algorithms that are non-deterministic,

i.e. that may provide different results over multiple repeated runs, the use of

statistical testing is mandatory. We, therefore, consider 30 independent runs for

the stochastic algorithms and we report accuracy in terms of AUC (Area under

the ROC curve) and F-Score. To investigate the significance of any observed780

difference in classification accuracy we perform Wilcoxon signed rank tests. We

analyze the statistical difference of results with a 95% confidence level (α =

0.05). The Wilcoxon signed rank test is a non-parametric test used for paired

samples. The test is based on the ranks of the absolute difference in the val-

ues of each pair. A p-value that is greater than or equal to the significance α785

(0.05 by default) leads to H0 which means that there is no difference between

the results in the used compared data. Hence, we accept H0 and we reject H1.

33

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

However, a p-value that is strictly less than α means the opposite. Based on

these algorithms, we will conduct a comparative study to further analyze the

Sp-DCA classification performance.790

4.4.3. Check points and hypotheses

From the descriptions provided in Section 4.4.1 and 4.4.2, we highlight that

our research is not devote do optimize the accuracy obtained with our Sp-DCA

method over a specific problem. We focus our experiments (i) on analyzing the

scalability of the proposed solution enabling it to deal with big data classification795

problems, (ii) on investigating the insights tied to the parallelization of the

DCA, i.e. if it can address the classification performance bottleneck of the

standard DCA or not, and (iii) on the analysis of the behavior of the proposed

parallel system, specifically in terms of classification performance. The set of

the hypotheses on which our experiments will be based on is summarized in800

Table 5.

Table 5: List of Hypotheses.

Hypotheses Check Points

H1 The scalability of Sp-DCA is noticed on all sizes of the used databases:

SUSY10M, SUSY20M, SUSY30M and SUSY40M.

H2 Sp-DCA is sensitive to the input class data order: Sp −DCAO gen-

erates better classification results in comparison to Sp−DCANO.

H3 The classification performance bottleneck of the DCA is not expected

to be addressed by executing via the distributed streaming library.

H4 Sp − DCAO generates better classification results than the state-of-

the-art classifiers, i.e. DT, NB, K-NN, LR and RDF.

5. Results and analysis

In the following, we discuss our results. We will investigate each of the

hypothesis presented in Table 5 and extract the related conclusions.

5.1. Analysis of the scalability805

In this Section, we evaluate the performance of Sp-DCA with respect to its

speed-up, size-up and scale-up.

34

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

5.1.1. Analysis of the speed-p

We first consider the speed-up of Sp-DCA: we keep the size of the data set

constant and increase the number of nodes. The speed-up of a system with m

nodes is defined as [46]:

speed-up(m) =
runtime on one node

runtime on m nodes

We plot the average speed-ups needed to run a single iteration within Algo-

rithm 7 (over the 10 iterations executed) and their corresponding average times810

in Figures 3 and 4, respectively.

As discussed in [46], an ideal parallel algorithm has linear speed-up, which

is, however, difficult to achieve in practice due to communication cost and the

fact that the slowest slave dominates the total execution time, i.e. the skew

problem.

●

●

●

●

●

●

●

N1 N2 N3 N4 N8 N12 N16

0

4

8

12

16

Number of Nodes

S
pe

ed
−

up

●

Datasets

SUSY10M
SUSY20M
SUSY30M
SUSY40M

Figure 3: Speed-up results.

815

From Figure 3, we see that our method has a good speed-up performance.

The more the size of the database increases, the more the speedup becomes closer

35

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

to linear. This performance is almost the same for databases with very different

sizes, i.e. the SUSY20M, SUSY30M and SUSY40M. However, we notice that

the SUSY10M database has a slightly lower speed-up curve. This is explained820

by the fact that based on the size of the SUSY10M data set the partitioning

of the data is concentrated on the total number of nodes used resulting in a

big communication cost. Therefore, the skew in this case is higher than in

the other data sets and the total speedup is lower. Nevertheless, once the size

increases starting from 20 million of instances we clearly observe a difference in825

the algorithm speed-up performance.

This observation is also supported by the execution times in Figure 4. The

execution time quickly decreases with increasing the number of nodes while for

the SUSY10M database we observe hardly any improvement when it comes to

more than 4 nodes.830

●

●

●
●

● ● ●

N1 N2 N3 N4 N8 N12 N16

0

500

1000

1500

2000

2500

Number of Nodes

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

●

Datasets

SUSY10M
SUSY20M
SUSY30M
SUSY40M

Figure 4: Average execution times.

36

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

5.1.2. Analysis of the size-up

The size-up measures how much the execution time increases as the data set

is increased by a factor of m; defined as [46]:

size-up(m) =
runtime for data set of size m · s

runtime for baseline data set of size s

From Figure 5, we see that the size-up of Sp-DCA grows very quickly as

the size of the base increases, but gets better as the number of nodes increases.

Thus, the graph shows that our method has a very good size-up performance,

i. e. that our method is able to process large data sets efficiently while keeping835

the number of nodes constant and increasing the size of the data. We can clearly

see that a 2 times larger problem for instance needs about 2 times more time

to run, e.g. SUSY40M needs 2 times more time to run than SUSY20M. This is

noticed for all the used nodes.

●

●

●

●

10 20 30 40

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Size of data [millions]

S
iz

e−
up

●

#Nodes

N1
N2
N3
N4
N8
N12
N16

Figure 5: Size-up results.

37

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

5.1.3. Analysis of the scale-up840

The scale-up measures the ability to grow both the system (number of nodes)

and the database size. Scale-up is defined as the ability of an m-times larger

system to perform an m-times larger job in the same run-time as the original

system. The scale-up metric is defined as [46]:

scale-up(m) =
runtime for processing on 1 node

runtime for processing m data on m nodes

To demonstrate how well our proposed Sp-DCA handles larger data sets

when more nodes are available, we have performed scale-up experiments where

we have increased the size of the databases in direct proportion to the number of

nodes. For instance, for the data set SUSY10M, 10 million antigens are classified

on 1 node and 40 million antigens (SUSY40M) are classified on 4 computers.845

Figure 6 shows the performance results of the databases. Clearly, the Sp-DCA

scales very well as the scale-up values are all close to 1.

SUSY10M SUSY20M SUSY30M SUSY40M

Datasets

S
ca

le
−

up

0.0

0.2

0.4

0.6

0.8

1.0
1 0.99235474 0.977409639 0.973013493

Figure 6: Scale-up results.

38

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Based on the results obtained from the speed-up, the size-up and the scale-

up, hypothesis H1 is accepted. This is presented in Table 6.

Table 6: Hypothesis 1 Result.

Check Point Conclusion Decision

H1 The scalability of Sp-DCA

is noticed on all sizes of the

used databases: SUSY10M,

SUSY20M, SUSY30M and

SUSY40M.

The scalability of Sp-DCA is

noticed on all sizes of the

used databases and it be-

comes more significant when

the size of the data set in-

creases starting from 20 mil-

lion of instances.

H1 is ac-

cepted.

5.2. Analysis of accuracy850

To validate the suitability of our method with respect to classification, we

investigate the classification performance of our Sp-DCA within a comparison

to the set of classifiers presented in Section 4.4.2. We, also, investigate the be-

havior of our proposed parallel system with respect to the order of the classes as

discussed in Section 4.4.1. To analyse this, we present results of 30 independent855

runs on the original data set with 5 millon instances in Table 7.

Table 7: Accuracy of the competing methods in terms of AUC and F-Score.

Algorithms Sp−DCAO Sp−DCANO DT NB K-NN LR RDF

AUC 72.92 50.48 69.00 69.90 66.40 72.10 76.55

F-Score 71.68 49.26 67.20 53.70 60.60 67.70 74.65

As previously mentioned, Sp-DCA is applied to the original non-ordered

SUSY5M data set (Sp−DCANO), and to the ordered base (Sp−DCAO). We

name the algorithm Sp − DCANO when it is applied in the former case, and

Sp − DCAO when applied to the later case. This is to investigate if the Sp-860

DCA will maintain the standard DCA restriction to the input class data order,

i.e. being sensitive to the input class data order and hence generating better

classification results when applied to ordered data sets only (H2). Such analysis

also permit to check if the classification bottleneck of the DCA is addressed or

not via the execution within a distributed implementation design. We expect865

39

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

that this limitation will not be solved (H3). From Table 7, we can clearly

notice that the classification performance of Sp−DCAO in terms of both AUC

(72.92%) and F-Score (71.68%) are much better than the results generated with

Sp − DCANO with 50.48% and 49.26% for AUC and F-Score, respectively.

We, indeed, perform statistical tests as previously described in Section 4.4.2870

and find that, based on the used evaluation metrics, the difference in the two

algorithms is statistically signification at a confidence level of 0.05, i.e. p-value

(Sp −DCAO, Sp −DCANO) < 2.2e−16. From these results, we can conclude

that H2 is accepted and that the distributed framework has not solved the

sensitivity problem which leads to the acceptance of H3.875

On the other hand, comparing the classification performance of Sp−DCAO

to the well-known state-of-the-art classifiers, and from Table 7, we notice that

our proposed solution outperforms most of the competing classifiers, mainly DT,

NB, K-NN and LR, in terms of classification performance. This is observed for

both used metrics (AUC and F-Score). When, comparing Sp−DCAO to RDF,880

we notice that the later algorithm outperforms our algorithm in terms of AUC

and F-Score. Statistical tests were also performed to further validate these

conclusions where the resulting p-values were all less than 2.2e−16. Hence, the

conclusions can be confirmed as the obtained results are statistically signification

at a confidence level of 0.05. Based on this, H4 is partially accepted. A sum-up885

of the hypotheses is given in Table 8.

Table 8: Hypotheses 2, 3 and 4 results.

Check Point Conclusion Decision

H2 Sp-DCA is sensitive to the in-

put class data order: Sp −

DCAO generates better clas-

sification results in comparai-

son to Sp−DCANO.

We conclude that Sp-DCA

holds the sensitivity to the in-

put class data order limitation

as the classification accuracy

of Sp − DCAO is much bet-

ter than the one generated by

Sp−DCANO.

H2 is ac-

cepted.

40

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

H3 The classification perfor-

mance bottleneck of the DCA

is not expected to be ad-

dressed by executing via the

distrbuted streaming library.

As Sp-DCA kept its sensitiv-

ity to the input class data

ordeer, as concluded in H2,

the use of a distributed im-

plementation design has not

solved the bottleneck of the

DCA as expected.

H3 is ac-

cepted.

H4 Sp − DCAO generates bet-

ter classification results than

the state-of-the-art classifiers;

DT, NB, K-NN, LR and RDF.

We notice that Sp − DCAO

outperforms almost all the

used competing classifiers in

terms of AUC and F-Score,

except for RDF.

H4 is par-

tially ac-

cepted.

6. Conclusion and future directions

In this paper, we have developed a distributed bio-inspired dendritic cell

solution for large-scale data classification under the Spark framework, denomi-

nated as Sp-DCA. The Spark paradigm has offered an efficient environment to890

parallelize the functioning of the dendritic cell algorithm allowing it to over-

come its memory and runtime restrictions. Focusing on the scalability of the

algorithm, the experimental study carried out has shown that Sp-DCA has

achieved good speed-up, size-up, and scale-up performances. Specifically, the

scalability of Sp-DCA is noticed on all sizes of the used databases (SUSY10M,895

SUSY20M, SUSY30M and SUSY40M) and particularly the scalability becomes

more significant when the size of the data set increases starting from 20 mil-

lion of instances. In terms of classification performance, the experimental study

carried out has shown that Sp-DCA holds its sensitivity characteristic to the

input class data order as the algorithm classification accuracy in the ordered900

base case (Sp − DCAO) is much better than the one of the unordered base

case (Sp − DCANO). Based on this evaluation, we could emphasis that the

classification performance bottleneck of the DCA is not addressed by the use

of a distributed implementation design; as expected. Finally, when comparing

the Sp-DCA classification results with well-known state-of-the-art algorithms905

we noticed that our proposed solution outperforms almost all the used classi-

41

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

fiers except random forest. Based on all conducted experiments and extracted

conclusions, we highlight that Sp-DCA is an efficient distributed and scalable

bio-inspired classification technique.

Our study provides many ideas for future research directions with particular910

focus on handling the Sp-DCA sensitivity aspect to the input class data order

and on proposing a new distributed automated initialization phase for the al-

gorithm. Moreover, tests on other real-world applications will demonstrate the

wider applicability of our method.

7. Acknowledgments915

This work is part of a project that has received funding from the Euro-

pean Union’s Horizon 2020 research and innovation programme under the Marie

Sk lodowska-Curie grant agreement No 702527. Additional thanks go to the sup-

port of the Supercomputing Wales project, which is part-funded by the Euro-

pean Regional Development Fund (ERDF) via the Welsh Government.920

References

[1] C. P. Chen, C.-Y. Zhang, Data-intensive applications, challenges, tech-

niques and technologies: A survey on big data, Information Sciences 275

(2014) 314–347.

[2] M. Minelli, M. Chambers, A. Dhiraj, Big data, big analytics: emerging925

business intelligence and analytic trends for today’s businesses, John Wiley

& Sons, 2012.

[3] G. Bello-Orgaz, J. J. Jung, D. Camacho, Social big data: Recent achieve-

ments and new challenges, Information Fusion 28 (2016) 45–59.

[4] J. Archenaa, E. M. Anita, A survey of big data analytics in healthcare and930

government, Procedia Computer Science 50 (2015) 408–413.

42

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

[5] A. Elser, Guide to Reliable Distributed Systems: Building High-Assurance

Applications and Cloud-Hosted Services, Springer Science & Business Me-

dia, 2012.

[6] A. Freitas, E. Curry, Big data curation, in: New Horizons for a Data-Driven935

Economy, Springer, 2016, pp. 87–118.

[7] H. Tong, Big data classification. (2014).

[8] J. Dean, S. Ghemawat, Mapreduce: Simplified data processing on large

clusters, Commun. ACM 51 (1) (2008) 107–113. doi:10.1145/1327452.

1327492.940

[9] J. Dean, S. Ghemawat, Mapreduce: A flexible data processing tool, Com-

mun. ACM 53 (1) (2010) 72–77. doi:10.1145/1629175.1629198.

[10] J. Schneider, M. Vlachos, Scalable density-based clustering with quality

guarantees using random projections, Data Mining and Knowledge Discov-

ery (2017) 1–34.945

[11] P. Schäfer, Scalable time series classification, Data Mining and Knowledge

Discovery 30 (5) (2016) 1273–1298.

[12] N. Talukder, M. J. Zaki, A distributed approach for graph mining in mas-

sive networks, Data Mining and Knowledge Discovery 30 (5) (2016) 1024–

1052.950

[13] W. Fan, A. Bifet, Mining big data: current status, and forecast to the

future, ACM sIGKDD Explorations Newsletter 14 (2) (2013) 1–5.

[14] B. De La Iglesia, Evolutionary computation for feature selection in classifi-

cation problems, Wiley Interdisciplinary Reviews: Data Mining and Knowl-

edge Discovery 3 (6) (2013) 381–407.955

[15] D. Peralta, S. del Ŕıo, S. Ramı́rez-Gallego, I. Triguero, J. M. Benitez,

F. Herrera, Evolutionary feature selection for big data classification: A

mapreduce approach, Mathematical Problems in Engineering 2015.

43

http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1629175.1629198

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

[16] I. Triguero, S. del Ŕıo, V. López, J. Bacardit, J. M. Beńıtez, F. Herrera,

Rosefw-rf: the winner algorithm for the ecbdl’14 big data competition: an960

extremely imbalanced big data bioinformatics problem, Knowledge-Based

Systems 87 (2015) 69–79.

[17] I. Triguero, D. Peralta, J. Bacardit, S. Garćıa, F. Herrera, Mrpr: a mapre-

duce solution for prototype reduction in big data classification, neurocom-

puting 150 (2015) 331–345.965

[18] I. Triguero, D. Peralta, J. Bacardit, S. Garćıa, F. Herrera, A combined

mapreduce-windowing two-level parallel scheme for evolutionary prototype

generation, in: Evolutionary Computation (CEC), 2014 IEEE Congress on,

IEEE, 2014, pp. 3036–3043.

[19] V. López, A. Fernández, S. Garćıa, V. Palade, F. Herrera, An insight into970

classification with imbalanced data: Empirical results and current trends

on using data intrinsic characteristics, Information Sciences 250 (2013) 113–

141.

[20] I. Triguero, M. Galar, S. Vluymans, C. Cornelis, H. Bustince, F. Herrera,

Y. Saeys, Evolutionary undersampling for imbalanced big data classifica-975

tion, in: Evolutionary Computation (CEC), 2015 IEEE Congress on, IEEE,

2015, pp. 715–722.

[21] I. Triguero, M. Galar, D. Merino, J. Maillo, H. Bustince, F. Herrera, Evo-

lutionary undersampling for extremely imbalanced big data classification

under apache spark, in: Evolutionary Computation (CEC), 2016 IEEE980

Congress on, IEEE, 2016, pp. 640–647.

[22] I. Triguero, M. Galar, H. Bustince, F. Herrera, A first attempt on global

evolutionary undersampling for imbalanced big data, in: Evolutionary

Computation (CEC), 2017 IEEE Congress on, IEEE, 2017, pp. 2054–2061.

[23] G. E. Batista, R. C. Prati, M. C. Monard, A study of the behavior of985

44

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

several methods for balancing machine learning training data, ACM Sigkdd

Explorations Newsletter 6 (1) (2004) 20–29.

[24] A. Verma, X. Llorà, D. E. Goldberg, R. H. Campbell, Scaling genetic algo-

rithms using mapreduce, in: Intelligent Systems Design and Applications,

2009. ISDA’09. Ninth International Conference On, IEEE, 2009, pp. 13–18.990

[25] B. Wu, G. Wu, M. Yang, A mapreduce based ant colony optimization ap-

proach to combinatorial optimization problems, in: Natural Computation

(ICNC), 2012 Eighth International Conference on, IEEE, 2012, pp. 728–

732.

[26] A. W. McNabb, C. K. Monson, K. D. Seppi, Parallel pso using mapreduce,995

in: Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, IEEE,

2007, pp. 7–14.

[27] P. Scully, Distribution of security information for industrial networks,

Ph.D. thesis, Aberystwyth University (2016).

[28] E. Cantú-Paz, A survey of parallel genetic algorithms, Calculateurs paral-1000

leles, reseaux et systems repartis 10 (2) (1998) 141–171.

[29] E. Alba, J. M. Troya, et al., A survey of parallel distributed genetic algo-

rithms, Complexity 4 (4) (1999) 31–52.

[30] E. Alba, M. Tomassini, Parallelism and evolutionary algorithms, IEEE

transactions on evolutionary computation 6 (5) (2002) 443–462.1005

[31] E. Alba, Parallel evolutionary computations, Vol. 22, springer, 2006.

[32] E. Alba, Parallel metaheuristics: a new class of algorithms, Vol. 47, John

Wiley & Sons, 2005.

[33] J. Greensmith, U. Aickelin, S. Cayzer, Introducing dendritic cells as a novel

immune-inspired algorithm for anomaly detection, in: ICARIS, 2005, pp.1010

153–167.

45

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

[34] J. Greensmith, U. Aickelin, Articulation and clarification of the dendritic

cell algorithm, in: ICARIS, 2006, pp. 404–417.

[35] J. G. Shanahan, L. Dai, Large scale distributed data science using apache

spark, in: Proceedings of the 21th ACM SIGKDD International Conference1015

on Knowledge Discovery and Data Mining, ACM, 2015, pp. 2323–2324.

[36] J. Greensmith, U. Aickelin, J. Twycross, Articulation and clarification of

the dendritic cell algorithm, in: International Conference on Artificial Im-

mune Systems, Springer, 2006, pp. 404–417.

[37] Z. Chelly, Z. Elouedi, A survey of the dendritic cell algorithm, Knowledge1020

and Information Systems 48 (3) (2016) 505–535.

[38] J. Greensmith, M. B. Gale, The functional dendritic cell algorithm: a for-

mal specification with haskell, in: Evolutionary Computation (CEC), 2017

IEEE Congress on, IEEE, 2017, pp. 1787–1794.

[39] S. Sakr, A. Liu, D. M. Batista, M. Alomari, A survey of large scale data1025

management approaches in cloud environments, IEEE Communications

Surveys & Tutorials 13 (3) (2011) 311–336.

[40] M. Snir, MPI–the Complete Reference: the MPI core, Vol. 1, MIT press,

1998.

[41] A. Fernández, S. del Ŕıo, V. López, A. Bawakid, M. J. del Jesus, J. M.1030

Beńıtez, F. Herrera, Big data with cloud computing: an insight on the

computing environment, mapreduce, and programming frameworks, Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery 4 (5)

(2014) 380–409.

[42] J. Dean, S. Ghemawat, Mapreduce: a flexible data processing tool, Com-1035

munications of the ACM 53 (1) (2010) 72–77.

[43] A. Asuncion, D. Newman, Uci machine learning repository (2007).

46

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

[44] P. Baldi, P. Sadowski, D. Whiteson, Searching for exotic particles in high-

energy physics with deep learning, Nature communications 5.

[45] Z. C. Dagdia, A distributed dendritic cell algorithm for big data, in: Pro-1040

ceedings of the Genetic and Evolutionary Computation Conference Com-

panion, GECCO 2018, Kyoto, Japan, July 15-19, 2018, 2018, pp. 103–104.

doi:10.1145/3205651.3205701.

URL http://doi.acm.org/10.1145/3205651.3205701

[46] X. Xu, J. Jäger, H.-P. Kriegel, A fast parallel clustering algorithm for large1045

spatial databases, in: High Performance Data Mining, Springer, 1999, pp.

263–290.

[47] J. R. Quinlan, Induction of decision trees, Machine learning 1 (1) (1986)

81–106.

[48] J. Su, H. Zhang, C. X. Ling, S. Matwin, Discriminative parameter learning1050

for bayesian networks, in: Proceedings of the 25th international conference

on Machine learning, ACM, 2008, pp. 1016–1023.

[49] N. S. Altman, An introduction to kernel and nearest-neighbor nonparamet-

ric regression, The American Statistician 46 (3) (1992) 175–185.

[50] B. Krishnapuram, L. Carin, M. A. Figueiredo, A. J. Hartemink, Sparse1055

multinomial logistic regression: Fast algorithms and generalization bounds,

IEEE transactions on pattern analysis and machine intelligence 27 (6)

(2005) 957–968.

47

http://doi.acm.org/10.1145/3205651.3205701
http://dx.doi.org/10.1145/3205651.3205701
http://doi.acm.org/10.1145/3205651.3205701

	SWEVO_432.pdf
	Introduction
	Background
	The Dendritic cell algorithm
	Distributed processing frameworks

	The Distributed dendritic cell algorithm
	Motivation and problem statement
	Sp-DCA: the proposed approach
	General model formalization
	Algorithmic details

	Sp-DCA: A working example
	Initialization phase
	Detection phase
	Context assessment phase
	Classification phase

	Experimental setup
	Used benchmark
	Testbed
	Parameters description
	Experimental plan, check points and hypotheses
	Experimental plan
	Algorithm under comparison and adopted statistical methodology
	Check points and hypotheses

	Results and analysis
	Analysis of the scalability
	Analysis of the speed-p
	Analysis of the size-up
	Analysis of the scale-up

	Analysis of accuracy

	Conclusion and future directions
	Acknowledgments

