
Balanced Crossover Operators in Genetic

Algorithms

Luca Manzoni1, Luca Mariot2, and Eva Tuba3

1Dipartimento di Matematica e Geoscienze, Universit degli Studi di Trieste, Via

Valerio 12/1, 34127 Trieste, Italy ,
lmanzoni@units.it

2DISCo, Università degli Studi di Milano-Bicocca, Viale Sarca 336/14, 20126

Milano, Italy ,
luca.mariot@unimib.it

3Faculty of Informatics and Computing, Singidunum University Danijelova 32,

11000 Belgrade, Serbia ,
etuba@ieee.org

November 19, 2019

Abstract

In several combinatorial optimization problems arising in cryptography
and design theory, the admissible solutions must often satisfy a balanced-
ness constraint, such as being represented by bitstrings with a fixed number
of ones. For this reason, several works in the literature tackling these
optimization problems with Genetic Algorithms (GA) introduced new
balanced crossover operators which ensure that the offspring has the same
balancedness characteristics of the parents. However, the use of such
operators has never been thoroughly motivated, except for some generic
considerations about search space reduction.

In this paper, we undertake a rigorous statistical investigation on
the effect of balanced and unbalanced crossover operators against three
optimization problems from the area of cryptography and coding theory:
nonlinear balanced Boolean functions, binary Orthogonal Arrays (OA) and
bent functions. In particular, we consider three different balanced crossover
operators (each with two variants: “left-to-right” and “shuffled”), two of
which have never been published before, and compare their performances
with classic one-point crossover. We are able to confirm that the balanced
crossover operators performs better than all three balanced crossover
operators. Furthermore, in two out of three crossovers, the “left-to-right”
version performs better than the “shuffled” version.

Keywords genetic algorithms, crossover operators, balanced bitstrings,
Boolean functions, orthogonal arrays, bent functions

1

ar
X

iv
:1

90
4.

10
49

4v
2

 [
cs

.N
E

]
 1

7
N

ov
 2

01
9

1 Introduction

Crossover (or recombination) operators play a crucial role in Genetic Algorithms
(GA). The idea underlying crossover, borrowed from biological evolution, is quite
simple: given two candidate solutions, combining parts of their chromosomes
will yield an offspring potentially having better fitness than the parents. This
strategy stands on the observation that fit individuals share some traits encoded
at the chromosome level, which can be inherited by their children via crossover.
Indeed, this intuition has been formalized by Holland [6] with the concept of
building blocks used in schema theory.

There exist several classes of combinatorial optimization problems whose
feasible solutions must contain a specified number of ones, i.e. they must have a
fixed Hamming weight. Examples of such problems come, for instance, from the
domain of cryptography, where balanced Boolean functions are used to design
symmetric key cryptosystems [1]. Another research area where balanced binary
strings are sought is that of combinatorial designs: there, one is interested in
constructing subsets of a certain support space (called blocks) which satisfy
specific balancedness constraints [20]. A third research field where fixed-weight
bitstrings are used is that of portfolio optimization; indeed, a portfolio can be
represented by a binary vector where the positions set to 1 indicate that the
corresponding assets have been selected [7].

Genetic algorithms seem like a sensible choice for solving the optimization
problems mentioned above. However, breeding feasible solutions which have a
fixed Hamming weight is something that classic GA recombination operators
such as one-point crossover cannot handle. As a matter of fact, starting from two
individuals with the same number of ones and applying one-point crossover will
likely produce an offspring having a different Hamming weight. This is due to
the fact that one-point crossover (as well as most other recombination operators
in the literature) does not enforce any control over the multiplicities of the alleles
copied in the offspring. Of course, this drawback in dealing with fixed-weight
bitstrings can be addressed at the fitness function level. Since we do not have
any guarantee that the offspring has the desired number of ones, the idea is
to add a penalty factor to the fitness function which punishes deviations from
the expected Hamming weight. Although being the simplest solution to cope
with this constraint, one might argue that it wastes a lot of fitness evaluations,
because most of the solutions generated by classic crossover operators will violate
the fixed-weight property.

An alternative way to address this problem is to design new recombination
operators that preserve the Hamming weight of the bitstrings, which we term
balanced crossover operators in what follows. The first researchers who pioneered
this approach in the area of cryptography were Millan et al. [14], who proposed
a counter-based crossover operator to evolve balanced Boolean functions, which
was later adapted to evolve plateaued functions in [10]. Similar operators have
been later proposed for GA applied to combinatorial designs problems [11, 12],
portfolio optimization [2, 3], multiobjective k-subset selection [13] and disease
classification [18, 19].

Looking at the existing literature, one can remark that the introduction of
balanced crossover operators has never been thoroughly motivated. In fact, the
only recurring motivation supporting the use of such operators is the reduction
of the search space (see e.g. [12]). To be sure, restraining the crossover operator

2

to produce only fixed Hamming weight bitstrings greatly shrinks the space of
candidate solutions searched by GA. Nonetheless, although the reduction is quite
evident for short strings, this advantage becomes less clear as the Hamming
weight k approaches n/2, since

(
n

n/2

)
= Θ(2n√

n
). Moreover, most of the works

in the literature employing balanced crossover operators do not perform a
sound comparison of their results with those that can be obtained with classic
operators. Hence, it is not even clear on a statistical basis whether balanced
crossover operators actually bring any advantage to GA working with fixed
Hamming weight bitstrings.

The aim of this paper is to begin closing this gap by performing a thorough
statistical comparison of balanced and classic crossover operators over a set of
problems from the area of cryptography and design theory. In particular, we
consider three balanced crossover operators in our investigation: the first is a
modification of the counter-based operator proposed by Millan et al. [14]. The
other two, as far as our knowledge goes, have never been published before, and
they are based respectively on the map of ones and zero lengths chromosome
encodings. For all three crossover operators, we have defined two variants:
a “left-to-right” one, where the crossover is applied as usual, and a “shuffled”
version, where the positions of an individual are randomly shuffled, the crossover
is performed, and the positions are shuffled back in order. This operations should,
in principle, counterbalance any positional bias in the crossover operator. As a
term for comparison we considered one-point crossover, optimizing the Hamming
weight as a penalty factor in the fitness function.

We considered three combinatorial optimization problems in our statistical
investigation. The first one regards nonlinear balanced Boolean functions, where
the goal is to maximize the nonlinearity of the functions while retaining their
balancedness. The second problem, always concerning Boolean functions, is
the evolution of bent functions, which reach the highest possible nonlinearity
and, although unbalanced, have a specified Hamming weight. Finally, the third
problem pertains binary Orthogonal Arrays (OA), which are Boolean matrices
having balanced subsets of columns.

We carried out our experiments over three different instances for each problem.
In order to compare the performances of the four crossover operators, we employed
a non-parametric statistical test over the best individual produced by each
experimental run, namely the Mann-Whitney-Wilcoxon test [4]. Some works
in the literature [15, 16] performed a comparison with non-parametric tests on
classic crossover operators, but did not consider balanced operators.

In our experiments we considered two main types of research questions:
whether the balanced operators perform better than the one-point crossover, and
whether there is any difference between the “left-to-right” and “shuffled” versions
of the operators. For the first question, we are able to answer affirmatively:
balanced crossover operators performs better, in general, than one point crossover.
In particular, using one point crossover seems to be a bad choice for those
problems where the balancedness constraint plays an important role in the fitness
function, i.e. in the OA problem. As for the second question, the answer is more
nuanced: for two out of three crossovers, removing any positional bias is actually
detrimental to the performances in some cases. Similarly to the first question, this
fact is more evident in the OA problem where balancedness is a key component
of the fitness function. Concerning the map of ones crossover, however, both

3

the “left-to-right” and “shuffled” versions have similar performances.
Although this work focuses on investigating the properties of balanced

crossover operators, rather than proposing them to outperform other state-of-
the-art evolutionary algorithms for problems in cryptography and combinatorial
design theory, we compare our results with some recent work on the subject,
namely [17] for balanced nonlinear and bent Boolean functions and [12] for
orthogonal arrays. While in the first case our map of ones crossover has a
performance similar to those of the algorithms studied in [17], it still falls short
of achieving the success rate of Genetic Programming (GP) over the OA problem
in [12], altough it improves on the GA used in the same paper.

This work is an extended version of the short paper [9] presented at GECCO
2019. In particular, the new contributions concern the experiments over the
bent functions and orthogonal arrays problems, and the comparison between the
“left-to-right” and “shuffled” versions of the balanced crossover operators.

The remainder of this paper is structured as follows. Section 2 covers
some basic background definitions about fixed Hamming weight bitstrings, and
describes in detail the three balanced crossover operators investigated in our
study. Section 3 formally states the three optimization problems considered
in our investigation. Section 4 describes the experimental design of our study,
discussing in particular the structure of the steady state GA employed in our
experiments, and stating three research hypotheses about the performances of
balanced crossover operators. Section 5 presents the results of our experiments,
analyzing the performances of the considered crossover operators through non-
parametric tests. Section 6 engages in a discussion of the three hypotheses in
light of our experimental findings, and compares the obtained results with some
recent work in the literature. Finally, Section 7 concludes the paper, and sketches
some possible future directions of research on the subject.

2 Balanced Crossover Operators

In this section, we describe the three balanced crossover operators analyzed in
our experiments. Before delving into the details of each operator, we recall some
basic definitions and results about bitstrings and their Hamming weights.

Let F2 = {0, 1} be the finite field with two elements. A bitstring of length
n ∈ N is a binary vector x of n components, each of them belonging to F2. We
denote by Fn

2 the set of all bitstrings of length n. In what follows, we will often
endow Fn

2 with a vector space structure, with bitwise XOR (denoted as ⊕) as
vector sum and logical AND as multiplication by a scalar from F2. Given a
bitstring x ∈ Fn

2 , let supp(x) = {i : xi 6= 0} be the support of x, that is, the set
of coordinates equal to 1 of the bitstring. The Hamming weight wH(x) of x is
then defined as the cardinality of its support, i.e. wH(x) = |supp(x)|. If n is
even and wH(x) = n/2, we say that the bitstring x is balanced. In other words,
x is balanced when it is composed of an equal number of zeros and ones.

A binary string x ∈ Fn
2 can be interpreted as the characteristic function of a

set S ⊆ [n] = {1, · · · , n}. In particular, the support of x corresponds exactly to
S, i.e. to the image of its characteristic function. Basic combinatorial arguments
show that the number of all bitstrings of length n is |Fn

2 | = 2n, that is, the
cardinality of the power set P([n]) of [n]. Likewise, for k ∈ [n] the size of the
set Bn,k of bitstrings having Hamming weight k, or equivalently the number

4

of k-subsets of [n], is
(
n
k

)
, since it corresponds to the number of ways one can

choose k objects out of n.
The search space of interest for our investigation is precisely Bn,k, which

we will also call the set of (n, k)-combinations in what follows. In particular,
Bn,k will represent the set of feasible solutions to a particular optimization
problem explored by GA. Although several types of crossover operators have
been proposed in the literature of GA, very few of them consider restrictions on
the Hamming weights of the chromosomes, i.e. which actually restrict the search
of a GA to Bn,k. More generally, such crossover operators are not specifically
designed to evolve (n, k)-combinations.

We now describe the crossover operators adopted in our experiments. Each
of these operators is based on a different encoding for the chromosome of a
candidate solution, which corresponds to a specific representation of an (n, k)-
combination. The reader is referred to Knuth [8] for further information about
the properties of these encodings. We emphasize that, while the counter-based
crossover operator is an adaptation of the one conceived by Millan et al. [14],
to our knowledge the other two operators have not been proposed before in the
literature.

2.1 Counter-Based Crossover

As discussed above, the binary vector coding is the most obvious and straightfor-
ward way to represent a (n, k)-combination: given a bitstring x = (x1, · · · , xn) of
length n, the positions of x having value 1 denote the k selected objects out of a
set of n, while the remaining n− k zeros represent the unselected objects. As an
example, consider the case where n = 8 and k = 4. A (8, 4)-combination can be
represented by a balanced bitstring of length 8, such as: x = (0, 1, 0, 0, 1, 1, 0, 1).

Of course, binary vector coding is also the most natural chromosome represen-
tation for GA. However, in order to evolve only individuals with a fixed Hamming
weight, one has to come up with a particular crossover operator. Perhaps the
simplest way to design such an operator is to randomly select bit-by-bit the allele
from the first or the second parent to be copied in the offspring (as in uniform
crossover), and use counters to keep track of the multiplicities of ones and zero
in the child. When one of the two counters reaches the prescribed threshold (i.e.
k for the ones counter and n − k for the zero counter), the child is filled the
complementary value.

To our knowledge, Millan et al. [14] were the first to propose a crossover
operator based on this idea to evolve nonlinear balanced Boolean functions. We
report in Algorithm 1 the pseudocode of a slightly modified operator, which
we used in our experiments. Given two bitstrings p1, p2 ∈ Fn

2 of length n and
Hamming weight k, the procedure Counter-Cross initializes the counters (s
for the number of 1s and t for the number of 0s) and sets to zero all the bits
in the string c, which will hold the chromosome of the child produced by the
crossover operation. Then, for i ∈ {1, · · · , n}, the i-th bit of c is determined
as follows. If the maximum number of ones (respectively, zeros) allowed has
already been reached, then c[i] is set to 0 (respectively, 1). In all other cases,
c[i] is chosen by randomly selecting with uniform probability the i-th bit of p1
or p2, and the counters are updated according to the drawn value. In this way,
the child c produced by Counter-Cross is itself balanced.

5

Algorithm 1 Counter-Cross(p1, p2, n, k)

s := 0; t := 0; c := 0n;
for i := 1 to n do

if (s = k) then
c[i] := 0

else
if (t = n− k) then
c[i] := 1

else
c[i] := Random(p1[i], p2[i])
if (c[i] = 1) then
s := s+ 1

else
t := t+ 1

end if
end if

end if
end for
return c

2.2 Zero Lengths Crossover

Given the bitstring x = (x1, · · · , xn) of a (n, k)-combination, the zero lengths
coding of x is the vector r = (r1, · · · , rn−k+1) which lists the distances between
consecutive ones in x. In other words, the values ri denote the lengths of the
runs of zeros which separate the ones in the binary vector coding, with the
particular cases of r1 and rn−k+1 which represent the number of zeros preceding
the first 1 and following the last 1 in x, respectively.

Clearly, in order to ensure that a given zero lengths coding vector r =
(r1, · · · , rn−k+1) represents a valid (n, k)-combination, the following relation
must hold:

n−k+1∑
i=1

ri = n− k . (1)

Following the example adopted in the previous two sections, the run length
coding of the bitstring x is r = (1, 2, 0, 1, 0). As we pointed out in Equation (1),
the zero lengths vector of a bitstring of length n and Hamming weight k is valid
if and only if the sum of the components in the vector equals n−k. In a crossover
operator based on the zero lengths representation it is thus necessary to control
the sum of the run lengths of zeros in the offspring, while the components of the
vector are copied from the parents. The pseudocode for the crossover operator
that we designed for this specific coding is reported in Algorithm 2. The operator
takes as input the zero lengths vectors p1, p2 of two bitstrings x1, x2 ∈ Bn,k,
their length n and their Hamming weight k. The first steps are devoted to the
initialization of the zero length vector of the child c (filled with k + 1 zeros) and
the accumulator sumz used to control the value of the sum of zeros in c. The
FOR loop cycles over the first k positions of c. For each iteration i, an IF block
initially checks whether the sum of zeros in c has already reached n−k, in which
case the value of c[i] is set to zero. In the other case, a candidate parent cpar

6

Algorithm 2 Zero-Lengths-Cross(p1, p2, n, k)

sumz := 0
c := 0k+1

for i := 1 to k do
if (sumz = n− k) then
c[i] := 0

else
cpar := Random(p1, p2)
if (sumz + cpar[i] = n− k) then
c[i] := cpar[i]
sumz := sumz + cpar[i]

else
c[i] := n− k − sumz
sumz := n− k

end if
end if

end for
c[k + 1] := n− k − sumz
return c

is randomly selected between p1 and p2 with uniform probability. The next IF
block verifies whether the value at position i of the selected parent cpar can be
safely copied in the child without breaking the n− k limit set by Equation (1).
If this is the case (i.e. sumz + cpar[i] is at most n− k), then cpar[i] is copied in
c[i], and the accumulator sumz is updated by adding to it cpar[i]. Otherwise,
the value in c[i] is set to the remaining number of zeros that can be put in the
child, which is n− k − sumz. Equivalently, this means that we are copying in
c[i] just enough zeros from cpar[i] to reach the threshold n−k, without violating
it. Then, the accumulator sumz is directly set to n− k, since no other zeros can
be put in the child. After the FOR loop, the value of the last component in c is
determined by simply subtracting from n− k the sum of zeros obtained up to
that point. Thus, if sumz reached n− k in the FOR loop, the last component
will be set to zero, otherwise it will contain the number of zeros necessary to
“pad” the bitstring encoded by c after its last 1.

2.3 Map of Ones Crossover

Suppose that x = (x1, · · · , xn) is the binary vector representation of a (n, k)-
combination, and denote by supp(x) its support. The map of ones of x is the
k-dimensional vector q = (q1, · · · , qk) where qi ∈ supp(x) for all i ∈ {1, · · · , k},
and such that qi 6= qj for all indices i 6= j. In other words, the map of ones of x
corresponds to its support in vector form.

Thus, the map of ones representation lists the nonzero coordinates in the
binary coding of a (n, k)-combination. Following the example of the previous
section, the map of ones corresponding to the binary string x representing a
(8, 4)-combination is q = (2, 5, 6, 8), where the positions of the ones are listed in
increasing order. Strictly speaking, the order of the positions is irrelevant, since
they always yield the same binary representation.

One can notice that the only constraint in the map of ones is that there

7

Algorithm 3 Map-1-Cross(p1, p2, k)

c := 0k

comm list = Find-Common-Pos(p1, p2)
for i := 1 to k do
cpar := Random(p1, p2)
cpos := Rand-Pos(cpar)
c[i] := cpar[cpos]
Remove(cpar, cpar[cpos])
if (Contains(comm list, cpar[cpos])) then

if (cpar = p1) then
Remove(p2, cpar[cpos])

else
Remove(p1, cpar[cpos])

end if
end if

end for
return c

cannot be duplicate positions in the vector. Thus, given two bitstrings of length
n and weight k represented by their maps of ones, the crossover operator must
be aware of the common positions between them, in order to avoid duplications.
Algorithm 3 reports the pseudocode for our crossover operator. Let us suppose
that we have two bitstrings x1, x2 ∈ Bn,k of length n and Hamming weight
k, represented respectively by the maps of ones p1 and p2 of length k. The
procedure Map-1-Cross begins by initializing the map of ones of the child
c and by finding the positions which p1 and p2 have in common. The latter
operation is performed by the subroutine Find-Com-Pos, which returns the
vector comm list. Successively, for all i ∈ {1, · · · , k}, the value c[i] is computed
as follows. One of the two parents is randomly chosen by calling the procedure
Random on p1 and p2. Then, a random index cpos is selected from the candidate
parent cpar, and the value of c[i] is set equal to cpar[cpos]. In other words, the
child c inherits from the parent cpar the position of the 1 specified by the value
cpar[cpos]. Finally, in order to avoid that the same position is selected in the
next iterations, the value cpar[cpos] is removed from the candidate parent by
using the Remove procedure. The value is also removed from the unselected
parent if it is contained in comm list.

2.4 Ordering Bias and Positions Shuffling

It can be noticed that all the balanced crossover operators that we defined in the
previous sections build the child individual from left to right, i.e. by copying the
genes from the parents in increasing order of position. A natural question arising
from this observation is whether this particular ordering introduces any bias
towards a particular subset of feasible offspring. Intuitively, this does not seem
to be the case for the map-of-ones crossover, since as we remarked in Section 2.3
the phenotype bitstring depends only on the specific values contained in the
map of ones encoding, and not on their ordering. On the other hand, for the
counter-based and zero-length crossover operators the situation looks different.
In fact, after the threshold value has been reached (be it the number of 0 or 1, or

8

the sum of zero lengths), the remaining loci of the child are set deterministically.
Hence, it would be reasonable to assume that the counter-based and the zero-
length crossover operators induces a bias in the offspring. We remark that,
although this “left-to-right” approach is prevalent in the relevant literature since
Millan et al’s counter-based crossover [14], to the best of our knowledge no one
investigated the impact of this design choice on the GA performance.

For this reason, we also considered a “shuffling” version of each balanced
crossover operator which randomly mixes the order of the positions to be copied
from the parents to the offspring, to assess if there are significant differences in
performances with the “left-to-right” approach. From the pseudocode point of
view, the shuffling version of each balanced operator is practically identical to
its “left-to-right” counterpart, except that an additional array pos of length n
representing a random permutation of the genotype positions is passed as an
input parameter to the operator. Moreover, all occurrences of i used to index
the positions of the child c or the parents p1, p2 are replaced by pos[i].

3 Optimization Problems

We now give the formal statement of the three combinatorial optimization
problems that we addressed in our statistical comparison of balanced crossover
operators.

3.1 Nonlinear Balanced Boolean Functions

A Boolean function of n ∈ N variables is a map f : Fn
2 → F2. The common way

for representing a Boolean function f is by means of its truth table Ωf , which is
basically a binary vector of length 2n that specifies for each input vector x ∈ Fn

2

the output value of f(x), in lexicographic order. A Boolean function is called
balanced if its truth table Ωf is composed of an equal number of ones and zeros,
i.e. it represents a (2n, 2n−1)-combination.

Another representation of Boolean functions f : Fn
2 → F2 used in cryptogra-

phy is the Walsh transform, which is the function Wf : Fn
2 → Z defined for all

ω ∈ Fn
2 as:

Wf (ω) =
∑
x∈Fn

2

(−1)f(x) · (−1)ω·x , (2)

where ω · x = ω1x1 ⊕ ω2x2 ⊕ · · · ⊕ ωnxn is the scalar product modulo 2 between
the vectors ω, x ∈ Fn

2 . The spectral radius Wmax(f) of a Boolean function f is
defined as the maximum absolute value of its Walsh transform, i.e. Wmax(f) =
maxω∈Fn

2
{|Wf (ω)}.

The nonlinearity of a Boolean function f : Fn
2 → F2 is defined as the

minimum Hamming distance of its truth table Ωf from the set of truth tables of
all linear functions, i.e. those functions whose algebraic expressions contain only
XOR. This can be computed through the following formula based on the Walsh
transform:

Nl(f) = 2n−1 − 1

2
·Wmax(f) . (3)

In cryptography, Boolean functions which are both balanced and have high
nonlinearity play a fundamental role in the design of stream and block ciphers [1].
Since the set of all Boolean functions is composed of 22

n

elements, which is not

9

exhaustively searchable for n > 5, evolutionary algorithms such as GA represent
a possible method for finding highly nonlinear balanced Boolean functions in a
reasonable amount of time. We formally state the combinatorial optimization
problem as follows:

Problem 1. Let n ∈ N. Find a Boolean function f : Fn
2 → F2 of n variables

such that f is balanced and has maximum nonlinearity.

In particular, given the truth table bitstring Ωf ∈ F2n

2 of a Boolean function
f : Fn

2 → F2 of n variables, in our experiments the fitness of f is computed with
the following function:

fit1(f) = Nl(f)− |2n−1 − wH(Ωf)| , (4)

where |2n−1 − wH(Ωf)| is the unbalancedness penalty factor which punishes the
deviation of f from being a balanced function. The objective of our GA, in
particular, is to maximize fit1(f). Of course, when using balanced crossover
operators the penalty factor is not necessary, since the candidate solutions
generated by GA are always balanced functions.

3.2 Bent Functions

From Equation (3), one can see that the lower the spectral radius is, the higher
the nonlinearity of a Boolean function will be. Due to Parseval’s relation [1],
the minimum spectral radius is achieved when the Walsh spectrum is uniformly
divided among all 2n vectors. This means that the Walsh coefficients must all
have the same absolute value 2

n
2 , thus giving the following upper bound on

nonlinearity:
Nl(f) ≤ 2n−1 − 2

n
2−1 . (5)

Clearly, equality in (5) can occur only if n is even, since the Walsh coefficients of
a Boolean function must be integer numbers. The Boolean functions achieving
this bound are called bent, and they have several applications in cryptography
and coding theory [1].

A nice feature of the Walsh transform is that the Walsh coefficient Wf (0)
(where 0 denotes the null vector) is related to the Hamming weight of the truth
table Ωf as follows:

wH(Ωf) = 2n−1 − 1

2
·Wf (0) . (6)

Since all Walsh coefficients of a bent function must be equal to ±2
n
2 , this

means that the Hamming weight of bent functions is either 2n−1 − 2
n
2−1 or

2n−1 + 2
n
2−1. Without loss of generality, one can narrow the attention only to

the weight 2n−1 − 2
n
2−1, since the others are obtained by simply complementing

the corresponding truth tables. Hence, one can cast the search of bent functions
as an optimization problem over the set of bitstrings of length 2n and weight
k = 2n−1 − 2

n
2−1, which makes it amenable to GA with balanced crossover

operators. For this reason, we adopted it as our second optimization problem
for our investigation:

Problem 2. Let n ∈ N be an even number. Find a Boolean function f : Fn
2 → F2

of n variables such that Nl(f) = 2n−1 − 2
n
2−1.

10

Since bent functions reach the highest possible value of nonlinearity, we
defined a fitness function analogous to fit1. Given f : Fn

2 → F2, we defined the
fitness function over f for Problem 2 as follows:

fit2(f) = Nl(f)− |2n−1 − 2
n
2−1 − wH(Ωf)| , (7)

where the unbalancedness penalty factor this time is defined as |2n−1 − 2
n
2−1 −

wH(Ωf)|. The optimization objective is again to maximize Equation (7), since
having fit2(f) equal to the covering bound for n corresponds to the case where
the nonlinearity is maximal and the deviation from the prescribed Hamming
weight 2n−1− 2

n
2−1 is zero. As in the case of fit1, when using balanced crossover

operators the unbalancedness penalty factor is not necessary.

3.3 Binary Orthogonal Arrays

Orthogonal Arrays (OA) are rectangular matrices whose submatrices satisfy a
specific balancedness constraint on their rows. OA find several applications in
statistics, combinatorial designs theory and cryptography [5]. In what follows,
we will focus on binary OA, meaning that the matrices are Boolean. We formally
define a binary OA as follows:

Definition 1. Let N, k, t, λ ∈ N with 0 ≤ t ≤ k. A N × k binary matrix A is
called a binary orthogonal array (OA) with k columns, strength t and index λ
(for short, an OA(N, k, t, λ)) if in each submatrix of N rows and t columns each
binary t-tuple occurs exactly λ times.

Notice that the parameter λ of an OA is related to its strength t and number
of rows N by the relation λ = N

2t .
For our third optimization problem, formally defined below, we are interested

in binary OA whose columns are truth tables of Boolean functions:

Problem 3. Let n, k, t ∈ N. Find k Boolean functions f1, · · · , fk : Fn
2 → F2 of

n variables such that the matrix

A = [Ω>f1 ,Ω
>
f2 , · · · ,Ω

>
fk

] (8)

is an OA(2n, k, t, λ), with λ = 2n−t.

Hence, the goal of Problem 3 is to find k n-variables Boolean functions such
that the bitstrings of their truth tables are the columns of a binary OA with
N = 2n rows and strength t.

A useful property for this problem is that any binary OA of strength t is
also an OA of strength t′ < t, for all t′ ∈ {1, · · · , t − 1}. Taking t′ = 1, this
implies that each column of a binary OA must be a balanced bitstring of length
N . Consequently, one can use a GA with balanced crossover operators to evolve
candidate binary OA as a set of k balanced bitstrings. New solutions are bred by
applying balanced crossover and mutation independently on the single bitstrings,
thus maintaining the balancedness constraint on the single columns of the array.
This is the optimization approach that was adopted by Mariot et al. [12], from
which we took the fitness function for our experiments. In particular, the fitness
function stands on the idea of counting the repeated tuples in the submatrices of
an array.

11

Given a N × k binary matrix A, let I be a subset of t indices, and let AI

denote the N × t submatrix obtained by considering only the columns of A
specified by the indices of I. For all binary t-tuples x ∈ Ft

2, let AI [x] denote
the number of occurrences of x in AI , and let δ(AI , x) be the λ-deviation of x
defined as δ(AI , x) = |λ−AI [x]|. Then, the Euclidean deviation of AI is defined
as:

∆(AI)2 =

√√√√√
∑

x∈Ft
2

|λ−AI [x]|2
 . (9)

The fitness function for Problem 3 is then defined for all 2n × k binary matrix A
formed by k n-variables Boolean functions as follows:

fit3(A) =
∑

I⊆[k]:|I|=t

∆(AI)2 + UNB(A) , (10)

where the unbalancedness penalty factor UNB(A) is defined as the sum of
the unbalancedness of all Boolean functions f1, · · · , fk, that is, UNB(A) =∑k

i=1 |2n−1−wH(Ωfi)|. As for the other two optimization problems, when using
GA with balanced crossover operators this penalty factor can be dropped from
the fitness function. The optimization objective is to minimize fit3, since any
binary matrix such that fit3(A) = 0 corresponds to a binary OA(2n, k, t, λ).

4 Experimental Setting

In this section, we describe the details of the genetic algorithm used to test the
three crossover operators presented in Section 2, the parameters used to set up
the experiments over the three optimization problem defined in Section 3, and
the experimental hypotheses to be tested1.

4.1 Genetic Algorithm Details

The genetic algorithm adopted in this work is a steady state GA where a single
pair of parents is drawn from the current population at each iteration. For
selection, we employed a deterministic tournament operator where the best two
out of t randomly sampled individuals are selected for crossover.

The four crossover operators considered in our investigation are classic one-
point crossover and the three balanced crossover described in Section 2, namely
counter-based, map of ones and zero-lengths crossover. Our GA generates a
single child for each selected pair of parents, independently of the underlying
crossover operator. In particular, since one-point crossover generates two children
by design, our GA randomly selects only one of them with uniform probability,
which is then subjected to mutation.

The mutation operator depends on the type of crossover: when one-point
crossover is used, a classic bit-flip mutation operator is applied on the generated
child. On the other hand, with balanced crossover operators a simple swap-based
mutation operator is used [12]. In particular, this mutation operator swaps with

1The source code of our GA and the experimental results presented in the next section are
publicly available at https://github.com/rymoah/BalancedCrossoverGA

12

https://github.com/rymoah/BalancedCrossoverGA

probability pm a pair of distinct values in the child, in order to maintain its
Hamming weight. Notice that swap mutation always operates on the bitstring
representation. Hence, even when zero-length or map-of-ones crossover are
employed, the child is first mapped to the corresponding balanced bitstring, and
then swap mutation is applied to it. Further, remark that in the OA problem
the mutation operator (be it bit-flip or swap mutation) is applied separately on
each column composing the child, as done in [12].

Once the child has been mutated, the GA evaluates the relevant fitness
function on it. In particular, depending on the optimization problem considered,
if one-point crossover is used then the full form of the fitness functions fit1, fit2
or fit3 respectively described in Equations (4), (7) and (10) is used. On the
opposite, when one of the three balanced crossover operators is employed, the
unbalancedness penalty factor is dropped from the computation of the fitness
functions. Similarly to the choice of the mutation operator, the creation of
the initial population depends on the adopted crossover operator. For one-
point crossover, the population is initialized at random, without controlling the
Hamming weights of the generated bitstrings. Contrarily, for balanced crossover
operators each chromosome is created by generating at random each bit in the
bitstring, and using a counter to keep track of the number of ones. When the
prescribed Hamming weight has been reached, the chromosome is filled with
zeros in the remaining positions.

Our GA uses an elitist strategy with random replacement: in particular,
if the child has a better fitness value than any of its two parents, then an
individual is drawn at random from the population to be replaced by the child.
To guarantee elitism, if the child has a better fitness value of its two parents but
not of the best individual in the whole population, then the latter is excluded
from the replacement. Further, since we are more interested in comparing the
performances of the crossover operators than in generating optimal solutions for
the considered problems, the GA terminates after it performs a specified number
of fitness evaluations.

4.2 Experimental Parameters

Table 1 reports the problem instances tested in our experiments for each of
the three considered optimization problems. The three problems in the table
are respectively identified in the first column by the names Bal-NL for highly
nonlinear balanced Boolean functions, Bent for bent functions and Bin-OA
for binary orthogonal arrays. The second column reports the problem instances
considered for each problem, which are characterized by the number of variables n
for the problems Bal-NL and Bent and by the set of parameters OA(2n, k, t, λ)
for the Bin-OA problem. The third and fourth columns report, for each problem
instance, the size of the corresponding search space respectively when one-point
crossover is used (UNB Size) and when balanced crossover operators are adopted
(BAL size). The details for the computation of the search space sizes can be
found in [12]. It can be remarked from Table 1 that for the two Boolean functions
problems (Bal-NL and Bent) the use of balanced crossover operators yields a
reduction of the search space between one and two orders of magnitude. On the
other hand, for the Bin-OA problem the reduction is much more significant.

For each problem instance, we ran our steady state GA with each of the four
crossover operators for R = 50 experimental runs. Moreover, for each balanced

13

Table 1: Problem instances and relative search space sizes

Problem Instance UNB Size BAL Size

Bal-NL
n = 6 22

6 ≈ 1.8 · 1019
(
64
32

)
≈ 1.8 · 1018

n = 7 22
7 ≈ 3.4 · 1038

(
128
64

)
≈ 2.4 · 1037

n = 8 22
8 ≈ 1.1 · 1077

(
256
128

)
≈ 5.7 · 1075

Bent
n = 6 22

6 ≈ 1.8 · 1019
(
64
28

)
≈ 1.1 · 1018

n = 8 22
8 ≈ 1.1 · 1077

(
256
120

)
≈ 3.5 · 1075

n = 10 22
10 ≈ 1.8 · 10308

(
1024
496

)
≈ 2.7 · 10306

Bin-OA
OA(16, 8, 3, 2)

(
216

8

)
≈ 8.4 · 1033

((16
8)
8

)
≈ 1.8 · 1028

OA(16, 8, 2, 4)
(
216

8

)
≈ 8.4 · 1033

((16
8)
8

)
≈ 1.8 · 1028

OA(16, 15, 2, 4)
(
216

15

)
≈ 1.3 · 1060

((16
8)
15

)
≈ 3.3 · 1049

operator we performed a separate set of R = 50 runs both for the “left-to-right”
and the “shuffling” versions. Hence, we tested 7 crossover operators for a total
of 7 · 3 · 50 = 1050 experimental runs for each of the three optimization problems.
Each GA experiment used a population size of P = 50 individuals, tournament
size t = 3 and stopped after fit = 500000 fitness evaluations. Additionally, we
employed a mutation probability of 0.7 for the Bal-NL and the Bent problems
and of 0.2 for the Bin-OA problem. We chose these particular parameter values
in order to compare our balanced Boolean functions and bent functions results
with those reported in [17], and our OA results with those of [12].

The research hypotheses that we tested with our experiments are as follows:

• H1: One-point crossover has a worse performance than any of the three
balanced crossover operators.

• H2: The shuffling versions of the counter-based and zero-length crossover
have a better performance than their “left-to-right” counterparts.

• H3: There is no statistical significant difference between the shuffling and
the “left-to-right” versions of the map-of-ones crossover.

In order to settle the research hypotheses above when observation of the
results plots was not sufficient, we employed the Mann-Whitney-Wilcoxon test.
The alternative hypothesis adopted was that the two distributions were not equal.
More precisely, that the probability of a sample a from the first distribution
exceeding a sample b from the second distribution is different from the probability
of b exceeding a. The significance value α for the statistical tests was set to 0.01.

5 Results

The results of the experiments are summarized in Figures 1– 9. Each figure
represents one of the three problem instances of the three considered optimization
problems. The boxplots show the median, minimum, maximum, first and third

14

quartiles (excluding outliers) of the fitness values of the best individuals reached
at the end of the experimental runs with a particular crossover operator. In all
figures, the acronyms OP, CP, ZL and MoO respectively stand for one-point,
counter-based, zero-length and map-of-ones crossover, with the “w/s” suffix
indicating the shuffling versions of the balanced operators.

5.1 Balanced Boolean Functions

Figures 1– 3 depict the results obtained for the balanced Boolean functions
problem.

From the results for n = 6, it is possible to observe that all crossover
operators have the same median fitness of 26, which corresponds to the maximum
nonlinearity achievable by balanced functions of 6 variables. Although the results
obtained by one-point crossover seem to be more dispersed towards lower values
of nonlinearity, the statistical tests show no significant differences between its
distribution and those of the “left-to-right” versions of the balanced operators.
On the other hand, one-point crossover performs worse than the shuffling versions
of all balanced operators (p-values of 6.30 ·10−5, 0.0003, and 0.00013 respectively
for the comparisons OP-CB w/s, OP-ZL w/s and OP-MoO w/s). On the
other hand, for the n = 7 instance one-point crossover performs worse than
all other balanced crossover operators, both shuffling and left-to-right versions.
Beside being confirmed by the statistical tests, this can also be remarked by
the boxplots in Figure 2, where the median fitness scored by OP is lower than
the medians of the balanced operators. The situation is about the same for
n = 8 variables, where OP performs worse than all other balanced operators
except when comparing it with the shuffling version of the zero-length crossover,
since the statistical tests did not yield any significant difference between their
performances. Remark that, although one-point crossover produced a maximum
best fitness of 113 which is higher than the one scored by the balanced operators,
this does not correspond to a balanced solution (since the nonlinearity of balanced
functions must be even).

Regarding the comparison between the left-to-right and shuffling versions of
the balanced crossover operators over this problem, we detected a statistically
significant difference only for the counter-based crossover over the n = 6 and
n = 7 instances, with the shuffling version performing better (p-values of 0.0002
and 0.0065 respectively). In particular, the counter-based crossover with shuffle
is the only operator reaching a 100% success rate for the n = 6 instance, since
all best individuals achieved the maximum fitness value of 26. However, when
considering all three problem instances, the map-of-ones crossover seems to be
the most robust operator, since from the boxplots it has the smallest dispersion.
Moreover, the shuffling version of the map-of-one operator achieved the maximum
nonlinearity value of 56 for balanced Boolean functions of n = 7 variables.

5.2 Bent Functions

Figures 4– 6 report the results for the bent functions problem.
For the n = 6 instance there is no clear distinction among the boxplots of the

different crossover operators, although it can be seen that balanced operators
(in particular, left-to-right counter-based and both versions of map-of-ones) are
the ones reaching the optimal nonlinearity value of 28. We observed moreover

15

●●●●●●●●●●●● ●●●●●●● ●●●● ● ●●

OP CB ZL MoO CB w/s ZL w/s MoO w/s

24
.0

24
.5

25
.0

25
.5

26
.0

B
es

t f
itn

es
s

at
 th

e
la

st
 g

en
er

at
io

n

Figure 1: Results of the Balanced Boolean functions problem, n = 6 instance.

●●●●●●●

●

OP CB ZL MoO CB w/s ZL w/s MoO w/s

52
53

54
55

56

B
es

t f
itn

es
s

at
 th

e
la

st
 g

en
er

at
io

n

Figure 2: Results of the Balanced Boolean functions problem, n = 7 instance.

16

●●●

●

●●●● ●●●●●●●●●●●● ● ●●●●●●●●●● ●

OP CB ZL MoO CB w/s ZL w/s MoO w/s

10
8

10
9

11
0

11
1

11
2

11
3

B
es

t f
itn

es
s

at
 th

e
la

st
 g

en
er

at
io

n

Figure 3: Results of the Balanced Boolean functions problem, n = 8 instance.

that one-point crossover performs worse in the statistical tests than the left-to-
right version of map-of-ones and the shuffling versions of all balanced operators
(p-values respectively of 0.0008, 0.0008, 0.0009 and 2.45 · 10−5). Similarly to
the results obtained for the balanced Boolean functions problem, the situation
changes for the n = 8 instance. In this case, OP performs worse than all other
crossover operators, again with the exception of the shuffling version of the
zero-length crossover operator, where no statistically significant difference arose.
This observation is also supported for n = 10 variables, where there are no
significant differences between OP and both versions of ZL. On the other hand,
OP performs worse than both versions of CB and MoO (p-values respectively of
9.98 · 10−6, 1.93 · 10−15, 7.56 · 10−5 and 1.14 · 10−12).

Concerning the balanced operators, we observed no statistically significant
differences between their left-to-right and shuffling versions, except for the zero-
length crossover in the n = 8 instance. In this case, the shuffling version fared
worse than the left-to-right counterpart (p-value of 0.0044). Analogously to the
previous optimization problem, the map-of-ones crossover resulted to be the best
performer, obtaining statistically significant differences in all comparisons with
the other balanced operators over all three problem instances, except for the
n = 8 case with the left-to-right counter-based crossover.

5.3 Binary Orthogonal Arrays

Figures 4– 6 report the boxplots for the results obtained on the orthogonal arrays
problem. Recall from Section 3.3 that this is a minimization problem. Hence, it
can be clearly seen from the boxplots that one-point crossover scored the worse

17

●

●

●●●

●

●●●●

●●●

●●●●●● ●●

●

●

●●

●

●●●● ●●●●●●●●

OP CB ZL MoO CB w/s ZL w/s MoO w/s

24
25

26
27

28

B
es

t f
itn

es
s

at
 th

e
la

st
 g

en
er

at
io

n

Figure 4: Results of the bent functions problem, n = 6 instance.

●●●● ●●●●●●●● ●●●●●●●●● ●

OP CB ZL MoO CB w/s ZL w/s MoO w/s

10
8

10
9

11
0

11
1

11
2

B
es

t f
itn

es
s

at
 th

e
la

st
 g

en
er

at
io

n

Figure 5: Results of the bent functions problem, n = 8 instance.

18

●

●

●

●

●

●

●

●

●●●●●

●

●

●●●

●

●

OP CB ZL MoO CB w/s ZL w/s MoO w/s

46
6

46
8

47
0

47
2

47
4

47
6

B
es

t f
itn

es
s

at
 th

e
la

st
 g

en
er

at
io

n

Figure 6: Results of the bent functions problem, n = 10 instance.

performance over all three problem instances. As a matter of fact, beside never
converging to an optimal solution, all OP quantiles are substantially higher than
those featured by the distributions of the balanced operators.

Comparing the left-to-right and shuffling versions of the balanced operators,
we can observe from the boxplots that the shuffle operation actually worsens the
performance of the counter-based and zero-length crossover over all instances.
On the other hand, the statistical tests did not detect any significant difference
between the left-to-right and shuffling versions of the map-of-ones operator in
any problem instance.

This left us with four crossover operators, namely left-to-right CB and ZL,
and both versions of MoO. Among them, however, no significant differences
have been observed through the statistical tests, in any of the three problem
instances.

6 Discussion

In this section, we discuss the main findings that can be deduced from the
results reported in the previous section, especially with respect to the research
hypotheses laid out in Section 4.2. Additionally, we compare our results with
those obtained by two recent works in the literature, namely [17] for the balanced
Boolean functions and bent functions problems and [12] for the orthogonal arrays
problem.

19

●

●

●

●

OP CB ZL MoO CB w/s ZL w/s MoO w/s

0
5

10
15

20
25

30
35

B
es

t f
itn

es
s

at
 th

e
la

st
 g

en
er

at
io

n

Figure 7: Results of the OA problem, (16, 8, 2, 4) instance.

●●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

OP CB ZL MoO CB w/s ZL w/s MoO w/s

0
20

40
60

80
10

0
12

0

B
es

t f
itn

es
s

at
 th

e
la

st
 g

en
er

at
io

n

Figure 8: Results of the OA problem, (16, 8, 3, 2) instance.

20

●

●

●
●●
●
●
● ●

OP CB ZL MoO CB w/s ZL w/s MoO w/s

0
50

10
0

15
0

B
es

t f
itn

es
s

at
 th

e
la

st
 g

en
er

at
io

n

Figure 9: Results of the OA problem, (16, 15, 2, 4) instance.

6.1 Insights Gained from the Results

The results presented in Sections 5.1, 5.2 and 5.3 showed that one-point crossover
overall scored as the worst performer among all tested operators. The only
exceptions are represented by the n = 6 instances of the balanced Boolean
functions and bent functions problems, where the performance of one-point was
not distinguishable from that of the counter-based and zero-length operators,
and by the n = 8 instances, where no significant differences between one-point
and zero-length crossover could be observed. On the other hand, over the OA
problem one-point crossover is clearly worse than any balanced operator, without
even the need to resort to statistical tests for settling the question.

Hence, the main insight that we gain from these observations is that hy-
pothesis H1, i.e. one-point crossover has a worse performance than any of the
three balanced crossover operators, can be considered largely confirmed by our
experiments. Using an unconstrained crossover operator such as one-point seems
to be a bad choice especially in those optimization problems where the fitness
function heavily relies on the balancedness property of the individuals, such as
in the OA case. As a matter of fact, the main term of fit3 actually measures the
balancedness of submatrices, not only of the single columns. On the other hand,
in problems where the optimization effort is not only focused on the balancedness
property, as in the balanced Boolean functions and bent functions cases, the
advantage of balanced operators over one-point is less clear on small problem
instances. This is probably due to the sufficiently limited size of the search
space for the n = 6 instance, which allows also one-point crossover to converge
relatively easily to optimal solutions.

21

The indistinguishability between one-point and zero-length crossover over
the n = 8 and n = 10 instances for these two problems, however, seems to
indicate that the latter is not a suitable operator for optimization problems
concerning the cryptographic properties of Boolean functions. The reason could
lie in the particular representation adopted for this operator, which encodes the
sequences of adjacent zeros composing a truth table. Possibly, highly nonlinear
and bent Boolean functions could have a “fragmented” truth table without long
runs of zeros, hence making this encoding less efficient for these problems. As
far as we are aware there are no works in the literature that investigate the
distribution of run lengths in the truth tables of highly nonlinear and bent
functions. Hence, this could represent an interesting direction for future research
to test the “fragmentation” conjecture.

The second main remark that we can obtain from our experiments concerns
the ordering bias of the “left-to-right” versions of our crossover operators. Surpris-
ingly enough, we found out not only that the shuffling operation does not give any
advantage over the Boolean functions problems with the counter-based and zero-
length crossovers, but also that shuffling actually damages their performances
over the OA problem. Therefore, we can reasonably assert that our experi-
ments disprove hypothesis H2, i.e. the shuffling versions of the counter-based
and zero-length crossover have a better performance than their “left-to-right”
counterparts. On the other hand, since in our results we found no statistically
significant differences between the “left-to-right” and shuffling versions of the
map-of-ones operator, we can consider hypothesis H3 confirmed.

The reason for the worse performances scored by counter-based and zero-
length crossovers with shuffling on the OA problem could reside in the particular
structure of this optimization problem. Indeed, the fitness function fit3 tries
to minimize the number of repetitions of t-tuples going beyond the index λ.
However, crossover is applied column-wise on the Boolean matrices represented
by the parents, and when shuffling is adopted, each column of the child is created
using a different random permutation of the positions. This could pose a problem
since if two parents have a good fitness value on a particular subset of t columns,
changing the order of positions when crossing the single column could worsen
the multiplicities of the t-tuples, thus creating a child with worse fitness. On the
other hand, the “left-to-right” version does not have this problem, since it adopts
always the same order to copy the positions of the columns. More specifically,
we suspect that there is nothing special about the left-to-right ordering: the
important thing is that in the OA problem the same ordering of positions should
be used over all columns, instead of different ones. It would be interesting to
investigate this idea in future research by performing further experiments with
fixed positions orderings other than the left-to-right one.

6.2 Comparison with other Algorithms

As noted in Section 4.2, we selected the parameter values for the GA such
as mutation probabilities, population sizes, numbers of fitness evaluations and
runs in order to match the experimental settings of two recent works in the
literature, namely Picek et al.’s work about immunological algorithms for evolv-
ing cryptographic Boolean functions [17] and Mariot et al.’s paper about the
design of binary orthogonal arrays through evolutionary algorithms [12]. For
completeness, we report in this section a comparison of our results with these

22

Table 2: Median fitness values comparison between our GA with map-of-ones
crossover and the algorithms used in [17].

Problem Instance MoO GAb CLONALGb opt-IAb

Bal-NL
n = 6 26 26 26 26

n = 8 112 112 112 112

Bent
n = 6 26 26 28 28

n = 8 112 114 114 114

n = 10 474 478 478 476

Table 3: Success rates comparison between our GA with map-of-ones crossover
and the algorithms used in [12].

Problem Instance MoO GA-CB GP

Bin-OA
OA(16, 8, 2, 4) 50 27 100

OA(16, 8, 3, 2) 4 3 100

OA(16, 15, 2, 4) 0 0 93

two works. However, a perfect comparison is not feasible due to some small
differences concerning both the adopted fitness functions and the structure of the
optimization algorithms. Moreover, we recall that the main focus of this paper
is not about finding a balanced crossover operator that can outperform all other
state-of-the-art algorithms, but rather analyzing whether balanced crossover
operators give an advantage over unbalanced ones.

In Table 2 we present the comparison of the median fitness values for balanced
and bent Boolean functions. Among our crossover operators, we considered
only the best performing one, that is, the “left-to-right” map-of-ones crossover.
From [17] we considered the following optimization methods: Genetic Algorithms
(GAb), Clonal Selection Algorithms (CLONALGb), and Optimization Immune
Algorithms (opt-IAb), all using a binary encoding of the solutions. We discarded
Evolution Strategies since they resulted to be the worst performers among all
considered methods in [17], and all algorithms employing the floating point
representation, since it is out of scope for the comparison. Regarding the
balanced Boolean functions problem, we observe that all medians coincide over
all problem instances and optimization methods. This can be interpreted as the
fact that the problem can be successfully approached in different ways through
optimization algorithms whose parameters are carefully tuned or using ad-hoc
variation operators. On the other hand the map-of-ones crossover performs
slightly worse than the other considered methods on the bent functions problem,
with a more pronounced difference in the median fitness for higher number of
variables.

Table 3 compares the success rates for the OA problem between our map-
of-ones crossover and the Genetic Algorithms with counter-based crossover
(GA-CB) and Genetic Programming (GP) proposed in [12]. One can remark that
over the smallest problem instance the map-of-ones crossover converges more

23

frequently than the GA-CB algorithm. In the other instances, however, both
algorithms have difficulties in generating optimal solutions over all considered
runs. In particular, neither GA-CB nor the map-of-ones crossover can match
the performances of GP, which achieves a full success rates in two out of three
instances, while it converges 93% of the time on the largest instance. Thus, the
difference in the performances between GA and GP does not seem to be due to
the particular variation operator employed, but rather to something about the
GP representation of the candidate solutions.

7 Conclusions

In this paper, we investigated the effect of three balanced crossover operators
in constraining the search space explored by a steady state GA over three
combinatorial optimization problems from the domains of cryptography and
combinatorial designs. The considered operators were the counter-based, zero-
length, and map-of-ones crossovers and all of them were studied in both in their
“left-to-right” and shuffled variants.

Regarding the novelty of the crossover operators, the counter-based crossover
operator is a slightly modified version of the crossover designed by Millan et
al. [14], while to the best of our knowledge the zero-lengths and map of ones
crossovers are proposed for the first time in the present work.

We explored three different research questions: whether there is an advantage
in using balanced crossover operators as opposed to one-point crossover, whether
the shuffled versions of the counter-based and zero-length crossovers perform
better than their “left-to-right” versions, and whether the shuffled version of the
map-of-ones crossover performs as its “left-to-right” version.

The Mann-Whitney-Wilcoxon test was used to compare the performances
of these balanced operators with that of one-point crossover, which does not
enforce any constraint on the Hamming weight of the bitstrings. The obtained
results showed that, in general, the balanced crossovers perform better than
the one-point crossover, showing the suitability of the proposed operators for
constraining the search space.

We also noticed that using shuffling either produces no significant difference
or actually damages the performances in the case of the counter-based and zero-
length crossover, showing that the their “left-to-right” versions might actually
be more suitable. However, for the map-of-ones crossover the use of shuffling
neither hinder nor improve the search.

Multiple research avenues remain open for future research. The proposed
balanced crossover operators, while better than one-point crossover, does not
obtain state of the art performances in tackling combinatorial optimization
problems related to cryptography and combinatorial design theory. Further
improving and tuning our crossover operators is then an essential step in ensuring
their practical applicability in the future. Moreover, it would be interesting to
discover the effect on the shape of the fitness landscape induced by the different
balanced crossover operators proposed in this paper.

24

References

[1] Claude Carlet. Boolean functions for cryptography and error-correcting
codes. In Y. Crama, , and P. L. Hammer, editors, Boolean Models and
Methods in Mathematics, Computer Science, and Engineering, pages 257–
397. Cambridge University Press, New York, 2011.

[2] Jiah-Shing Chen and Jia-Leh Hou. A combination genetic algorithm with
applications on portfolio optimization. In IEA/AIE, volume 4031 of Lecture
Notes in Computer Science, pages 197–206. Springer, 2006.

[3] Jiah-Shing Chen, Jia-Li Hou, Shih-Min Wu, and Ya-Wen Chang-Chien. Con-
structing investment strategy portfolios by combination genetic algorithms.
Expert Syst. Appl., 36(2):3824–3828, 2009.

[4] Salvador Garćıa, Daniel Molina, Manuel Lozano, and Francisco Herrera.
A study on the use of non-parametric tests for analyzing the evolutionary
algorithms’ behaviour: a case study on the cec’2005 special session on real
parameter optimization. J. Heuristics, 15(6):617–644, 2009.

[5] A Samad Hedayat, Neil James Alexander Sloane, and John Stufken. Orthog-
onal arrays: theory and applications. Springer Science & Business Media,
2012.

[6] John H Holland. Adaptation in natural and artificial systems: An introduc-
tory analysis with applications to biology, control, and artificial intelligence.
U Michigan Press, 1975.

[7] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems.
Springer, 2004.

[8] Donald E Knuth. The art of computer programming. combinatorial algo-
rithms, part 1, vol. 4a, 2011.

[9] Luca Manzoni, Luca Mariot, and Eva Tuba. Does constraining the search
space of GA always help?: the case of balanced crossover operators. In
Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion, GECCO 2019, Prague, Czech Republic, July 13-17, 2019, pages
151–152, 2019.

[10] Luca Mariot and Alberto Leporati. A genetic algorithm for evolving
plateaued cryptographic boolean functions. In Theory and Practice of
Natural Computing - Fourth International Conference, TPNC 2015, Mieres,
Spain, December 15-16, 2015. Proceedings, pages 33–45, 2015.

[11] Luca Mariot, Stjepan Picek, Domagoj Jakobovic, and Alberto Leporati.
Evolutionary algorithms for the design of orthogonal latin squares based on
cellular automata. In GECCO, pages 306–313. ACM, 2017.

[12] Luca Mariot, Stjepan Picek, Domagoj Jakobovic, and Alberto Leporati.
Evolutionary search of binary orthogonal arrays. In PPSN (1), volume
11101 of Lecture Notes in Computer Science, pages 121–133. Springer, 2018.

[13] Thorsten Meinl and Michael R. Berthold. Crossover operators for multiob-
jective k-subset selection. In GECCO, pages 1809–1810. ACM, 2009.

25

[14] William Millan, Andrew J. Clark, and Ed Dawson. Heuristic design of
cryptographically strong balanced boolean functions. In EUROCRYPT,
volume 1403 of Lecture Notes in Computer Science, pages 489–499. Springer,
1998.

[15] Stjepan Picek, Marin Golub, and Domagoj Jakobovic. Evaluation of
crossover operator performance in genetic algorithms with binary repre-
sentation. In ICIC (3), volume 6840 of LNCS, pages 223–230. Springer,
2011.

[16] Stjepan Picek, Domagoj Jakobovic, and Marin Golub. On the recombination
operator in the real-coded genetic algorithms. In Proceedings of the IEEE
Congress on Evolutionary Computation, CEC 2013, Cancun, Mexico, June
20-23, 2013, pages 3103–3110, 2013.

[17] Stjepan Picek, Dominik Sisejkovic, and Domagoj Jakobovic. Immunologi-
cal algorithms paradigm for construction of boolean functions with good
cryptographic properties. Eng. Appl. of AI, 62:320–330, 2017.

[18] Vasiliy Sachnev and Sundaram Suresh. An improved sample balanced
genetic algorithm and extreme learning machine for accurate alzheimer
disease diagnosis. JCSE, 10(4), 2016.

[19] Vasily Sachnev and BS Mahanand. A cognitive ensemble classifier based on
risk sensitive hinge loss function for alzheimers disease diagnosis in early
stages. In 2018 IEEE Symposium Series on Computational Intelligence
(SSCI), pages 807–812. IEEE, 2018.

[20] Douglas R. Stinson. Combinatorial designs - constructions and analysis.
Springer, 2004.

26

	1 Introduction
	2 Balanced Crossover Operators
	2.1 Counter-Based Crossover
	2.2 Zero Lengths Crossover
	2.3 Map of Ones Crossover
	2.4 Ordering Bias and Positions Shuffling

	3 Optimization Problems
	3.1 Nonlinear Balanced Boolean Functions
	3.2 Bent Functions
	3.3 Binary Orthogonal Arrays

	4 Experimental Setting
	4.1 Genetic Algorithm Details
	4.2 Experimental Parameters

	5 Results
	5.1 Balanced Boolean Functions
	5.2 Bent Functions
	5.3 Binary Orthogonal Arrays

	6 Discussion
	6.1 Insights Gained from the Results
	6.2 Comparison with other Algorithms

	7 Conclusions

