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Abstract

The Unequal Area Facility Layout Problem (UA-FLP) has been widely
analyzed in the literature using several heuristics and meta-heuristics to opti-
mize some qualitative criteria, taking into account different restrictions and
constraints. Nevertheless, the subjective opinion of the designer (Decision
Maker, DM) has never been considered along with the quantitative crite-
ria and restrictions. This work proposes a novel approach for the UA-FLP
based on an Interactive Coral Reefs Optimization (ICRO) algorithm, which
combines the simultaneous consideration of both quantitative and qualitative
(DM opinion) features. The algorithm implementation is explained in detail,
including the way of jointly considering quantitative and qualitative aspects
in the fitness function of the problem. The experimental part of the paper
illustrates the effect of including qualitative aspects in UA-FLP problems,
considering three different hard UA-FLP instances. Empirical results show
that the proposed approach is able to incorporate the DM preferences in
the obtained layouts, without affecting much to the quantitative part of the
solutions.

Keywords:
UA-FLP, Coral Reefs Optimization, Interactive Algorithms, Bio-inspired
algorithms

Preprint submitted to Swarm and Evolutionary Computation March 20, 2020



1. Introduction

Facility Layout Design (FLD) arranges the disposition of a number of
facilities (or departments) in a manufacturing system, in order to accomplish
a given design objective (or objectives), while satisfying certain constraints.
A satisfactory facility disposition directly affects the efficiency of the man-
ufacturing system and it has been associated with reductions between 20%
and 50% of the total cost in an industrial company [1]. Therefore, obtain-
ing a high quality FLD is considered as very important to reduce waiting
times in the manufacturing of products and production costs [2]. Different
Facility Layout Problems (FLPs) have been identified related to FLD, de-
pending on several design factors. Thus, different FLP classifications have
been described in the works by Drira et al. [3], Anjos and Vieira [4] and
Hosseini-Nasab et al. [5], among others. In this sense, the Unequal Area Fa-
cility Layout Problem (UA-FLP) is one of the most important FLPs, because
of its direct application to real world problems.

The UA-FLP was first formulated by Armour and Buffa [6], and it con-
sideres a rectangular region and a set of departments (also with rectangular
shape). These departments have to be distributed in the most adequate ar-
rangement within the boundary of the space plant layout, considering as re-
striction that the overlap between facilities is not permitted. Usually, quanti-
tative performance (particularly, minimizing the total handling cost between
the departments that exist in the industrial plant [7]) is considered as the
main optimization criterion in the UA-FLP. However, there is additional
qualitative knowledge that is sometimes very relevant in the facility layout
design [8]. According to Tuzkaya and Ertay [9], qualitative aspects must be
taken into account in order to obtain robust layouts. Some of the qualita-
tive aspects considered could be: specific department position or orientation,
remaining space allocation and /or distribution, or any other qualitative fea-
ture that can be considered as relevant for the Decision Maker (DM). Note
that qualitative aspects of UA-FLPs are difficult to be considered by means
of a classical heuristic or meta-heuristic optimization approach [10]. Accord-
ing to Garcia-Hernandez et al. [11], this fact is due to these non quantitative
aspects could be subjective, unknown beforehand or changing during the de-
sign procedure. This makes the inclusion of the DM into the optimization
approach as primordial, in order to deal with these qualitative aspects of the



design.

The Coral Reefs Optimization (CRO) algorithm is a recently-proposed
evolutionary-type technique, in which the evolution mechanisms mimic the
processes occurring in natural coral reefs. These operations are reproduction
processes, the fight for space and the depredation of corals in the reef. The
CRO finally results in a kind of combination of Simulated Annealing and
Evolutionary Algorithms [12]. This strategy has been able to outperform
other meta-heuristics algorithms in many different areas such as, for example,
Bio-medical applications [13, 14], Telecommunications [15, 16], Structural
Engineering [17, 18] or Energy [19, 20]. Furthermore, the CRO has been
successfully applied to other hard optimization problems such as resource
allocation problems [21], neural network training [22], clustering [23] and
time series analysis [24]. Recently, this algorithm has been applied to solve
a version of the UA-FLP problem [25].

In this paper, we propose a novel approach to address the UA-FLP that
combines the Coral Reefs Optimization (CRO) with an interactive technique,
in order to take into account simultaneously both quantitative and qualitative
aspects in UA-FLPs. To the best of our knowledge, this is the first time that
an interactive mechanism is merged with a CRO algorithm. Hence, the aim
of the paper is twofold: first, to show the performance of the Interactive CRO
(ICRO) in the UA-FLP instances, and second to evaluate the robustness of
the CRO when an interactive process is included in the algorithm.

The rest of the paper is structured as follows: Section 2 details a literature
review on the UA-FLP. Section 3 describes the novel proposed interactive
CRO approach. Section 4 describes the experimentation performed in order
to validate this research, offering the achieved results and their analysis.
Finally, Section 5 concludes this work by means of a brief of the principal
conclusions and some future research lines that this work open.

2. Unequal area facility layout problem

In order to address the UA-FLP, different techniques and algorithms have
been considered. Following the classification by Komarudin and Wong [26], it
is possible to divide them into deterministic methods and heuristics (or meta-
heuristics) approaches. Regarding the first category, a first proposal based
on a branch and bound method was suggested by Meller et al. [27]. Later,
Montreuil [28] and Konak et al. [29] considered mixed integer programming
for solving the UA-FLP. Afterwards, Meller et al. [30] adapted Montreuil’s



approach and applied to large-size UA-FLPs. In this context, Sherali et al.
[31] proposed a improved technique in order to better resolve UA-FLPs in
terms of efficiency. This approach was further modified by Castillo et al. [32]
to reach optimal designs for an UA-FLP with a size of nine departments.
More recently, optimal solutions for UA-FLPs up to 12 departments was
achieved by Chae and Regan [33].

On the other hand, meta-heuristic approaches have gained importance
during the last few years, since these approaches obtain in general better re-
sults than deterministic methods, specially in medium and large UA-FLPs.
One of the first works dealing with meta-heuristics to solve UA-FPLs was
carried out by Tam [34], who developed a Simulated Annealing proposal
(LOGIC). Other meta-heuristics such as Tabu Search have also been tested
in this problem, in works such as Scholz et al. [35] and Kulturel-Konak [36].
Genetic Algorithms (GAs) have been applied as well to UA-FLPs, as in the
following related works: Tate and Smith [37], Wu and Appleton [38], Gomez
et al. [39], Enea et al. [40], Aiello et al. [41], Liu and Meller [42], Garcia-
Hernandez et al. [11], Garcia-Herndndez et al. [43] , Garcia-Hernandez et al.
[44], Palomo-Romero et al. [45]. Alternative meta-heuristic proposals have
been employed in order to resolve the UA-FLP. For example, the works of
Komarudin and Wong [26], Wong and Komarudin [46], Kulturel-Konak and
Konak [47] and Liu and Liu [48] used ant colony optimization. Ulutas and
Kulturel-Konak [49] used an artificial immune system. Gongalves and Re-
sende [7] developed a biased random-key GA. Sikaroudi and Shahanaghi [50]
applied collision detection and response method. Paes et al. [51] suggested an
hybrid GA and a decomposition technique. Finally, Kang and Chae [52] pro-
posed a variation of the Harmony Search algorithm suggested in the research
by Shayan and Chittilappilly [53].

Generally, the majority of the methodologies applied to the UA-FLP con-
sidered a single objective. Usually this objective is the material handling cost
as for example in the works by Kulturel-Konak and Konak [47], Kulturel-
Konak [36], Gongalves and Resende [7], Kang and Chae [52], Palomo-Romero
et al. [45], among others. However, it is well-known that taking into account
some different objectives results in better UA-FLP designs [54]. In this sense,
Aiello et al. [54] stated that both quantitative and qualitative criteria should
be considered at the same time in order to obtain more robust designs in UA-
FLPs. Thus, Gomez et al. [39] proposed a multi-objective genetic algorithm
for solving the UA-FLP. Their approach allowed the consideration of aisles
in the plant layout. In the approaches suggested by Aiello et al. [41] and
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Aiello et al. [55], a multi-objective genetic algorithm and the Electre method
was applied for optimizing three objectives (material handling cost, closeness
request and distance request). Also, Ripon et al. [56] solved UA-FLPs by
means of a multi-objective approach that included a variable neighborhood
search (VNS) and an adaptive strategy. In addition, in order to take into
account more than one objective, both Saraswat et al. [57] and Purnomo
and Wiwoho [58] employed the methodology suggested by Sherali et al. [31].
Moreover, Liu et al. [59] suggested a particle swarm optimization approach in
order to solve the multi-objective UA-FLP. Their technique was based on an
heuristic configuration mutation operation and a subsequent local search that
considers a gradient method. Liu and Liu [48] proposed a multi-objective ant
colony optimization algorithm to address the UA-FLP considering both ma-
terial handling cost and distance requirements. They change the constrained
problem into an unconstrained one by means of a heuristic technique, then,
they applied a local search, Pareto Optimization, facility deformation and
a niching method in order to reach effective facility designs. However, ac-
cording to Garcia-Hernandez et al. [11] and Garcia-Hernandez et al. [43],
considering exclusively these objectives (such as, for example: material han-
dling cost, closeness request and distance request) may not represent all the
relevant information that can appear in a facility layout design as the De-
cision Maker knowledge and experience. For that matter, they suggested a
Genetic approach that includes the DM opinion in the search process. Lately,
for considering both material handling cost and the DM preferences, Garcia-
Hernéndez et al. [60] proposed an interactive genetic approach that was ap-
plied to recycling plants. Finally, Garcia-Hernandez et al. [44] suggested a
proposal that used a multi-objective interactive genetic algorithm to support
the DM. In this proposal, the algorithm evolves exclusively using qualitative
criteria and the DM’s evaluation is required only every n generations. These
evaluations are used to penalize all the members in the population and guide
the search until the DM intervenes again n generations later. The process
stops when the DM is completely satisfied with a solution.

Regarding the problem’s encoding, mainly, three different representations
have been used for solving the UA-FLP. These are the Block Layout Design
Problem (BLDP) representation, the Slicing Tree Structure (STS) and the
Flexible Bay Structure (FBS). The first one allows that each department of
the plant layout can be allocated in any position of the plant considering that
the overlapping is not permitted. As an example, the proposals by Meller
and Gau [61], Castillo et al. [32], Gongalves and Resende [7] used the BLDP
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representation as facility layout representation.

When evolutionary algorithms are considered, authors have mainly em-
ployed STS and FBS as layout representation. In STS, the plant is split in
a recursive way into vertical and horizontal portions [53, 35, 62, 26, 52]. In
the FBS representation however, the plant is exclusively split into vertical
or horizontal sections [63, 47]. Consequently, STS can reach facility layout
designs that cannot be achieved by FBS. So that, the results obtained by
each one of them are not comparable in the majority of cases. Considering
the FBS as layout representation presents as advantage that it makes the
UA-FLP solving process easier and more simple [46]. This is due to the
problem complexity is in general, smaller when this encoding is considered,
because it selects the department position order and the number of depart-
ments that made up each bay of the plant layout. For this reason, the FBS
is chosen in this work for representing a facility plant layout as a solution
in an evolutionary-type algorithm. The FBS encoding was first described
by Tong [64] and it has been widely applied in the works that deal with the
UA-FLP [46, 45, 48]. Briefly, the FBS splits a rectangular region into vertical
or horizontal sub-regions (called bays). Next, the facilities of the plant layout
are inserted in each sub-region. In accordance with Tate and Smith [37], the
originated sub-regions have the characteristic of having flexible amplitude
for offering the necessary are in order to allocate varying number of depart-
ments. The FBS also offers the advantage of allowing an easy incorporation
of passageways in the plant layout [55].

3. Proposed approach

In order to solve the UA-FLP, in this paper we propose a novel interac-
tive multi-objective CRO algorithm. Our approach takes into account two
optimization objectives. The first one refers to the cost of moving material
between the facilities that compose the plant layout. The second one is re-
lated to the Decision Maker satisfaction about his/her preferences for each
particular UA-FLP design. In this section, the structure and development of
the complete system is fully detailed.

3.1. The Coral Reef Optimization Algorithm

In this section, the basic Coral Reef Optimization Algorithm (Salcedo-
Sanz et al. [12]) is described, as well as its different stages.



Let A be a model of a rectangular-shaped reef of size M x N. Each space
A(i, j) can be empty or contain a coral Xy(i,7) (a solution of the UA-FLP),
where ¢ and j are the coordinates determining the position of the coral X}
in the reef A. Below the algorithm process is described per stages:

1. Initialization: A fraction pg of the total spaces of the reef is occupied
with randomly generated corals. The position of these corals is also
selected randomly between the N x M possible spaces.

2. Evolution: Once the reef has been populated the evolution process
begins. This process is divided in five phases:

(a) Sexual reproduction: In this phase a number of new solutions
(larvae set) is created from the ones belonging to the reef in order
to compete for a place in the reef in the next stages. There are
two ways to perform the sexual reproduction: external and in-
ternal (similar to crossover and mutation in classic Evolutionary
Algorithms). Therefore a percentage Fj, of the corals present in
the reef is selected to pair and reproduce via external reproduc-
tion (also referred as Broadcast spawning) and the rest of them
(1 — Fp) reproduce themselves by means of internal sexual re-
production (brooding). The reproduction processes are described
below:

i.

11.

Broadcast spawning: from the set of corals selected for
external sexual reproduction, couples are made randomly so
a coral can become a parent only once per generation. Each
couple generates a child which is released to the water to be
placed later in the process. The crossover operator used in
this work is PMX Goldberg and robert [65] for facility order
and 2-point crossover for bay divisions.

Brooding: each one of the rest of the corals that were not se-
lected in the previous phase (1— Fy) produce a larva by means
of a random mutation. The produced larvae are released to
the water, just like in the previous step. The operators used
for mutation are TWORS [66] for facility order and 1-bit-swap
[66] in the case of bay divisions.

(b) Larvae setting: In this step, all the larvae (new solutions) pro-
duced during the sexual reproduction phase try to find a spot in
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(d)

the reef to settle. A reef position (7,j) is chosen randomly and
the larva will settle in that spot if one of these two conditions is
fulfilled:

i. The spot is empty.

ii. The larva has a better health function (fitness) that the coral
that currently occupies the spot.

Each larva will try to settle in the reef up to three times. If after
that number of attempts the larva has not been able to settle
down, it is discarded and not considered anymore in the current
generation.

Asexual reproduction: In this phase (also named budding) a
fraction F, of the corals with better fitness presented in the reef
duplicate themselves including a small random mutation, and try
to settle in the reef following the same procedure described in the
previous step.

Depredation: Last, a fraction F, of the worst corals in the reef
can be predated (erased) from the reef with a low probability P;.

The Algorithm 1 summarizes the whole evolution process, which is also
illustrated in Figure 1.

3.2. Individual encoding

Individuals belonging to the reef are represented following the bay struc-
ture proposed by Gomez et al. [39], which consists in two parts:

1. Facility sequence: order in which the facilities are placed along the plant
(from top to bottom, left to right). This segment of the chromosome
is a permutation from 1 to the total number of facilities n of the plant.

2. Bay divisions: describes the structure of the plant by marking the facil-
ities that delimitate the end of each bay. To represent this information
a binary vector can be used. The positions with value 1 are the ones
that mark the end of a bay.

The Figure 2 shows a chromosome example, as well as its corresponding
layout representation.
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Algorithm 1 CRO algorithm
Input Algorithm’s control parameters
Output Feasible solution with best fitness

1: procedure CRO(n,m, po, fo, fa, fa; Dd) > Coral Reef Optimization
algorithm
initialize reef with size n x m and occupation rate pg
repeat
reproduce corals fraction f, by broadcast spawning
reproduce corals fraction 1 — f, by brooding
larvae evaluation
larvae setting
reproduce best corals fraction f, by asexual reproduction
depredation of f; worst reef corals with p; probability
until stop condition
11: return best feasible solution
12: end procedure

,_.
<

Facility sequence Bay divisions
e|alc|c|B|F|D| |1]o[1]1]o]o]1

A B

E G P
C

D

Figure 2: Facility layout chromosome example.
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3.8. Objective function

Recall that the UA-FLP objective is to place n facilities of area A; in
a rectangular plant of fixed dimensions W x H in such a way that a given
criteria are optimized. Naturally, the sum of the facilities’ areas cannot
surpass the area of the plant (Equation (1)).

EH:AZ-SWXH (1)

)

The usual criterion to be optimized in UA-FLPs is the material flow
between facilities (Aiello et al. [55]). This value must be minimized in order to
improve the overall efficiency of the work performed in the plant. Therefore,
material flow is taken into consideration in the fitness function used in this
approach.

However, if this was the only factor to consider to evaluate candidate so-
lutions the search could converge easily in “stacked” solutions that minimize
the material flow but stretches the facilities too much. Therefore, a new ob-
jective to minimize comes into the picture, leading to the creation of a Pareto
front: the feasibility of the proposed plant design. In order to address this
issue, Tate and Smith [37] proposed a penalization for the solutions which
contain these unfeasible facilities. First, each facility defines aspect ratio
constraint (aspect ratio or minimum side length). Second, a penalty value
proportional to the number of unfeasible facilities (if any) is added to a so-
lution’s fitness function. Equation (2) shows the fitness function that takes
into account these two objectives.

Vi= Z fiidij + (Ding)* (Vicas — Van) (2)
J

i

where t represents a certain solution, n is the number of facilities to position
in the plant layout, f;; is the material flow between facilities ¢ and j, d;;
is the distance between them (let it be rectilinear or euclidean), D;,f is the
number of unfeasible facilities, k is a penalty parameter that adjusts the grade
of penalization (set to 3, following the recommendation in Tate and Smith

11



250

200

150 T

Flow

100

50

0 1 2 3 4 5 6 7
D_inf

Figure 3: Relationship between material flow and D;, s parameters for the benchmark
problem O7.

[37]), and Vieqs and Vyy are the best fitness value that has been found in the
set, of feasible solutions and the overall best fitness value found, respectively.

Material flow and number of unfeasible departments are usually opposite
goals, as observed in Figure 3, which is obtained from the data of a large set
of candidate solutions for the benchmark Problem O7 [30]. This shows how
minimum, average and maximum (from bottom to top) flow values tend to
be lower as the number of D;,; departments increases. Solutions belonging
to the set that have no unfeasible departments are marked in red. Note
that not all problems have completely feasible solutions. In those cases, the
Pareto front is defined by the solutions that find a good balance between flow
and department feasibility.

Additionally, there is another important factor in the evaluation of so-
lutions. The objective of the proposed approach is to find good solutions
that have a good (probably not the best) material flow value while keeping
in mind the personal preferences of a domain expert. Those preferences also
shape the problem’s Pareto front, since their complete fulfillment is required.
However, these constraints, if correctly formulated by the expert, can help
the algorithm’s search process, leading it to a better exploration of the search
space. In any case, the preferences and its fulfillment is to be represented
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in the fitness function. In order to achieve that, an extra penalty factor U,
is defined (see Equation (3)). This factor has been designed to work in the
same scale as the penalty factor in Tate and Smith’s proposal [37] since it
has provided good results in previous works.

Ut:(5—x)><% (3)
where z is the user’s evaluation given to the solution ¢ (value from 1 to 5)
and n is the number of facilities.

Having these three objectives in mind, the final fitness function is illus-
trated in Equation (4). Note that this function prioritize solutions fulfilling
the Decision Maker’s conditions (qualitative optimization) rather than the
ones that have all their facilities disposed in a feasible way (quantitative opti-
mization). This decision has been taken on the basis that this proposal, being
interactive, needs to put the focus on the human side of things. The DM
should not feel that his/her preferences are overlooked in order to perform a
more analytic optimization.

Vi= 1+ U YD fidig + (Ding)* (Vieas — Vaur) (4)

The previous expression is a dynamically weighted fitness function. That
means that a given solution will be penalized according to how bad it is
considered when evaluated by a certain criterion (the worse a solution is
according to that criterion, the more penalty it gets). In our case, for a
solution with Dy,; = 2 and U, = 4 the penalty would be heavier on the
user preferences’ side. So that, department feasibility and user preferences
act as corrective agents, where the last target has a heavier consideration
when evaluating solutions. If no penalization has to be performed the fitness
function is equal to the material flow. Figure 4 shows an example of how much
weight each one of the three optimization objectives is given, on average per
algorithm’s generation, during a test run of the ICRO algorithm. As stated
above, feasibility of solutions and user evaluation penalties are lighter in the
fitness computation as both targets are fully optimized during execution.

13
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Figure 4: Average weight distribution of parameters in fitness function during an ICRO
execution.

3.3.1. Graph example

In order to illustrate the calculation of layout fitness’ an example is pro-
posed in Figure 5. All facilities have an aspect ratio constraint @ = 4;
rectilinear distance is used, the penalization factor is k = 3 and the solution
has been evaluated by the user with a score x = 3 . Material flow values are
listed below:

fap =2; fac = 1; fap = 3; Jag = 1;
fee =2 fep=1  fep=3;

fep =2; foe =2

foe=1;

Fitness computation proceeds as follows:

1. Find facility center coordinates:
Cy=(1,1.5)
Cp = (2.75,2.5)
Co = (4,1.5)
Cp = (2.75,0.25)
Cp = (2.75,1.25)

14



Figure 5: Facility layout example.

2. Compute distance between facilities:
dag = |rc, — xog| + Yo, — Yoz| = |1 —2.75| + |1.5 — 2.5| = 2.75
dac = |z, —zco| + [y, —yoo| =3
dap = |xc, — Top| + [You — Yol =3
dap = |rc, — Tog| + (Yo, — Yop| =2
dpc = |vcy — Toel + Yoy — Yoo | = 2.25
dpp = |xcy — Tep| + Yoy — Yoo | = 2.25
dpg = |Tcp — Tep| + Yoy — You| = 1.25
dep = |tce = xep| + (Yoo — Yop| = 2.5
dep = |wce — Topl + Yoo — you| = 1.5
dpp = |rcp, — Teg| + Yo, — you| =1
3. Find unfeasible facilities (if any). In this case, a facility is unfeasible if
its aspect ratio « is greater than 4:

_ maxWa,Ha _ max23 _ 3 __ :
A = T HT = mmas = 5 = 1.5 (feasible)

_ maxWpg,Hg __ .
ap = mowee = 1.5 (feasible)

_ maxWg,Ho __ :
ac = Tawege = 3 (feasible)

_ maxWp,Hp __ :
ap = pegyeg2 = 3 (feasible)

_ maxWg,Hg __ :
ap = Toyege = 1 (feasible)

15



4. Compute Uy:
Uy=06-2)x2=(5-3)x2=25

5. Compute fitness:

Vi= L+ Uf) 320 207 figdiy + (Ding)* (Vieas — Vau) =

= (1+1.253)(2-2.75+1-3—|—3-3—|—1-2+2-2.25—|—1-2.25+3-1.25+
2.-225+2-15+1-1)40=

— (1+2.5%) - 39 = 648.375

Note that if the user evaluation x = 5, V; = 39 (material handling cost).

3.4. Evaluation

As stated in the previous section, a solution’s fitness has two different
parts. Note that the objective part (material flow and unfeasible penalty) is
independent of the Decision Maker’s (DM) intervention. On the other hand,
if the DM had to evaluate each of the solutions created in each generation
during the search process, it would be really difficult to keep the attention,
and fatigue is very likely to appear. In order to avoid this, only a subset of the
solutions are provided for DM evaluation. Particularly, nine representative
individuals which are sufficiently different from each other. This way, the
DM can evaluate directly nine solutions and the remaining are associated
with an evaluation derived from the evaluated set.

The algorithm used to group the sets of solutions is the Fuzzy c-Means
proposed by Dunn [67], which is fully explained in Garcia-Herndndez et al.
[11]. This algorithm is similar to k-Means with the fundamental difference
that an individual belongs, to a greater or lesser degree, to all the clusters
defined. Similarity between solutions is computed as the sum of distances
between the centers of each facility if both solutions are superimposed, so
similar layouts are close to each other, composing a cluster. This way, the
expected DM evaluation is assumed to be alike for a determined cluster’s
members.

The DM evaluates the most representative (higher membership value) so-
lutions found in a solution set and the rest of the set is assigned an evaluation
value following the expression in Equation (5).
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j=1

where c is the number of clusters, m;; is the membership value of the individ-
ual ¢ to the cluster j and e; is the score given to the representative individual
of cluster j by the DM. This way, if a representative element gets a positive
evaluation from the DM, any element that belongs strongly to that cluster
will also obtain a positive evaluation.

There is still another aspect to consider in the proposed optimization
process. In earlier works ([11], [44]), the search performed by the algorithm
ended up when a solution evaluated by the DM with a value of 5 was found.
This is no longer suitable for the objective proposed in this paper, since the
objective solution minimizes the material low while meets the DM’s pref-
erences and locates the facilities in a feasible way. Thus, in this case the
algorithm’s stop condition changes to be performed a number of iterations,
and the DM is given a certain degree of control on how often his intervention
is required. This also contributes to minimize user fatigue because when a
solution rated with a 5 is found, a number of iterations (previously estab-
lished) are performed without the DM’s intervention. In any case, this user
intervention frequency can be modified anytime during execution.

However, this possibility leads to the necessity to store all the evaluations
(without repetition) the DM performs during the execution. Otherwise, the
information about user preferences could be lost during the algorithm’s evo-
lutionary process and finish with a classic quantitative approach, which is
not the goal of this work. Additionally, the symmetrical solutions to the
ones evaluated must be considered too in order to do a proper estimation of
the DM’s score for the solutions which are not directly evaluated by the DM.
Section 3.5 details how to identify and create symmetrical layouts to a given
one.

()

3.5. Symmetrical layouts

In this section, a way to identify whether two facilities have a symmetrical
layout when using FBS codification is described.
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There are three types of symmetry in geometry: reflection, point and
rotational. For the purposes of this work, only the first two are described:

1. Reflection symmetry: as its name suggests, this type relates to the
perfect reflection of a reference object along an axis called line of sym-
metry or marror line. This line can have any direction, but typically is
vertical or horizontal. Figures 6 (b) and 6 (c) show examples of both
cases of this symmetry type.

2. Point symmetry: also called origin symmetry, since all points have a
corresponding one that are equally distant to an origin point but have
opposite directions, as is showed in Figure 6 (d). In flat geometry, the
point symmetrical of a figure can be obtained by means of a vertical
and then horizontal mirroring, or vice versa.

It can be easily noticeable that material flow between facilities does not
depend on the orientation of the plant, but on the distance separating fa-
cilities. Likewise, DM’s preferences still fulfilled in layouts that only change
their orientation. Hence a way to create symmetrical layouts to the ones the
user have directly evaluated is really useful to correctly infer the evaluation
the DM would concede to solutions that are not shown to him/her.

So, in this research, we distinguish three types of symmetrical layouts:

1. Horizontal symmetry: Horizontal mirroring of a plant. At the chro-
mosome level, the difference is that the bays in the mirrored facility are
exchanged (first with the last, second with second-to-last, etc.) while
keeping the original structure, both in facility order and bay cuts. Fig-
ure 6 (b) illustrates this case.

2. Vertical symmetry: Vertical mirroring of a plant. At the codification
level, the only change is the order of the facilities in each bay, which is
inverted. Cuts remain the same as in the original layout. Figure 6 (c)
shows the vertical reflection of the layout present in Figure 6 (a).

3. Radial symmetry: Both horizontal and vertical mirroring of a plant.
This case joins the alterations of the two previous cases. So, by facility
order, bays are exchanged as in horizontal symmetry and facility order
in each bay is inverted (as in vertical symmetry), leading to a complete
flip of the original order. Cuts, on their behalf, are redistributed by
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Table 1: Summary of chromosome differences between symmetrical layouts.

Original Horizontal Vertical Radial
layout Symmetry Symmetry symmetry
Facility sequence | original exchange bays flip per bay complete flip
Bay divisions original exchange bays original exchange bays

bays exchange, as in horizontal symmetry. In Figure 6 (d) the point
symmetrical to Figure 6 (a) is represented.

The differences at the solution encoding level among the three types of
symmetry are listed in Table 1.

3.6. The Interactive Coral Reef Optimization Algorithm

In the previous sections, several aspects of the Interactive Coral Reef Op-
timization Algorithm proposed (ICRO) have been presented and discussed.
In summary, the algorithm works combining automatic Coral Reef Optimiza-
tion with user intervention to guide the search. User’s desired characteristics
for the final design are expressed by means of his/her evaluation of a subset
of representative solutions in several steps of the algorithm. Generally, the
need of user’s intervention will decrease gradually since the system will learn
what are the desired characteristics. The following enumeration is a brief
step by step description of the whole algorithm.

1. Initialize reef. The same initialization procedure as in basic CRO is
performed.

2. Group reef members in 9 clusters using c-Means.
3. Show cluster centers for evaluation.

4. Process evaluations. The evaluated layouts and their evaluations
(and their three symmetrical) must be stored to direct the search pro-
cess. An update of fitness values of the reef is also performed.

5. Compute number of automatic iterations to perform before ask-
ing for user feedback. At first, the DM intervenes in the evaluation
process after one iteration. But this behaviour can be altered in two
ways:
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Figure 6: Example of a facility and its corresponding symmetrical layouts.

e If alayout evaluated with maximum score has been found, the next
user intervention will occur after user_freq iterations, parameter
fixed prior to the algorithm execution, or until the stop condition

is fulfilled.

e If the user explicitly changes the value of user_freq parameter. In
this case, the previous condition is ignored.

6. Perform sexual reproduction. Create larvae following the same
procedure described in Section 3.1.

7. Create random larvae. In order to increase diversity in the solutions
present in the reef and also to give the DM more options to rate, ran-
domly created solutions are considered in the next step. The number
of random larvae is computed as the [, fraction of the larvae generated
in the present step.

8. Place larvae. All larvae generated in the previous three phases are
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placed in the reef following the same process described in Section 3.1.
9. Perform asexual reproduction as in basic CRO (Section 3.1).
10. Predate worst solutions as described in Section 3.1.
11. Repeat. At this point, three scenarios can take place:

(a) Evolution has not been performed num_iterations times. Re-
peat from step 6.

(b) Evolution has been performed num_iterations times. Repeat
from step 2.

(¢) The algorithm’s stop condition is satisfied. In that case, finish
execution.

The described process is represented in Algorithm 2 as a pseudocode and
in Figure 7 with a flow diagram.

4. Experiments and results

In this section, the performance of the suggested interactive CRO system
is evaluated and compared using all the previous approaches that handle
qualitative features in UA-FLP. For that matter, we have taken the following
UA-FLP instances: Slaughterhouse, proposed in Salas-Morera et al. [68] and
detailed in Garcia-Herndndez et al. [44]; CartonPacks, illustrated in Garcia-
Hernandez et al. [44]; and ChoppedPlastic, from Garcia-Herndndez et al.
[60]. Their characteristics are detailed in next sub-sections. Experiments
with each data set have been repeated 5 times.

4.1. Slaughterhouse instance

This case was first described by Salas-Morera et al. [68]. The facility
plant dimensions are 30m x 51.14m. The facility characteristics of this
problem are summarized in Table 2. The material flow that exist between
the departments that made up the plant layout is illustrated in Figure 8. In
this UA-FLP, the Decision Maker is interested in the following aspects:

1. The plant layout must be split into 4 or 5 bays.

2. Facility B must be in the perimeter of the plant.
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Figure 7: Flow diagram of the Interactive Coral Reef Optimization Algorithm.
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Algorithm 2 ICRO algorithm
Input Algorithm’s control parameters
Output Feasible solution with best fitness meeting user’s requirements

1: procedure ICRO(n, m, po, fv, lrs fa, fa, Da, eval_freq) > Interactive Coral
Reef Optimization algorithm

2 initialize reef with size n x m and occupation rate pg

3 repeat

4 group reef in 9 clusters

5: show cluster centers to user and collect user evaluations
6 update reef members’ fitness

7 compute num_iterations

8 repeat

9 reproduce corals fraction f, by broadcast spawning
10: reproduce corals fraction 1 — f;, by brooding

11: create n; x [, random larvae

12: larvae evaluation

13: larvae setting

14: reproduce best corals fraction f, by asexual reproduction
15: depredation of f; worst reef corals with p; probability
16: until done num_iterations times

17: until stop condition

18: return best feasible solution

19: end procedure

3. Facility A must be in the right bottom corner.

4. Facility F must be adjacent to facility A.

4.2. CartonPacks instance

This problem is referred to a carton recycling plant of 20m x 14.5m.
It was proposed by Garcia-Herndndez et al. [44]. Table 3 described details
(facility name, area and aspect ratio restriction) about the facilities that
compose the plant. The requirements about material handling flow between
facilities is represented by means of Figure 9. Related to the aspects that are
advisable for the Decision Maker in order to reach a satisfactory solution,
the following considerations must be taken into account:
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Table 2: Facility features for the Slaughterhouse problem

Id Facility Area (m?) Aspect ratio
A Stables 570 4
B Slaughter 206 4
C Entrails 150 4
D Leather & skin 55 4
E  Aeration chamber 114 4
F  Refrigeration chamber 102 4
G Entrails chamber 36 4
H Boiler room 26 4

I Compressor room 46 4
J  Shipping 109 4

K Offices 80 4

L Byproduct shipping 40 4

Figure 8: Material flow requirements for the Slaughterhouse problem.
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1. Facility A must be in the perimeter of the plant.

[\]

. Facility D must be in the perimeter of the plant.

w

. Facility A must be near to facility E, F and A.

4. Facility C must be near to facility J, I, G and H.

Table 3: Facility features for the CartonPacks problem

Id Facility Area (m?) Aspect ratio
A Raw Material 40 4
B Finished products 40 4
C Mechanic 20 4
D Offices 50 4
E  Staff WC 20 4
F  Expedition 40 4
G Hydraulic 1 20 4
H Hydraulic 2 20 4

I Crushing 20 4
J  Circ. saw 10 4
K Heat exchange 10 4

Figure 9: Material flow requirements for the CartonPacks problem.

4.83. ChoppedPlastic instance

The third tested problem was formulated by Garcia-Herndndez et al. [60].
This UA-FLP expresses a chopped plastic recycling plant layout which di-
mensions are 30m x 10m. The description about facilities and their asso-
ciated areas and aspect ratio constraints are expressed in Table 4. Figure
10 offers information related to the existing material flow between facilities,
which is sequential in this particular case. Below, the subjective aspects that
are desired by the Decision Maker in this problem are listed:

1. The remaining space must be located in a corner of the plant.
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2. Facility A must be in the perimeter of the plant.
3. Facility F must be in the perimeter of the plant.

4. Facility E must be adjacent to facility D.

Table 4: Facility features for the ChoppedPlastic problem

Id Facility Area (m*) Aspect ratio
A Reception 35 4
B Raw material 50 4
C Washing 15 4
D Drying & skin 24 4
E  Chopped 35 4
F  Finished product 30 4
G Expedition 25 4

I Office 30 4
J  Toilets 15 4
K  Repair shop 20 4

101010101010

Figure 10: Material flow requirements for the ChoppedPlastic problem.

4.4. Parameters

The proposed algorithm’s performance depends much on the values of its
parameters, described in earlier sections. Specifically, exploration must be
maximized as far as possible, in order to learn the DM’s preferences in few
generations and give time to improve accepted solutions. The parameters
chosen for the ICRO algorithm are detailed in Table 5.

The ICRO algorithm has been coded in Python (version 2.7.3) and the
experiments have been performed on an Intel Core i3 4010U (2 x 1.70GHz),
4GB RAM using a Linux-based OS.
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Table 5: Chosen ICRO algorithm parameters.

Parameter Value
N umbelj of 100
generations
Reef size 20 x 20
£o 0.6
fo 0.7
l, 0.2
fa 0.1
Pd 0.15
fa 0.2
User interaction
1—5
frequency

4.5. Results

In this section, the results obtained by the proposed algorithm in the
aforementioned problems are presented and discussed. Tables 6, 7 and 8
depict the following information per algorithm’s run: the first section is re-
ferred to the first solution found that was given an evaluation of 5 by the
DM; the first column in the section corresponds to the generation when that
solution was found, followed by that solution’s layout, Material Handling
Cost (MHC), number of unfeasible facilities and fitness value. The second
section is referred to the best solution found during the whole execution.
This solution is considered to be the one that has the lowest fitness value
while maximizing the user’s score, whether is directly obtained from the DM
(integer values) or derived by the algorithm (real values). For example, in
the fifth row of Table 6, column FEwval, the value is 4.999, since this partic-
ular solution has not been directly evaluated by the DM, but given a score
according to its similarity with other solutions from the user-evaluated set.
The information displayed in this section is, per column, generation when
that solution was found, layout, MHC, number of unfeasible facilities, eval-
uation value, and fitness value. The best solution found for each problem
instance set has been highlighted in boldface. An interesting fact that can
be observed in the tables is that the derived user evaluations are correct:
the solutions with high evaluation values (more than 4.9) fulfill the DM’s
conditions, although they cannot be given a 5 because they have not been
showed to the user, since they are not cluster centers.
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Table 6: Result table for Slaughterhouse instance launches
First solution with user score 5 Best solution found
Launch Gen. Layout MHC Diny Fitness Gen. Layout MHC Diny Eval Fitness

. . 312,5(12,11| o or 119,6,7,12,4, 8] ) — an

Slaughterhouse-L1| 5 6,8,10,9,7 | 4, 1 7683.518 4 451715.013| 95 10,5,2] 11, 3 5767.967 0 5 5767.967
) 318,2[11,10,4 ., . . . 1]10,6,5][2,8] frae - S

Slaughterhouse-L2| 0 7.9.12, 5,6, 1 7051.331 6 2.45el0 85 9,3,7,12| 11, 4 5097.368 0 5 5097.368

‘ 5
Slaughterhouse-L3 & 24 15,8 6510.934 1 1.24e8 34 8,7,12,49,8,11 | 4136.462 0 5 4136.462

11, 6, 10,12 | 1 10,6,5,2 |1
Yy 11,13, 8, 10, . . 116,5,2]10,4, ) -
Slaughterhouse-L4| 4 4,6,5 12729 6697.062 5 1.52e7 74 12,79, 11,8, 3 4366.876 0 5 4366.876
o . 7,91103, 11, 2| . 3 , 11,12,7,8]9,4,10| . AGE .
Slaughterhouse-L5| 0 56,8412, 1 7503.720 4 7.2¢9 43 25,6 1,3 5026.563 0 4.999 5026.563

In all cases, from Tables 6, 7 and 8, it may be observed that even though
a good user evaluation has been already given in the first generations, during
the execution of the algorithm solutions with good values of MHC without
losing user satisfaction have been found, which satisfies both criteria. It is
also remarkable the fact that the MHC and fitness values of best solutions
found are always equal, which confirms that the maximum score from the
user and the minimum of unfeasible facilities have been simultaneously found.

In Table 9 it is shown a comparison between different approaches for the
UA-FLP instances addressed in this work, both qualitative and quantitative.
For each instance, the first two columns correspond to the results delivered
by the presented ICRO algorithm (best fitness found and mean fitness of the
best solutions obtained). Next, fitness value of the best solution obtained
by previous only-qualitative approaches are listed. Note that these solutions
reached the maximum user score in their evaluations. Finally, the last col-
umn shows the best fitness values found in the literature for these instances,
focusing exclusively in material flow and feasibility (quantitative optimiza-
tion). The conclusion is clear: the proposed ICRO approach is capable of
optimize plant layouts while keeping the DM’s constraints. That is why Car-
tonPacks and ChoppedPlastic instances have a better performance compared
to the best known solution and Slaughterhouse does not: the DM’s prefer-
ences are guiding the search, and if the DM’s preferences conflict with the
shape of the best solution considering only MHC those values will never be
reached. That is also suitable for the other two instances: in theses cases, the
DM’s preferences have led to find better solutions than the ones previously
considered as the “best” ones.

On the other hand, Figures 11, 12 and 13 summarize the evolution of
the ICRO for each instance launch. Four lines are showed: the first two
ones correspond to mean fitness per generation and mean user evaluation
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Table 7: Result table for CartonPacks instance launches

‘First solution with user score 5 Best solution found
Launch Gen. Layout MHC D,y Fitness | Gen. Layout MHC  Di,y Eval  Fitness
CartonPacks-L1 3 3,7,9,6(8,10,5,11,4 | 1,2 98.214 98214 | 23 3,9,7,6(8,11,2|10,4|1,5 73.480 0 5 73.480
CartonPacks-L2 1 6[4,1]7,11,10,9[5|3]2,8 95846 3 95846 | 31 1,4]10,6|9,2,5(8,11,7,3 59.525 0 4.985 59.529
CartonPacks-L3 1 5,4,2,1|11,8(6[10,3,7|9 111.254 4 111.254| 33 8,9,10,3[11,1|7,5[2,6,4 61312 0 4995 61.312
CartonPacks-L4 2 11,7,3,1[109,5,4,6,8,2 107915 6 5985 | 32 5,69,4(7,8,10,2|3,11,1 88.308 0 5  88.308
CartonPacks-L6 1 3,8,9,7[11[2,10,1|5,4]6 69.648 2 69.648 | 8 3,8|9,7,11[2,10,1]5,6,4 79.838 0 4.9814 79.848

[

Table 8: Result table for ChoppedPlastic instance launches

First solution with user score 5 Best solution found
Launch Gen. Layout MHC D,y Fitness| Gen. Layout MHC Ding Eval Fitness
ChoppedPlastic-L1| 0 3,1[2]6,4,8(9,10,5]7,11 571.894 5 1.15e7 | 17 8,10,2,3,4,5,7—11,1,9,6 282.777 0 4.903 286.774
ChoppedPlastic-L2| 0 11 [10(3,5,4,8(7,9.6|2,1 805615 5 6.496 | 30 1,2,3,4,5,6,7]|11,8,9,10 257.943 0 5 257.943
ChoppedPlastic-L3| 0 119,10,7,4,5,1[6,8|3|2 491.845 5 9.6e6 35 11,7,9,8]6,4,3,2(5,10,1 346.228 0 5 346.228
- 0 10,2,8,5,1,7,3,11]6,4,9 776729 2 487e5 | 45 6,5,4,3,2,10,8(7,9,1,11 271453 0 5 271453
ChoppedPlastic-L5| 0 3,1,11[2]9]10|4]6,5,7,8 547.023 5 8.01e6 | 25 7,6,3,2,8[10,5,4,1,9,11 330.142 0 5 330.142

per generation, respectively. The other two are vertical lines and point to
the generations when a solution was given a 5 score by the DM and when
the best overall solution was found. As can be observed, the learning process
is usually fast and, in cases where not all the preferences are satisfied, it is
possible to correct the course (Slaughterhouse - Launch 1) if a solution which
fulfills all preferences is shown to the DM. In this type of scenario, random
larvae creation proves its usefulness. Another remarkable fact is that there is
a strong negative correlation between fitness value and user evaluation: the
DM’s satisfaction is critical for the approach presented in this work.

Table 9: ICRO algorithm performance comparison.

Best Mean Best Best Multi-objective Best known
Problem name

ICRO Fitness ICRO Fitness IGA Fitness Fitness
Slaughterhouse 4136.462 4879.047 5772 ¢ 3854.00 €
CartonPacks 50.529 72.495 61.449 b 94.10 ¢
ChoppedPlastic 257.943 298.508 380.736 ° 377.18 °

@ Garcia-Herndndez et al. [44]
b Garcfa-Hernandez et al. [60]
¢ Enea et al. [40]
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Figure 13: ICRO Evolution per launch in ChoppedPlastic instance.

Finally, Figures 14, 15 and 16 show the layouts of the best solutions
obtained by the ICRO algorithm.
It is a well known fact that plant layout design is a problem that, when
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properly resolved, increases efficiency and optimizes industrial production
costs in a very remarkable way. In this sense, the algorithm proposed and
the results obtained contribute to innovate the way in which plant layouts
are designed, and improve their subsequent performance in the real world.
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D

Figure 14: Best layout found by the ICRO algorithm for Slaughterhouse instance.
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Figure 15: Best layout found by the ICRO algorithm for CartonPacks instance.

5. Conclusions

In this article, a novel meta-heuristic that allows considering both qual-
itative and quantitative aspects in Unequal Area Facility Layout Problems
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Figure 16: Best layout found by the ICRO algorithm for ChoppedPlastic instance.

(UA-FLP) has been proposed. Specifically, an Interactive Coral Reefs Opti-
mization (ICRO) approach has been proposed for this problem.

A new interactive strategy, which allows discontinued user intervention
and minimizes visual fatigue without losing precision in layout evaluation
has been designed to be included in the CRO. This way a guidance to the
search process that aims to solutions that fulfil user subjective preferences is
achieved, not forgetting objective quantitative design aspects optimization.

The novel ICRO has been tested using three different UA-FLPs taken
from related references. The evaluation and analysis performed using the
reached solutions demonstrate that our proposed approach is able to reach ex-
cellent design solutions in all the tested UA-FLPs. This is due to the achieved
solutions are considered as satisfactory for the Decision Maker (DM), i.e.
they satisfy all the DM requirements, and also, these solutions have good
material flow performance.

Possible future research could be to include alternative methods of layout
representation together with the ICRO algorithm for solving UA-FLPs, and
test advanced versions of the CRO approach such a ensemble CRO version
with several substrates [69] in this problem. Similarly, it would be possible to
allow the user to change his/her mind during the evolution process because
the user is displayed a new solution with desirable features that had not been
taken into account until then. Another improvement would be to handle
in a more effective way the evaluated solution set, discarding the ones less
significant, in order to reduce execution time per generation. Additionally,
new ways to incorporate the expert knowledge into the approach could be
investigated.
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