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Abstract This paper presents a two-phase protein fold-

ing optimization on a three-dimen-sional AB off-lattice
model. The first phase is responsible for forming con-

formations with a good hydrophobic core or a set of

compact hydrophobic amino acid positions. These con-

formations are forwarded to the second phase, where an

accurate search is performed with the aim of locating

conformations with the best energy value. The optimiza-

tion process switches between these two phases until

the stopping condition is satisfied. An auxiliary fitness

function was designed for the first phase, while the orig-

inal fitness function is used in the second phase. The

auxiliary fitness function includes an expression about

the quality of the hydrophobic core. This expression

is crucial for leading the search process to the promis-

ing solutions that have a good hydrophobic core and,

consequently, improves the efficiency of the whole opti-

mization process. Our differential evolution algorithm

was used for demonstrating the efficiency of two-phase

optimization. It was analyzed on well-known amino acid

sequences that are used frequently in the literature. The

obtained experimental results show that the employed

two-phase optimization improves the efficiency of our

algorithm significantly and that the proposed algorithm

is superior to other state-of-the-art algorithms.
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1 Introduction

Proteins are fundamental components of cells in all living

organisms. They perform many tasks, such as catalyzing

certain processes and chemical reactions, transporting

molecules to and from the cell, delivering messages, sens-

ing signals, and other things which are essential for the

preservation of life [14]. Proteins are formed from one

or more amino acid chains joined together. The amino

acid chain must fold into a specific three-dimensional

native structure before it can perform its biological func-

tion(s) [29]. An incorrectly folded structure may lead

to many human diseases, such as Alzheimer’s disease,

cancer, and cystic fibrosis. Therefore, the problem of

how to predict the native structure of a protein from its

amino acid sequence is one of the more important chal-

lenges of this century [18] and, because of its nature, it

attracts scientists from different fields, such as Physics,

Chemistry, Biology, Mathematics, and Computer Sci-

ence.

Scientists are trying to solve the protein structure

prediction problem with experimental and computa-

tional methods. The experimental methods, such as X-

ray crystallography and nuclear magnetic resonance, are

very time consuming and expensive. In order to mitigate

these disadvantages of experimental methods, scientists

are trying to develop computational methods. Template

based methods use information about related or similar

sequences. In contrast to these methods, ab-initio meth-

ods predict the native three-dimensional structure of an

amino acid chain from its sequence, and, to do this, they

do not require any additional information about related

sequences. They predict the three-dimensional structure

from scratch. These methods are not only important be-

cause they are an alternative to experimental methods,

but also because they can help to understand the mech-
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anism of how proteins fold in nature. Therefore, inside

ab-initio methods, the Protein Folding Optimization

(PFO) represents a computational problem of how to

simulate the protein folding process and to find a native

structure. Improving PFO will lead to the improvement

of prediction methods and, consequently, this could re-

duce the gap between the number of known protein

sequences and known protein structures.

Using ab-initio methods, it is possible to predict the

native structure of relatively small proteins. The reasons

for that are an expensive evaluation of conformation,

and the huge and multimodal search space. In order

to reduce the time complexity of evaluations and to

reduce the spatial degrees of freedom, simplified protein

models were designed, such as an HP model [3,11] within
different lattices, and an AB off-lattice model [38]. The

main goals of these models are development, testing,

and comparison of different methods. Within this paper,

the simplified three-dimensional AB off-lattice model

was used to demonstrate the efficiency of two-phase

optimization by using the Differential Evolution (DE)

algorithm.

It has been shown that PFO has a highly rugged

landscape structure, containing many local optima and

needle-like funnels [16]. In order to explore this search

space effectively, we have already proposed a DE algo-

rithm [2, 4] that, in contrast to all previous methods,
follows only one attractor. The DE algorithm was se-

lected because of its simplicity and efficiency, and be-

cause it was used successfully in various optimization

problems [6–8,26], such as an animated trees reconstruc-

tion [43], a post hoc analysis of sport performance [10],

and parametric design and optimization of magnetic
gears [40]. The temporal locality [42], self-adaptive mech-

anism [5] of the main control parameters, local search,

and component reinitialization were used additionally

to improve the efficiency of our algorithm. The DE al-

gorithm, with all its listed mechanisms, was capable of

obtaining significantly better results than other state-

of-the-art algorithms, and it obtained a success ratio of

100% for sequences up to 18 monomers.

In this paper, we propose a new two-phase optimiza-

tion DE algorithm. In contrast to bilevel optimization,

where an optimization problem contains another opti-

mization problem as a constraint [36, 37], our approach

uses two optimization phases. The auxiliary fitness func-

tion is designed for the first phase, and the original

fitness function is used in the second phase. The auxil-

iary fitness function contains an expression that allows

the algorithm to locate solutions with a good hydropho-

bic core easily. The hydrophobic core represents a set

of positions of the hydrophobic amino acids. The mo-

tivation for this approach is taken from nature, where

the hydrophobic amino acids hide from water and form

the hydrophobic core, while hydrophilic amino acids

move to the surface to be in contact with the water

molecules. To simulate this process from nature, the

first phase is responsible for locating solutions with a

good hydrophobic core quickly, while the second phase

is responsible for final optimization. The optimization

process continues with reinitializations, and alternates

between these two phases until the stopping condition

is satisfied. Note that reinitializations are performed

after the second phase. A component reinitialization
was used to change only a few components in individ-

uals, with the purpose to get out of the corresponding

valley or funnel in the search space, and to locate better

solutions, while a random reinitialization generates all

components in individuals randomly, and guides the

search process to unexplored search space regions. If

we perform reinitializations after the first phase, the

algorithm will locate fewer solutions with a good hy-

drophobic core, and, therefore, the algorithm may not

be able to find the global optimum at all. We called

the proposed algorithm DE2P (Two-phases Differential

Evolution), and it was tested on two sets of amino acid

sequences that were used frequently in the literature.

The first set includes 18 real peptide sequences, and

the second set includes 5 well-known artificial Fibonacci

sequences. Experimental results show that the proposed

two-phase optimization improves the efficiency of the

algorithm, and it is superior to other state-of-the-art

algorithms. Our algorithm is now capable of reaching

the best-known conformations with a success rate of

100% for sequences up to 25 monomers within the bud-

get of 1011 solution evaluations. The new best-known
solutions were reached by the algorithm for all sequences

with a length of 29 or more monomers. Based on these

observations, the main contributions of this paper are:

• The two-phase optimization.

• The auxiliary fitness function.

• The frontiers of finding the best-known solutions

with a success rate of 100% are pushed to the se-

quences with up to 25 monomers.

• The new best-known conformations for all sequences

with 29 or more monomers.

The remainder of the paper is organized as follows. Re-

lated work and the three-dimensional AB off-lattice

model are described in Sections 2 and 3. The two-phase

optimization DE algorithm and auxiliary fitness function

are given in Section 4. The description of the experi-

ments and obtained results are presented in Section 5.

Section 6 concludes this paper.
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2 Related work

Over the years, different types of metaheuristic optimiza-

tion algorithms have been applied successfully to the

PFO on the AB off-lattice model. A brief overview of the

existing algorithms is provided within this Section. The

information about hydrophobic cores was used within

different approaches for protein structure prediction. A

brief description of these approaches is also included in

this Section.

2.1 Metaheuristic optimization algorithms

Evolutionary algorithms have been quite successful in

solving PFO. An ecology inspired algorithm for PFO is

presented in [28]. A key concept of this algorithm is the

definition of habitats. These habitats, or clusters, are

determined by using a hierarchical clustering algorithm.

For example, in a multimodal optimization problem,

each peak can become a promising habitat for some

populations. Two categories of ecological relationships

can be defined, according to the defined habitats, intra-

habitats’ relationships that occur between populations

inside each habitat, and inter-habitats’ relationships that

occur between habitats. The intra-habitats’ relationships

are responsible for intensifying the search, and the inter-

habitats’ relationships are responsible for diversifying

the search.

Paper [17] presents the basic and adaptive versions

of the DE algorithm with parallel architecture (master-

slave). With this architecture, the computational load

is divided and the overall performance is improved. An
explosion and mirror mutation operators were also in-

cluded into DE. The explosion is a mechanism that

reinitializes the population when the stagnation has

occurred, and, thus, it is responsible for preventing pre-

mature convergence. The second mechanism, the mirror

mutation, was designed to perform a local search by

using mirror angles within the sequence.

In paper [35], the authors have analyzed six variants

of Genetic Algorithms (GAs). Three variants were de-

signed, and each of them includes one of the following

selection mechanisms: Rank selection, elitist selection,

and tournament selection. All of these variants are com-

bined with single and double point crossover. The GA

with the elitist selection and two-point crossover outper-

forms other variants.

A Biogeography-Based Optimization (BBO) is also

applied to PFO [9]. This algorithm is based on the defini-

tion of habitats. Each habitat has its amount of species,

and different habitats usually have different amounts

of species. Within the algorithm, Habitat Suitability

Index (HSI) is used to measure the quality of the habi-

tat. Habitats with high HSI are suitable for survival.

Thus, these habitats have low immigration rates and

high emigration rates. On the contrary, habitats with

low HSI have high immigration rates and low emigration

rates. Additionally, BBO includes a mutation operator

to avoid premature convergence, and elitism to avoid

the degeneration phenomena. The improved BBO con-

tains an improved migration process. In the migration

process, a feature from a habitat is replaced by another

feature from a different habitat. In the improved version,
different features were selected from different habitats

according to their emigration rates, and their values with

weights determine the features of the habitat. This al-

gorithm was compared with the standard BBO and DE.

The results show that the improved BBO outperforms

all competitors.

It has been shown that the PFO has a highly rugged

landscape structure containing many local optima and
needle-like funnels [16], and, therefore, the algorithms

that follow more attractors simultaneously are ineffec-

tive. In our previous work [2], to overcome this weakness,

we proposed the DE algorithm that uses the best/1/bin

strategy. With this strategy, our algorithm follows only

one attractor. The temporal locality mechanism [42] and
self-adaptive mechanism [5] of the main control parame-

ters were used additionally to speed up the convergence

speed. Random reinitialization was used when the algo-

rithm was trapped in a local optimum. This algorithm

was improved in [4] with two new mechanisms. A local

search is used to improve convergence speed, and to

reduce the runtime complexity of the energy calculation.

For this purpose, a local movement is introduced within

the local search. The designed evolutionary algorithm

has fast convergence speed and, therefore, when it is

trapped into the local optimum or a relatively good

solution is located, it is hard to locate a better similar

solution. The similar solution may differ from the good

solution in only a few components. A component reini-

tialization method is designed to mitigate this problem.

It changes only a few components in individuals, with

the purpose to get out of the corresponding valley in

the search space and to locate better solutions. The ob-

tained results of this algorithm show that it is superior

to the algorithms from the literature, and significantly

lower energy values were obtained for longer sequences.

Swarm Intelligence algorithms also showed good re-

sults for PFO. The authors in [27] tested the standard

versions of the following algorithms: Particle swarm

optimization, artificial bee colony, gravitational search

algorithm, and the bat algorithm. This test showed that

the particle swarm optimization algorithm obtained the
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overall best balance between quality of solutions and

the processing time.

To improve the Artificial Bee Colony (ABC) algo-

rithm convergence performance, an internal feedback

strategy based ABC is proposed in [22]. In this strategy,

internal states are used fully in each iteration, to guide

the subsequent searching process. In [41], a chaotic ABC

algorithm was introduced. This algorithm combines the

artificial bee colony and the chaotic search algorithm to

avoid the premature convergence. If the algorithm was

trapped into the local optimum, it uses a chaotic search

algorithm to prevent stagnation. A balance-evolution

artificial bee colony algorithm was presented in [20, 21].

During the optimization process, this algorithm uses con-

vergence information to manipulate adaptively between

the local and global searches. For a detailed description

of the ABC algorithm, we refer readers to [30].

Researches combined two or more algorithms in order

to develop hybrid algorithms that can obtain better re-
sults in comparison with the original algorithms. In [24],

the authors combined simulated annealing and the tabu

search algorithm. This algorithm was improved addi-
tionally with a local adjust strategy that improves the

accuracy and speed of searching.

The algorithm that combines the particle swarm

optimization, genetic algorithm, and tabu search was

presented in [44]. Within this algorithm, the particle

swarm optimization is used to generate an initial solu-

tion that is not too random, and the factor of stochastic

disturbance is adopted to improve the ability of the

global search. The genetic algorithm was used to gener-

ate local optima in order to speed up the convergence

of the algorithm, while the tabu search is used with a

mutation operator to locate the global optimum.

An improved stochastic fractal search algorithm was

applied to the AB off-lattice model in [45]. In order to

avoid the algorithm becoming trapped into the local

optimum, Lévy flight and internal feedback information

were incorporated into the algorithm. The algorithm

consists of diffusion and an update process. The Lévy

flight was used in the diffusion process to generate some

new particles around each population particle. In the

update process, the best particle generated from the

diffusion process is used to generate new particles. To

prevent stagnation within a local optimum, the internal

feedback information is incorporated into the algorithm.

This information is used to trigger the mechanism that

generates new particles according to two randomly se-

lected particles from the population.

The authors in [12] have shown that the DE algo-

rithm converges to better solutions when the initial

population is created by using trained neural networks.

The neural networks were trained successfully using the

reinforcement learning method, by knowing only the

fitness function of the class of optimization problems.

An improved harmony search algorithm was pre-

sented in [14,15]. In this algorithm, the basic harmony

search algorithm was combined with the dimensional

mean based perturbation strategy. This strategy allows

the algorithm to avoid premature convergence, and en-

hance the capability of jumping out from the local op-

tima.

A multi-agent simulated annealing algorithm with

parallel adaptive multiple sampling was proposed in [23].
A parallel elitist sampling strategy was used to over-

come the inherent serialization of the original simulated

annealing algorithm. This strategy additionally provides

benefit information, that is helpful for the convergence.

An adaptive neighborhood search and a parallel multiple

move mechanism were also used inside the algorithm to

improve the algorithm’s efficiency. In this work, the fol-

lowing methods were analyzed for generating candidate

solutions: Simulated annealing, a mutation from the DE

algorithm, and the velocity and position update from

the particle swarm optimization.

Although powerful optimization algorithms have

been introduced for PFO, researchers are also focused

on the time-consuming optimization problems. For solv-

ing such a problem for PFO, the authors in [31] intro-

duced a new version of DE which uses computationally

cheap surrogate models and gene expression program-

ming. The purpose of the incorporated gene expression

programming is to generate a diversified set of con-

figurations, while the purpose of the surrogate model

is to help DE to find the best set of configurations.

Additionally, a covariance matrix adaptation evolution
strategy was also adopted, to explore the search space

more efficiently. This algorithm is called SGDE, and it

outperforms all state-of-the-art algorithms according to

the number of function evaluations. Its efficiency was

also demonstrated in terms of runtime on the adopted
all-atom model which represents time-consuming PFO.

2.2 Hydrophobic core

Information about a hydrophobic core, or a set of posi-

tions of the hydrophobic amino acids, is very useful for

structure prediction in different methods. The authors

in [1] presented a constraint-based method. The key

concept of this method is the ability to compute max-

imally compact hydrophobic cores. Information about

hydrophobic cores was also used within stochastic algo-

rithms for PFO. In [32–34] a macro-mutation operator is

incorporated into the genetic algorithm and applied to

the three-dimensional face-centered cubic lattice. This

operator compresses the conformation, and forms the
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(a) (b)

Fig. 1: A schematic diagram of a sequence ABAB. (a) Projection of a structure with θ1 = 30, θ2 = −60 and β1 = 0

onto the XY-plane. (b) Projection of a structure with θ1 = 30, θ2 = −60 and β1 = 45 onto the ZY-plane.

hydrophobic-core quickly. The obtained results show

that the macro-mutation operator improves the effi-

ciency of the algorithm significantly.

3 Three-dimensional AB off-lattice model

A chain of amino acids can be represented with a unique

amino acid sequence. From the amino acid sequence, it

is possible to generate different conformations, which is

also dependent on the model used. There are different

models, such as a full atom, coarse-grained [19], AB

off-lattice [38] and HP [3,11]. The full atom model is the

most accurate and complex, and, as such, is computa-

tionally expensive. Although it is computationally expen-

sive it was also used in the optimization process of the

DE algorithm that was adapted for such a problem [31].

Different coarse-grained models were designed to mit-

igate the computational complexity of the full atom

model [19]. The remaining two models, AB off-lattice

and HP, are even more simplified and, as such, they are

not very computationally expensive. The main purpose

of these models is an analysis of different optimization

algorithms. The three-dimensional AB off-lattice model

is used in our paper, to demonstrate the efficiency of the

proposed algorithm. Instead of 20 standard amino acids,

this model uses only two different types of amino acids: A

– hydrophobic and B – hydrophilic. Thus, an amino acid

sequence is represented as a string s = {s1, s2, ..., sL},
si ∈ {A,B}, where A represents a hydrophobic, B a hy-

drophilic amino acid, and L the length of the sequence.

The solution, or three-dimensional structure of an AB se-

quence, is defined by bond angles θ = {θ1, θ2, ..., θL−2},
torsional angles β = {β1, β2, ..., βL−3}, and the unit-

length chemical bond between two consecutive amino

acids (see Fig. 1). The quality of the solution determines

the energy value Eo, which is calculated using a simple

trigonometric form of backbone bend potentials Ebb(θ)

and a species-dependent Lennard-Jones 12,6 form of

non-bonded interactions Elj(s,θ,β), as shown in the

following equation [38]:

Eo(s, θ,β) = Ebb(θ) + Elj(s, θ,β)

Ebb(θ) =
1

4

L−2∑
i=1

[1− cos(θi)] (1)

Elj(s, θ,β) = 4
L−2∑
i=1

L∑
j=i+2

[d(pi,pj)
–12–c(si, sj) · d(pi,pj)

–6]

where pi and pj represent the position of the amino

acid within the three-dimensional space. These positions

are determined, as shown in Fig. 1 and by the following

equation:

pi =



{0, 0, 0} if i = 1,

{0, 1, 0} if i = 2,

{cos(θ1), 1 + sin(θ1), 0} if i = 3,

{xi−1 + cos(θi−2) · cos(βi−3),

yi−1 + sin(θi−2) · cos(βi−3), if 4 ≤ i ≤ L.
zi−1 + sin(βi−3)}

(2)

In Eq. (1) d(pi,pj) denotes the Euclidean distance be-

tween positions pi and pj , while c(si, sj) determines

the attractive, weak attractive or weak repulsive non-

bonded interaction for the pair si and sj , as shown in

the following equation:

c(si, sj) =


1 if si = A and sj = A,

0.5 if si = B and sj = B,

−0.5 if si 6= sj .

The objective of PFO within the context of an AB off-

lattice model is to simulate the folding process, and to

find the angles’ vector or conformation that minimizes

the free-energy value: {θ∗,β∗} = arg minEo(s,θ,β).

The described model takes into account the hydrophobic
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interactions which represent the main driving forces of

a protein structure formation and, as such, still imitates

its main features realistically [13]. Therefore, although

this model is incomplete, it allows the development,

testing, and comparison of various search algorithms.

4 Method

In order to include knowledge about the hydrophobic

core to our algorithm, we have developed the two-phase

optimization by using the DE algorithm. The optimiza-

tion process is alternated between two phases until the

stopping condition of the optimization process is satis-

fied, as shown in Fig. 2. The auxiliary fitness function is

used in the first phase, which is responsible for forming

conformations with a good hydrophobic core. When the

stopping condition of the first phase is satisfied, the ob-

tained population is forwarded to the second phase. The

original fitness function is used in the second phase to

locate solutions with the lowest energy value. When the

second optimization phase is finished, the reinitialization

is performed, and the optimization process continues

with the first phase.

The main idea of the auxiliary fitness function is

to allow the algorithm to form good hydrophobic-cores

easily. For this purpose, it contains three expressions,

as shown in Eq. (3).

Ex(s, θ,β) = Eo(s, θ,β) + Ehc(s, θ,β) + λ

Ehc(s, θ,β) =
L∑
i=1

d(pi, c) · h(si) (3)

h(si) =

{
1 if si = A,

0 otherwise

c =

∑N
i pi · h(si)

NA
; NA =

N∑
i

h(si)

The first expression, Eo, represents the original fitness

function, the second expression, Ehc, determines the

quality of the hydrophobic core, while the third expres-

sion is a constant λ that separates the fitness values

between the first and second optimization phases. The

quality of the hydrophobic core determines the sum of

the Euclidean distances between all hydrophobic amino

acids and their centroid c. The value λ ensures that the

energy value Ex in the first phase is always worse in

comparison with the energy value Eo in the second op-

timization phase. In this work, the value of λ was set to

1,000. This value is large enough to make a gap between

the fitness values of both optimization phases. This can

be seen in the convergence graph (Fig. 5) where the

red line represents the fitness values of the first phase,

Fig. 2: Two-phase optimization process of the proposed

DE algorithm.

while the green line represents the fitness values of the
second phase. The introduced gap between phase values

allows the algorithm to update the global and local best

vectors correctly without any additional mechanism.

4.1 Proposed algorithm

The proposed algorithm is based on our previous work [4],

and it was improved in such a way that the optimization

process is divided into two phases. This algorithm is

described in this Section, and it is shown in Figs. 3 and 4.

The lines that include two-phase optimization into our

algorithm are highlighted with a gray background.

The optimization begins with initialization (line 2 in

Fig. 3). Each iteration of the while loop (line 3) repre-

sents one generation of the evolutionary process. In one

generation the DE/best/1/bin strategy is performed for

each population’s vector {x1, x2, ..., xNp} for creating

a trial vector u (lines 5 – 18). The values of control

parameters are set by using the jDE algorithm [5]. Each

vector is a D-dimensional vector that contains real coded

bond θ and torsional β angles:

xi = {θi,1, θi,2 ..., θi,L−2, βi,1, βi,2, ..., βi,L−3},

where D = 2 · L − 5 is the dimension of the problem,

and xi,j ∈ [−π, π]. The variable firstPhase determines

the current optimization phase. The trial vector u is

evaluated according to the value of this variable, as

shown in line 19. If the trial vector is better than the

corresponding vector from the population xi, then yet

another trial vector u∗ is generated using temporal

locality (lines 24 – 30), and evaluated according to the

current optimization phase. The second trial vector u∗

is generated by using the promising movement that is
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1: procedure DE2P(s,Np)

2: Initialize a population P

firstPhase = true

{xi, Fi = 0.5,Cri = 0.9, ei = Ex(s, xi) } ∈ P
xi,j = −π + 2 · π · rand[0,1]
i = 1, 2, ...,Np; j = 1, 2, ..., D;D = 2· length(s) - 5

{xb, eb} = {xlb, e
l
b} = {xp

b
, e
p
b
} = BEST(P )

3: while stopping criteria is not met do

4: for i = 1 to Np do

5: if rand[0,1] < 0.1 then F = 0.1 + 0.9 · rand[0,1]
else F = Fi end if

6: if rand[0,1] < 0.1 then Cr = rand[0,1]
else Cr = Cri end if

7: do r
1
=rand{1,Np} while r

1
=i end do

8: do r
2
=rand{1,Np} while r

2
=i or r

2
=r

1
end do

9: jrand = rand{1,D}
10: for j = 1 to D do

11: if rand[0,1] < Cr or j = jrand then

12: uj = xb,j + F · (xr1,j − xr2,j)
13: if uj ≤ -π then uj =2 · π + uj end if

14: if uj > π then uj =2 · (-π) + uj end if

15: else

16: uj = xi,j
17: end if

18: end for

19: if firstPhase then

20: eu =Ex(s,u) // Auxiliary fitness function

21: else

22: eu =Eo(s,u) // Original fitness function

23: end if

24: if eu ≤ ei then

25: // Temporal locality

26: for j = 1 to D do

27: u∗j = xb,j + 0.5 · (uj − xi,j)

28: if u∗j ≤ -π then u∗j =2 · π + u∗j end if

29: if u∗j > π then u∗j =2 · (-π) + u∗j end if

30: end for

31: if firstPhase then

32: e∗u =Ex(s,u
∗) // Auxiliary fitness function

33: else

34: e∗u =Eo(s,u
∗) // Original fitness function

35: end if

36: if e∗u ≤ eu then

37: {xi, Fi,Cri , ei} = {u∗, F,Cr, e∗u}
38: else

39: {xi, Fi,Cri , ei} = {u, F,Cr, eu}
40: end if

41: if not firstPhase then

42: // Local Search

43: for n = 2 to L − 1 do

44: θn-1 = rand[0,1] · (x
p
b,n-1

− xi,n-1)

45: βn-2 = rand[0,1] · (x
p
b,n+(L-4)

− xi,n+(L-4))

46: {v, ev} = LOCAL MOVEMENT(x
p
b
, n, θn-1, βn-2)

47: if ev ≤ eb then {xp
b
, e
p
i
} = {v, ev} end if

48: end for

49: end if

50: end if

51: end for

52: {xp
b
, e
p
b
} = BEST(P )

53: if e
p
b
≤ eb then {xb, eb} = {xp

b
, e
p
b
} end if

54: REINITIALIZATION({xp
b
, e
p
b
},{xlb, e

l
b},P ,firstPhase )

55: end while

56: return {xb, eb}
57: end procedure

Fig. 3: The proposed DE2P algorithm.

added to the best population vector. In lines 37 and 39,

the corresponding population vector is replaced by the

better trial vector. The main goal of the first phase is

to form good hydrophobic cores, and it is not necessary

to reach very accurate solutions. Therefore, the local

search is not used in this phase, as shown in line 41. The

local search includes a local movement mechanism that

allows efficient evaluation of neighborhood vectors which

have moved locally only two consecutive monomers,

while all remaining monomers are unchanged. Thus,

1: procedure REINITIALIZATION({xpb , e
p
b}, {x

l
b, e

l
b}, P,firstPhase)

2: if epb ≤ e
l
b then {xlb, e

l
b} = {xpb , e

p
b} end if

3: if firstPhase then
4: if xlb is unchanged for at least Hc · D evaluations within

the first phase then
5: firstPhase = false
6: end if
7: else
8: if xlb is unchanged for at least Pb ·D evaluations within the

second phase then
9: // Component reinitialization

10: xi = RANDOM(xlb, C); i = 1, 2, ...,Np
11: {xpb , e

p
b} = BEST(P)

12: firstPhase = true
13: end if
14: if xlb is unchanged for Lb · D component reinitializations

then
15: // Random reinitialization
16: xi = RANDOM() ; i = 1, 2, ...,Np
17: {xlb, e

l
b} = {xpb , e

p
b} = BEST(P)

18: firstPhase = true
19: end if
20: end if
21: end procedure

Fig. 4: The reinitialization mechanism.

this mechanism is only used in the second optimization

phase for performing an accurate search.

The first generation belongs to the first optimization

phase. The reinitialization method is performed at the

end of each generation, and it is responsible for reinitial-

izations and determining the optimization phase. We

have defined three different best vectors [4]. The best

population vector xpb is the best vector in the current

population, the local best vector xlb is the best vector

among all similar vectors, and the global best vector xgb
is the best vector obtained within the evolutionary pro-

cess. How long the local best vector stayed unchanged

within the optimization process and the value of control

parameters Hc, Lb, and Pb, determine the reinitializa-

tion and optimization phase. The algorithm switches to

the second optimization phase when xlb is unchanged

for at least Hc ·D evaluations within the first optimiza-

tion phase. The component reinitialization is performed

when xlb is unchanged for at least Pb · D evaluations

within the second optimization phase, while the random

reinitialization is performed when the xlb is unchanged

for at least Lb ·D component reinitializations. In this

way, the component reinitialization increases the likeli-

hood of finding a good similar solution that is different

from the already found good solution in only a few

components. The parameter C determines the number

of components that are different between xlb and vec-

tors generated by component reinitialization (line 10).

On the other hand, random reinitialization guides the

search process to unexplored search space regions. For

a detailed description of all mechanisms of our previous

work and its influence to the algorithm’s efficiency, we

refer readers to [2] and [4].
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5 Experiments

The DE2P algorithm was implemented by using SPSE

(Stochastic Problem Solving Environment), compiled

with a GNU C++ compiler 5.4.0, and executed using an

Intel Core i5 computer with 3.2 GHz CPU and 16 GB

RAM under Linux Mint 18.3 Sylvia and a grid environ-

ment (Slovenian Initiative for National Grid1). The grid

environment was configured to use AMD Opteron 6272

processor with clock speed of 2.1 GHz, cache of 2 MB,

and main memory of 128 GB assigned to 64 cores. The

SPSE environment allows for rapid development and

testing of stochastic algorithms for different problems

in an efficient way. The console and web interface are

available within this environment. By using the web in-

terface, we developed a web application that is available

at https://spse.feri.um.si, where the proposed al-

gorithm can be tested and the optimization process is

visualized. In order to evaluate the efficiency of the pro-
posed algorithm, we used a set of amino acid sequences,

as shown in Table 2. This set includes 18 real peptide

sequences from the Protein Data Bank database2, and

5 Fibonacci sequences. The K-D method [25] is used

to transform the real peptide sequences to the AB se-

quences. In this method, the amino acids isoleucine, va-

line, proline, leucine, cysteine, methionine, alanine, and

glycine, are transformed to hydrophobic ones (A), while

aspartic acid, glutamic acid, histidine, phenylalanine,

lysine, asparagine, glutamine, arginine, serine, threonine,

tryptophan, and tyrosine to hydrophilic ones (B). The

selected sequences have different lengths, which enabled

us to analyze the algorithm with the three stopping con-

ditions. The quality of the solution (Et), or the target

scenario, was used for short sequences, while the limited
amount of solution evaluation (NSElmt) and runtime

(tlmt ) were used for long sequences. The used sequences

can also be found in many papers, and, therefore, allow

us to compare the proposed algorithm with different

algorithms.

Table 3 summarizes the expressions that were used

in our experiments. Note that all energy values are

multiplied by -1, which means that all reported en-

ergy values are positive, and higher values are better.

Nr = 30 independent runs were performed when the

proposed algorithm was compared with the state-of-

the-art algorithms. In all other experiments, Nr = 100

independent runs were used. In the target scenario, ex-

perimental results of NSE have near-exponential or near-

geometric distribution. Under such distributions, and

with Nr = Nsucc = 100 runs, a reliable rule-of-thumb

estimates a 95% confidence interval as follows:

1 Available at http://www.sling.si/sling/
2 Available at https://www.rcsb.org/pdb/home/home.do

NSE95 ≈ [(1−
1.96
√
Nr

) ·NSEmean ,

(1 +
1.96
√
Nr

) ·NSEmean ]

≈ [0.8 ·NSEmean , 1.2 ·NSEmean ].

(4)

5.1 Parameter settings

Although the two-phase optimization introduces only

one new parameter Hc, the algorithm works quite differ-

ently than the previous one. Therefore, in this Section,

we will show the influence of the four control parameters

Pb, Lb, C, and Hc to the algorithm’s efficiency while

the population size Np was set to 100 according to the

experiment in [2]. In our analysis of four parameters, the

target scenario (Et) was used on short sequences. For

each sequence, we used Ns = 9 different settings and the

obtained results are shown in Table 4. Entries that are
shown as ’-’ imply that the algorithm could not reach

the target value Et in all the runs within the budget of

2 · 1011 solution evaluations. The recommended settings

and their results are shown in bold typeface. From the

displayed results, we can see that each sequence has

its optimal setting, but it is still possible to select a
good setting for all sequences. For this purpose, set-

tings were ranked in Table 4 and mean rank rmean was

calculated for each setting, as shown in Table 1. Two

settings obtained the best rmean = 3.11. We selected the

following values Pb = 20, Lb = 20, C = 10, Hc = 35, and

Np = 100 as a good setting, since this setting obtained

the best result on the largest sequence 2H3S. Therefore,

this setting is used in all the remaining experiments.

From the displayed results, we can also see that param-

eter C is the most sensitive parameter. The best rank

was obtained for the setting with C = 10, while the

worst ranks were obtained for settings with C = 5 and

C = 15. This can also be observed in Table 4i, where

the best result was obtained with C = 10, while for

Table 1: Mean ranks for different settings of the following

parameters: Pb, Lb, C, and Hc.

rmean Pb Lb C Hc
3.11 20 20 10 35
3.11 20 25 10 35
3.22 15 20 10 35
4.11 20 20 10 40
4.44 20 15 10 35
5.33 25 20 10 35
5.78 20 20 10 30
7.11 20 20 15 35
8.67 20 20 5 35

https://spse.feri.um.si
http://www.sling.si/sling/
https://www.rcsb.org/pdb/home/home.do
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Table 2: Details of amino acid sequences used in experiments.

label L D sequence
1BXP 13 21 ABBBBBBABBBAB

1CB3 13 21 BABBBAABBAAAB

1BXL 16 27 ABAABBAAAAABBABB

1EDP 17 29 ABABBAABBBAABBABA

2ZNF 18 31 ABABBAABBABAABBABA

1EDN 21 37 ABABBAABBBAABBABABAAB

2H3S 25 45 AABBAABBBBBABBBABAABBBBBB

1ARE 29 53 BBBAABAABBABABBBAABBBBBBBBBBB

2KGU 34 63 ABAABBAABABBABAABAABABABABABAAABBB

1TZ4 37 69 BABBABBAABBAAABBAABBAABABBBABAABBBBBB

1TZ5 37 69 AAABAABAABBABABBAABBBBAABBBABAABBABBB

1AGT 38 71 AAAABABABABABAABAABBAAABBABAABBBABABAB

1CRN 46 87 BBAAABAAABBBBBAABAAABABAAAABBBAAAAAAAABAAABBAB

2KAP 60 115 BBAABBABABABABBABABBBBABAABABAABBBBBBABBBAABAAABBABBABBAAAAB

1HVV 75 145 BAABBABBBBBBAABABBBABBABBABABAAAAABBBABAABBABBBABBAABBABBAABBBBBAABBBBBABBB

1GK4 84 163 ABABAABABBBBABBBABBABBBBAABAABBBBBAABABBBABBABBBAABBABBBBBAABABAAABABAABBBBAABABBBBA

1PCH 88 171 ABBBAAABBBAAABABAABAAABBABBBBBABAAABBBBABABBAABAAAAAABBABBABABABABBABBAABAABBBAABBAAABA

2EWH 98 191 AABABAAAAAAABBBAAAAAABAABAABBAABABAAABBBAAAABABAAABABBAAABAAABAAABAABBAABAAAAABAAABABBBABBAAABAABA

F13 13 21 ABBABBABABBAB

F21 21 37 BABABBABABBABBABABBAB

F34 34 63 ABBABBABABBABBABABBABABBABBABABBAB

F55 55 105 BABABBABABBABBABABBABABBABBABABBABBABABBABABBABBABABBAB

F89 89 173 ABBABBABABBABBABABBABABBABBABABBABBABABBABABBABBABABBABABBABBABABBABBABABBABABBABBABABBAB

Table 3: Summary of expressions that were used in experiments.

Expression Brief description
Nr the number of runs
Ei the energy value (Eo) of i-th

run

Emean =
∑Nr
i=1 Ei
Nr

the mean energy value

Ebest = max{E1, E2, ..., ENr
} the best energy value

Estd =

√∑Nr
i=1(Ei−Emean)2

Nr−1
the standard deviation of en-
ergy values

Et the energy or target value to
be reached

Nsucc the number of runs where the
target value Et is reached

Sr = Nsucc

Nr
the success ratio

NSE i the number of solution evalu-
ations for i-th run

NSEmean =
∑Nsucc
i=1 NSEi
Nsucc

the mean number of solution
evaluation for all Nsucc runs

Expression Brief description
ti the runtime of i-th run

tmean =
∑Nr
i=1 ti
Nr

the mean runtime for Nr runs

ri the setting rank of i-th sequence
Ns the number of sequences

rmean =
∑Ns
i=1 ri
Ns

the mean rank

NSE lmt the number of solution evaluations limit
for one run

tlmt the runtime limit for one run
NSE1,NSE2 the number of solution evaluations

within the first and second optimization
phase

t1, t2 the runtime within the first and second
optimization phase

settings with C = 5 and C = 15 the algorithm could

not reach the target energy value Et in all runs. Similar

relationships of these parameter values can be observed

for most sequences in Table 4.

5.2 Auxiliary fitness function

An auxiliary fitness function includes knowledge about

the quality of the hydrophobic core. This knowledge is

crucial for the efficient optimization process. To demon-

strate this advantage of the auxiliary fitness function,

we compared DElscr, DElscr
∗, and DE2P. DElscr (Dif-

ferential Evolution Extended with Local Search and

Component Reinitialization) [4] is our algorithm, that

does not have two-phase optimization while DElscr
∗ is

the same algorithm as DElscr, but instead of the orig-

inal fitness function, it uses auxiliary fitness function

throughout the entire optimization process. Only the

final population is evaluated with the original fitness

function, and the best vector is returned as a result of

optimization. In this experiment, 100 independent runs

were performed for each algorithm, and the stopping

condition was NSE lmt = 106. From the shown results in
Table 5, we can observe that the DElscr

∗ obtained better

results in comparison with the DElscr for all sequences.

This demonstrates that the auxiliary fitness function

has a good influence on the algorithm’s efficiency. We

can also observe that the best results (shown in bold-
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Table 4: The ranked (ri) control parameter settings (Pb, Lb, C,Hc). The population size Np and the number of

independent runs Nr were set to 100. The stopping conditions were the target energy Et and limit of solution

evaluations NSE lmt = 2 · 1011.

r1 Pb Lb C Hc NSEmean

1 15 20 10 35 5.371e+06
2 20 25 10 35 5.443e+06
3 20 15 10 35 5.509e+06
4 20 20 10 35 5.653e+06
5 20 20 10 30 5.874e+06
6 25 20 10 35 6.076e+06
7 20 20 10 40 6.131e+06
8 20 20 15 35 6.386e+06
9 20 20 5 35 2.151e+07

(a) F13, Et = 6.9961

r2 Pb Lb C Hc NSEmean

1 20 20 10 30 5.930e+06
2 20 20 15 35 6.079e+06
3 20 20 10 35 6.563e+06
4 20 20 10 40 6.790e+06
5 20 25 10 35 6.810e+06
6 20 15 10 35 7.037e+06
7 25 20 10 35 7.055e+06
8 15 20 10 35 7.593e+06
9 20 20 5 35 2.498e+07

(b) 1CB3, Et = 8.4589

r3 Pb Lb C Hc NSEmean

1 15 20 10 35 1.935e+07
2 20 25 10 35 1.937e+07
3 20 20 10 35 2.001e+07
4 20 20 15 35 2.014e+07
5 20 20 10 40 2.043e+07
6 20 15 10 35 2.137e+07
7 25 20 10 35 2.288e+07
8 20 20 10 30 2.400e+07
9 20 20 5 35 9.956e+07

(c) 1BXP, Et = 5.6104

r4 Pb Lb C Hc NSEmean

1 15 20 10 35 5.759e+08
2 20 20 10 35 5.835e+08
3 20 25 10 35 6.129e+08
4 20 20 10 30 6.727e+08
5 20 20 10 40 6.840e+08
6 25 20 10 35 7.216e+08
7 20 15 10 35 8.349e+08
8 20 20 15 35 1.317e+09
9 20 20 5 35 5.748e+09

(d) 1BXL, Et = 17.3962

r5 Pb Lb C Hc NSEmean

1 20 25 10 35 2.579e+08
2 20 20 10 40 2.615e+08
3 20 20 10 35 2.687e+08
4 20 15 10 35 2.791e+08
5 15 20 10 35 2.806e+08
6 25 20 10 35 2.871e+08
7 20 20 10 30 2.932e+08
8 20 20 15 35 4.820e+08
9 20 20 5 35 1.012e+09

(e) 1EDP, Et = 15.0092

r6 Pb Lb C Hc NSEmean

1 15 20 10 35 4.788e+08
2 20 15 10 35 5.141e+08
3 25 20 10 35 5.793e+08
4 20 20 10 35 5.972e+08
5 20 25 10 35 5.969e+08
6 20 20 10 40 6.118e+08
7 20 20 10 30 6.230e+08
8 20 20 15 35 9.570e+08
9 20 20 5 35 2.531e+09

(f) 2ZNF, Et = 18.3402

r7 Pb Lb C Hc NSEmean

1 20 15 10 35 1.629e+09
2 20 25 10 35 1.649e+09
3 20 20 10 35 1.702e+09
4 25 20 10 35 1.833e+09
5 20 20 10 40 1.836e+09
6 20 20 10 30 1.898e+09
7 15 20 10 35 2.089e+09
8 20 20 5 35 4.776e+09
9 20 20 15 35 8.858e+09

(g) F21, Et = 16.5544

r8 Pb Lb C Hc NSEmean

1 20 20 10 40 5.658e+09
2 15 20 10 35 6.062e+09
3 25 20 10 35 6.458e+09
4 20 25 10 35 6.924e+09
5 20 20 10 35 7.366e+09
6 20 15 10 35 8.589e+09
7 20 20 10 30 8.693e+09
8 20 20 5 35 1.522e+10
9 20 20 15 35 3.296e+10

(h) 1EDN, Et = 21.4703

r9 Pb Lb C Hc NSEmean

1 20 20 10 35 1.971e+10
2 20 20 10 40 2.100e+10
3 15 20 10 35 2.145e+10
4 20 25 10 35 2.179e+10
5 20 15 10 35 2.352e+10
6 25 20 10 35 2.396e+10
7 20 20 10 30 2.454e+10
8 20 20 15 35 -
8 20 20 5 35 -

(i) 2H3S, Et = 21.1519

Table 5: Comparison of the DElscr, DElscr
∗, and DE2P algorithms with Nr = 100 and NSE lmt = 106.

Label L
DElscr DElscr* DE2P

Emean Estd p-value Emean Estd p-value Emean Estd

F13 13 4.5648 0.9986 6.8001e-27 6.2744 0.2525 5.7081e-19 6.6551 0.2330
1CB3 13 6.2329 2.0785 4.8569e-17 7.3615 0.3759 4.0492e-23 8.0308 0.3268
1BXP 13 4.4583 0.1995 5.9807e-33 4.9028 0.3131 8.9531e-11 5.1683 0.2028
1BXL 16 14.5008 2.0514 1.6152e-16 15.3518 0.4369 8.3531e-18 15.9518 0.4941
1EDP 17 11.2560 2.4148 2.7825e-17 13.1234 0.5382 1.9038e-11 13.6529 0.4100
2ZNF 18 12.5251 3.0289 6.1052e-27 15.8738 0.5498 8.7550e-14 16.4476 0.7285

F21 21 10.0228 1.7237 1.9620e-25 13.4101 0.9603 0.8517e-00 13.4152 1.3192
1EDN 21 14.0150 3.3468 1.8642e-23 18.0786 0.6656 1.1487e-05 18.4635 0.9433
2H3S 25 12.4696 2.5977 1.6222e-24 16.2500 1.1672 0.0065e-00 16.7300 1.2836

Table 6: Comparison of the following algorithms: DE2P and DElscr. The shown NSEcoef = NSEmean(DElscr)
NSEmean(DE2P) and

tcoef = tmean(DElscr)
tmean(DE2P) represent the relationship between corresponding statistics.

Label L D Et
DElscr [4] DE2P NSEcoef tcoef p-value

NSEmean NSEstd tmean [sec] NSEmean NSEstd tmean [sec]

F13 13 21 6.9961 8.92e+07 8.52e+07 110.54 5.65e+06 6.33e+06 6.35 15.8 17.4 1.14e-28
1CB3 13 21 8.4589 3.61e+07 4.26e+07 44.47 6.56e+06 6.40e+06 7.50 5.5 5.9 1.84e-14
1BXP 13 21 5.6104 1.56e+09 1.68e+09 1,965.08 2.00e+07 1.94e+07 22.00 78.0 89.3 3.22e-33
1BXL 16 27 17.3962 1.24e+10 1.24e+10 16,544.45 * 5.84e+08 6.06e+08 796.22 21.2 20.8 1.66e-30
1EDP 17 29 15.0092 4.58e+09 4.21e+09 7,272.60 * 2.69e+08 2.88e+08 394.28 17.0 18.4 1.05e-28
2ZNF 18 31 18.3402 2.10e+09 1.92e+09 3,098.81 * 5.97e+08 5.73e+08 948.52 3.5 3.3 2.36e-13

F21 21 37 16.5544 - - - 1.70e+09 1.74e+09 3,228.19 - - -
1EDN 21 37 21.4703 - - - 7.37e+09 6.65e+09 13,962.33 * - - -
2H3S 25 45 21.1519 - - - 1.97e+10 1.98e+10 45,721.34 * - - -
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face) are obtained with DE2P which demonstrates that

the two-phase optimization improves the algorithm’s

efficiency additionally. This conclusion is also supported

by the Mann-Whitney U test. With this test, we verify

the equality of the medians between the energy values

of the two algorithms. The shown p-values in Table 5

represents comparison between of DElscr and DElscr
∗

with DE2P. From these results, it is evident that the

statistically significant difference was identified at the

0.05 level of significance (p-value < 0.05) in almost all

cases. Only for sequence F21, there was no significant
difference between the results of the DE2P and DElscr

∗

algorithms.

5.3 Two-phase optimization

Two-phase optimization was designed to increase the

quality of the hydrophobic cores and, consequently, im-

prove the efficiency of the algorithm. In order to demon-
strate these advantages, the algorithm with two-phase

optimization DE2P was compared with the algorithm

DElscr. Within this comparison, the algorithms were

compared by using two scenarios. In the first scenario,

the following stopping conditions were used on the

small sequences: Et = best-known energy value and

NSE lmt = 1011. The results of this scenario are shown

in Table 6, and entries that are shown as ’-’ imply that

the algorithm could not reach the target value Et in all

runs. Values marked with the * are obtained by using the

grid environment, and in these cases tmean = NSEmean

vmean
.

Here, vmean represents the obtained mean speed of three

independent runs on our test computer with tlmt = 3600

seconds. All other results are obtained on our test com-

puter. From these results, it is evident that DE2P ob-

tained significantly better results in comparison with

DElscr, the distribution of the NSE is near-exponential

or near-geometric, because NSE mean ≈ NSE std , and

DE2P obtained Sr = 1 for all sequences with up to 25

monomers, while DElscr only for sequences with up to

18 monomers. The NSE coef and tcoef were calculated

for sequences where Sr = 1. These coefficients repre-

sent the relationship between the algorithm’s results for

NSE mean and tmean . We can see that these statistics of

DE2P are decreased from 3.5 to 78 times, and from 3.3

to 89.3 times in comparison with DElscr. A statistically

significant difference at the 0.05 level of significance for

NSEmean can also be observed, because 95% confidence

intervals (see Eq. 4) do not overlap. Additionally, by

using the Mann-Whitney U test we verify the equality

of the medians between the NSE of algorithms. The

shown p-values in Table 6 indicate that significant dif-

ference was identified at the 0.05 level of significance in

all the cases. From these results, we can conclude that

the two-phase optimization improves the efficiency of

the algorithm for small sequences significantly.

In the second scenario, the grid environment was

used, algorithms were limited with tlmt = 4 days, and

Nr = 100 runs were performed for each sequence. The

obtained results are shown in Table 7. Both algorithms

obtained Sr = 1 for all sequences up to 18 monomers,
while for all other sequences, DE2P obtained better Sr
and Emean . From the shown results, we can observe

that DE2P obtained a significant improvement in energy

values for longer sequences. For example, Ebest was im-

proved by 10.1944, 4.9021, and 11.5551 for sequences

1PCH, F89, and 2EWH, respectively. Even more, values

of Emean that belong to DE2P are better than values of

Ebest that belong to DElscr for the following sequences:

2EWH, 1PCH, 1GK4, 1HVV, 2KAP, F55, 1CRN, 1AGT

and 2KGU. A statistically significant difference at the

0.05 level of significance for energy values can be also ob-

served from the shown p-values that were calculated by

using the Mann-Whitney U test. Note that entries that

are shown as ’-’ imply that both algorithms obtained the

same energy values in all runs and therefore there is no

statistically significant difference between the obtained

energy values. From these results, we can conclude that

the two-phase optimization improves the efficiency of

the algorithm significantly for longer sequences too.

In the continuation of the section, we will analyze

both optimization phases and the relationship between

them. For this purpose, one run was performed for each

of the following sequences 1BXP, 1AGT, and 2EWH,

with the following stopping conditions NSE lmt = 5 · 105,

107, and 108. The convergence graphs of the best popu-

lation vector xpb for all three runs are shown in Fig. 5.

The first phase is shown with the red line, while the

second phase is shown with the green line. The distance

between these two lines is determined by the constant

λ (see Eq. 3). We can notice that the optimization

process is alternated between two optimization phases,

the energy value of the first phase is always higher in

comparison with the energy value of the second phase,

and the optimization process is employed mostly in the

second optimization phase. This can also be seen in

Table 8. The number of solution evaluations within the

first phase NSE 1 is significantly smaller in comparison

with the number of solution evaluations within the sec-

ond phase NSE 2. A similar relationship can be observed

for runtime. From the shown coefficients, we can see

that the first phase used only 11.6% of NSE and only

13% of t for sequence 1BXP. For the longer sequences,

these percentages are even smaller. A meticulous reader

may notice that parameters Hc and Pb determine the

relationship between optimization phases, and this rela-

tionship is contrary to the parameter values. The reason
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Table 7: The obtained results for DE2P and DElscr within a runtime limit tlmt = 4 days for Nr = 100 independent

runs for each sequence.

Label L
DE2P DElscr [4]

p-value
Ebest Emean Estd Sr Ebest Emean Estd Sr

1BXP 13 5.6104 5.6104 0.0000 1.00 5.6104 5.6104 0.0000 1.00 -
1CB3 13 8.4589 8.4589 0.0000 1.00 8.4589 8.4589 0.0000 1.00 -
1BXL 16 17.3962 17.3962 0.0000 1.00 17.3962 17.3962 0.0000 1.00 -
1EDP 17 15.0092 15.0092 0.0000 1.00 15.0092 15.0092 0.0000 1.00 -
2ZNF 18 18.3402 18.3402 0.0000 1.00 18.3402 18.3402 0.0000 1.00 -
1EDN 21 21.4703 21.4703 0.0000 1.00 21.4703 21.3669 0.0431 0.07 5.76e-36
2H3S 25 21.1519 21.1488 0.0167 0.96 21.1519 20.9956 0.0995 0.19 2.39e-27

1ARE 29 25.2883 24.9863 0.1455 0.03 25.2800 24.5444 0.1718 0.00 1.59e-31
2KGU 34 53.6756 52.9066 0.1957 0.01 52.7165 51.7233 0.3829 0.00 4.26e-34
1TZ4 37 43.1890 42.7879 0.2478 0.03 43.0229 41.8734 0.4285 0.00 1.28e-29
1TZ5 37 50.2703 49.7110 0.2238 0.02 49.3868 48.6399 0.3292 0.00 6.98e-34

1AGT 38 66.2973 65.5231 0.2948 0.01 65.1990 64.1285 0.4173 0.00 6.68e-34
1CRN 46 95.3159 93.7138 0.5536 0.01 92.9853 89.8223 0.6514 0.00 3.36e-34
2KAP 60 89.5013 87.6293 0.8335 0.01 85.5099 83.1503 1.0041 0.00 2.56e-34
1HVV 75 101.6018 98.0730 1.3038 0.01 95.4475 91.4531 1.9215 0.00 2.80e-34
1GK4 84 112.3674 108.2822 1.9783 0.01 106.4190 99.6704 3.0377 0.00 2.95e-33
1PCH 88 166.7194 161.4182 2.1279 0.01 156.5250 153.1003 2.7117 0.00 3.16e-34

2EWH 98 257.0741 250.2833 3.1839 0.01 245.5190 240.2247 2.1421 0.00 1.95e-33
F13 13 6.9961 6.9961 0.0000 1.00 6.9961 6.9961 0.0000 1.00 -
F21 21 16.5544 16.5544 0.0000 1.00 16.5544 16.5304 0.0329 0.65 8.29e-11
F34 34 31.3732 31.2906 0.1210 0.10 31.3455 30.4913 0.3458 0.00 7.21e-32
F55 55 54.9269 52.7767 0.8022 0.01 51.9030 49.5009 0.8817 0.00 5.93e-34
F89 89 86.4318 81.3966 2.5139 0.01 81.5297 76.4804 2.0603 0.00 1.63e-25

Table 8: The relationship between the first and the second optimization phase. The shown NSE coef = NSE1

NSE1+NSE2

and tcoef = t1

t1+t2 represent a part of NSE and t used by the first phase. Runtime is shown in seconds.

Label NSE 1 NSE 2 t1 t2 NSEcoef tcoef

1BXP 58,128 442,080 0.146 0.980 0.116 0.130

1AGT 857,295 9,142,706 9.581 46.366 0.086 0.171

2EWH 3,704,330 96,296,116 197.617 1269.220 0.037 0.135

(a) 1BXP (b) 1AGT (c) 2EWH

Fig. 5: The convergence graphs of the of the best population vector xpb . Some value was added to the energy because

of the logarithmic scale.
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for this is in the local search, which is used only in the

second phase. When a good solution is reached, the

local search is a good mechanism to further improve

it. Therefore, the population best vector has a greater

likelihood of improvement and, consequently, the second

optimization phase takes more time.

5.4 Comparison with state-of-the-art algorithms

In this section, our algorithm is compared with state-of-

the-art algorithms according to the number of function

evaluations and the best obtained energy values.

5.4.1 Number of function evaluations

In the first comparison, the stopping condition was

NSE lmt , which was set according to the literature [4,21].

The obtained results are shown in Tables 9 and 11.

The best-obtained energy values are marked in bold

typeface. It can be observed that DE2P obtained the

second best Emean for longer sequences 1HVV, 1GK4,

and 2EWH, while, for all the remaining sequences, it

obtained the best Emean . Table 9 additionally shows L2,

that represents the percentage of runs where the second
optimization phase has been reached. From these results,

we can see that, for some sequences, DE2P cannot reach

the second optimization phase in all the runs because the

value of NSE lmt is relatively small. Some solvers from

the literature cannot perform experiments with a larger

value of NSE lmt in a reasonable time because of their

runtime complexity. It is also interesting that, although

DE2P did not reach the second optimization phase in

any run for sequences 1HVV and 1GK4, it obtained

relatively good results. The SGDE algorithm obtained

the best results for these two sequences. Although SGDE

is based on the surrogate model, DE2P outperformed it

on all sequences where the second optimization phase

had been reached in most of the runs. For sequence

2EWH, DE2P obtained the second phase in only 5 out

of 30 runs, and this can be the reason why it obtained

the second best Emean and DElscr the best Emean . When

significantly larger number of solution evaluations was

allowed with tlmt = 4 days, DE2P outperformed DElscr

significantly on all longer sequences, including sequence

2EWH (see Table 7).

5.4.2 The best energy values

Finally, to demonstrate the superiority of our algorithm

in comparison with other algorithms, the best energy

values are compared for all selected sequences. This

comparison is shown in Table 10. Note that these results

were obtained with different experiments. In the case

of SGDE, the 30 independent runs were limited with

200,000 solution evaluations. The running environment

was Matlab under Windows 7 operating system on an

Intel(R) Core i7-6700HQ CPU with 8 GB of RAM. BE-

ABC terminated the optimization process when there

had been no evolution for up to 5,000,000 consecutive

iterations. In this case, a Matlab environment was used

on an Intel Core 2 Duo CPU with 2.53 GHz and 2 GB of

RAM under Windows XP. DE2P and DElscr generated

the best solution with the 100 independent runs that

were limited with runtime limit (tlmt) = 4 days. In this
case, the grid environment was used. It was configured

to use AMD Opteron 6272 processor with a clock speed

of 2.1 GHz, and main memory of 128 GB assigned to

64 cores. The program was implemented in the C++

programming language and the operating system was

Linux. We can see that DE2P confirms the best energy

values for shorter sequences, and the new best-known

solutions were obtained for all sequences with 29 or

more monomers. The solution vectors obtained by DE2P

are shown in Tables 12 and 13, while their graphical

representation is shown in Fig. 6.

6 Conclusions

In this paper, we presented two-phase optimization that
was incorporated into our Differential Evolution algo-

rithm for protein folding optimization. In order to im-

prove the efficiency of the algorithm, the optimization

process is divided into two phases. The first phase is

responsible for forming solutions with a good hydropho-

bic core quickly, while the second phase is responsible

for locating the best solutions. The hydrophobic core

represents a set of positions of the hydrophobic amino

acids. Therefore, in the first phase, the auxiliary fitness

function is used, that includes expression about the

quality of the hydrophobic core.

In our experiment, we used 23 sequences for analyz-

ing the proposed mechanism and our algorithm for pro-

tein structure optimization. From the obtained results,

we can conclude that the proposed two-phase optimiza-

tion mechanism improves the efficiency of our algorithm.

The required runtime for reaching the best-known en-

ergy values on small sequences was reduced from 3.3 to

89.3 times. In addition, two-phase optimization pushed

the frontiers on finding the best-known solutions with

a success rate of 100% for sequences from 18 to 25

monomers. The solutions of these sequences could be

optimal. The success rate greater than one is obtained

for sequences up to 37 monomers. For these sequences,

solutions are close to optimal, or could be optimal. For

other sequences, solutions are almost surely not optimal,
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Table 9: Comparison of the DE2P algorithm with state-of-the-art algorithms with Nr = 30 and NSE lmt = M · 104.

The displayed L2 represents the percentage of runs where the second optimization phase is reached. The detailed

results are shown in Table 11.

label M
DE2P DElscr [4] SGDE [31] jDE [4,5] L-SHADE [4,39] BE-ABC [20,21]

Emean L2 Emean Emean Emean Emean Emean

1CB3 20 7.3586 100.0% 4.5108 6.0772 3.8988 2.7916 5.9417
1BXL 20 15.0934 100.0% 12.5045 14.6894 12.4047 10.5428 11.6942
1EDP 20 12.7113 100.0% 8.1986 9.9649 7.4667 4.5900 8.0500
2H3S 20 15.1167 100.0% 11.5310 12.6380 10.7931 10.3830 10.4618

2KGU 20 38.9910 100.0% 33.6539 38.7383 29.5511 26.6282 22.7195
1TZ4 20 29.8651 100.0% 21.6863 24.1430 16.9135 16.4693 14.9436
1TZ5 20 33.7524 100.0% 25.9996 29.7668 20.3655 20.6403 17.4859

1AGT 20 45.7362 93.3% 39.1897 41.4230 30.7770 29.3564 25.6024
1CRN 20 69.9021 66.7% 62.2668 64.2589 46.9030 46.9604 42.3083
1HVV 20 38.2981 0.0% 35.9335 38.4222 20.9541 25.4910 21.5386
1GK4 20 42.0417 0.0% 42.0261 46.9844 22.3218 32.9082 27.0410
1PCH 80 94.6396 46.7% 87.5748 - 51.7904 59.9509 51.6674

2EWH 80 152.3479 16.7% 162.3482 - 88.8341 104.9692 94.5785
F13 4 4.4955 100.0% 3.0907 - 3.2002 2.7742 2.8196
F21 4 9.4729 96.7% 6.5538 - 6.3647 5.9441 5.2674
F34 12 15.2387 96.7% 13.3057 - 11.5144 10.5170 8.3239
F55 20 25.6430 50.0% 22.4019 - 16.9941 17.1060 14.4556

Table 10: Comparisons of the best energy values reported

in the literature and the best energy values obtained by

DE2P.

label L DE2P
DElscr SGDE BE-ABC

[4] [31] [20, 21]
1BXP 13 5.6104 5.6104 - 2.8930
1CB3 13 8.4589 8.4589 8.3690 8.4580
1BXL 16 17.3962 17.3962 16.4788 15.9261
1EDP 17 15.0092 15.0092 14.2928 13.9276
2ZNF 18 18.3402 18.3402 - 5.8150
1EDN 21 21.4703 21.4703 - 7.6890
2H3S 25 21.1519 21.1519 17.3037 18.3299

1ARE 29 25.2883 25.2800 - 10.2580
2KGU 34 53.6756 52.7165 46.0917 28.1423
1TZ4 37 43.1890 43.0229 31.5031 39.4901
1TZ5 37 50.2703 49.3868 39.0536 45.3233

1AGT 38 66.2973 65.1990 46.2295 51.8019
1CRN 46 95.3159 92.9853 78.2451 54.7253
2KAP 60 89.5013 85.5099 - 27.1400
1HVV 75 101.6018 95.4475 52.5588 47.4484
1GK4 84 112.3674 106.4193 57.9654 49.4871
1PCH 88 166.7194 156.5252 - 91.3508

2EWH 98 257.0741 245.5193 201.0500 146.8231
F13 13 6.9961 6.9961 - 6.9961
F21 21 16.5544 16.5544 - 15.6258
F34 34 31.3732 31.3459 - 28.0516
F55 55 54.9269 52.0558 - 42.5814
F89 89 86.4318 83.5761 - -

and for these sequences, the proposed algorithm reached

the new best-known solutions.

The proposed algorithm was also compared with

state-of-the-art algorithms for protein folding optimiza-

tion. Although the used stopping criteria that were

taken from the literature did not allow our algorithm

to reach the second optimization phase in all the runs,

our algorithm outperformed all competitors on small se-

quences, and it is comparable on longer sequences. With

the stopping condition of four days, when a significantly

larger number of solution evaluations was allowed, it

obtained significantly better energy values for all longer

sequences.
In the future work, we will try to implement our

algorithm by using full atom and coarse-grained [19]

representations of protein structure.
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(a) 1BXP (b) 1CB3 (c) 1BXL (d) 1EDP

(e) 2ZNF (f) 1EDN (g) 2H3S (h) 1ARE

(i) 2KGU (j) 1TZ4 (k) 1TZ5 (l) 1AGT

(m) 1CRN (n) 2KAP (o) 1HVV (p) 1GK4

(q) 1PCH (r) 2EWH (s) F13 (t) F34

(u) F55 (v) F89

Fig. 6: The best obtained conformation.
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Table 12: The best solution vectors obtained by the DE2P algorithm.

label solution vector in degrees xb = {θi,1, θi,2 ..., θi,L−2, βi,1, βi,2, ..., βi,L−3}
1BXP { 43.2915, 2.8817, -48.7280, 0.0655, 12.6242, 66.0927, -6.4080, 8.9633, 8.8002, 2.2354, 74.0763, 6.6206, -1.3180, 104.0990,

-160.3410, 177.3840, 20.6892, -26.8003, -127.7890, -166.2700, -10.2979 }
1CB3 { -14.0758, 25.2546, -38.7358, -9.5809, 21.0366, 14.7617, -0.9982, 21.5393, 71.2738, -27.6012, -5.1652, 19.1483, 149.7748,

-172.5398, -178.0861, -178.1643, -91.6772, -4.8545, 31.1093, -28.9806, -3.4154 }
1BXL { -22.4292, -32.2737, -16.9254, 5.8130, 15.6175, 26.9979, -38.2372, 52.8361, -48.2442, -24.0736, 49.3335, -36.1178, 13.9215,

12.5486, -1.9187, -55.1452, -147.3023, 127.6298, -168.5915, 62.9624, 27.0891, -28.7221, -27.4283, -152.1219, 177.1523,
-67.7357, 5.2122 }

1EDP { -22.6336, 7.2697, 60.7674, 23.9360, -50.4261, 4.4167, 11.4886, 46.4990, 13.2306, -12.2668, 22.7087, 4.0704, 30.6245,
-69.1251, 16.9542, -26.0209, -124.9106, 155.5754, 61.0880, -1.5508, -53.7379, -159.4210, 162.5922, 156.4397, 170.4986,
85.1224, -2.3633, 25.7677, -67.3571 }

2ZNF { -22.5120, 7.7169, -75.1038, 26.0694, 35.5390, 19.6450, 6.7395, 21.8104, -57.4641, 1.6924, 6.1557, 3.0890, 9.8979, 23.8155,
-48.9192, -4.3139, -78.7078, -2.6658, 114.9430, 148.1870, 162.5640, 79.1176, -8.8776, 178.4280, -42.9368, -15.8392, 18.6691,
104.1930, -166.4600, -12.8760, -140.1070 }

1EDN { -23.2048, 31.2207, 46.7641, 48.9338, -43.6867, -28.0164, -17.6723, -38.3711, -25.1772, 10.6263, 9.0775, 33.5365, -4.8376,
-6.0992, 25.0580, -81.1510, 15.5945, -3.6247, -36.6783, -41.0025, -127.4610, 147.7320, 53.6249, 22.4103, 68.6344, 166.9730,
-147.0280, 171.4510, 155.3810, -121.7100, -29.6786, -131.1440, -15.2983, -24.5428, 54.7787, 83.2637, 29.6805 }

2H3S { 30.6395, -51.1362, 34.4028, -0.4102, -32.4389, -10.4102, -2.0940, 12.4798, -5.7420, -60.0843, 12.6704, -8.6855, -36.5963,
-14.4828, -17.9173, 13.0795, 0.1480, 17.7335, -6.0652, 1.4640, -69.7022, 3.0362, 36.2347, 57.1061, 174.6790, -173.2560,
170.6800, 156.7240, -142.5800, -40.6316, -22.5668, 1.4454, -175.8490, 114.8180, 61.1893, 4.1128, 27.6809, -84.4735, -144.8670,
-176.7310, -161.6050, 97.3255, 158.1730, -113.2250, -54.3451 }

1ARE { -11.8099, -0.1852, -16.2623, -42.0892, 19.1083, -4.8901, 14.4563, 26.9473, 1.1148, -10.1441, 29.2761, -34.4553, -4.7176,
2.8386, -3.8010, 33.2357, -43.3369, -9.7781, 21.9083, -19.8608, 4.4000, 56.1031, 29.8303, 4.6358, -39.1868, 53.4091, 29.2864,
25.4655, 47.6424, 25.7292, 176.3200, -102.4900, -137.3760, 141.2600, 47.0224, 147.7150, 23.0094, 163.2980, -134.0840,
-49.6885, 13.4634, 51.6608, 157.5510, -161.3510, 143.8600, -121.9240, -51.4047, -160.7840, 132.4280, 81.2677, 17.5794,
-120.1140, -67.0551 }

2KGU { -20.3903, -8.0611, -3.2826, -67.6941, 45.6930, -20.2247, -20.7308, 39.7979, 23.0090, -80.6396, 17.3882, -11.2956, 49.5839,
22.8948, 48.7441, -18.5021, 12.0394, -6.1734, 39.9269, 41.8437, 16.1002, 46.2834, -27.8206, -67.6604, 51.0005, -0.5175,
-67.9650, -6.1230, -33.1634, -1.0703, -40.3086, 36.3314, 45.8033, 88.6758, 4.5815, -108.2150, -165.6070, 113.6270, -142.9800,
122.3020, -9.1593, -75.3266, -178.6330, -38.7442, -55.2161, -38.3169, 59.2034, 25.9876, -40.6129, -167.2930, -130.5570,
119.4140, -148.7180, 112.9520, 4.5520, 29.5852, -2.8180, -178.3550, 176.0580, 59.9104, 91.2364, 133.9350, -0.1914 }

1TZ4 { -15.7638, 65.4093, -18.2451, 3.3829, -16.9888, -4.9730, 87.4546, 71.4324, -16.3281, 74.0167, 56.2012, 4.7176, -21.9275,
62.9128, -23.5336, 35.9449, -55.6337, 10.3504, -49.7316, -6.1732, 32.4112, 5.9317, -4.3330, -24.1410, 11.9318, -0.3162,
-82.2922, -2.1914, 24.2291, -11.9723, 8.7969, -15.6866, 11.3306, 49.4570, -6.8914, 50.4939, 172.7930, 68.3833, 156.4490,
-118.1980, -154.5940, -174.4790, -108.7440, -4.5956, 28.2398, 161.1620, -170.7260, -59.2951, -1.7530, 8.3742, -171.1350,
126.5950, 19.5420, 3.9990, 8.6668, -105.5200, -2.5719, -48.0064, -151.7840, 165.1080, -22.5612, 136.9780, 41.1048, -13.3115,
28.1205, -50.0945, -137.2560, 169.5130, 49.3965 }

1TZ5 { -23.1091, -43.4195, -14.3960, 0.5110, -64.3730, 35.2371, 3.6583, 25.6251, -1.3167, 23.2115, -80.8154, 35.6936, -46.5693,
36.2667, -53.9418, 49.8668, 4.2588, 23.5710, 17.1844, -3.7372, -8.1432, 71.7318, 16.6353, -5.1681, 4.0692, 2.6351, -22.0101,
49.0679, -59.6484, -4.1104, -46.0026, 48.8265, -41.1272, 26.0293, 20.4298, 60.3889, 176.5490, -167.3680, 124.7830, -35.0730,
-19.8600, -3.4258, -87.1045, -173.8860, -179.2320, 144.4700, -167.6670, 174.9290, 12.0025, 175.2420, -138.9210, -109.5620,
-46.3340, 54.4235, 49.1986, 150.4870, -139.5450, -96.4876, -3.2356, 53.7922, -37.8148, 55.7200, -168.2500, -96.8982, 175.9540,
74.7548, -161.3030, -130.5270, 128.7780 }

1AGT { -24.3263, 5.3764, 10.4396, -2.1923, 20.4888, -30.3368, 113.7510, 15.6216, -56.9395, -19.0429, -72.2923, -33.1192, -6.9467,
10.9927, 62.3836, -15.9923, 11.3987, -17.0893, -12.5705, 21.9368, -4.2042, -4.3799, 2.7916, -26.5601, 57.6034, 2.5226,
8.6100, -18.8326, 1.3634, 24.5203, 6.2251, -86.2994, -15.2180, -79.1866, -75.7196, -55.4643, 54.0231, 115.4880, -131.4100,
136.0950, -117.8750, 33.2708, -24.0852, -161.2940, -38.9457, -148.5660, -25.2700, 51.9177, 80.9154, -162.7170, -34.4541,
-11.0239, -99.0138, 171.8190, 148.9170, -158.1880, -122.4920, -37.4450, 48.1155, -164.7280, 78.8424, -2.8201, -35.0597,
7.5444, 109.2200, 157.7730, -38.3773, 169.1840, 34.7763, 147.2250, 44.1010 }

1CRN { 50.0786, -4.0572, -61.2308, 44.6842, 76.8231, 57.6188, -32.4502, 2.4721, 12.0211, 74.3335, -0.8714, 12.0442, -0.6223,
-2.6659, -5.0746, -1.1086, -5.0429, 27.4888, 6.1272, 19.9300, -55.2943, -28.5681, -23.0060, -64.9208, 0.5466, -5.4714,
-6.4818, -8.4072, -4.9637, -32.0666, -44.4978, -12.3099, 24.4822, -61.0707, 23.1750, -15.7684, 1.2729, -72.7992, 13.3133,
5.0746, 26.3956, -3.4537, 34.6629, 2.6228, 54.3496, -43.1639, -127.9010, -12.0315, 52.1853, -24.4792, -34.9035, 0.9760,
-0.5159, -151.7190, -171.1650, 133.8860, 164.7700, -156.5570, 90.6416, 30.7998, 147.5420, 85.8871, -25.4746, 55.2350,
-48.5308, -68.2493, 169.7940, 16.1425, -10.2563, -52.5471, -154.8070, 164.0250, -178.9780, 120.0000, 44.7010, -63.6278,
159.3880, -109.0940, 146.7800, 157.5190, -15.0846, -59.3834, -49.8460, -63.0123, 18.6074, 105.8140, -3.9525 }

2KAP { 24.3718, 27.4667, -44.0114, 42.1294, -59.6325, -44.5874, -5.5296, -31.0558, 3.8587, -74.0998, -37.9655, 68.1791,
-11.7538, 72.6772, -5.4661, 63.9122, 2.6613, 44.6125, -21.2170, -1.4292, 39.5007, -17.5291, 21.1484, 27.0784, 53.4574,
18.9653, -52.7529, 59.6967, 16.2715, 8.8282, 46.2614, -12.4821, 86.2839, 71.9082, -1.7970, -2.0548, -51.5120, 37.8161,
-7.8908, -34.5328, -15.1049, 14.2872, -90.8831, 23.9633, -29.2878, 13.1950, -42.4110, 7.1498, -14.1595, 20.3454, -18.4859,
-18.9042, -2.1230, -4.0425, -20.7228, -70.4339, -36.7226, 17.3609, 19.0532, 43.6405, 14.0840, -127.4210, -22.1486, -144.8530,
-50.4490, -169.6760, 11.7031, 131.7470, 179.9640, -146.4880, -8.9112, -177.3020, 22.4927, 160.3420, 144.9730, 65.3899,
23.8940, -20.6934, -151.8260, -26.5497, 43.2933, 38.2212, -71.2860, 175.9890, -148.9180, 140.4420, 166.3260, -170.7830,
-122.6240, 21.6178, -36.6286, 39.6738, -22.0121, -147.5460, -129.4730, -13.6816, 36.4449, 9.4886, -13.4387, 40.1758, 166.4200,
-76.3177, -45.6436, -146.6620, 141.4190, -114.9160, 168.8570, 76.1944, 179.5190, 96.0169, 6.7884, -24.1243, 9.0689, -108.3530,
-102.5490 }

1HVV { 28.2685, -40.6918, -7.7275, -32.3201, -20.7837, 10.2414, 6.1012, -15.4520, -26.0580, -21.1452, -33.2152, 25.2166, 22.1740,
73.0179, -12.3503, 13.0662, 2.7632, 1.3007, 4.7266, -85.3002, -5.4729, 14.8792, 2.8751, 4.0576, -84.8795, 15.0615, 30.9497,
82.3684, -38.9026, 63.6890, 7.7874, 41.7187, -4.1016, 0.5837, -7.2732, -9.6488, 44.9434, 12.2383, -21.3734, 145.9480,
-11.3667, -19.0659, -14.8583, 15.8618, 12.0296, -10.1809, 85.8912, 20.7189, -84.4999, -4.8766, 49.9831, 4.9592, 47.0089,
87.6569, 36.3121, -95.9835, -22.6773, -13.3727, -31.4584, -13.4276, 10.6063, 3.6482, -15.5338, 69.6840, -2.2884, 10.2172,
-32.7510, -5.2629, 7.0523, 35.9366, -21.7282, -11.0987, -3.2714, 43.7507, -33.8599, -127.1520, -20.7062, 38.4249, 50.7762,
152.1700, 156.1180, 179.5900, -132.1530, -171.4480, 106.2230, -12.4394, 120.1950, 165.4130, -93.5222, -56.1465, -163.2590,
16.8057, -29.1228, -137.3300, -49.7135, 35.8770, -30.4969, 31.4916, -70.1748, 37.9770, 136.5180, 14.9668, 159.6950, -138.9450,
-148.1880, -101.2000, -7.5629, 41.1898, -42.7400, 67.5312, 161.6920, -49.0135, 147.9620, 59.5970, 163.6870, 117.7390, 24.2642,
-30.7786, 15.5388, -53.0329, -22.0126, -49.6826, -17.9750, 60.3983, 155.4430, 42.1223, 142.8740, -33.7056, -11.3703, 23.0922,
16.8769, -30.8626, -138.3300, 175.4940, -154.8640, -16.5083, 12.0973, 42.3729, -53.0223, -120.5350, -153.5300, 152.0010,
17.4168, -3.2292, 46.0565 }
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Table 13: The best solution vectors obtained by the DE2P algorithm.

label solution vector in degrees xb = {θi,1, θi,2 ..., θi,L−2, βi,1, βi,2, ..., βi,L−3}
1GK4 { -23.5368, -52.9765, -91.0886, -22.5084, 48.5852, 46.2424, 6.7747, -18.6429, -29.4579, 12.3254, 32.9086, -9.8384, 0.3103,

-57.7047, -35.1338, 79.5519, -21.6135, 70.1648, -52.2448, -28.3012, -137.8700, 3.0760, -24.7032, 30.5878, -33.0627, 8.8434,
-125.1280, -24.2820, 41.7009, 49.2211, 11.0426, -18.3751, -31.3209, -9.8915, 15.8866, -53.1167, 23.5343, -6.1429, -33.0249,
1.3760, -29.4937, 26.8502, -69.2160, -31.5893, 9.5558, 15.2941, -35.7348, -44.0274, 12.8923, 65.1494, -17.7063, -10.1409,
-3.2489, -13.8772, 81.8159, -30.3965, -0.8736, 73.0233, -37.7217, -4.2948, -19.1917, -41.4329, 10.1900, 31.4222, 55.1983,
-25.3248, -33.2248, 57.2687, -10.9687, -23.7223, 20.4717, 8.1177, 6.1580, -14.6142, -33.8161, -17.7138, 23.7175, 22.1855,
-110.1050, -42.2455, 15.3911, 67.9538, 108.5460, -8.2056, 40.3298, -4.8811, -117.2820, -11.8158, -31.9969, 69.1024, 140.0150,
-165.8220, -50.0041, -87.3274, -161.6650, 162.0850, -67.1328, 171.2760, 151.3160, -72.9197, -14.4334, -16.9347, 94.3613,
126.1540, 28.3020, -2.0875, 123.2920, -40.9864, -50.1576, -40.0075, -146.2250, -169.6290, 100.8440, 123.098, 159.8380,
164.4800, -9.9628, 129.1940, 77.8586, -23.1678, -70.0338, 32.3327, -26.1254, -155.4590, -42.4838, -97.7798, 160.0390,
132.2410, -149.6070, -73.8934, 0.8318, 119.7600, -132.7580, -73.1846, -21.7379, 20.8450, 123.8960, 86.9948, 123.1030,
140.3210, 22.3489, 76.3421, -33.8403, -101.6840, 150.6400, 155.2420, -49.0566, 58.1313, -24.0440, -15.2747, -41.5244,
-56.1580, 45.9663, 108.4570, 144.3050, 172.4450, 96.9614, -150.6490, 160.6200, 1.8834, -15.2365, -20.9220, -6.8423 }

1PCH { 44.5556, -54.2356, -99.8784, 63.3900, 79.3698, 80.0025, 36.2528, -63.5092, 69.2080, -102.3630, -46.4701, 12.8899,
-33.9664, -45.0167, 21.7445, -4.8924, 58.7080, -9.3451, 50.1629, -71.1396, 39.1343, -93.8616, 23.7380, -9.5606, -48.9556,
-13.8713, -4.7244, -5.5232, -24.5021, 56.6785, -24.8860, -72.7329, 14.6568, -32.6986, 27.8478, -6.2063, 13.5359, -23.1337,
-1.0471, -10.5722, -26.8637, 62.2722, -18.5086, 4.7446, 23.5224, -58.3009, 9.3932, 6.2841, -74.2319, -4.9259, 11.6023,
-21.3455, 10.8119, -6.6138, -14.8199, -1.9473, -7.7355, -153.1700, 28.1558, 34.6185, 32.6096, 10.3379, 13.9097, -18.7154,
73.1461, -7.6761, 2.2450, -19.7779, -10.4513, 49.0782, -88.2309, -4.0134, 19.5760, 45.2757, -0.0988, 9.6584, 37.5556, 4.6149,
-28.0496, 31.4917, -53.0738, -30.8891, 75.8167, -44.1626, 77.1048, 21.4111, -2.4662, -154.5360, -40.5056, -9.1083, 14.6453,
8.4616, 173.0740, 4.2692, -119.6730, -46.9798, 58.6207, -8.9283, 132.1090, 50.0801, -3.0832, -168.3060, 149.2040, 174.0960,
48.1556, 38.6760, -149.7110, 107.5950, 157.9690, -174.9360, -138.3730, -85.4430, -23.4847, 61.7108, -33.9020, -30.0635,
134.6030, 116.7520, 104.9670, -155.3420, -94.9446, -55.4257, -159.9640, -46.2382, -151.2140, -1.4016, 20.0691, -52.3698,
-151.1780, 41.8111, 19.4301, 130.6930, -27.8527, 73.8315, 23.8190, 44.5917, 134.1470, -136.3670, 117.8080, -160.5790,
-68.0745, -17.0275, -47.7369, -155.1620, -41.3912, -108.3610, 5.2759, -100.9010, 2.1443, 54.7888, -52.8865, 27.3697, 117.8370,
178.2460, -28.0998, 135.4250, 100.7990, 175.9960, 138.6450, 36.4198, -13.5205, -16.0751, 27.6616, -32.6852, -148.3610,
-156.2740, -176.0750, -26.7138, -9.1947 }

2EWH { 116.1390, -49.4772, 10.3899, -58.2751, -23.3784, 24.6000, -36.7045, -149.0510, -132.7830, -21.0727, 23.5253, -104.1120,
13.1179, 30.4175, 50.7226, -92.4012, 42.7474, -20.1564, 52.6708, -88.4301, 56.8142, -27.6274, 18.5940, 76.6203, -3.5028,
-52.0687, -21.2880, -49.3951, -31.6283, -32.7019, 87.3416, 35.5355, 153.5040, 55.1270, -38.5958, -44.1908, -60.1665, 124.9320,
-32.6850, -36.4796, -24.9186, -31.4726, 16.5334, -52.5521, -14.6882, -8.9236, -31.3533, 1.2030, 15.0014, -147.0140, 17.5299,
29.0412, 22.3586, 52.5274, 130.4610, 46.9053, -17.6291, -2.6997, -40.4363, 103.5650, -64.7322, 72.7882, 26.9161, -1.2370,
-70.9261, -49.9822, 20.7601, -4.3949, 33.2222, 116.6310, 19.3606, -13.3266, -32.9903, -10.2704, 70.8096, -26.2030, -31.8590,
-44.9023, -19.0768, 26.1096, 86.7503, 28.3688, 62.0058, 10.8096, -55.6498, -94.7941, 11.2196, -100.2350, 9.5840, -24.8805,
-46.3249, 34.0227, -71.2436, -51.6366, -31.1617, 35.2951, 63.5008, 178.0460, -8.7774, 53.6840, -50.0632, 50.8550, 53.7114,
-30.4684, -124.7150, -164.8180, -33.5956, -23.1001, 24.0731, 41.1648, 16.1909, 35.4786, -66.5841, -138.5830, 3.7838, 54.9703,
111.8690, 134.3130, -2.6298, 1.0777, 20.5968, -62.7794, -151.8680, -69.6083, -22.6480, -12.1114, -120.8450, 34.6737, 43.1051,
47.5810, 18.0300, 61.4490, 16.3383, -152.8790, -131.6510, 113.7650, 55.8909, 15.1288, -125.2830, -15.5483, -130.0730,
-131.6170, -63.4486, -99.5910, 32.9298, -107.2520, 164.8250, 80.9774, 41.5560, -48.8652, -36.5543, 69.0207, 115.5430,
-136.8630, -1.0986, 64.7935, 157.8040, 125.2570, 164.9310, -13.8925, 44.7431, 98.2381, 6.9066, -72.9673, -0.7786, 55.2588,
-55.9858, -122.9650, -31.8611, 52.8912, 155.6490, 168.2810, -76.7438, -24.3165, 12.0668, -4.6317, -147.7810, -35.5362,
-29.7130, 42.1289, 11.3713, 36.2228, 29.0703, -158.5470, -133.9110, -141.0250, -36.0370, 14.3460, 38.1235, -6.7165, -171.0050
}

F13 { 7.6652, -83.4480, 13.0886, 0.5513, 29.1616, -47.9080, 2.7533, -31.0327, -31.3119, -46.3918, 0.2762, 9.0488, -29.5745,
-116.1991, 160.5075, 0.8902, 129.3809, 24.5074, 113.3802, -161.6724, 98.7127 }

F21 { -5.7082, -70.6345, 12.6013, -78.4561, 5.1401, 2.4915, 57.5974, -25.4160, 27.2287, -35.8677, -5.3343, -13.9895, 3.0216,
19.9055, 74.4006, -31.0708, 4.7647, -19.1022, -32.9492, -155.5060, 16.0013, 169.1010, -162.8930, 94.9124, -155.5030, 140.8910,
-153.3320, -40.6752, -137.5630, -48.1957, 35.2245, -66.7533, 37.5734, -137.9090, 144.5210, 52.7295, 156.8710 }

F34 { 6.5328, -83.0367, 15.1104, 16.9355, 28.8433, 5.2647, 52.5152, -13.0130, -25.2523, -8.0214, 7.0780, 11.7256, 22.0270,
-9.2043, -19.2205, -67.3482, 35.1195, -61.2379, 31.1857, 11.0780, 4.1848, -27.4726, -1.3645, 17.3948, 21.7434, -3.2610,
2.2779, -27.9407, -48.4669, 65.0824, -31.0953, 60.5105, 7.7212, -33.0859, -119.1020, 154.2810, -130.4210, 124.2230,
-143.5030, 138.7690, 43.7392, 147.0940, 61.7037, -26.8124, 57.2326, -54.5721, 42.5337, -159.4070, -126.2040, 164.1620,
-82.2574, -146.6720, -55.1973, 26.5960, -75.9919, 8.7552, 97.1129, 29.5944, 148.8120, 38.8499, -155.1420, -157.7690, 138.1670
}

F55 { -14.6178, -81.6545, 19.6900, -5.6211, -11.7680, 22.8494, -69.8362, 14.4445, -43.1447, -3.8896, 1.1940, 15.5990, 7.0837,
50.9140, -3.1885, 26.1288, -6.1299, 11.2175, 35.4476, -30.4055, -36.4612, -62.0732, -8.4399, 14.4819, -51.4732, 1.6699,
77.5096, -18.6569, 50.1675, 62.6634, 22.5775, 16.9881, 90.7339, 8.8552, -50.9818, 20.9035, 0.7712, -75.8221, -19.0744,
-35.3043, 55.4823, -14.1388, 70.1972, -16.3458, 38.5544, -25.9921, 17.2767, 49.0289, -67.9383, 35.1534, 21.0745, 23.8821,
-9.0171, 159.3690, 73.7248, 169.3710, -111.7520, 145.2790, -140.8670, -161.6070, -58.5454, 17.0275, -88.7363, -8.1599,
84.4661, -11.5182, 112.5230, 42.2946, 141.6010, -141.0130, 112.6920, -146.3120, 117.7950, -156.5060, -62.0114, -165.3900,
-41.5667, 14.8274, -112.8120, 28.4051, -66.2272, 18.5640, 110.1050, 4.5585, 13.1075, 172.1850, 51.2246, -163.9080, 88.4345,
-179.2690, -104.2380, 150.2140, -53.4349, 177.6410, -166.9130, -19.3140, -137.7110, -21.1100, 52.3250, -50.1040, 130.8480,
-28.1110, 55.9000, 144.9420, 37.0490 }

F89 { 2.2272, 83.8283, -17.2516, 62.0451, -4.3957, -6.2564, -66.8426, 2.2260, -7.5549, 8.0116, 19.7190, 45.8951, 59.1790,
-44.2227, -38.1666, 61.8643, -12.3786, 66.5324, -11.5333, 21.1678, 55.8142, -6.0654, 33.8288, 27.3280, 4.9158, 9.6687,
6.6218, -29.0447, 37.0295, -69.7487, 55.7643, 5.2775, -85.3894, 19.8100, -56.6216, 35.6304, 12.7408, -27.1700, 46.5212,
35.6991, 0.1863, -1.8802, -35.9248, -22.4080, 22.5394, 38.3030, 17.4329, -50.3094, 16.5954, -13.2596, -75.6344, 3.0747,
-5.4558, -32.5393, -2.4337, -38.7415, 9.2880, 3.5002, -94.3724, -7.7578, 9.8094, 47.4793, -24.8944, 27.0513, 8.0774, -22.1472,
-36.5275, -28.8212, 19.7025, 81.2552, -16.7670, 23.8761, -12.0107, -25.4997, 5.1184, 14.7353, 39.6318, 35.9480, -8.0517,
-41.7183, 22.3815, 1.0366, -3.9487, -149.7020, -72.6194, 26.2519, 16.0132, 143.1950, 22.3287, 160.6860, -144.2450, 109.1530,
-146.4920, 130.2590, -146.3270, -58.0928, -163.3600, -172.2370, 160.7630, 174.8980, 62.5863, -5.7606, 57.2637, 167.9240,
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