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Abstract

Parallel metaheuristics require programming languages that provide both, high

performance and a high level of programmability. This paper aims at providing

a useful data point to help practitioners gauge the difficult question of whether

to invest time and effort into learning and using a new programming language.

To accomplish this objective, three productivity-aware languages (Chapel, Julia,

and Python) are compared in terms of performance, scalability and productivity.

To the best of our knowledge, this is the first time such a comparison is per-

formed in the context of parallel metaheuristics. As a test-case, we implement

two parallel metaheuristics in three languages for solving the 3D Quadratic

Assignment Problem (Q3AP), using thread-based parallelism on a multi-core

shared-memory computer. We also evaluate and compare the performance of

the three languages for a parallel fitness evaluation loop, using four different

test-functions with different computational characteristics. Besides providing a

comparative study, we give feedback on the implementation and parallelization

process in each language.
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1. Introduction

Optimization problems in economic and industrial applications, for instance

in logistics, telecommunications or bioinformatics are often complex, NP-hard

and time-consuming. In contrast to exact methods, which usually require ex-

cessive computational efforts, metaheuristics aim at providing high-quality so-5

lutions in a reasonable amount of time. Nevertheless, the computation time

needed to reach near-optimal solutions can still be high, and parallel computing

has been recognized as an efficient means to improve the solution quality and/or

reduce the running time of metaheuristics [1, 2].

Therefore, when choosing a programming language for the implementation10

of a (framework of) metaheuristic(s), performance and the availability of par-

allel computing tools are important criteria to consider. As high-performance

computing (HPC) systems tend to be increasingly complex and heterogeneous,

these systems become more and more difficult to program [3]. Therefore, HPC

builders and researchers are designing new programming approaches (e.g. Chapel,15

UPC, X10) which aim at increasing programmability while maintaining the per-

formance of classical environments (e.g. MPI+X) [4]. At the same time, meta-

heuristics are, per definition, destined to be applied to a variety of problems,

which means that implementations should aim to be easy-to-use and extensi-

ble for users coming from different fields of application. In order to solve20

complex problems, a high level of interoperability with machine learning and

statistical tools is needed. Moreover, adapting metaheuristics to a given prob-

lem often requires a considerable amount of parameter tuning and adjustment

of algorithm components (genetic operators, neighborhood structures, selection

criteria, etc.). It is commonly acknowledged that dynamic programming lan-25

guages (e.g., Python, Julia, Matlab) greatly facilitate these tasks and enable

fast prototyping [5]. However, these languages historically suffer from severe

performance penalties and lack support for efficient parallel computing. In or-

der to avoid the highly time-consuming process of re-programming all or parts
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of an existing program in a more low-level language, several projects aim at in-30

creasing the performance of dynamic languages, either by proposing extensions

(e.g., Numba for Python) or new languages (e.g., Julia).

To make an informed decision considering the trade-off between these two

conflicting objectives, empirical evidence regarding the relative merits of dif-

ferent programming languages is needed. However, while the literature pro-35

vides abundant experimental comparisons between different algorithms, it is

very hard to find information regarding the performance of the same algorithm

implemented in different languages. More generally, as noted in the perspec-

tives of a 2013 survey on trends in parallel metaheuristics by Alba et al., an “[...]

interesting topic for future research is to explicitly address the balance between40

software usability and efficiency when dealing with parallel metaheuristics” [6].

In various domains, researchers have conducted empirical studies comparing

the usefulness of different programming languages for a typical problem from

their respective fields of research. For instance, in [7], a comparison of stat-

ically compiled languages (Fortran, C++, Java) and dynamically interpreted45

languages (Python, Matlab, Julia) applied to classical astrodynamics problems

is proposed. In computational economics, [8] proposes a comparative study of

C++, Fortran, Java, Julia, Python, Matlab, Mathematica and R which aims

at providing “a measure of the “benefit” in a cost-benefit calculation for re-

searchers who are considering learning a new language”. The suitability of50

six programming languages for algorithms relevant to bioinformatics is studied

in [9]. In [10], a library for mixed-integer algebraic modeling written in Julia

(JuMP), is proposed and compared to similar libraries written in “highly expres-

sive yet typically slow high-level languages” (Python and Matlab) and “highly

efficient yet typically cumbersome low-level languages” (C++, Fortran). We55

have not found any works that compare programming languages in the context

of parallel metaheuristics.

With this article, we aim at providing a useful data point to help prac-

titioners in the field of parallel metaheuristics gauge the difficult question of

whether to invest time and effort into learning and using a new programming60
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language. We compare the (parallel) performance, scalability, and productivity

of three programming languages (Chapel, Python and Julia) for two metaheuris-

tics (one trajectory-based and one population-based) applied to the quadratic

3-dimensional assignment problem (Q3AP). The Q3AP is used as a test-case

because metaheuristic solution approaches are time-consuming [11] and parallel65

computing is highly recommended to tackle the problem [12, 13, 14]. Tar-

geting shared-memory multi-core systems, two key building blocks of parallel

metaheuristics, parallel neighborhood exploration and parallel population fit-

ness evaluation are implemented using thread-based parallelism. In order to

analyze the impact of the batch-size (neighborhood or population size) and70

computational characteristics of the fitness function on the performance of these

building blocks, we report experimental results for four additional combinatorial

optimization problems. Chapel, Julia and Python (using Numpy and Numba)

are designed to provide high-performance and a high-level of expressiveness si-

multaneously, so we chose these languages as a priori candidates to lie on a75

“Pareto front” of optimal trade-offs between performance and programmability.

For comparison with the “gold standard” in terms of performance, an imple-

mentation in C/OpenMP is used. All source codes for our experiments are

made available through a github repository [15].

The main contributions and findings of this paper can be summarized as80

follows:

• We compare three high-performance and high-productivity languages in

terms of scalability, performance, and productivity. To the best of our

knowledge, this is the first time such a comparison is performed in the

context of parallel metaheuristics.85

• We provide feedback on the implementation experience in Python/Numba,

Julia and Chapel, including encountered performance pitfalls and oppor-

tunities to improve execution speed. In particular, we describe how par-

allel neighborhood and parallel fitness evaluation, two key building blocks

of parallel metaheuristics, can be implemented using thread-based paral-90
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lelism provided by the three languages.

• The reported experimental results show that, for sequential executions, the

performance of the two interpreted languages can be in the same order of

magnitude than C (2-3 times slower) while statically compiled one Chapel

is equivalent to C in terms of performance.95

• In terms of parallel performance, the multi-threaded loop-level parallelism

provided by Python/Numba and Julia allows us to speed up computa-

tions, but their multi-threading support (experimental) is not yet mature

enough to compete with OpenMP, especially for very fine-grained tasks.

Chapel’s task-based parallelism, on the other hand, scales nearly as well100

as optimized C/OpenMP.

• Two productivity models from the literature were applied. According to

the results, the two interpreted languages present an interesting trade-off

between implementation cost and performance only for sequential execu-

tion.105

The remainder of this paper is organized as follows. In Section 2, we intro-

duce the test-case used in this study, which consists of the Q3AP, an iterated

local search (ILS) algorithm and a genetic algorithm (GA). In Section 3, we

present the three productivity-aware languages used for the implementation of

both algorithms. Section 4 provides information on the guidelines we followed110

to make the comparison as fair as possible, as well as details on the algorithm

implementation, its parallelization, and the performance tuning of each imple-

mentation. Section 5 reports experimental results in three parts: Section 5.1

compares the different implementations of the ILS and GA algorithms in terms

of performance and Section 5.2 in terms of productivity; in Section 5.3 we inves-115

tigate the performance of multi-threaded parallel fitness evaluation, considering

8 test functions with different computational characteristics. A discussion of

the results is provided in Section 6. Finally, in Section 7, we draw conclusions

and outline possible future works.
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2. Background120

2.1. Problem formulation

The Quadratic 3-dimensional Assignment Problem (Q3AP) is a generaliza-

tion of the well-known quadratic assignment problem (QAP) that was originally

introduced in a technical memorandum in 1967 and was re-discovered by Hahn

et al. in 2008 [11]. The Q3AP is defined by a 6-dimensional cost matrix and

solutions can be represented as a pair of permutations (π, σ) of length n. The

objective function to minimize is

f(s = (π, σ)) =

n∑
i=1

n∑
j=1

Ciπ(i)σ(i)jπ(j)σ(j)

where Cijkpqr designates the cost of assigning (i, p) to (j, q) and to (k, r). The

search space for the Q3AP contains n!×n! feasible solutions and it is clear that

the Q3AP, as a generalization of the QAP, is NP-hard. For a more detailed

description of the Q3AP and its application domain, we refer the reader to [11].125

Following the proposal of [11], benchmark instances for the Q3AP used in

the literature are derived from the QAP instances (QAPLIB, [16]) using the

following relationship between the flow matrix F and distance matrix D:

Cijkpqr = F 2
ip ×Djq ×Dkr, i, j, k, p, q, r = 1, . . . , n. (1)

2.2. Review of metaheuristics for the Q3AP

Several approximate solution methods have been proposed for the Q3AP.

In [11] simulated annealing (SA), robust tabu search (RoTS), fast ant colony

algorithm (FANT) and iterated local search (ILS) algorithms for the Q3AP

are introduced and compared to each other. All four stochastic local search130

algorithms are based on a 2-exchange neighborhood (in either π or σ) contain-

ing O(n2) neighbors. Using instances up to size n = 15, experimental results

indicate that ILS gives the overall best performance among the approximate

solution methods. Furthermore, the pioneering experimental evaluation in [11]
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shows that required computation times for reaching optimal or best-known so-135

lutions are orders of magnitude larger than for QAP instances of similar size.

To address this issue, most subsequent works in the literature use parallel com-

puting.

In [12] a GPU-based iterated tabu search (ITS) is proposed. The experi-

mental results show that it is advantageous to use a very large neighborhood,140

containing O(n4) neighbors obtained by simultaneous 2-exchange moves in both

permutations π and σ. The fitness of neighbor solutions is evaluated incremen-

tally and neighborhood evaluations are accelerated by offloading computations

to a GPU. A parallel hybrid genetic algorithm (GA) including a SA local search

in the mutation operator is presented in [14]. The parallelization model is hier-145

archical, using multiple GA islands across distributed computation nodes, and

thread-based parallel neighborhood and population evaluations on the intra-

node level. Similarly, the hybrid GA presented in [17] integrates local search in

the evolution process; moreover it uses an auto-adaption mechanism to select

suitable crossover and mutation operators and GPU-acceleration for the local150

search. For all these approaches the parallel evaluation of solutions, either full

or incremental, is a key building block which can be efficiently implemented on

top of shared-memory multi-core computers and GPUs. Therefore, we choose

to implement both ILS and a hybrid GA-LS algorithm for the purpose of this

comparative study. With some minor modifications (detailed in the following155

section) our implementations follow [11] for the ILS, and [14] for the hybrid

GA.

2.3. Iterated local search (ILS) for the Q3AP

ILS is a simple yet powerful trajectory-based metaheuristic which generates

a sequence of solutions by iterating through solution perturbations followed by160

a local improvement method [18]. An outline of the algorithm is shown in

Algorithm 1. In what follows, we describe the perturbation and local search

procedures used in our implementations.
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Algorithm 1 Iterated Local Search (after [18])

1: procedure ILS(maxiter)
2: s? ← generateInitialSolution()
3: localSearch(s?) . improve s?

4: for i← 1, . . . ,maxiter do
5: stmp ← perturb(s?)
6: localSearch(stmp)
7: s? ← keepBetter(s?, stmp) . acceptanceCriterion
8: end for
9: end procedure

Perturbation mechanism. In our ILS algorithm for the Q3AP, a perturbation

consists in either perturbing π or σ (alternately) by randomly selecting k po-165

sitions and shuffling the corresponding elements randomly. The perturbation

strength k is initialized at k ← 3 and dynamically adjusted during the search.

If a local search does not improve the previous local minimum, then the per-

turbation strength is increased (k ← k + 1). If k = n, then the perturbation

corresponds to a random replacement of either π or σ and the perturbation170

strength is subsequently reset to the minimal strength (k ← 3).

Local Search (LS). The LS procedure uses a best improvement neighbor selec-

tion, i.e. for a solution all possible moves are tried to select the best neighboring

solution. After the neighborhood evaluation the best move is applied and if no

improving neighbor is found, the search stops. A pseudo-code of the local search175

procedure is shown in Algorithm 2.

Algorithm 2 Local Search

1: procedure Local Search(s)
2: s.cost← evalQ3AP(s)
3: repeat
4: for m ∈ moves do . (in parallel)
5: ∆← evalDelta(s,m)
6: if ∆ > ∆max then (∆max,mbest)← (∆,m) . (critical section)
7: end for
8: if ∆max > 0 then applyMoveAndUpdateCost(s,mbest,∆max)
9: until ∆max ≤ 0

10: return s
11: end procedure
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We consider a local search that uses incremental evaluation of neighbor solu-

tions and a large neighborhood that consists in jointly exchanging two positions

in both permutation, as in [12]. Each move can be represented by four integers.

We denote m(s) the neighbor of s obtained by applying move and we denote

m = (a, b, c, d) the move that consists in exchanging π(a) and π(b) in the first

permutation and σ(c) and σ(d) in the second permutation. The neighborhood

of a solution s = (π, σ) is defined by applying to s all possible moves

M = {(a, b, c, d)|0 < a ≤ b ≤ n, 0 < c ≤ d ≤ n} (2)

Therefore, the size of the neighborhood is n2(n+1)2

4 . It is possible to reduce

the computational effort of neighborhood evaluations by computing costs in-

crementally. For a solution s = (π, σ), the incremental fitness of a neighbor

m(s) = (π′, σ′) obtained by applying a move m ∈M is given by

∆ (s,m) = f(s)− f(m(s)) =

n∑
i=1

n∑
j=1

(Aij −Bij)

where we denote Aij = Ciπ(i)σ(i)jπ(j)σ(j) and Bij = Ciπ′(i)σ′(i)jπ′(j)σ′(j). We

have

Aij −Bij = 0⇔ (i /∈ m and j /∈ m),

so ∆ (s,m) can be computed as follows:

∆ (s,m) =

n∑
i=1
i∈m

 n∑
j=1

(Aij −Bij) +

n∑
j=1

j /∈m

(Aji −Bji)

 (3)

In Equation 3 the subscripts i ∈ m (resp. j /∈ m) indicates that the sum is

only computed for values of i (resp. j) that are (resp. are not) involved in the

move. For instance, for move (2, 3, 2, 4) the first sum (i ∈ m) is computed for i =

2, 3, 4 and the second inner sum (j ∈ m) is computed for j = 1, . . . , 5, 6, . . . , n.180
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In the worst case, one incremental fitness evaluation requires therefore

4× (2n+ 2(n− 4)) = 16n− 32

additions/subtractions and as many read-accesses to the 6D cost-matrix C.

Moreover, the implementation of Equation 3 contains multiple if-else condi-

tions with may lead to branch prediction misses.

Overall, the evaluation of a neighborhood requires O(n5) steps. Even for

small instances the computational cost of ILS is dominated by repeated call of185

the evalDelta function (Alg. 2, line 5). In order to speedup the LS, the neigh-

borhood evaluation should be parallelized. If the neighborhood loop (Alg. 2,

line 4) is performed in parallel by multiple threads, then the update of the most

improving move and cost (Alg. 2, line 6) must be protected by some mutual

exclusion mechanism. Depending on the programming language, it might be190

preferable to store the incremental costs in a temporary array which is subse-

quently searched for the maximum value.

2.4. Genetic algorithm (GA)

As a second test-case we consider a generational GA, hybridized with a local

search in a similar way as proposed in [14], where a simulated annealing search195

is embedded in the mutation operator. An overview of the algorithm is shown

in Algorithm 3.

The number of individuals is fixed to 100. Each iteration starts by pass-

ing the fittest individual to the next generation without undergoing mutation.

This guarantees that the fitness of the best found solution is non-increasing200

from one generation to another. Parent individuals are selected according to

fitness-proportionate random selection. A position-based crossover (POS) [19]

is used. For two single-permutation parents p1 and p2, k positions are randomly

selected in p1 and copied to the corresponding positions in offspring q. The re-

maining positions of q are filled by taking the elements from parent p2, in their205

order of appearance in p2, but omitting the elements already present in q. For
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Algorithm 3 GA-LS

1: procedure GA
2: P0 ← initialize Population . Population size : 100
3: for i← 0, . . . ,#Generations do
4: Pi+1 ← Pi+1 ∪ get-best-individual(Pi) . Elitism
5: Pi+1 ← Pi+1 ∪ select-and-crossover(Pi) . Fitness proportionate/POS
6: evaluate(Pi+1) . (in parallel)
7: for p ∈ Pi+1 do
8: if random(0, 1) < 0.3 then . Mutate
9: if random(0, 1) < 0.7 then localSearch(p)

10: else apply-random-move(p)
11: end if
12: end for
13: end for
14: end procedure

Q3AP solutions, the POS-crossover is successively applied to the two permuta-

tions. The number of elements k directly copied from the first parent is chosen

uniformly at random from in the integer interval [3, N − 3]. Each generated

offspring undergoes mutation with a probability 0.3. With a probability 0.7 in-210

dividuals selected for mutation are mutated by performing a best-improvement

local search as described in Section 2.3, a random transposition in both per-

mutations is performed otherwise. The LS embedded in the mutation operator

is parallelized as described in Section 2.3. In addition, the fitness evaluation

(Alg. 3, line 6) is performed in parallel.215

3. The Languages

In this section, we briefly introduce and compare the three productivity-

aware languages used for implementing the metaheuristics: Chapel, Julia, and

Python. A summarized comparison of these languages is provided in Table 1.

Table 1: Brief comparison of the four languages used in this work for programming the
metaheuristics for solving instances of the Q3AP.

Language Compiled/Interpreted Type Checking

C-OpenMP Compiled static

Chapel Compiled static

Julia Interpreted/JIT dynamic

Python-Numba Interpreted/JIT dynamic
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3.1. Chapel220

Chapel (Cascade High Productivity Language) is an open-source parallel

programming language designed to improve the productivity in highperformance

computing [20]. It incorporates features from compiled languages such as For-

tran, C, and C++, as well as high-level concepts related to Matlab and Python.

In Chapel, the program is started with a single task, and parallelism is added225

through data or task-parallel features (incremental parallelism). The parallelism

is expressed in terms of lightweight tasks, which can run on a single locale (multi-

core computing) or multiple locales (distributed computing). The term locale

refers to a symmetric multiprocessing computer in a parallel system [21].

Previous versions of Chapel were not a suitable replacement for C or For-230

tran in terms of performance. Instead, they could be suitable replacements for

Matlab and Python [22, 23]. The performance issues of Chapel were solved on

release 1.18 (two releases ago), and nowadays, the language has become com-

petitive to MPI+X, OpenMP and SHMEM in terms of performance, taking into

account different benchmarks [24].235

Chapel has been used for exact optimization [25, 26], in both multi-core and

distributed settings. Concerning the latter, Chapel’s performance is equivalent

to C/OpenMP for parallel tree-based search algorithms. Moreover, it has the

advantage of providing work stealing schemes, which are not implemented in

OpenMP. Regarding the distributed scenario, the combination of incremental240

parallelism and global view of control flow and data structures makes it possible

to code with low programming effort a distributed tree search algorithm that

scales.

3.2. Julia

Julia is an open-source high-performance dynamically-typed programming245

language for technical computing. Its development started as a research project

at the Massachusetts Institute of Technology (MIT) and the first public version

was released in 2012. Julia is designed to be easy and fast: it aims at bridging

the gap between statically typed languages like C, C++ and Fortran, the gold
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standard languages for computationally-intensive problems, and dynamic lan-250

guages like Python, Matlab or R, whose popularity in the scientific community

has grown over the last years [27].

Julia has a high-level syntax that is easy to learn and can be used interac-

tively from a console or an “interactive notebook” [28] thanks to the build-in

read-eval-print-loops (REPL). The ecosystem provides several tools for visu-255

alization, machine learning, data science and other scientific domains. For

performance, Julia relies on just-in-time (JIT) compilation using the LLVM

compiler framework, on optional type annotations and on multiple dispatch—

a technique that selects a specialized function implementation based on the

function’s arguments. As a modern high-performance language, Julia provides260

several facilities to support all levels of parallel computing: distributed com-

puting, multi-threading, instruction-level parallelism and hardware accelerator

devices such as GPUs. However, some of the parallel programming functionali-

ties are still in an exploratory state. For instance, in the current version 1.2.0,

the Base.Threads package used in this work is still experimental, according to265

the Julia homepage1.

Experiences with micro-benchmarks [27] and more realistic applications [10]

show that Julia can be as fast as code written in C, C++ or Fortran. However,

as stated in the introduction of the Julia 1.2 documentation2, to achieve this

performance the programmer needs to “understand how Julia works”.270

3.3. Python

Python is an interpreted dynamic programming language that favors read-

ability and a highly expressive syntax. First released in 1991, Python has be-

come one of the most popular programming languages, according to available

popularity indices3. It is considered to be highly productive, due to its clean and275

1https://julialang.org/
2https://docs.julialang.org/en/v1/index.html
3TIOBE, https://www.tiobe.com/tiobe-index/; PYPL, http://pypl.github.io/PYPL.

html
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concise syntax and the large number of available libraries. Over the last years,

Python has become increasingly popular in the scientific community [29], which

is largely due to the availability of performance-oriented libraries like NumPy,

SciPy, TensorFlow or scikit-learn.

However, for compute-intensive operations that cannot be accelerated using280

specialized libraries, pure interpreted Python can be very slow. Moreover, for

CPU-bound tasks multi-threading is generally inefficient, because of Python’s

global interpreter lock (GIL). Therefore, several projects like PyPy, Cython,

Numba and Nuitka aim at increasing Python’s performance. PyPy is an alter-

native implementation of Python using JIT compilation. Cython is a superset285

of Python that is compiled to C or C++ and interfaced with Python. It allows

to write C extensions of the most compute-intensive parts of a code. Similarly,

Nuitka compiles Python to C or C++ source code. Similar to PyPy, Numba

uses JIT compilation to translate subsets of Python and NumPy to fast ma-

chine code. However, instead of replacing the Python interpreter, Numba pro-290

vides decorators that are inserted into the code to trigger the LLVM-based JIT

compilation of selected functions. OpenMP-style loop-parallelism is supported

via the insertion of decorators and Numba attempts to auto-parallelize several

expressions and array operations (if the option is enabled). Numba allows to

use either OpenMP, Intel Thread Building Blocks (TBB) or a build-in work-295

queue as threading layer. However, as of version 0.46, Numba’s multi-threading

support is still experimental.

In this work we chose Numba, because it offers options for accelerating and

parallelizing Python code incrementally with only minor code changes. More-

over, the fact that Numba is supported by hardware manufacturers such as300

AMD, Intel and Nvidia is promising with regards to its future development.

According to the official Numba website4, Numba works best on code that uses

NumPy arrays, functions and loops - which is the case of our ILS and GA-LS

Python implementations.

4http://numba.pydata.org
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4. Algorithm and Implementation305

In this section we provide details about the implementation of the ILS and

GA-LS algorithms in the three languages and describe the performance opti-

mizations applied in each case. For all three languages and the C/OpenMP

baseline we follow the same approach:

1. The task is to implement the ILS and GA-LS algorithms as described310

in Algorithms 1 and 3. Some design choices, detailed below, are made

independently of the programming language.

2. A first version is developed and tested for correctness, without making

any attempts to optimize for performance.

3. The code is profiled to detect the most time-consuming parts and issues315

like excessive memory allocations.

4. Based on the profiling results and best practices, possible performance

optimizations are applied. The last two steps are repeated, until we see

no more room for improvement with reasonably small code changes.

5. The neighborhood and population evaluation loops are parallelized and,320

if possible, tuned (chunk size, scheduling, threading layer, etc.).

Let us first provide some implementation details that are common to all

implementations. In order to avoid the difficulty of parallelizing the quadruple

nested loop that results from generating the set of moves (Equation 2) on-the-

fly, the set M is generated only once and stored in memory. This allows to use325

a simple loop for Line 4, Algorithm 2. For convenience and readability, a user-

defined structure (a class or a record, depending on the language’s terminology)

solution is defined in all implementations.

4.1. Python

The basic Python implementation uses NumPy for the 6D cost-matrix and330

solutions. In order to accelerate the code with Numba, we follow the perfor-

mance tips from the Numba website whenever they are relevant. The workflow

for accelerating existing Python code with Numba is completely incremental:

15



1. install Numba and include the package in the Python code

2. add decorators to compute-intensive functions to trigger JIT compilation335

with Numba

3. add decorators to enable parallelization

JIT compilation with Numba. The fundamental way to accelerate Python pro-

grams using Numba is to apply the @jit decorator to compute-intensive func-

tions. This instructs Numba to JIT compile the decorated function to machine340

code at the first call of the function. For best performance, the @jit decorator

should be used in nopython mode, meaning that the compiled function will run

without involvement of the Python interpreter. The @njit decorator acts as a

shortcut for @jit(nopython=True).

The JIT compilation of a function with Numba may fail, for instance due345

to the use of unsupported features or failed type resolutions. Without the

nopython option, Numba attempts to compile parts of the function to machine

code and runs the rest in the interpreter. In nopython mode the execution will

terminate with an error message, containing some hints on the reason of failure.

In an incremental approach, such compiler feedback is very useful for finding350

spots that prevent faster code execution.

In our case, Numba refuses to compile the convenient conditional expression

if j not in move (in the incremental fitness Equation 3), or iterating with

the built-in Python function enumerate. Using the compiler-feedback, it is easy

to rewrite those expressions in a more C-like way.355

In order to be usable in JIT compiled functions, user-defined objects need

special treatment. To allow Numba to recognize the user-defined class solution,

one needs to specify the types composing the class and apply a @jitclass

decorator to the class declaration. The resulting object, called a jitclass or

a JIT-aware class, is a C-compatible structure to which compiled functions can360

have access, bypassing the interpreter. While this allows functions that use

instances of solution to be successfully JIT compiled, it also triggers further

issues. Indeed, copying a jitclass with the Python copy module fails with
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a TypeError: can’t pickle solution objects error message, so we were

forced to implement a copySolution function by hand.365

In the GA, further difficulties due to the use of a JIT-aware solution class

arise when it comes to choosing a suitable data structure for the population of

individuals. While Numba supports the use of Python lists in JIT compiled

functions, several restrictions on the allowed types prevented us from using

a list of JIT-classes. A NumPy array of solution objects in also rejected, as370

Numba 0.46 does not support arbitrary Python objects to be used as NumPy

scalar types. Finally, Numba manages to JIT compile and parallelize the fitness

evaluation of the population when the population is declared as a NumPy ar-

ray of “structured scalars”, which means that we had to replace the JIT-class

solution by a custom NumPy data type object. This modification was also375

applied in the LS code embedded in the GA.

Table 2 shows the speed (in terms of neighborhood evaluations per second)

of the sequential Python-based ILS implementation with and without Numba.

This experiment only evaluates the JIT-compilation feature, as the (automatic)

parallelization feature is not enabled. As one can see, Numba significantly380

accelerates the LS, providing an overall speedup for the ILS of 400× and more.

Table 2: Processing speed (in neighborhood evaluations/second) for the sequential Python-
based ILS implementation with and without Numba @jit-compilation. All results are averages
over 20 runs with 100 ILS iterations.

nug12 nug13 nug15 nug18 nug22 nug25

Python 0.59 0.41 0.20 0.080 0.029 0.015
Python+Numba 282 189 91 36 11 5.9

ratio 477 466 459 451 388 388

Parallelization with Numba. The @jit decorator has a parallel option, which

is set to True for the neighborhood and population evaluation functions. This

causes Numba to attempt an automatic parallelization of several operations,

like NumPy array operations, reductions or assignments. Moreover, Numba385

provides a prange function, which can be used instead of range to specify that
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a loop can be parallelized. If the parallel option is set, the iterations of a

prange-based loop are split between a number of threads, which is either de-

tected automatically or specified by the NUMBA NUM THREADS environment vari-

able. OpenMP-like critical sections are currently not supported, so the best390

move and the associated incremental cost cannot be determined ”on the fly” as

in Algorithm 2. Therefore, the incremental costs of all neighbors are stored in a

temporary array and the best value is retrieved using NumPy’s argmax function

(for which Numba provides automatic parallelization support). In preliminary

experiments we have tested both threading layers, TBB and OpenMP, without395

observing any significant difference in terms of performance.

4.2. Julia

Julia natively supports multi-dimensional arrays, so a 6D-array of integers is

used for the matrix of cost coefficients. While the first version of our implemen-

tation in Julia was very easy to code, early preliminary experiments revealed it400

to be almost as slow as the pure Python implementation. Indeed, the documen-

tation warns us that one may find Julia’s performance “unintuitive at first” and

highly recommends reading through the Performance Tips section5. The first

paragraph of that section is entitled “Avoid global variables” and states that

“Variables should be local, or passed as arguments to functions, whenever pos-405

sible”. We found that the latter recommendation should be taken very seriously

if one is interested in performance.

For instance, we observed that not passing dim (a global integer that rep-

resents the size of the problem instance) as an argument to the incremental

fitness evaluation function (the innermost function call) results in a 15-fold per-410

formance drop for ILS. However, we should note that this does not mean that

it is necessary to manually specify the types of the variables—usually Julia will

be able to infer these types.

Table 3 shows the speed (in neighborhood evaluations per second) of a first,

5https://docs.julialang.org/en/v1/manual/performance-tips/index.html
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unoptimized ILS implementation in Julia, and a second version which was ob-415

tained after several optimization cycles, using Julia’s profiling tools and follow-

ing the “Performance Tips”. One can see that the initial Julia implementation

is about 4× faster than its Python-only counterpart and that the code optimiza-

tions allow to accelerate the initial version by a factor 80-90. This performance

gain is mainly due to “passing arguments to functions”.420

Table 3: Processing speed (in neighborhood evaluations/second) for the sequential Julia-
based ILS implementation before and after applying performance improvements. All results
are averages over 20 runs with 100 ILS iterations.

nug12 nug13 nug15 nug18 nug22 nug25

Julia - first 2.00 1.37 0.66 0.26 0.094 0.049
Julia - tuned 180 123 60 23 7.8 4.1

ratio 87.9 89.6 90.4 88.5 82.6 82.2

Parallelization of the fitness evaluation loop is performed adding a sim-

ple @threads macro (provided by the Threads module) to the for-loop. The

Threads module is experimental and no equivalents to omp critical sections

or schedule clauses are currently available. Although a mutex implementation

is provided, we chose to store incremental costs in a temporary array on which425

a min-reduction is performed subsequently.

4.3. Chapel

An initial Chapel version was produced based on the original C implementa-

tion facing no major issues. Then, the code was analyzed to identify opportuni-

ties for applying Chapel’s high-productivity features, such as zipped iterators,430

array initialization, reductions, multidimensional ranges and data structures.

The final serial implementation was then parallelized using the task-parallel

features provided by the language. The --fast compiler flag is used, enabling

several optimizations.

As in OpenMP, Chapel provides five work-distribution schemes, which are435

implemented as built-in iterators used in forall statements6: dynamic, guided

6https://chapel-lang.org/docs/modules/standard/DynamicIters.html
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and three work stealing strategies. The first two are Chapel implementations

of OpenMP’s scheduling policies of the same name. As for the C/OpenMP

implementation (detailed in the following) using the static distribution instead

of iterators results in the best overall performance.440

Chapel provides two task layer implementations [30]: qthreads (default) and

POSIX Threads (Pthreads). A preliminary experiment was performed to verify

which task layer implementation is the most advantageous in the context of this

work. It is important to point out that the task layer is chosen in terms of

environment variables and this action means no coding efforts. As for Numba,445

changing the task layer does not result in performance improvements.

Although several preliminary experiments for fine tuning were conducted,

the best overall performance is obtained by using Chapel’s default settings. In

the context of the present work, this is an advantage of Chapel compared to

C/OpenMP—as detailed in the following the latter requires fine tuning to scale450

on a Non-Uniform Memory Access (NUMA) architecture.

4.4. Baseline: C/OpenMP

For the reference C/OpenMP implementation no particular optimizations

of the sequential code are performed. The code is compiled with the -O3 op-

tion of the gcc compiler. The parallelization is achieved by inserting OpenMP455

directives into the code. Further optimization is achieved by tuning OpenMP

environment variables.

As one can see in Figure 1a, using static scheduling for the distribution

of loop-iterations and setting the OMP PROC BIND environment variable to true

has a strong impact on the achieved processing speed. The relative speedup of460

the static-bind version over the default configuration depends on the number of

threads and the problem instance. While there is no significant effect on the

performance of single-threaded runs, the tuned OpenMP configuration is up to

6.5× faster than with the default setting (for nug18 and 32 threads). Clearly,

the tuning of OpenMP environment variables is particularly beneficial for the465

smaller instances (nug12 -18 ), i.e. smaller neighborhoods and more fine-grained
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Figure 1: Effect of OpenMP environment variable settings on the performance of the ILS
C/OpenMP implementation

parallelism.

For problem instance nug22, Figure 1b shows the speedup achieved with

different OpenMP settings and a number of threads varying from 1 to 64. The

neighborhood evaluation loop consists of a large number of fine-grained tasks of470

similar duration (∆-evaluations). Therefore, dynamic scheduling is expected to

incur significant overhead without bringing any benefit in terms of load balanc-

ing and a static distribution of loop iterations is more suitable.

When the number of OpenMP threads exceeds the number of physical cores

within one socket, the application uses both sockets of the Non-Uniform Mem-475

ory Access (NUMA) system. Especially in NUMA architectures, migration of

threads between cores can considerably increase memory access times. As can be

seen in Figure 1b, binding OpenMP threads to hardware threads (or to sockets)

improves the scalability of the parallel ILS.

5. Experimental evaluation480

This section presents the experimental evaluation, which is divided in three

parts: Section 5.1 compares the different implementations in terms of perfor-

mance and Section 5.2 in terms of productivity. In Section 5.3 we investigate the

performance of multi-threaded parallel fitness evaluation, considering 4 prob-

lems and 8 test functions with different computational characteristics.485
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5.1. Performance Evaluation

In this evaluation, the implementations introduced in Section 4 are com-

pared to the C/OpenMP reference. For each language, there are a GA and

an ILS implementation. Concerning the ILS implementations, our objective is

to analyze how the number of neighborhood evaluations/second scales as the490

number of used threads increases. In turn, for the GA, we intend to compare

the quality of the solution obtained by Chapel, Julia and Python compared to

ones obtained by the baseline with a fixed time budget of 5 minutes. Due to

the large amount of collected data, some results are presented in a summarized

way.495

5.1.1. Parameters Settings

The benchmark Q3AP instances used in the experiments are derived (as

explained in Section 2.2) from the nug-class of the QAPLIB library [16]. The

instances chosen are those of size 12, 13, 15, 18, 22, 25 and 30 from the nug class.

The parameters used in the ILS and GA implementations are the ones presented500

in Section 2.3 and Section 2.4 respectively. Moreover, each configuration <

threads, instance, implementation > is run 20 times.

The testbed operates under Debian 4.9.0, 64 bits, and it is equipped with

a dual-socket NUMA node composed of 2 Intel Xeon Gold 6130 CPUs (Sky-

lake, @2.10GHz, 16 cores/CPU, hyperthreading enabled) and 192 GB of RAM.505

The C implementation was compiled with gcc 6.3.0 and OpenMP 4.5. The

Chapel application was programmed for version 1.19 with the default task layer

(qthreads). We use Julia version 1.2 and Python 3.6 with Numba 0.47.

5.1.2. Performance Results

ILS. Figure 2 shows the performance (measured in neighborhood evaluations510

per second) of the Python/Numba, Julia and Chapel implementations relative

to the C/OpenMP baseline, for the number of threads varying from 1 to 64

and for instance nug22. The relative slowdown concerning the C/OpenMP

reference is shown, so smaller values are better. Hereafter, we are going to refer
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Figure 2: Relative slowdown of parallel ILS in Python, Julia and Chapel with respect to the
baseline C/OpenMP implementation (smaller is better). Performance is measured in terms
of neighborhoods/second, for 100 ILS iterations and instance nug22.

to the Chapel, Julia and Python/Numba implementations as Chpl, Jl and Py515

respectively.

One can see that the performance of ILS-Chpl is close to the C/OpenMP

baseline (less than 1.4× slower) for up to 64 threads. The performance gap

between ILS-Chpl and the baseline does not grow according to the number

of threads, so the behaviour of ILS-Chpl in terms of scalability is similar to520

C/OpenMP. It should be noted that Chapel achieves this with default settings,

while the baseline is obtained by tuning environment variables (see Figure 1).

Considering the two dynamic languages, the sequential versions of ILS-Py

and ILS-Jl are 1.7 (resp. 2.5) times slower than the baseline. In turn, the

corresponding parallel versions using all available hardware threads (64) are525

7.9 (resp. 6.5) times slower than their C/OpenMP counterpart. While ILS-Py

is faster than ILS-Jl for 1, 2 and 4 threads, the Julia-based parallel version

outperforms the Python-based parallel ILS for 8 and more threads. Indeed, for

ILS-Py one can notice a sharp increase in relative slowdown when the number

of threads is increased from 4 to 8 - this is concerning, as it is hard to explain530

by the underlying hardware configuration (2× 16 cores).

In turn, for ILS-Jl a significant drop in scalability occurs when increasing the
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number of threads from 16 to 32, i.e. when using more threads than the number

of cores on a single CPU. A likely explanation for this is found by analyzing

the effects of different environment variables on the scalability of the baseline,535

shown in Figure 1. Indeed, the scaling of the C/OpenMP implementation with

more than 16 threads is only achieved through the binding of OpenMP threads

and by explicitly setting the distribution of loop iterations to static. To the

best of our knowledge, neither Julia nor Numba currently provides user-control

over these parameters.540
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Figure 3: Parallel efficiency reached by all four ILS implementations compared to the respec-
tive sequential versions. Values are given in percent of the linear speedup (linear = 100%).
Results are for (a) nug12 (small) and (b) nug25 (large).

Figure 3 depicts the parallel efficiency τ1
pτp
× 100% where τp designates

the processing speed (neighborhoods/sec) observed with p cores. In order to

see whether an implementation can take advantage of hyper-threading, for 64

threads, p is set to 32.

On the left-hand side, Figure 3a shows the results for the smallest instance545

nug12. On the right-hand side (Figure 3b) shows results for the largest solved

instance, nug25 – we do not compare results for nug30, as internal errors oc-

curred with both Julia and Python, likely due to the fact that the 6D array of

cost coefficients requires more than 4 GB of memory. For nug30, the perfor-

mance of the Chapel-based ILS is equivalent to C/OpenMP when using 1 to 16550

threads and up to 15% slower with 64 threads.

Figure 3 shows that, as expected, the scalability of all implementations is
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better for large instances. In Figure 3b, one can see that ILS-Jl is clearly more

scalable than its Python-based counterpart. Indeed, for nug25 and 8 threads,

Julia’s parallel efficiency, 75%, is more than twice as high as Python’s, which555

drops to 35%. ILS-Chpl is the only implementation that scales equivalently to

the baseline implementation for up to 8 threads. For 16 to 64 threads, ILS-

Chpl reaches 78–88% of the efficiency achieved by the baseline implementation.

Moreover, comparing the rates observed for 32 and 64 threads reveals that only

the C/OpenMP baseline and ILS-Chpl can exploit the hyper-threading features560

of the testbed.

GA. In order to compare the different GA implementations we consider the

solution quality reached after 5 minutes of execution. As a measure for solu-

tion quality we compute the relative percentage deviation (RPD), computed as

f?−fbest

fbest
× 100%, where f∗ designates the objective value found after 5 minutes565

and fbest is the cost of the optimal or best known solution as shown in Table 4.

Table 4: Best known solutions for nug-derived Q3AP instances. For n = 12, 13, 15 optimal
solutions are known due to [11, 31]. For n = 18, 22, 25, 30 we report the best solution found
by all runs performed in this experiment.7

nug12 nug13 nug15 nug18 nug22 nug25 nug30

580? 1912? 2230? 5064 7910 9318 18602

The results of the GA experiment are shown in Figure 4. Clearly, for all four

languages the use of parallelism (entries prefixed “64” in Figure 4) improves the

quality of solutions, especially for the larger instances (shown in the lower part

of the figure). For instances nug18, 22, 25 the best overall solution is always570

found in parallel.

In turn, it is much more difficult to discriminate between languages. While

Chapel and C appear to provide better results than Julia and sometimes Python

7The upper bounds for n = 18, 20, 22, 25, 27, 30 reported in [32] are inconsistent with our
results. However, we do obtain consistent results with the literature by reading the QAPLIB
files as [F,D] for n = 12, 13, 15, and as [D,F ] for n = 18, 22, 25, 30 (F and D designate the
flow and distance matrices used in Eq. 1). Indeed, even the QAPLIB home page is ambiguous
concerning this order, as it is irrelevant for the QAP. This symmetry is not valid for the Q3AP
when generating instances according to Eq. 1. We stick to the order [F,D].
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after 5 minutes by sequential and parallel implementations in all four languages. Each config-
uration is run 20 times. The boxes represent the 1st quartile, median and 3rd quartile. The
filled dots/triangles represent the average and diagonal crosses min/max values.

(considering for example instance nug22 ), the results are not as clear as for

ILS. Especially, for the small instances nug12 and nug13 the results do not575

allow to decide which implementation provides the best results. For nug12, all

8 sequential and parallel versions have a high success rate in finding an optimal

solution—as shown on Figure 4, the median RPD is equal to 0 in all cases except

for sequential Julia. At the same time, we observe strong worst-case outliers—

for nug12 and the observed sample of 20 runs, C and Chapel actually have the580

worst worst-case performance.

As the quality of solution quite strongly depends on random initialization

and randomized genetic operators, the number of performed runs seems too

small to make a sharp distinction between the four languages. Considering that

it required 80h of computation time to produce the results shown in Figure 4,585

we limited this experiment to 20 runs per configuration. Two main conclusions

can be drawn from this experiment: On the one hand, the parallel versions of

the hybrid GA implemented in all four languages provide enough speedup to
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improve the solution quality reached within a fixed time budget. On the other

hand it puts the slowdown caused by the choice of a programming language590

into perspective, as the effects on the quality of solutions may actually become

apparent only in the long run.

5.2. Productivity-oriented Evaluation

In this productivity-oriented evaluation, two models are applied for mea-

suring productivity in HPC : Kennedy et al. [33] and Snir and Bader [34]. The595

first one provides a visual trade-off between relative implementation cost and

performance, while the second one is closer to the industrial definition of pro-

ductivity [35], expressing productivity as utility over a total cost. Both models

are detailed in the following.

5.2.1. Visual Trade-off Model600

The model by Kennedy et al. computes the relative implementation cost

(ρl) and the relative performance (εl) of implementing a program P by using a

language l. Both metrics are defined as follows:

• ρl = I(P0)
I(Pl)

represents the cost of developing the program P in the control

language 0 over the cost of implementing the same program using the605

language l. Details concerning the implementation cost are going to be

given further.

• εl = E(P0)
E(Pl)

represents the execution time of the program implemented in

the control language over the execution time of the program implemented

in language l.610

Once those two metrics are computed, the values are plotted on a ε × ρ

graph, providing a visual trade-off between relative implementation cost and

relative performance. As one can see in Figure 5, the results of the reference

implementation are plotted on the (1, 1) point of the graph. Next, the plotted

points are compared to the desired productivity region (DPR). For a high-level615

language l, the value ρl is usually greater than 1 and εl lower than 1. Therefore,
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Figure 5: Illustration of the trade-off between relative cost and relative performance of three
languages compared to the reference one. In the graph, the arrows point to the desired
productivity region (DPR).

in the model by Kennedy et al., the DPR means that an ideal high-productivity

language is the one that achieves performance similar to the reference language

and implementation cost equivalent to a high-level language. As all languages

provide a similar solution quality, we are not going to use this model for the620

GA.

5.2.2. Utility Model

Initially, consider Utility as the value received on getting an answer to a

problem in a certain time [36]. According to the model, Productivity (ψ) is

utility over a total cost, and it is defined as follows.

ψ =
Sp × E ×A
Cs + Co + CM

where:

• Sp : is the operations/time peak that can be achieved on the system.

• E : efficiency achieved by the parallel program.625

• A : availability of the system.
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• Cs : software cost.

• CM and Co: cost of the machine and ownership, respectively. These

metrics concern any cost related to energy, hardware maintenance, human

resources, etc.630

We adapted the model for calculating relative productivity based on the

C/OpenMP baseline. In this variation, Sp is the performance of the reference

application for a given< instance,#threads > configuration and E the efficiency

achieved by ILS written in the language l given in % of the efficiency achieved

by the baseline. The authors do not handle both monetary and ownership costs.635

This way, they are considered as equal to zero. Moreover, the availability of the

system is 100%.

For the sake of simplicity, both implementation (I(Pl)) and software cost

(Cs) are going to be based on the source lines of code (SLOC) count. Despite

the criticism concerning the SLOC metric [34], it is a widely used indicator of640

programming effort [37] and it is expected that the implementation cost increase

monotonically according to the program size [38].

5.2.3. Implementation Cost/Software Cost

One can see in Table 5 the SLOC count for ILS and GA, implemented in

Julia, Chapel, Python, and C. For the GA, we isolate the crossover, mutation,645

evaluation, and selection operators. In turn, the whole ILS application is taken

into account. Non-essential parts of the code, such as comments, includes,

timers, and print functions are removed from the SLOC count.

As shown in Table 5, the Chapel-based implementation is the second largest,

after the C-based one. As Chapel is also a compiled language, this is expected.650

Chapel’s advantages in terms of SLOC come from the use of multidimensional

data structures, which removes the need for using a function for returning an

element of the 6D matrix. Moreover, built-in swap operations, high-level vec-

tor initialization, reductions and zipped iterators (forall (a,b) in (A,B) do)

contributed considerably to shortening Chapel’s code size.655
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Table 5: Relative implementation cost (ρl) and relative software cost (Cs) of Chapel, Julia,
and Python/Numba compared to C/OpenMP. As C/OpenMP is the reference language, its
relative implementation and software costs are equal to one.

Language SLOC-ILS ρ Cs

C 247 1 1

Chapel 155 1.59 0.62

Julia 106 2.33 0.43

Python 137 1.80 0.55

Both Julia and Python-based implementations take advantage of built-in

high-level functions and easily available libraries. For instance, using the Random

and numpy.random packages, generating an initial population of random individ-

uals requires a single line in both languages, such as pop=[Sol([randperm(dim),

randperm(dim)], 0) for i in 1:100 ]. For both languages, the reduction660

in code size, with respect to C, is mainly due to built-in swap operations, list

comprehensions and utility functions for sampling random variables or shuffling

sub-arrays of permutations.

The relative implementation cost ρl has been already introduced in Sec-

tion 5.2.1, whereas the software cost Cs is going to be considered as a rel-665

ative software cost given by SLOCl/SLOCC . One can see in Table 5 the

relative implementation (ρl) and software costs (Cs) for Chapel, Julia, and

Python/Numba. For the same reason of the previous model, we are not going

to apply this model to the GA.

5.2.4. Results670

Figure 6 depicts the visual trade-off between relative implementation cost

and relative performance observed for the three productivity-aware languages

compared to the C/OpenMP baseline. The values of Chapel are the closest

to the desired performance. Moreover, for Chapel the gap between serial and

parallel relative performance is the smallest, reflecting its scalability. On the675

one hand, ILS-Chpl is almost 50% more costly to implement than ILS-Julia. On

the other hand, Chapel’s relative cost is close to the one observed for Python,

a high-level interpreted language.
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The Python/Numba implementation achieves serial results towards DPR.

However, as it does not scale, its relative parallel performance is far lower than680

the one observed for ILS-Chpl and the baseline. The ILS-Julia implementa-

tion faces a similar problem: despite Julia’s relative cost, its sequential relative

performance is the farthest from the performance observed for the baseline im-

plementation and comparable to Python for the parallel version.

One can see in Figure 7 the relative parallel productivity results achieved by685

Chapel, Julia, and Python/Numba, taking into account the utility productivity

model. In this model, a parallel programming language is only productive if it

allows coding an application that scales [36]. This way, Python/Numba is from

2% to 7% more productive than C for serial execution. Taking into account the

parallel execution on 64 threads, Python/Numba is on average 75% less pro-690

ductive than C. In turn, Julia is as productive as C only for the serial execution

of nug25 and it is up to 85% less productive than C on 64 threads. Due to

the poor parallel efficiency achieved by ILS-Python and ILS-Julia, it is more

productive to use C/OpenMP for programming the metaheuristic in question.

Differently from the two higher-level languages, Chapel is the only one695

that is more productive than C/OpenMP for all configurations. The reason
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Figure 7: Relative productivity achieved by Chapel, Julia, and Python compared to the
C/OpenMP reference. Results are given for the instance nug22 and execution on 1 to 64
threads.

is that ILS-Chpl achieves similar performance to the base implementation, and

the relative software cost of its ILS implementation is similar to the one of

Python/Numba. As a consequence, Chapel is from 44% to 57% more produc-

tive than C/OpenMP taking into account serial execution, and up to 85% more700

productive than C/OpenMP for parallel execution (nug13, 32 threads).

5.3. Benchmark: Parallel Batch-Evaluation Loop

While we expect relative programming costs to be similar for other algo-

rithms and problems, performance results may be significantly different. Con-

sidering the parallel fitness evaluation loop, its computational cost strongly705

depends on both, the batch-size (e.g., population or neighborhood size) and the

computational characteristics of the evaluation function (e.g., granularity, arith-

metic intensity). We have designed a simple benchmark to evaluate the impact

of these two factors on the relative performance of parallel batch evaluations in

the different languages.710

The pseudo-code of this benchmark program is shown in Algorithm 4. A to-

tal number of 106 function evaluations are performed in batches of size batchsize∈
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Algorithm 4 Benchmark: Parallel Batch Evaluation

1: procedure parallelBatchEvaluation(f,batchsize)
2: for i← 1, . . . , 1e6/batchsize do
3: A← generateRandomSolutions()
4: for j ← 1, . . . , batchsize do . parallelize and time
5: costs[j]← f(A[j])
6: end for
7: end for
8: end procedure

Table 6: Summary of test-functions used in the benchmark experiment.

Problem Objective function Inst.

FSP

f(π) = Cπ(n),m with{
Cπ(i),j = max(Cπ(i−1),j , Cπ(i),j−1) + pπ(i),j

C0,j = Cj, 0 = 0

ta20/ta120

QAP f(π) =
∑n
i=1

∑n
i=1 FijDπ(i)π(j) nug12/tho150

Q3AP f(π, σ) =
∑n
i=1

∑n
j=1 Ciπ(i)σ(i)jπ(j)σ(j) nug12/nug25

TSP
f(π) =

∑n−1
i=1 d(π(i), π(i+ 1)) + d(π(n), π(1)) with

d(x, y) =
√

(x2 − x1)2 + (y2 − y1)2
berlin52

pr2392

{102, 103, 104, 105} (Algorithm 4, line 2 and line 4). As test-cases, we use

makespan evaluation in the permutation flowshop scheduling problem (FSP)

and the objective functions of Q3AP, QAP, traveling salesman problems (TSP).715

We consider a small and a large instance of each problem. A summary of the

used test-functions is given in Table 6.

Only the inner batch-evaluation loop is parallelized and measured (the pur-

pose of the outer loop and the random solution generation is to obtain a reliable

average execution time). As for the ILS and GA-LS test-cases, the baseline720

and the three implementations are optimized before running the benchmark for

1, 2, 4, . . . , 64 threads. Out of these 7 runs the best execution time is retained

and compared to the best performance obtained with the baseline implementa-

tion.

5.3.1. Results725

Figure 8 reports the results of this benchmark. The y-axis (in log10-scale)

33



Batchsize=1000

10−1

100

101

Chapel PyNumba Julia
Batchsize=10000

re
la

tiv
e 

sp
ee

d

10−1

100

101

Chapel PyNumba Julia

Batchsize=100

re
la

tiv
e 

sp
ee

d

10−1

100

101

Chapel PyNumba Julia

large
TSP/pr2392
Q3AP/nug25
QAP/tho150
FSP/ta120

small
TSP/berlin52
Q3AP/nug12
QAP/nug12
FSP/ta20

Batchsize=100000

10−1

100

101

Chapel PyNumba Julia

Figure 8: Performance of parallel evaluation loop relative to the C/OpenMP baseline. Out
of 7 runs with 1, 2, . . . , 64 threads, the best-achieved performance is compared to the best
performance obtained with the baseline.

shows the relative performance τL
τC

, where τl = min TL,p (p = 1, 2, . . . , 64) is

the best execution time reached in language L and τC = min TC,p the best

performance with the baseline C/OpenMP implementation.

A first observation that can be made is that the Chapel’s performance is730

similar to the C/OpenMP baseline, being up to 2× faster and in the best case

and up to 3× slower in the worst case. The only test function for which C is

consistently better than Chapel is the small Q3AP instance nug12.

While the average performance of Julia and Python are roughly equivalent

for small batch-sizes (100, 1000), Python/Numba outperforms Julia for larger735

batch-sizes. For both, Python and Julia, the performance for large problem

instances is clearly better than for small ones. This is particularly visible for

batch-sizes 1000 and 10000.

The type of performed computations also impacts the observed performance.

For the large TSP instance pr2392 and batch-size ≥ 1000 the performance of all740

3 languages is very close or even better than the baseline. The TSP instances

are given in coordinate form, so the computation time is dominated by the

computation of square-roots, which is an arithmetically intensive operation.
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In contrast, the achieved performance for both FSP instances ta20 and ta120

is clearly inferior. As shown in Table 6, the FSP makespan evaluation requires745

mn max operations/additions and as many memory accesses. The max opera-

tion is semantically equivalent to an if-else statement, so this test-function is

characterized by low arithmetic intensity and divergent control flow. Especially

for the small FSP instance ta20, both Julia and Numba have difficulties dealing

with this type of workload. Computationally, the FSP objective function is the750

closest to the incremental cost-evaluation in the large O(n4) neighborhood of

our ILS implementation for the Q3AP. Indeed, as indicated in Section 2.3, the

∆-evaluation for the Q3AP contains a high number of if-conditions and the

number of operations (16n− 32) is lower than for the test-functions considered

in this experiment.755

6. Discussion

In this section, we discuss the presented results, stating the main insights,

threats to validity and further aspects of comparison that one may take into

account.

Insights. The main insights can be summarized as follows. For the Q3AP test-760

case and the two implemented algorithms, ILS and GA:

• None of the three productivity-aware languages, Python, Julia and Chapel,

beats the reference C/OpenMP implementation in terms of sequential or

parallel performance, but all three present a smaller implementation cost.

• Productivity results for the two dynamic JIT compiled languages Julia765

and Python/Numba are similar: both are clearly more expressive than C,

resulting in codes that are about 2 times smaller. In terms of sequential

performance slowdown factors of 2-3 are observed to C. According to the

applied utility model, both languages are roughly as productive as C in a

sequential setting, but less productive than Chapel.770
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• Numba’s and Julia’s (experimental) multi-threading support is not mature

enough to compete with OpenMP or Chapel in terms of scalability. Using

64 threads, the implemented ILS in Julia and Python is 6-8 times slower

than C. As a consequence, they face poor productivity results taking into

account the utility model. In turn, Chapel’s performance is very close to C,775

both sequential and parallel, while presenting a lower implementation cost,

thanks to high-level functions. As a consequence, it is more productive

than C/OpenMP according to the utility model.

The benchmark experiment presented in Section 5.3 investigates the perfor-

mance of a parallel fitness evaluation loop for 8 different test-functions. The780

main insights from this experiment are:

• The performance results strongly depend on the algorithm and the prob-

lem being solved. The ILS/Q3AP and GA/Q3AP test-cases are very chal-

lenging for multi-threaded parallel computing.

• For large batch sizes and more regular fitness evaluation functions, it can785

be expected that Python/Numba (and to a lesser extent Julia) can achieve

a similar parallel performance than C/OpenMP and Chapel.

The possibility to quickly prototype and test algorithm variants give to both

interpreted languages an advantage in terms of time to a solution from scratch.

While this advantage is hard to evaluate, it is one of the main reasons for790

the growing popularity of those languages and one of the main motivations for

investigating them. While we obtained first serial versions with those languages

rapidly, these initial versions performed poorly. In order to obtain satisfactory

sequential performance and speed-up from multi-threading, a significant amount

of code optimization was necessary. In this regard, Chapel has a clear advantage795

even when compared to C/OpenMP, as no tuning or code tweaking was required

to obtain the final version, which performs nearly as good as C/OpenMP.

Threats to validity. There are several threats to the validity of these results

and precautions to take when extrapolating them to different problems or algo-
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rithms. We have chosen two algorithms, ILS and GA, applied to the Q3AP, as800

they contain certain a priori representative features of parallel metaheuristics

and their application to combinatorial optimization problems (such as costly

neighborhood and population evaluations, irregular memory access patterns).

However, as indicated by the experimental results obtained with an isolated par-

allel evaluation loop and 8 test-functions, the achieved performance strongly de-805

pends on the computational characteristics of the considered problem/algorithm

combination.

Besides the bias induced by the choice of a specific problem/algorithm, there

is necessarily a bias introduced by the programmer(s). Both the program size

and the attained performance may vary according to the level of expertise of the810

programmer. In our case, both programmers have strong prior experience with

C and parallel computing and little to intermediate prior knowledge of Python,

Julia and Chapel. As detailed in Section 4, we have followed a protocol that

aims at making the comparison fair. However, we cannot completely exclude

that some parts of the code could be written more efficiently or concisely.815

Further aspects to consider. The presented comparative study focuses on per-

formance and productivity, both defined by certain metrics. When it comes to

evaluating the usefulness of a programming language in a particular domain of

application, there are many important aspects that are context-dependent and

difficult to quantify – some were mentioned in the presentation of the languages820

in Section 3.

For instance, the popularity of a language, available documentation and sup-

port, code portability, interoperability and extensibility are important criteria

to consider, especially if one aims at producing reusable code. Each of the

three languages is appealing in its own way and the following is a (somewhat825

subjective) account of this:

• A strong argument in favour of Python is its popularity and a large num-

ber of existing libraries. Python interpreters are installed on almost any

machine. As confirmed by our experimental evaluation, pure Python is
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slow and for acceleration or multi-threading support one currently has to830

choose between different available solutions (e.g. Numba). The fact that

Numba allows to speed up existing Python code incrementally is a definite

plus. The sequential performance of Numba-based JIT compiled Python

is very promising and our experiments show that Numba’s loop-based par-

allelism can be as powerful as OpenMP for certain applications. For other835

applications that are more challenging for multi-threaded parallel com-

puting, Numba’s multi-threading support still needs some improvement.

Furthermore, as many Python features are currenty not available in JIT-

mode, it can be challenging to work around those restrictions. If future

versions can overcome those issues, the combination of Python/Numba840

seems like a good way to increase the (re)usability of parallel metaheuris-

tics as well as their interaction with various domains, such as machine

learning.

• Julia aims at bridging the programmability-performance gap, providing

scientific programmers in various fields with one language for quick pro-845

totyping and high-performance computing. If the language can fulfil its

ambitions, it might become the predominant scientific computing language

of the future. As the language is still young, there were important changes

between early versions. Consequently, much of the information one can

find in online forums and documentation is no longer valid, which might850

confuse newcomers to the language. Also, they way how Julia has to

be programmed to reach good performance results can actually be quite

subtle – understanding the language, not only the syntax, seems to be

a prerequisite to obtain code as fast as C. There is a large amount of

documentation available, but it sometimes feels opaque—for instance we855

were unable to find information on the thread layer used for the multi-

threading package. Concerning popularity, Julia is gaining momentum

among scientific programmers and it remains to be seen how widely it will

be adopted.
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• Chapel is a language designed for high-performance computing, but one860

of its most compelling features has not been used in this work: Global-view

distributed data structures (Partitioned Global Address Space - PGAS [39]).

The Chapel codes written for this paper can actually run on distributed

systems by performing straightforward modifications [26, 25]), which rep-

resents a potentially significant gain in productivity. Chapel is currently865

used by a portion of the HPC community, which is more familiar to lower-

level languages. On the other hand, users from a different community may

be reluctant to learn a compiled language, even if it is higher-level than

C [4].

7. Conclusions and Future Works870

In this paper, we have compared three high-performance high-productivity

programming languages for the implementation of parallel metaheuristics: Julia,

Python/Numba and Chapel. As a test-case, we have programmed an Iterated

Local Search (ILS) algorithm, and a Genetic Algorithm (GA) hybridized with

a local search. All languages studied are suitable options for programming875

parallel metaheuristics. They provide a feasible time-to-solution and the high-

level features present in the three chosen languages can considerably shorten

the code when comparing the implementation to the C/OpenMP baseline.

The main obstacle of using Python/Numba and Julia for programming paral-

lel metaheuristics is that their multi-threading support is not yet mature enough880

to replace C/OpenMP. For instance, Python/Numba and Julia present a clear

advantage in producing a first implementation from scratch. However, the two

interpreted languages were also the most difficult to tune for scalability. This rel-

atively poor scalability of the Python/Numba and Julia implementations results

in lower productivity scores than the ones observed for C/OpenMP. In contrast,885

Chapel’s parallel features and performance are competitive with C/OpenMP.

The main limitation for its adoption is that it is another compiled language

for HPC, which may require a learning curve bigger than the one necessary for
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Julia or Python.

Python, Julia and Chapel are languages that support distributed program-890

ming. However, this feature was not studied in the present work. Therefore, we

plan to investigate the use of these three languages for programming distributed

metaheuristics. Another important aspect is GPU programming support, which

is provided in Julia and Python/Numba and supported, but yet not mature in

Chapel. Thus, we plan to investigate the use of Julia and Python/Numba for895

programming massively parallel GPU-based metaheuristics for solving big op-

timization problems.
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