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Abstract

Optimization problems arise nowadays in all disciplines, not only in the scientific area but also in the field of engi-

neering or economics, and in many others. Currently, challenging optimization problems require solution methods

that consume a significant amount of computational resources. The application of High-Performance Computing tech-

niques is a common approach to obtain efficient implementations in traditional parallel computing systems. However,

more recent approaches are exploring distributed programming frameworks developed in recent years to achieve effi-

cient computations on clusters and cloud systems. In this paper we present a parallel implementation of the enhanced

Scatter Search metaheuristic using Spark. The parallel program was obtained as a particularization of a general soft-

ware framework we developed to support different realisations of the Scatter Search metaheuristic. The aim of this

paper is to provide helpful guidance to readers interested in applying, or developing their own, parallel metaheuristics

to solve challenging problems in the Cloud. With the twofold objective of demonstrating the potential of the paral-

lelization with Spark and also of studying the factors that influence the performance of the solution, the proposal has

been thoroughly evaluated on two different platforms, a cluster and a cloud platform, using a representative set of

parameter estimation problems in the field of Computational Systems Biology.
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1. Introduction

Optimization algorithms are increasingly popular, appearing in many different disciplines and being applied to

increasingly large and complex problems. Nowadays, many problems in different areas become extremely challenging

and require efficient and robust solution methods based on global optimization [11, 24, 69]. This is the case of

parameter estimation problems in Computational Systems Biology, that are used in this work as a case-study to assess

our proposal.

Computational Systems Biology is the discipline that studies biological systems from an engineering perspective.

In this field, mathematical models are used as a means to help understanding complex biological systems. The
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construction of these models is an iterative process that starts by proposing a mathematical structure with a set of

non-measurable parameters, which have to be estimated to obtain quantitative predictions. The model must then be

validated with new experiments and the response can be used recursively in a process of model refinement. Parameter

estimation is a key step in this iterative process and can be formulated as a continuous optimization problem subject

to a series of dynamic constraints that describe the behaviour of the system over time [59, 8].

Scatter Search (SS) has been shown to outperform many other state-of-the-art metaheuristics for some of these

parameter estimation problems [63]. Additionally, an enhanced version of the Scatter Search method (eSS) has been

proposed in [18, 19] that overcomes further difficulties arising when dealing with nonlinear dynamic systems. How-

ever SS, like many other metaheuristics, is usually time-consuming for realistic problems. The use of High Perfor-

mance Computing (HPC) techniques may represent an effective strategy to speed up its time to solution. Different

parallel implementations can be found in the literature [72, 55, 56] showing good performance for the calibration of

several large-scale models.

Taking into consideration the challenging and the dynamic essence of these problems, Cloud Computing represents

an interesting approach to the provision and management of the necessary computing resources. Cloud Computing [5,

13] is a paradigm for the provision of dynamically scalable infrastructure for application execution and data storage.

Clouds are commonly built using virtualisation technologies on resources such as servers, networks or storage, shared

by a huge base of users, which contributes to cheapen the computation and storage costs.

Many applications may benefit from the rapidly provision of virtual clusters in the Cloud. This is the case of

many key problems in Life Science disciplines, and particularly in Systems Biology, Computational Biology and

Bioinformatics [7, 9, 59], with important applications such as, in the field of medicine, knowing how pathogenic

cells interact to develop new therapies against, for instance, cancer or metabolic or autoimmune diseases. However,

until now most research efforts involving Cloud Computing in these fields have been focused on capturing, storing

and comparing large volumes of data, rather than on exploiting the Cloud potential to solve compute-intensive Life

Science brainteasers [60]. As traditional HPC approaches do not reach their full potential when used in the Cloud,

new strategies and frameworks have still to be explored in this domain.

In this work we explore the use of Spark [77] to implement a cloud-oriented parallel version of the eSS metaheuris-

tic. Spark is a throughput-oriented framework that outperforms other cloud solutions by adding improved support for

iterative algorithms through in-memory computing. Spark provides essential features to address the challenges of

large-scale distributed applications: high-level programming models to facilitate user program parallelization, sup-

port for data distribution and multi-node/core processing, and runtime features such as fault tolerance and load bal-

ancing. We have evaluated the performance of the proposal using a set of demanding parameter estimation problems

in the field of Computational Systems Biology. Note, however, that the applicability of the methodology proposed is

broader, and could be applied to many other challenging fields.

The rest of the paper is structured as follows. Section 2 summarises related work. Section 3 briefly describes

the SS and eSS metaheuristics used as a basis for this work. The parallel implementation of the eSS proposed in
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this paper is described in detail in Section 4, while Section 5 presents exhaustive experimental results to demonstrate

its efficiency in parameter estimation problems in Computational Biology systems. Finally, Section 6 concludes the

paper.

2. Related Work

2.1. Performance of HPC applications in the cloud

Though Cloud Computing technologies represent a powerful approach to managing technical computing re-

sources, some challenges still remain for the adoption of cloud in HPC applications [60]. The most important are

security and performance. Security is still an important barrier to acceptance, however, the problem lies mainly in

the trust and perception of users, rather than limitations in capability and architecture of various cloud platforms. Re-

garding performance, several researchers have studied the performance of HPC applications in cloud environments.

Traditional HPC benchmarks have been used in those analysis, such as the NAS benchmarks in [22], the Linpack

benchmark in [50], or a range of microbenchmarks and HPC kernels in [53]. Real applications have also been eval-

uated in the cloud, such as bioinformatic applications [32], high-energy and nuclear physics experiments [37], and

different e-Science applications [58, 41]. A set of representative applications running at a supercomputing center have

been employed in [34]. In addition, a comprehensive analysis to identify, for HPC applications in the cloud, the more

hazardous problems and bottlenecks can be found in [23]. All these works conclude that the lack of high-bandwidth,

low-latency networks, as well as the virtualization overhead, have a significant impact on the performance of HPC

applications in the cloud. Reacting against these issues, some cloud providers, such as Amazon [4] or Microsoft

Azure [49], have recently provided compute nodes that use hardware found in HPC clusters and claim to be optimized

for running HPC applications.

Among the new programming models intended to deal with large scale computations on cloud systems, MapRe-

duce [16] is the most popular one. MapReduce executes in parallel several instances of a pair of map and reduce

functions, provided by the user, on a distributed set of worker processes driven by one master process. In MapReduce

executions are run in batches, using its distributed filesystem, called HDFS, to take the input and store the output. A

wide range of applications have been parallelized using MapReduce, but, when applied to iterative algorithms this

programming model exhibits significant performance bottlenecks [21] typically because there is no efficient way of

reusing data or computation from previous iterations. New proposals, like Spark [76], aim to yield an efficient solu-

tion for iterative algorithms. Compared to MapReduce, the performance of iterative algorithms using Spark can be

improved by an order of magnitude, according to [76].

Furthermore, projects like DataMPI [46] or CloudMPI [1] appeared in an effort to connect cloud platforms and

HPC. DataMPI [46] tried to extend MPI by key-value pair based communication operations for cloud platforms. The

cloudMPI [1] framework attempted to design and implement an MPI-like solution for cloud infrastructures, being the
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Azure cloud platform their preliminary testbed. Unfortunately, these projects achieved a modest success, and they are

not active anymore.

2.2. Parallel implementations of the Scatter Search metaheuristic

In an attempt to reduce the time for solving very challenging optimization problems, the parallelization of meta-

heuristics has been large studied in the last decade [3]. Many parallel algorithms have been proposed, some of them

focused on the parallelization of the Scatter Search. In [26] three parallel strategies were explored: a low-level syn-

chronous parallel SS model using parallel search instead of local search, a replicated combination SS model that

distributes multiple subsets on the processors, and a natural replication of parallel SS. All these methods were im-

plemented using shared-memory techniques, and, thus, present limitations on scalability. In [12] a parallel algorithm

based on SS and path re-linking methods was presented. In this proposal, the master process creates the starting

solutions set while calculations of path re-linking are executed by the slave processes on local data. The slaves send

the new solutions to the master that creates a new set of starting solutions. Another parallel SS algorithm is presented

in [45], based on replacing the combination method by parallel execution of two greedy methods on every processor.

In [72], a cooperative parallel strategy for the eSS method is proposed. This method supports an island-based approach

implemented in a master-slave means, where a sequential eSS algorithm (island) is run in each slave, exchanging their

set of solutions through the master at certain fixed time moments. The cooperation of the individual islands modifies

the systemic properties of the algorithm, improving its performance and outperforming both the sequential Scatter

Search and other encouraging metaheuristics. However, the synchronization among slaves causes a poor scalability

when the number of processors grows. In [55], an asynchronous cooperative parallel strategy (aCeSS) is proposed to

improve the CeSS algorithm by means of a cooperative scheme driven by quality of solution, instead of elapsed time.

However, the communication protocol and the double-ring topology proposed still compromise the efficiency of the

solution. In [56] a self-adaptive cooperative enhanced Scatter Search, implemented a hybrid MPI+OpenMP strategy,

is proposed demonstrating encouraging results for solving very large and hard optimization problems.

All of these proposals are parallel implementations based on traditional parallel programming interfaces. To the

best of our knowledge, there is no report of any cloud-oriented parallel implementation of Scatter Search, nor any

assessment of traditional parallel implementations in cloud infrastructures.

2.3. Parallel metaheuristics in the cloud

Cloud-oriented parallel metaheuristics have also received increasing attention in the last decade. Most of the

works in the literature, though, are based on MapReduce. The parallelization of Genetic Algorithms (GAs) can be

found in [71], that attempts to fit the GAs into the MapReduce model. According to [35] GAs cannot be easily

parallelized using MapReduce due to their specific features, so they propose to incorporate a hierarchical reduction

phase to overcome this issue. Nevertheless, since they only perform in parallel the fitness evaluation the results

obtained showed a poor scalability. Another attempt to scale the population of GAs by using MapReduce can be
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found in [33]. The Particle Swarm Optimization (PSO) has been parallelized in [48] using MapReduce. In [78] the

fitness evaluations in the Differential Evolution (DE) algorithm are executed in parallel using Apache Hadoop (the

most popular MapReduce framework). The experimental results show that the additional cost of Hadoop DFS I/O

operations and the system overload significantly narrow the benefits of parallelization. In [57] the use of MapReduce

to parallelize the Simulated Annealing (SA) algorithm was also explored. Different algorithmic patterns of distributed

SA with MapReduce were designed and evaluated on the Azure public cloud. In [75] Hadoop is used to scale the

parallelization of an Ant Colony Optimization (ACO). In [40] a MapReduce hybrid GA-PSO optimization framework

to infer large gene networks is proposed. Recently, a novel algorithm using Hadoop to solve clustering problems by

means of a parallel bat algorithm (PBA) is proposed in [6].

The use of Spark for the parallelization of different metaheurisitics is also a research trend in recent years. In [15]

Spark has been tested to solve the Job Shop Scheduling Problem (JSP) using the coral reff optimization algorithm

(CRO). The use of Spark to parallelize the DE algorithm was explored in [65]. And a comparison of this Spark imple-

mentation with a MapReduce implementation has been shown in [67], concluding that Spark outperforms MapReduce

in this kind of iterative algorithms. In [47] a proposal that improves the performance of the k-means algorithm through

the use of a tabu search and the parallelization of clustering through Spark is presented. Finally, a recent study [68]

presented a simple framework to show how to use Spark to scale metaheuristic algorithms for clustering problems.

Though there have been large efforts assessing the performance of specific programming models or frameworks

in different computing platforms using standard benchmarks, there are few studies on evaluating and discussing the

performance of a particular kind of application using different models and platforms. The performance and data man-

agement of Spark and MPI/OpenMP on Google Cloud platform were compared in [62]. Experiments with a particle

physics data set show that MPI/OpenMP outperforms Spark by more than one order of magnitude. Even so, it is

important to notice also that Spark offers a better data management infrastructure and it incorporates other important

aspects such as the posibility of dealing with node failures and data replication. In [27] Spark is compared to traditional

MPI implementations in matrix factorization problems. The conclusions of this work show that there is still room for

improving the Spark performance. However, this work only includes experiments in supercomputers. In [66] the

implications of the use of MPI and Spark in the parallelization of the DE algorithm were also explored. The exhaus-

tive experimental discussion includes experiments in different computing platforms, including public clouds, and the

differences that appear from the innate features of each programming model were discussed. Recently, three machine

learning algorithms implemented in MPI, Spark, and Flink were assessed in [36] that compares their performance and

identifies strengths and weaknesses in each platform.

3. Scatter Search Algorithm

The Scatter Search (SS) metaheuristic [30] is a population-based algorithm that applies strategies for search diver-

sification and intensification that have proved effective in a variety of optimization problems. It originates in integer
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Figure 1: The five-method Scatter Search template.

programming formulations for combining decision rules and problem constraints [28]. Like many other evolution-

ary algorithms, the goal of the method is to improve the quality of the solutions by subsequent combinations and

replacements. Compared to other evolutionary methods, SS uses a smaller set of quality population members, called

the reference set and incorporates an improvement method, usually a local search, to expedite the convergence of the

algorithm.

The SS metaheuristic is very flexible, since each of its components can be implemented in different ways to adapt

the method to a variety of problems. The well-known five-method template proposed in [29] has served as the main

reference for most of the SS implementations to date:

1. A Diversification Generation Method (DG) to generate a collection of diverse trial solutions.

2. An Improvement Method (IM) to transform a trial solution into one or more enhanced trial solutions.

3. A Reference Set Update Method (RSU) to build and maintain a reference set consisting of a small set of the best

solutions found. Solutions gain membership to the reference set according to their quality or their diversity.

4. A Subset Generation Method (SG) to operate on the reference set, to produce several subsets of its solutions as

a basis for creating combined solutions.

5. A Solution Combination Method (SC) to transform a given subset of solutions produced by the SG method into

one or more combined solutions.

Figure 1 shows an schematic representation of the five-method template.
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Generate an initial set of diverse solutions

Create the initial reference set with high quality and random solutions from the initial set

while NOT(stopping criteria) do

for i=1 to reference set size do
Generate new solutions (offspringi) by combining xi with the rest of reference set members

if the best solution in offspringi (besti) outperforms xi then
Label xi

Apply the go beyond strategy to improve besti

end

end

if local search is enabled AND iterations since the last local search > a given threshold then
Select a solution using a given criterion

Apply the local search strategy to improve the solution selected

end

Update the reference set replacing labeled members with the best solution in their corresponding offspring

end

Algorithm 1: Pseudocode of the enhanced Scatter Search algorithm

In this paper we will focus on the enhanced Scatter Search (eSS) method proposed in [18, 19]. The eSS presents

a more effective pattern that aims to get over frequent issues of nonlinear dynamic systems optimization such as

noise, flat areas, non-smoothness, and/or discontinuities. Algorithm 1 shows the pseudocode of the eSS method.

This method implements original procedures in different regions to balance intensification, that is, local search, and

diversification, that is, global search. It uses a small population size without memory structures (repeated sampling

is allowed) even for large-scale problems but allows more search directions, compared to the classical SS, due to a

novel combination strategy based on wide hyper-rectangles. The diversity in the search is maintained, and the number

of evaluations per iteration does not get larger. It also incorporates a search intensification procedure (the go-beyond

strategy) to exploit the encouraging directions generated by combination of solutions. The eSS method comes up with

a good balance between robustness and efficiency in the global phase, incorporating a local search strategy to expedite

the convergence of the algorithm. Nonetheless, eSS still requires unreasonable computation times for most complex

problems, like those arising from parameter estimation in dynamic models.

4. Parallel implementation of the enhanced Scatter Search

In this section we present our proposal for a parallel implementation of the eSS metaheuristic presented in [18, 19]

using Spark. This section is divided into three parts: in subsection 4.1 the implementation of the SS as a flexible

software framework is introduced, in subsection 4.2 the particularisation of that framework to obtain an instance of
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Inputs: PG (population generation method); PE (population evolution method); TC (termination criteria)

Output: the best solution found

population = apply the PG method

while NOT(TC) do
apply the PE method to population

end

return the best individual in population
Algorithm 2: The general algorithm of a population-based metaheuristic.

the eSS is detailed, and in subsection 4.3 the Spark-based parallel implementation of the eSS instance is explained.

4.1. The Scatter Search framework

As we have seen in Section 3, SS has been described from an algorithmic point of view as a general template

that can be particularised for a wide class of problems by means of specific realisations of a reduced set of methods

[29, 61]. Each implementation of the SS is an instance of that general template in which different intensification and

diversification strategies are combined to obtain a version of the metaheuristic conveniently adapted to deal with a

specific class of optimization problems. To support that level of abstraction we have implemented a flexible software

framework that can be easily adapted to obtain different realisations of the SS.

As our primary interest is to experiment with new cloud programming models for the parallel implementation

of metaheuristics, we have adopted Scala [51] as the programming language of our framework because it is the

programming language in which distributed frameworks like Spark or Flink are coded. Scala is a concise, very

expressive high-level language, that integrates common features of object-oriented and functional languages. Using

Scala has allowed us to capture the required level of abstraction to implement SS. In the rest of this subsection we

describe the main ideas behind the design and implementation of our software framework.

SS shares a common scheme with other population-based metaheuristics like, for instance, evolutionary algo-

rithms, differential evolution or particle swarm optimization. All these methods have in common that they generate

an initial population that is repeatedly evolved until the termination criteria are met. We have captured that common

scheme as a general algorithm (Algorithm 2) applying the template method design pattern implemented as a higher-

order function (i.e. a function that takes other functions as arguments). To instantiate a particular population-based

metaheuristic, three methods has to be provided as inputs to this general algorithm: the method to generate the initial

population (PG), the method to evolve a given population in the search of higher-quality individuals (PE) and the

termination criteria (TC) to stop the search and return the best individual found. Each of these methods can be itself a

higher-order function, so concrete instances of the algorithm can be as complex as needed.

To illustrate how this general algorithm is particularised to get a concrete metaheuristic, we’ll use the SS PG

method as an example. SS starts by “generating a starting set of solution vectors by heuristic processes designed for
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Inputs: DG (diversification generation method); IM (improvement method); RSU (reference set update

method)

Output: the initial population subset of reference solutions (reference set)

initial = apply the DG method

population = apply the IM method to initial

reference set = apply the RSU method to population

return reference set
Algorithm 3: The general algorithm of the Scatter Search population generation method.

the problem considered, and designate a subset of the best vectors to be reference solutions” [29]. To accomplish

that, three methods are involved (Figure 1): the diversification generation (DG) method to generate a collection of

diverse trial solutions, the improvement (IM) method to transform a trial solution into one or more enhanced trial

solutions and the reference set update (RSU) method to build the initial reference set. Algorithm 3 shows the general

algorithm of the SS PG method, which is again an application of the template method design pattern implemented as

a higher-order function. To obtain a specific instance of the SS PG method, implementations of the DG, IM and RSU

methods must be provided as inputs to the general algorithm (note that higher-order functions could be used again in

case complex implementations were required).

There are many possible implementations of the DG, IM and RSU methods that will lead to different instances of

the SS PG method. Our framework support methods with different implementations by applying the Strategy design

pattern implemented using function builders (i.e. higher-order functions that return a function [10]). The selection of a

specific method implementation is configured in a properties file that is read at the beginning of the execution. Table 1

shows a summary of the properties, values and their meaning for the implementations of the DG, IM and RSU methods

currently supported in our framework’s configuration file. Note that an implementation of NL2SOL [17], a local

solver that has previously demonstrated its effectiveness for the parameter estimation problems used as benchmarks

in the experimental section [20], has been integrated in the framework as one of the options for the IM method. With

the values shown in Table 1 a total of eight different instances of the SS PG method are posssible: PG(DG=Random,

IM=NL2SOL, RSU=NBest/NRandom), PG(DG=Random, IM=None, RSU=NBest/NDiverse), etc.

The example we have just seen has served to show the basic design principles we have applied to implement a

flexible software framework that supports different realisations of the SS. Although a small set of method implemen-

tations have been used in the example, it goes without saying that the framework has been designed with extensibility

in mind to facilitate the addition of more method implementations. In the next subsection we’ll explain how an

implementation of the eSS has been instantiated using this framework.
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Table 1: Properties of the DG, IM and RSU methods.

method property value description parallel

DG solution generator Random initial solutions are generated randomly X

Fixed initial solutions are predetermined

IM initial improvement None initial population is left as it is (no improvement)

NL2SOL initial solutions are improved using the NL2SOL

local solver

X

RSU refset create NBest/NRandom one half of the solutions in the reference set are the

best solutions of the initial population and the other

half are selected randomly from the remaining so-

lutions in the population [18, 19]

NBest/NDiverse one half of the solutions in the reference set are the

best solutions of the initial population and the other

half are the most diverse of the remaining solutions

in the population

4.2. Implementation of the enhanced Scatter Search

Applying the same design principles explained in the previous subsection using the SS PG method as example, the

other two methods in Algorithm 2 have also been particularised. Algorithm 4 shows the general algorithm of the SS

PE method which corresponds to the body of the SS main loop shown in Figure 1 with a slight modification to include

the intensification strategy proposed in the eSS (Algorithm 1). To that end, an optional local search (LS) method has

been added just before returning the updated reference set.

Table 2 shows a summary of the properties, values and their meaning for the implementations of the input methods

(i.e. SG, SC, IM, RSU and LS) of the SS PE general algorithm currently supported in our framework’s configuration

file. Notice that the implementation of the SG method has been restricted to generate only pairs of solutions because

in [39] it has been checked that most of the quality solutions obtained by combination arise from sets of two solutions.

Moreover, as the LS method can be used to include complex intensification strategies, it has been represented in our

framework as a general algorithm that can be particularised to different LS instances, as we have already seen with

other methods1. Currently, a basic tabu search that can be particularised with different local solvers and strategies

for deciding when and to which solutions to apply the local solver, is the only implementation available for the LS

method. NL2SOL was the local solver used for the tabu search in the experiments reported in this paper, since it has

been found very effective for this class of problems [73, 25].

1A detailed explanation of the LS method is left out of the scope of this paper due to size restrictions.
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Inputs : RS (the reference set); SG (subset generation method); SC (solution combination method); IM

(improvement method); RSU (reference set update method); LS (local search, optional)

Output: the updated reference set

subsets = apply the SG method to RS

offspring = apply the SC method to subsets

improved = apply the IM method to offspring

updated = apply RSU to update RS with solutions in improved

if LS is defined then
apply LS to updated

end

return updated
Algorithm 4: The general algorithm of the Scatter Search population evolution method.

With regard to the termination criteria (TC) in Algorithm 2, it has been implemented using an OR composition

of boolean functions. Every function in the composition is instantiated from the configuration specified in the same

properties file that is used to select the concrete implementations of the methods. Currently, conditions to limit the

number of evaluations of the fitness function, the maximum execution time or the fitness value to reach are supported

and the framework has been designed to facilitate the addition of new conditions.

Algorithm 3 and Algorithm 4, in combination with the implementations described in Table 1 and Table 2, provide

what is needed to obtain a reduced set of SS instances that could be increased by adding more method implemen-

tations to the framework. Specifically, the eSS proposed in [18] can be instantiated using the following configura-

tion: {PG(DG=Random, IM=None, RSU=NBest/NRandom), PE(SC=HyperRectangle, IM=GoBeyond, RSU=1by1,

LS=TabuSearch), TC(max evaluations, max time, value to reach)}.

4.3. Parallelisation of the enhanced Scatter Search

So far we have seen how the eSS has been implemented as an instance of a general framework that provides

support to different SS realisations. In this subsection we’ll explain the parallel implementation of an eSS instance

using Spark.

Our approach has started by running some preliminary tests to identify the most costly methods, in terms of

execution time, of the eSS. These methods are the ones with a tick2 in the column parallel of tables 1 and 2. Not

surprisingly, they correspond to methods that include the fitness evaluation of new solutions.

Then, we have developed Spark-based parallel implementations of those methods and we have added them to

our framework. All the implementations follow a master-slave model of parallelisation in which the data that will

be distributed from the master to the slaves are represented using resilient distributed datasets (RDDs, [76]). The

2In this paper the parallelisation of the LS method has not been considered.

11



Table 2: Properties of the SG, SC, IM, RSU and LS methods (n/a = not applicable).

method property value description parallel

SG n/a n/a generates all pairs of reference solutions (subsets of

size 2)

SC subset combination Linear new solutions are obtained by linear combination X

HyperRectangle new solutions are obtained by applying the hyper-

rectangles-based combination method [18, 19]

X

IM improvement GoBeyond solutions are improved by applying the go-beyond in-

tensification strategy [18, 19]

X

RSU refset update 1by1 the reference set is updated by applying the (1+1) up-

dating strategy [19] (i.e. a solution can only enter the

population by replacing its parent)

LS local search TabuSearch a tabu search implementation that combines a local

solver, a tabu list and methods for determining when

and with which solutions to start the local search

RDD abstraction is used in Spark to represent read-only fault-tolerant partitioned collections of records that can be

manipulated using a rich set of operators like map, filter or join. The Spark driver (the master in Spark terminology)

partitions RDDs and distributes the partitions to workers (the slaves in Spark terminology). Workers persist RDDs (in

memory by default), transform them by applying the same operations to many data items at the same time and return

the results to the driver when actions like count, reduce or collect are executed.

Figure 2 shows a representation of the Spark-based parallel implementation of the SS initialisation phase (Fig-

ure 1). In the figure, the boxes with solid outlines and shaded rectangles in the inside are RDDs (the shaded rectangles

represent the RDD partitions). The operations that have been distributed are:

• In the DG method, the fitness evaluation of the initial set of diverse solutions, implemented as a Spark map

transformation.

• In the IM method, the improvement of the initial set of diverse solutions, also implemented as a Spark map

transformation.

These operations are usually very time-consuming for the type of challenging problems we are dealing with, because

they involve the evaluation of complex fitness functions and the application of local solvers. Notice that this parallel

implementation is valid for any instance of the SS. For the specific realisation of the eSS proposed in [18] the second

map would not be applied.

12



Figure 2: Spark-based parallel implementation of the Scatter Search initialisation phase.

Figure 3: Spark-based parallel implementation of the enhanced Scatter Search main loop (with LS not defined).

Figure 3 shows the representation of the Spark-based parallel implementation of the body of the eSS main loop

(Figure 1). In this case, the operations that have been distributed are:

• In the SC method, the fitness evaluation of the new solutions obtained by applying the combination method (the

hyper-rectangle-based combination method in the eSS), implemented as a Spark map transformation.

• In the IM method, the improvement of the best descendants, also implemented as a Spark map transformation.

In the eSS, the go-beyond strategy is applied whenever a reference set solution is outperformed by the best of

its descendants. This has been implemented by using an RDD of reference set solution-best descendant pairs
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that is distributed to the workers to apply the go-beyond strategy to each pair in parallel.

To instantiate the Spark-based parallel version of the eSS, the same configuration of the sequential instance (sub-

section 4.2) and an additional execution environment object have to be defined in the framework’s properties file.

Currently, the framework supports sequential (used by default) and Spark execution environments.

5. Experimental results

In order to evaluate the efficiency and scalability of the Spark-based parallel implementation of the eSS, the

problem of parameter estimation in the domain of Computational Systems Biology was considered as an example

case. Note, however, that the method is general and can be applied to optimization problems in other domains.

Parameter estimation problems in dynamic models are described by deterministic nonlinear ordinary differential

equation models. Given a model an a measurements data set, the goal of the estimation is to find the optimal unknown

model parameters that minimizes the variance between model predictions and measurements. This variance is given

by a cost function that quantifies the model error. Assuming a generalized least squares cost function, the mathematical

statement corresponds to the nonlinear programming (NLP) problem of finding vector p that minimizes:

J =

nε∑
ε=1

nεo∑
o=1

nε,os∑
s=1

(ymε,o
s − yε,os (p))T W(ymε,o

s − yε,os (p)) (1)

where nε is the number of experiments, nεε is the number of the state variables measured experimentally, ymε,o
s corre-

sponds with the measured data, nε,os is the number of the samples per state variable for each experiment, yε,os (p) are the

model predictions, and W is a scaling matrix that balances the residuals.

Additionally, the optimization of these problems is subject to some constraints:

ẋ = f (x,p, t) (2)

x(to) = xo (3)

y = g(x,p, t) (4)

heq(x, y,p) = 0 (5)

hin(x, y,p) ≤ 0 (6)

pL ≤ p ≤ pU (7)

where f is the set of differential-algebraic equations (DAEs) that define the dynamics of the process, x is the vector of

state variables and xo are their initial conditions, g corresponds with the observation function, heq and hin are equality

and inequality constraints, and pL and pU are upper and lower bounds for p.

The experimental results reported in this work correspond to the following parameter estimation problems:
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Table 3: Parameters and some additional features of the problems used in the experiments.

benchmark # initial solutions reference set size # max. evalsa eval. time (s)b # eval./iter. c # iter.d

Circadian 130 12 1 000 000 0.00454545 132 7575

Nfkb 290 18 300 000 0.02870657 309 980

B2 1160 36 180 000 0.10274621 1277 143

B4 1170 36 1 000 000 0.00698274 1261 794

aStopping criterium: maximum number of evaluations
bAverage time of one fitness evaluation in the local cluster
cMaximum number of evaluations in each iteration of the main loop (Figure 3)
dMaximum number of iterations of the main loop

• Circadian model: parameter estimation in a dynamic model of the circadian clock in the plant Arabidopsis

thaliana, as presented in [44]. The model consists of 7 ordinary differential equations with 27 parameters (13

of them were estimated) with data sets from 2 experiments.

• NFKB model: this problem is based on the model in [43] and consists of 15 ordinary differential equations with

29 parameters and data sets from 2 experiments.

• Two benchmarks from the BioPreDyn-bench suite [74]:

– Problem B2: a dynamic model of the central carbon metabolism of E. coli. It consists of 18 dynamic

states, 9 observed states and 116 estimable parameters.

– Problem B4: a kinetic metabolic model of Chinese Hamster Ovary (CHO) cells, with 34 dynamic states,

13 observed states and 117 parameters.

These problems were selected because they range from small problems, such as Circadian and NFKB, to large-

scale problems such as B2 or B4. In both subsets, there is one problem in which the cost function computation is

very fast (computationally) and another in which it is slow. There are also problems that perform few evaluations per

iteration and others that perform many. In summary, these four problems have been chosen because they compose

a representative benchmark for a thorough evaluation of our proposal. Table 3 shows a brief description of the

parameters used for the experiments and some additional features that will be used later to explain the results.

Guidance of [31, 2] was followed in the conception of the experiments reported in this section. In order to perform

a statistical analysis of the results, each experiment was executed a number of 20 independent runs. Since the main

goal of this work is to evaluate the potential of Spark in the parallelization of the SS algorithm, the focus is placed on

calculating the acceleration achieved by performing the evaluation of the fitness function in parallel. So, a vertical cut

that evaluates the performance of a fix number of fitness evaluations, i.e. a predefined effort, was used to that end.
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For the experimental testbed two different platforms were used. On the one hand, experiments were conducted in

our local cluster called Pluton, that consists of 16 nodes powered by two octa-core Intel Xeon E5-2660@2.60 GHz

CPUs with 64 GB of RAM, and connected through an InfiniBand FDR network. On the other hand, the same set of

experiments was carried out using the resources of the Galician Supercomputing Center (CESGA) [14], specifically

its cloud computing platform, based on OpenNebula v5.4.6 [52] which we will refer to as Nebula from now on. We

replicated an environment similar to that of our local cluster, deploying several virtual machines with 16 virtual cores

each on a cluster of AMD Opteron 6174 based servers.

Median execution time and speed-up results using a maximum effort as stopping criterion are shown in Table 4.

This table displays, for each benchmark, the number of cores (#np) used, the median best value achieved (fbest), the

median execution time of all the runs in the experiment, the speed-up (calculated as Tseq/Tpar), and the efficiency

(calculated as speed-up/np). To help us to discuss in detail the results obtained, their relation with the parameters of

each benchmark and the performance of each platform, the results in Table 4 are graphically shown in Figure 4.

Additionally, we have also calculated the number of evaluations per second and per core (evals/s/core) for each

benchmark on both platforms (Figure 5). This is a good metric for evaluating the implementation because it includes

not only the CPU time of the evaluations, but also the communications and overhead time.

From these results, several conclusions can be drawn. First, the performance on Nebula, in terms of the execution

time required to carry out the experiments, is substantially impacted. This can be explained by the virtualization

overhead, the differences in the underlying hardware platforms and the overhead due to the use of non-dedicated

resources. Second, whether in the local cluster or on the cloud platform, the parallel implementation outperforms

the sequential version, achieving promising speed-ups for a small number of cores. Third, the scalability of this

parallelization is limited, although it depends strongly on the problem at hand.

The Circadian is the problem that achieves the lowest speedup and, more specifically, the poorest scalability. The

reasons are found in the shortest time needed to evaluate the fitness function and in the small number of evaluations

that are performed in each iteration of the main loop of this benchmark (Table 3). For each iteration of the main loop

(Figure 3), the evaluation and improvement of the new solutions is distributed among the available cores. In the case

of Circadian, with a reference set of only 12 individuals, there are few evaluations to distribute in each iteration (e.g.

for 16 cores, each core would perform at most 9 evaluations). Moreover, because the time needed for each evaluation

is very short, this benchmark performs a high number of iterations which increases the communication overhead.

Thus, the efficiency drops quite early, for 8 cores it is already below 50%. Moreover, the impact of these features on

the scalability is higher on Nebula since the performance of this platform is lower. In addition, this is also the reason

why the number of evaluations per second in this benchmark is dropping the most quickly as the number of cores

increases (Figure 5).

At the other end, the B2 benchmark presents the largest fitness evaluation time and the largest number of evalua-

tions per iteration. Its results are better, both in terms of speedup and scalability, because it has more computational

load to do in each iteration, thus performing the lowest number of iterations and introducing less communication

16



Table 4: Results of the experiments: Median best value, median execution time in seconds, speed-up and efficiency.

benchmark #np fbest time (s) speed-up (efficiency)

Pluton Nebula Pluton Nebula Pluton Nebula

Circadian 1 0.58799 0.74189 4979 9210 — —

2 0.63741 0.74805 3078 5299 1.62 (81%) 1.74 (87%)

4 0.95049 0.70488 1893 2996 2.63 (66%) 3.07 (77%)

8 0.66422 0.58749 1360 2491 3.66 (46%) 3.70 (46%)

16 0.94249 0.87076 1216 2404 4.10 (26%) 3.83 (24%)

32 0.75451 0.87472 1036 2782 4.81 (15%) 3.31 (10%)

64 0.62465 1.08300 956 3148 5.21 (8%) 2.93 (5%)

128 0.83447 0.70016 1063 3229 4.68 (4%) 2.85 (2%)

Nfkb 1 0.045 0.047 8376 18034 — —

2 0.046 0.046 5012 9599 1.67 (84%) 1.88 (94%)

4 0.044 0.047 2568 5401 3.26 (82%) 3.34 (83%)

8 0.046 0.044 1469 3199 5.70 (71%) 5.64 (70%)

16 0.046 0.044 880 1929 9.52 (60%) 9.35 (58%)

32 0.046 0.046 580 1244 14.45 (45%) 14.50 (45%)

64 0.045 0.046 383 903 21.90 (34%) 19.97 (31%)

128 0.046 0.046 308 818 27.24 (21%) 22.06 (17%)

B2 1 750 788 19024 33738 — —

2 746 758 10594 19211 1.80 (90%) 1.76 (88%)

4 752 742 5872 10117 3.24 (81%) 3.33 (83%)

8 867 811 3428 5803 5.55 (69%) 5.81 (73%)

16 733 812 2136 3242 8.91 (56%) 10.41 (65%)

32 792 750 1327 1985 14.34 (45%) 17.00 (53%)

64 788 796 889 1272 21.40 (33%) 26.53 (41%)

128 735 772 633 870 30.08 (23%) 38.80 (30%)

B4 1 25541 18402 7213 12931 — —

2 21806 21230 4340 7301 1.66 (83%) 1.77 (89%)

4 23055 26554 2285 4243 3.16 (79%) 3.05 (76%)

8 26726 20742 1274 2436 5.66 (71%) 5.31 (66%)

16 18823 26081 887 1671 8.13 (51%) 7.74 (48%)

32 21234 24555 564 1090 12.80 (40%) 11.86 (37%)

64 25519 21637 407 853 17.74 (28%) 15.16 (24%)

128 25961 21087 354 812 20.38 (16%) 15.93 (12%)
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Figure 4: Efficiency and speed-up (calculated as Tseq/Tpar) for every benchmark.

overhead. Furthermore, on Nebula, the speedup achieved by B2 is larger than in Pluton, because B2 has a better

computation time/communication overhead ratio on that platform. The execution time is larger on Nebula, while the

communication overhead remains low on both platforms due to the lower number of iterations performed. Addi-

tionally, for the opposite reasons to those explained for the Circadian, B2 is the benchmark for which the drop in the

number of evaluations per second and core is the slowest (Figure 5).

With regard to Nfkb and B4, they show results that are between those of Circadian and B2, but for different

reasons. Nfkb performs few time-consuming fitness evaluations per iteration, while B4 performs as many evaluations

per iteration as B2 but needs much less time for each than Nfkb. This also explains that, in terms of evaluations per

second and core, Nfkb behaves more like B2, and B4 more like Circadian (Figure 5).

To better illustrate the influence of the computation time/communication overhead ratio on the scalability of the

benchmarks, the execution time and overhead of the tasks distributed to the cluster nodes for an execution of the map

transformation in the SC method (Figure 3) on Nebula, are shown in Figures 6 and 7 for benchmarks B2 and B4,
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Figure 5: Evaluations per second and core, for every benchmark.

respectively. For each benchmark, two different configurations are shown, a 1-node cluster with 4 cores and an 8-node

cluster with 16 cores each (128 cores in total). For each configuration, two types of information are provided: 1) for

a node in the cluster, a timing diagram showing the different times involved in the execution of each task; and 2) a

table summarizing these times for all tasks in the cluster. In the timing diagram, a bar is used for each task, with green

representing the execution time and other colours used for different types of overhead, including task scheduling, task

deserialization, and result serialization. Note that the time scale has not been included because it is different in each

diagram and is not relevant to the discussion of the results. In the summary table, the time information of all the tasks

in the cluster is summarized by providing the minimum, median and maximum values, and two different percentiles.

Note that in the table the Duration metric measures the computation time and there is an additional metric to measure

the garbage collection (GC) overhead.

From Figures 6 and 7 it can be calculated how the computation time/communication overhead ratio worsens as

the number of cores (tasks) increases. Taking the median values as a reference, the ratio for 4 cores is more than 12

times better than the ratio for 128 cores in the case of B2, and more than 10 times better in the case of B4. Note

that, in this particular example, although the median overhead for 128 cores is lower than the median overhead for 4

cores in both benchmarks, the ratio is worse, because the reduction in computation time has also been greater than the

reduction in overhead time in both benchmarks. Note also that for B4, the median computing time for 128 cores has

fallen below the overhead time (the ratio is less than 1). Furthermore, comparing the ratios for the same number of

cores in both benchmarks, the ratio of B2 is more than 21 times better than the ratio of B4 for 4 cores and more than

17 times better for 128 cores.

In light of the results presented until now, we can conclude that the problems that benefit most from the parallel

computation of fitness evaluations are those that carry out a large number of time-consuming fitness evaluations per
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Figure 6: Task execution time and overhead for an execution of the map transformation in the SC method (Figure 3) for the B2 problem on Nebula.

Detail of a cluster node and summary metrics for all tasks in: a) a 1-node cluster with 4 cores; b) an 8-node cluster with 16 cores each (128 cores

in total, only 13 cores of one node shown).

iteration. Moreover, the speed-up and scalability of those problems are further improved on the cloud platform due

to a better computation/communication ratio. By the contrary, problems that perform a large number of short fitness

evaluations per iteration have their scalability limited by the communication overhead.

In this kind of stochastic problems it is also important to evaluate the dispersion of the experimental results. A

boxplot for each experiment is shown in Figure 8, where we can see how the parallel method reduces the variability
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Figure 7: Task execution time and overhead for an execution of the map transformation in the SC method (Figure 3) for the B4 problem on Nebula.

Detail of a cluster node and summary metrics for all tasks in: a) a 1-node cluster with 4 cores; b) an 8-node cluster with 16 cores each (128 cores

in total, only 13 cores of one node shown).

of the execution time with the number of cores. This is an important feature, since it can be used to more accurately

predict the boundaries in the cost of resources when using a public cloud.

Figure 9 illustrates with a set of violinplots the dispersion in the solution achieved using different number of cores

on both platforms Pluton and Nebula and the median value of fbest reported in Table 4. As it was explained in

Section 4, the parallel strategy proposed in this work follows a master-slave approach, and therefore no significant
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Figure 8: Boxplots that compare the execution times on both platforms, Nebula and Pluton, for each benchmark.

differences in terms of convergence should be expected for experiments running with a fixed maximum number of

evaluations, since this model of parallelism does not modify the systemic properties of the implemented algorithm.

In order to further demonstrate that the convergence remains the same when this parallel strategy is implemented, a

Kruskal-Wallis test [38] was used for each benchmark. We have applied this test to the median fbest values reported in

Table 4. In every case, the test was applied three times: once comparing the results obtained in each different platform

(Pluton and Nebula) and then one final time for the two platforms altogether, since neither the parallelism nor the
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Figure 9: Violinplots showing dispersion of the best value achieved for each benchmark on both platforms. A horizontal bar representing median

fbest is also included.

Table 5: Kruskal-Wallis H test with k − 1 = 7 degrees of freedom and a significance level α = 0.05. The third column Total shows the results of the

test considering all runs in both platforms.

Pluton Nebula Total

H p-value H p-value H p-value

Circadian 14.99935 0.03601 16.37765 0.02188 8.10691 0.32326

Nfkb 7.43054 0.38547 11.52554 0.11728 4.16831 0.76020

B2 9.76691 0.20217 2.64885 0.91548 9.13200 0.24332

B4 3.57033 0.82772 6.41152 0.49260 2.43737 0.93174
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infrastructure should modify the behaviour of the sequential algorithm in terms of convergence for this implementation

model. The results are shown in Table 5. We can see that for every experiment performed, the p-value is over the

significance level except for the case of Circadian benchmark running on Pluton and Nebula separately. This could

be due to the fact that, as it can be seen in Figure 9, this benchmark presents a large dispersion in the experimental

test, and thus more runs of each experiment should be performed to get more representative results from the statistical

analysis. In fact, when the medians of all the 40 executions on both infrastructures are considered, a p-value over the

significance level for this benchmark is also obtained.

To conclude this section, we would like to make some comments on the benefits of using the Spark framework,

based on our own experience with the proposed parallelization of the eSS metaheuristic. Readers who are more inter-

ested in the performance evaluation of the Spark framework can refer to [70, 64, 42, 54]. Although Spark’s runtime

performance is worse than that of other classic HPC approaches, such as MPI or OpenMP, it provides some features

that may be especially appealing to those who, like us, are interested in parallelizing and scaling their algorithms in

the Cloud. These features include high-level programming abstractions and intrinsic support for data distribution,

fault tolerance and load balancing.

Most of the advantages that Spark provides in the implementation of iterative distributed algorithms such as eSS,

come from using the RDD abstraction to represent the algorithm data. Formally, an RDD is a read–only fault–tolerant

partitioned collection of records. RDDs are created by using the parallelize method, which automatically partitions

and distributes data among available worker nodes, or by applying transformations to other RDDs. Spark provides a

rich programming interface for manipulating RDDs using transformations such as map, filter or join, which perform

the same operation on many distributed data elements at the same time, and actions such as count, reduce or collect,

which return a value from an RDD to the application. There are also methods to control the partitioning of RDDs,

such as partitionBy or repartition, and to explicitly persist RDDs in memory and on disk, such as cache and persist.

Compared to other parallel programming models, such as message passing, RDDs are significantly easier to program.

Moreover, RDDs include fault tolerance as standard. The transformations to compute an RDD are pipelined to

form a lineage that is computed lazily the first time the RDD is used in an action. If any RDD partition is lost, it

can be recomputed from its lineage at any time. This guarantees that executions are completed successfully even in

the event of failures, which is specially useful for long-running applications. For example, in the experiments in this

paper, a small number of runs were affected by faulty worker nodes. Even so, all executions concluded successfully,

albeit with an execution time penalty. Because the Spark framework handles all the details in a transparent manner,

developers are freed from the burden of implementing fault tolerance in their programs.

Finally, data distribution and load balancing are other features that are also automatically handled by the Spark

framework. When programming with Spark, developers write a driver program in which they create, partition and

distribute RDDs, apply transformations and invoke actions on them. Whenever an action is executed on an RDD,

the Spark scheduler uses the RDD lineage to launch tasks that compute the missing RDD partitions. These tasks

are assigned to the worker nodes taking into account data locality and, at each worker node, the tasks are scheduled
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among all available cores. In this way, Spark balances the internal load of the nodes. In addition, the developer can

improve load balancing by setting an appropriate number of RDD partitions. It is recommended to use a number of

partitions between 2 and 4 times the number of available cores, although the actual value depends on the application.

In this paper, a number of partitions equal to the number of available cores in the cluster has been used for all the

experiments, in order to avoid biases in the results.

6. Concluding Remarks

This article describes in detail a parallelization of the enhanced Scatter Search metaheuristic using Spark. The

parallel program is a particularization of a general software framework developed to support different Scatter Search

implementations. This parallelization follows a master-slave approach, where a single monolithic population is used

and the fitness function evaluations are distributed among Spark workers.

The proposal was thoroughly evaluated on two different platforms, a cluster and an OpenNebula cloud platform,

using a representative set of parameter estimation problems in Computational Systems Biology. The experimental

results show that parallel implementation achieves good results by accelerating the solution of all the benchmark

problems without modifying the systemic properties of the original algorithm. The problems that benefit most from

parallelization are those that perform a large number of time-consuming fitness evaluations per iteration. On the

contrary, for those problems that perform a small number of short fitness evaluations per iteration, the results show

that their scalability is limited. Another important result of the parallel implementation versus the sequential one is

the reduction in the dispersion of results when the number of slaves increases.

Although the parallel implementation of the enhanced Scatter Search was developed and tested for parameter

estimation problems in computational systems biology, it could also be applied to solve global optimization problems

in other fields. Moreover, the experimental results and findings presented in this paper could be useful for those

interested in the potential of the Spark framework to implement parallel metaheuristics and may guide the proposal of

new parallel strategies for the Scatter Search or other population-based metaheuristics.

As future work, we will explore other parallelization approaches, i.e. an island-based model, that modify the

behavior of the original sequential algorithm.
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